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Abstract—Accurate numerical simulation of Eddy-Current Test-
ing (ECT) experiments usually requires large computational
efforts. So, a natural idea is to build a cheap approximation of the
expensive-to-run simulator. This paper presents an approxima-
tion method based on functional kriging. Kriging is widely used
in other domains, but is still unused in the ECT community. Its
main idea is to build a random process model of the simulator.
The extension of kriging to the case of functional output data
(which is the typical case in ECT) is a recent development
of mathematics. The paper introduces functional kriging and
illustrates its performance via numerical examples using an ECT
simulator based on a surface integral method. A comparison with
other classical data interpolation methods is also carried out.

Index Terms—Eddy-current testing; functional kriging; simu-
lator approximation

I. Introduction

Eddy-current testing is applied in a wide range of industrial
problems. However, the accurate numerical simulation of the
electromagnetic (EM) phenomenon is still challenging. Finite
element and/or integral equation methods are able to provide
acceptable accuracy, at a quite high price however. Nowadays,
more and more emphasis is being put on the emulation, or
surrogate modeling of EM phenomena [1].

The method proposed herein enables us to get a cheap
approximation for a specific ECT problem. The main idea
is to build a database of ECT configurations, i.e., a set of
pairs consisting of a vector made of the parameters of a defect
and the corresponding output signal, and then to use kriging
to predict the output signal at any untried vector. Once the
database is built, the expensive simulator is not needed any
more, but only the kriging model.

Kriging is a prediction method developed in the 60s in the
domain of geostatistics. By now, several variants of the method
have been designed and a comprehensive literature exists on
it (see [2], [3]). Some applications in electromagnetics are
presented in [4], whilst the authors have applied kriging so as
to solve ECT inverse problems [5].

All approaches discussed in the references above deal with
a single or a couple of scalar outputs being modeled. However,
the ECT experiments usually have a functional output which
needs the use of a functional kriging model [6] for the
approximation of the ECT simulator. Functional kriging is a
recent extension of the original theory, an exhaustive overview
of the state-of-art is found in [7].

II. The proposed method

A. Model of the ECT setup

Let us assume that a parameterized defect model with p
parameters in a given configuration is available. Typically,
those are dimensions, position and electric properties of the
defect. The input parameters are collected in the vector x,
living in the p dimensional input space X: x ∈ X ⊂ R p. Let
us define a norm in the input space:

||x|| =
√√√ p∑

k=1

⎛⎜⎜⎜⎜⎝ xk − xmin
k

xmax
k − xmin

k

⎞⎟⎟⎟⎟⎠2

, (1)

where xmin
k and xmax

k are the lower and upper bounds of the
kth input parameter, respectively. This scaled norm is chosen
(putting equal emphasis on all parameters), since one might
have no prior information about the sensitivity of the problem
to the different input parameters. The output function of the
experiment yx(t) is defined in an interval t ∈ T , for each
input parameter vector x, and is related here to the impedance
variation of the probe coil caused by a defect described by
x. The independent variable t is related to the position of the
probe coil. A whole surface scan is covered by the interval
T . Let yx(t) be real for the sake of simplicity of the further
explanations. The complex impedance of the coil can be
represented by a well-chosen real function (e.g. by dividing
T into two disjunct intervals, TR and TI , and the real and
imaginary parts are treated separately on them).

The connection between the input vector and the output
function is formalized by the forward operator F :

yx(t) = F {x} . (2)

F is based on the underlying EM phenomena and theoretically
it can be evaluated exactly. Typically, F is represented by a
numerical simulator of the ECT experiment.

B. The forward prediction problem

Our aim is to find a cheap approximation for the computa-
tionally expensive operator F . The proposed method involves
two steps:

1) Compute some corresponding (x i, yxi(t)), i = 1, . . . , n pairs
(“samples”) using (2) and store them in a database to be
used at step 2. Fit a kriging interpolator to the samples.



2) Use the kriging interpolator based on the stored samples
to predict the sought yx(t) output function at any arbitrary
x input point.

The two steps are separated, i.e., the time-consuming first step
is done only once, then the fast second one (performed as many
times as one needs a prediction) just relies on the stored data,
yielding an off-line method.

C. Functional kriging

Functional kriging models the function yx(t) by a Gaussian
random process ξx(t). Let us assume that observations have
been made at n input locations x1, x2, . . . , xn, thus the processes
ξx1 (t), ξx2 (t), . . . , ξxn (t) are sampled. Our goal is to predict the
process ξx(t) by using the n observed processes. Let us search
for the predictor process ξ̂x(t) in the linear form

ξ̂x(t) =
n∑

i=1

λi(x)ξxi(t) . (3)

The coefficients λi(x) are chosen such that the prediction is
optimal in a certain sense. Our requirements for the prediction
are:

E

[
ξ̂x(t) − ξx(t)

]
= 0 , ∀ t ∈ T , (4)∫

T
E

[(
ξ̂x(t) − ξx(t)

)2
]

dt→ the smallest possible. (5)

Equation (4) expresses the unbiasedness of the prediction
whereas criterion (5) formalizes the measure of error. This is
the key difference between the classical scalar kriging methods
and the functional kriging: here (5) defines the objective
function (to be minimized) as an integral of the prediction error
variance. Similarly with the notation used in the scalar kriging
approach, the predictor (3) satisfying both conditions (4) and
(5) is called the Best Linear Unbiased Predictor (BLUP).

The set of Gaussian processes ξx(t) for each x ∈ X can be
considered as a set of Gaussian processes over X for each
t ∈ T . Let us assume that the processes over X are stationary
(for each t ∈ T ), i.e., the mean m(t) does not depend on x:

E[ξx(t)] = m(t) , ∀ x ∈ X, t ∈ T , (6)

and the so-called semivariogram γ is shift-invariant, i.e.,

1
2
E

[
(ξx+h(t) − ξx(t))2

]
= γ(h, t) , ∀ x ∈ X, t ∈ T (7)

holds. The difference vector h is called lag in the terms of
kriging. 2γ(h, t) is the variogram. The semivariogram is even
in h: γ(h, t) = γ(−h, t).

Let us define the trace-semivariogram Γ(h) as the general-
ization of the semivariogram:

Γ(h) =
∫

T
γ(h, t)dt . (8)

This function, not explicitly known, has the main role in the
presented functional kriging approach and must be predicted
from the observed data.

The coefficients λi in (3), to obtain the BLUP, are computed
by solving the following linear system of equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−A
...
1

1 · · ·1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ1(x)
...
λn(x)
μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−a(x)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (9)

where the n × n matrix A contains the inter-sample trace-
semivariogram values: Ai j = Γ(xi − x j) and the n × 1 column
vector a(x) consists of the Γ values between the samples and
the arbitrary location x: ai(x) = Γ(x − xi). μ is a Lagrange
multiplier to force the unbiasedness constraint.

Once the coefficients λi(x) are computed, the prediction for
the output function at any unsampled x location can be written
as:

ŷx(t) =
n∑

i=1

λi(x)yxi(t) . (10)

D. Variogram estimation

Replacing the semivariogram γ(h, t) in (8) by its expression
(7), changing the order of the integration, and approximating
the E-operator by the empirical mean computed from the
samples leads to

2Γ̂(h) =
1
|N(h)|

∑
(i, j)∈N(h)

∫
T

(yxi(t) − yx j (t))
2dt , (11)

with N(h) being a set of (i, j) pairs where h = ±(x i−x j) holds.
The number of elements in N(h) is denoted as |N(h)|. Once the
integrals of (11) are numerically computed the values of the
empirical trace-variogram 2Γ̂(h) are known at some discrete
lags h. However, knowing that an analytical expression of the
trace-variogram is needed to compute (9) for an arbitrary x, a
parameterized variogram model is chosen and is fitted to the
values of the empirical trace-variogram.

A popular parameterized variogram model is the Matérn
function, having two parameters:

g(h|σ2, ν) = σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 −
(
2
√
νd

)ν Kν (2√νd)
G(ν)2ν−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (12)

with the parameter variance σ2 and the smoothness parameter
ν. G(·) is the gamma-function, Kν(·) is the modified Bessel-
function of the second kind, of order ν. The distance d is
defined as an anisotropic measure of the length of the lag h:

d =

√√
p∑

k=1

(
hk

ρk

)2

, (13)

where the coefficients ρk are the characteristic correlation
distances of the kth parameter. The smaller the ρk, the smaller
the range of the trace-variogram along the k th parameter, i.e.,
the more sensitive the output to this parameter. In this way, the
trace-variogram model can be tuned to the possible anisotropic
behaviour of the underlying operator F . Consequently, one
has to predict 2 + p hyperparameters from the samples of
the empirical trace-variogram (11). This prediction task is



performed via a least squares fitting, where the resulting
optimization problem is solved by the FMINSEARCH Matlab®

routine.

III. Other interpolation methods

In this section, other approaches for the interpolation of
functional data are summarized. An extensive overview of the
interpolation techniques is outside the scope of the paper and
we will focus on three classical schemes. Notations are kept
the same as before.
• Nearest neighbour method (NN): the idea is to search for

the nearest neighbour xm among the observed locations
x1, . . . , xn, the predicted function being equated to y xm (t).

• Multilinear interpolation method (ML): it needs a regular
Cartesian grid (not necessarily equidistant). The sampled
input locations are at the nodes of this p dimensional
grid, forming p dimensional cuboids. The interpolation
is piecewise linear within all p coordinates of x in each
cuboid.

• Radial basis functions interpolation (RBF, see e.g. [8]):
The interpolation ŷx(t) is written as a linear combination
of radial basis functions Φ(·):

ŷx(t) =
n∑

i=1

wi(t)Φ(||x − xi||) . (14)

The functional weights wi(t) are determined (by solving
a linear system of n equations) such that the prediction
of yx(t) fits the observations at the n sampled locations.
The so-called thin-plate spline has been chosen as basis
function:

Φ(h) = h2 ln h if h > 0 and Φ(0) = 0. (15)

Both RBF and kriging are kernel-based approximation
methods, thus they are very similar to each other. However,
the main advantage of kriging is to provide a simple manner
to estimate the parameters of the kernel (the variogram) via a
stochastic framework.

IV. Illustrative ECT problem

A. The configurations

In the studied ECT configurations, a single or a pair of
infinitesimally thin cracks (with zero conductivity) affects a
homogeneous, non-magnetic conductive plate of conductivity
σ0 = 106 S/m and depth d = 1.25 mm. An air-cored pancake-
type coil (JSAEM benchmark probe) scans above a rectan-
gular region of plate centered on the damaged zone. The
coil is driven by a time-harmonic current with a frequency
f = 150 kHz and the variation of its impedance is measured
on a surface scan made of 11× 41 regularly spaced positions.

Three different configurations are discussed (see Fig. 1), all
of them involve cracks opening to the “bottom” surface of
the plate whereas the coil scans above the “top” surface (OD
cracks in the terms of ECT).
#1 A 2-parameter configuration (L, A) involving two parallel

cracks of equal length L = (L1 = L2) and same depth (D =
60 % of the plate thickness) separated by distance A.

Table I: Ranges of the input parameters.

Ex. #1. 1 mm < A < 3.5 mm , 2 mm < L < 8 mm
Ex. #2. 1 mm < A < 3.5 mm , 2 mm < L1, L2 < 8 mm
Ex. #3. 1 mm < L < 10 mm , 5 % < D < 90 % , |A|, |B| < 1.5 mm

#2 A 3-parameter configuration (L1, L2, A), an extension of
the example #1, the two lengths (L1, L2) are allowed to
vary separately.

#3 A 4-parameter configuration where a single crack with
a given orientation but variable position (A, B) and sizes
(L,D) (Fig. 1b).

The lower and upper bounds of the input parameters are in
Table I.

The simulation of the experiments is based on the surface
crack model [9] (not described here) – any other numerical
model could be used.

B. Interpolation results

The accuracy of an interpolation method is evaluated via
the interpolation error, defined by

εx =

√√∫
T

(ŷx(t) − yx(t))2 dt∫
T

(yx∗ (t))2 dt
, (16)

where ŷx(t) is the approximated, yx(t) is the simulated output,
whereas x∗ is the so-called reference defect. In a real case
x∗ can represent, e.g., the smaller detectable defect, thus, the
precision of the interpolation can be compared to the sensi-
tivity of the related measurement. In our case, the reference
defects are chosen arbitrarily according to Table II. Since the
coil impedance is known at discrete coil locations, thus the
discretized form of yx(t) is used and the integrals are evaluated
numerically.

Table II: Parameters of the reference defects.

Ex. #1 L = 2 mm, A = 0.5 mm
Ex. #2 L1 = L2 = 2 mm, A = 0.5 mm
Ex. #3 A = B = 0 mm, L = 2 mm, D = 60 %

The input samples are placed at the nodes of a regular
Cartesian grid, covering the whole input space X. The in-
terpolation error (16) is computed on a fine regular grid
(51 × 61, 11 × 13 × 13, and 11 × 11 × 11 × 11, respecitvely

x

y

L1

L2

A

coil

(a) Examples #1 and #2.

x

y

A

coil L
B

(b) Example #3.

Figure 1: Sketch of the presented examples.



Table III: Maximal interpolation error over the input space.

Ex. Grid
Error (max εx)

NN ML RBF Krig.
3 × 3 0.833 0.229 0.734 0.248

#1 5 × 5 0.403 0.061 0.201 0.059
7 × 7 0.283 0.034 0.098 0.026

3 × 3 × 3 0.818 0.216 0.376 0.199
#2 5 × 5 × 5 0.270 0.059 0.099 0.039

7 × 7 × 7 0.275 0.032 0.042 0.022
3 × 3 × 3 × 3 9.071 2.706 2.789 2.564

#3 5 × 5 × 5 × 5 5.159 1.132 1.266 0.782
7 × 7 × 7 × 7 3.160 0.659 0.723 0.395

in the different examples) over X. The maximum of ε x is
determined on these grids and is given in Table III, by means
of the four interpolation methods and different grids of input
samples. One can see that the NN method is outperformed by
all others. RBF and ML methods show similar performance
in the sense of maximal error. However, in the case of
RBF, the error is concentrated within certain regions of X
whereas ML yields more evenly distributed error. The kriging
prediction slightly outperforms the ML technique in almost
all cases. The maximal error decreases more quickly using
kriging interpolation when the number of samples increases.
The distribution of the error over X is also favorable: similarly
with RBF, the high-error regions are small. One can see that
the similar kriging and RBF approaches yield quite different
precision: the fitted variogram as a kernel for kriging yields
much more precise approximations than RBF with a non-
parametric basis function.

The computational cost of the NN and ML interpolators is
practically negligible for a small number of samples whereas
RBF and kriging methods need the inversion of an n×n matrix
(or (n + 1) × (n + 1), respectively) once at the beginning. To
make one single prediction for yx(t), one has to evaluate n
times the variogram model (12) or the basis function (15) and
then compute the involved linear combination (10) or (14). In
addition, the variogram has to be predicted once in the case
of kriging.

C. Adaptive gridding

One can also observe in Table III that the difference between
the RBF and kriging results is the largest in the case of Ex. #1.
This is due to the strong anisotropy of the problem. By using
kriging, this can be predicted and taken into account easily
via the anisotropic measure (13). Indeed, the parameter ρ is
much higher for the distance A than for the length L. Knowing
this meta-information, the precision of the approximation can
be improved with a better choice of the input samples, by
inserting more samples along the directions in which the
problem is more sensitive. This idea is illustrated in Fig. 2
by using the so-called adaptive grid. The error is decreased
whereas the number of samples is smaller (4 × 8) than by using
naive sampling (6 × 6) .

V. Conclusion

A recent extension of kriging makes possible the direct
prediction of functional data. This approach is applied to

(a) Naive grid. (b) Adaptive grid.

Figure 2: Ex. #1, interpolation error h x over X by using
different grids in the kriging prediction.

predict ECT output signals, yielding a cheap approximation of
ECT simulations. The numerical tests show that the method
has favorable interpolation properties. The underlying vari-
ogram model takes into account the anisotropy of the modeled
problem, and moreover, the predicted anisotropy (as a meta-
information) may improve the choice of samples to be stored.

In the authors’ opinion, the method offers a new and
promising way of cheap off-line approximation not only in the
domain of ECT but more generally for expensive-to-simulate
electromagnetic problems as well.
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