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The classical identity that relates Eulerian polynomials to tangent numbers together with the parallel result dealing with secant numbers is given a q-extension, both analytically and combinatorially. The analytic proof is based on a recent result by Shareshian and Wachs and the combinatorial one on the geometry of alternating permutations.

Introduction

Let (A n (s, Y )) (n ≥ 0) be the sequence of polynomials in two variables defined by

(1.1) n≥0 u n n! A n (s, Y ) = 1 -s exp(su) -s exp(u) exp(Y u).
It is known (see, e.g. [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF], chap. 4) that they are polynomials with positive integral coefficients. For Y = 1 we recover the Eulerian polynomials (A n (s, 1)) introduced by Euler [START_REF] Euler | Institutiones calculi differentialis cum eius usu in analysi finitorum ac Doctrina serierum[END_REF] for his evaluation of the alternating sum m i=1 (-1) i i n . Moreover, Euler derived the two identities The coefficients T 2n+1 (n ≥ 0), called tangent numbers, are positive integral numbers, and so are the secant numbers E 2n (n ≥ 1) (see, e.g., [START_REF] Nielsen | Traité élémentaire des nombres de Bernoulli[END_REF], p. 177) defined by the Taylor expansion of sec u:

sec u = 1 cos u = 1 + n≥1 u 2n (2n)! E 2n = 1 + u 2 2! 1 + u 4 4! 5 + u 6 6! 61 + u 8 8! 1385 + u 10 10! 50521 + • • • (1.4)
The parallel result to (1.2) involving secant numbers was obtained by Roselle [START_REF] Roselle | Permutations by number of rises and successions[END_REF] for the polynomials A n (s, 0) in the form

(1.5) A 2n-1 (-1, 0) = 0 (n ≥ 1); (-1) n A 2n (-1, 0) = E 2n (n ≥ 0). For each permutation σ = σ(1)σ(2) • • • σ(n) of 12 • •
• n the number of excedances exc σ, (resp. of descents, des σ,) of σ is defined to be the number of integers i such that 1 ≤ i ≤ n -1 and σ(i) > i (resp. σ(i) > σ(i + 1)). Also, fix σ designates the number of fixed points of σ and D n the subset of S n of the permutations without fixed points, called derangements. It is known that the two statistics "exc" and "des" have the same distributions over the symmetric group ( [START_REF] Alexander | Combinatory Analysis[END_REF], p. 186). As derived in [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF], we have A n (s, Y ) = σ∈Sn s exc σ Y fix σ . The specializations are due to Riordan ([17], p. 214) for Y = 1 and to Roselle [START_REF] Roselle | Permutations by number of rises and successions[END_REF] for Y = 0.

The combinatorial counterparts of (1.2) and (1.5) can be expressed as

σ∈S2n (-1) exc σ = 0 (n ≥ 1); (1.6) σ∈S2n+1 (-1) n+exc σ = T 2n+1 (n ≥ 0); (1.7) σ∈D2n-1 (-1) exc σ = 0 (n ≥ 1); (1.8) σ∈D2n (-1) n+exc σ = E 2n (n ≥ 0). (1.9) Let (t; q) n = (1 -t)(1 -tq) • • • (1 -tq n-1
) for n ≥ 1 and (t; q) 0 = 1 denote the traditional q-ascending factorials. The purpose of this paper is to construct a q-analog of (1.6)-(1.9), as further stated in Theorem 1. This first means that two sequences of polynomials (T 2n+1 (q)), (E 2n (q)) with positive integral coefficients are to be introduced such that T 2n+1 (1) = T 2n+1 and E 2n (1) = E 2n . This is achieved by taking the q-tangent numbers T 2n+1 (q) and the q-secant numbers E 2n (q) (see [START_REF] Andrews | Congruences for the q-secant number[END_REF][START_REF] Andrews | Divisibility properties of the q-tangent numbers[END_REF][START_REF] Foata | Further divisibility properties of the q-tangent numbers[END_REF]) occurring in the two expansions: tan q (u) = n≥0 (-1) n u 2n+1 /(q; q) 2n+1 n≥0 (-1) n u 2n /(q; q) 2n = n≥0 u 2n+1 (q; q) 2n+1 T 2n+1 (q); sec q (u) = 1 n≥0 (-1) n u 2n /(q; q) 2n = n≥0 u 2n (q; q) 2n E 2n (q).

Note that tan q (u) (resp. sec q (u)) is simply the quotient of the q-sine and q-cosine (resp. the inverse of q-cosine), as introduced by Jackson [14] (also see [START_REF] Gasper | Basic hypergeometric series[END_REF], p. 23).

The first values are: T 1 (q) = 1; T 3 (q) = q + q 2 ; T 5 (q) = q 2 + 2q 3 + 3q 4 + 4q 5 + 3q 6 + 2q 7 + q 8 ; E 0 (q) = E 2 (q) = 1, E 4 (q) = q(1 + q) 2 + q 4 ; E 6 (q) = q 2 (1 + q) 2 (1 + q 2 + q 4 )(1 + q + q 2 + 2q 3 ) + q 12 . Second, another statistic on the symmetric group S n is to be associated with "exc," so that the left-hand sides of the four identities (1.6)-(1.9) will become true polynomial identities. The statistic that meets our expectations is the classical major index "maj," defined for each permutation σ = σ(1)σ(2) • • • σ(n) as the sum of all the i's such that σ(i) > σ(i + 1). The main result of the present paper is then the following theorem.

Theorem 1. We have:

σ∈S2n (-1) exc σ q (maj -exc)σ = 0 (n ≥ 1); (1.10) σ∈S2n+1 (-1) n+exc σ q (maj -exc)σ = T 2n+1 (q) (n ≥ 0); (1.11) σ∈D2n-1 (-1) exc σ q (maj -exc)σ = 0 (n ≥ 1); (1.12) σ∈D2n (-1) n+exc σ q (maj -exc)σ = E 2n (q) (n ≥ 0). (1.13)
We provide two proofs of Theorem 1. The analytic proof, given in Section 2, is based on a recent result due to Shareshian and Wachs [START_REF] Shareshian | q-Eulerian Polynomials: Excedance Number and Major Index[END_REF] who made an explicit study of the statistic "majexc". The combinatorial proof, given in Section 4, is based on the geometry of alternating permutations, as introduced by André [START_REF] André | Développement de sec x et tg x[END_REF][START_REF] André | Sur les permutations alternées[END_REF] and on an equidistribution property between two three-variable statistics (exc, fix, maj) and (lec, pix, inv) established in [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF]. However, to make this paper self-contained, we give a new proof of that equidistribution property by directly calculating the distribution of the latter statistic (see Theorem 4, Section 3). Our combinatorial proof consists of reducing the four alternating sums (1.10)-(1.13) by means of two explicit sign-reversing involutions. In contrast to the combinatorial proofs of (1.6) and (1.7) given in [START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF], chap. 5, these involutions naturally lead to the alternating permutation model.

The analytic proof

The q-analogs of the Eulerian polynomials, which have been derived, are the generating polynomials for S n by the pair (des, maj) (Carlitz [START_REF] Carlitz | q-Bernoulli and Eulerian numbers[END_REF][START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF]), by (des, inv) (Stanley [START_REF] Stanley | Binomial posets, Möbius inversion, and permutation enumeration[END_REF]) and by (exc, maj) (Shareshian and Wachs [START_REF] Shareshian | q-Eulerian Polynomials: Excedance Number and Major Index[END_REF]). Let us recall the latest q-extension.

Theorem 2 (Shareshian-Wachs). Let

A n (s, Y, q) = σ∈Sn s exc σ Y fix σ q maj σ . (2.1) Then n≥0 u n (q; q) n A n (s, Y, q) = 1 -sq e q (squ) -sqe q (u) e q (Y u), (2.2)
where e q (u) = n≥0 u n /(q; q) n is the first q-exponential.

To prove Theorem 1 it then suffices to establish the following equivalent theorem. Theorem 3. Let (A n (s, Y, q)) (n ≥ 0) be the sequence of polynomials defined by (2.1). Then

A 2n (-q -1 , 1, q) = 0 (n ≥ 1); (-1) n A 2n+1 (-q -1 , 1, q) = T 2n+1 (q) (n ≥ 0); A 2n-1 (-q -1 , 0, q) = 0 (n ≥ 1); (-1) n A 2n (-q -1 , 0, q) = E 2n (q) (n ≥ 0).
Proof. With the substitutions Y := 0 and s := -q -1 in (2.2) we get n≥0 u n (q; q) n A n (-q -1 , 0, q) = 1 + n≥1 u 2n (q; q) 2n -1

.

As the fraction on the right involves only even powers of u, we deduce:

A 2n-1 (-q -1 , 0, q) = 0 (n ≥ 1).
By replacing u by iu we obtain

n≥0 u 2n (q; q) 2n (-1) n A 2n (-q -1 , 0, q) = 1 + n≥1 (-1) n u 2n (q; q) 2n -1 = 1 cos q (u)
.

Consequently, (-1) n A 2n (-q -1 , 0, q) = E 2n (q) (n ≥ 0). From (2.2) we can write:

n≥0 u n (q; q) n A n (s, 1, q) = e q (u) n≥0 u n (q; q) n A n (s, 0, q)
so that by replacing s by -q -1 and u by iu n≥0 (iu) n (q; q) n A n (-q -1 , 1, q) = e q (iu) cos q (u) = cos q (u) + i sin q (u) cos q (u) .

By selecting the real and imaginary parts we get n even (iu) n (q; q) n A n (-q -1 , 1, q) = 1 and n≥0 u 2n+1 (q; q) 2n+1 (-1) n A 2n+1 (-q -1 , 1, q) = sin q (u) cos q (u) = tan q (u).

We then conclude:

A 2n (-q -1 , 1, q) = 0 (n ≥ 1), (-1) n A 2n+1 (-q -1 , 1, q) = T 2n+1 (q) (n ≥ 0).

A direct derivation

A word w = x 1 x 2 • • • x m is called a hook if x 1 > x 2
and either m = 2, or m ≥ 3 and x 2 < x 3 < • • • < x m . As proved by Gessel [START_REF] Gessel | A coloring problem[END_REF], each permutation σ = σ(1)σ(2) • • • σ(n) admits a unique factorization, called its hook factorization, pτ 1 τ 2 • • • τ k , where p is an increasing word and each factor τ 1 , τ 2 , . . . , τ k is a hook. To derive the hook factorization of a permutation, it suffices to start from the right and at each step determine the right factor which is a hook. For each i let inv τ i denote the number of inversions of τ i and define: Those two statistics have been introduced and used in [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF]. Furthermore, let Desar n be the subset of S n of the permutations σ, called desarrangements, having the property that pix σ = 0 [START_REF] Désarménien | Une autre interprétation du nombre de dérangements[END_REF].

For instance, the hook factorization of the following permutation is indicated by vertical bars: σ = 1 3 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10. We have p = 1 3 4 14, so that pix σ = 4, inv(12 2 5 11 15) = 3, inv(8 6 7) = 2, inv(13 9 10) = 2, so that lec σ = 7. The next theorem, already derived in [START_REF] Foata | Fix-mahonian calculus III; a quadruple distribution[END_REF], is given a new direct proof.

Theorem 4. Let A lec,pix,inv n (s, Y, q) := σ∈Sn s lec σ Y pix σ q inv σ . (3.3) Then n≥0 u n (q; q) n A lec,pix,inv n (s, Y, q) = 1 -sq e q (squ) -sqe q (u) e q (Y u). (3.4) Proof. Let pτ 1 τ 2 • • • τ r be the hook factorization of a permutation σ from S n . Let A 0 (resp. A i (1 ≤ i ≤ r))
denote the set of all letters in the word p (resp. in the hook τ i ) and call content of σ the sequence Cont σ = (A 0 , A 1 , . . . , A r ). Note that #A i ≥ 2 for i = 1, . . . , r and (A 0 , A 1 , . . . , A r ) is an ordered partition of [n] = {1, 2, . . . , n}. The statistic (invlec)σ is equal to the number of pairs (k, l) such that k ∈ A i , l ∈ A j , k > l and i < j, a number we shall denote by inv(A 0 , A 1 . . . , A r ).

If

A i = {a 1 < a 2 < • • • < a m }, then the hooks with content A i are the (m -1) words: w 1 = a m a 1 • • • a m-2 a m-1 , w 2 = a m-1 a 1 • • • a m-2 a m , . . . , w m-1 = a 2 a 1 a 3 • • • a m-1 a m ,
whose "lec" statistic and inversion number are both equal to (m -1), (m -2), . . . , 1, respectively. The generating polynomial for those (m -1) hooks by the pair (lec, inv) is then equal to (3.5) P m (s, q) := sq + (sq

) 2 + • • • + (sq) m-1 = sq -(sq) m 1 -sq .
The identity (A0,A1,... ,Ar) #Ai=ai q inv(A0,A1,... ,Ar) = n a0,a1,... ,ar q

, where the right-hand side is the q-multinomial coefficient (q; q) n /((q; q) a0 (q; q) a1 • • • (q; q) ar ) is easy to verify. We then have:

A lec,pix,inv n (s, Y, q) = σ∈Sn q (inv -lec)σ (sq) lec σ Y pix σ = (A0,A1,... ,Ar) q inv(A0,A1,... ,Ar) Y #A0 Cont σ=(A0,A1,... ,Ar) (sq) lec σ = (A0,A1,... ,Ar) q inv(A0,A1,... ,Ar) Y #A0 1≤i≤r P #Ai (s, q) = a0+a1+•••+ar =n ai≥2 (1≤i≤r) Y a0 1≤i≤r P ai (s, q) (A0,A1,... ,Ar) #Ai=ai q inv(A0,A1,... ,Ar) = a0+a1+•••+ar =n ai≥2 (1≤i≤r) n a 0 , a 1 , . . . , a r q Y a0 1≤i≤r P ai (s, q).
The rest of the calculation is routine:

n≥0 A lec,pix,inv n (s, Y, q) u n (q; q) n = n≥0 a0+a1+•••+ar=n ai≥2 (1≤i≤r) 
Y a0 u a0 (q; q) a0 1≤i≤r P ai (s, q) u ai (q; q) ai = a0≥0 (Y u) a0 (q; q) a0 1

- b≥2 P b (s, q) u b (q; q) b -1 = e q (Y u) 1 - b≥2 sq -(sq) b 1 -sq u b (q; q) b -1 = e q (Y u)
1sq e q (squ)sqe q (u) .

In view of (2.1), (2.2), (3.3) and (3.4) the following identity holds

(3.6) σ∈Sn s exc σ Y fix σ q maj σ = σ∈Sn s lec σ Y pix σ q inv σ
and Theorem 1 is proved if we establish the four following identities: σ∈S2n (-1) lec σ q (inv -lec)σ = 0 (n ≥ 1); (3.7) σ∈S2n+1 (-1) n+lec σ q (inv -lec)σ = T 2n+1 (q) (n ≥ 0); (3.8) σ∈Desar2n-1 (-1) lec σ q (inv -lec)σ = 0 (n ≥ 1); (3.9) σ∈Desar2n (-1) n+lec σ q (inv -lec)σ = E 2n (q) (n ≥ 0). (3.10) This is the object of the next section.

The combinatorial proof

An alternating (resp. falling alternating) permutation is defined to be a permutation σ = σ(1) • • • σ(n) having the following properties: σ(1) < σ(2), σ(2) > σ(3), σ(3) < σ(4), etc. (resp. σ(1) > σ(2), σ(2) < σ(3), σ(3) > σ(4), etc.) in an alternating way. The set of alternating (resp. falling alternating) permutations of order n is denoted by T n (resp. by T ′ n ). The combinatorial interpretations #T 2n+1 = #T ′ 2n+1 = T 2n+1 , #T 2n = #T ′ 2n = E 2n are due to Désiré André [START_REF] André | Développement de sec x et tg x[END_REF][START_REF] André | Sur les permutations alternées[END_REF]. For each permutation σ let inv σ denote the number of its inversions. The following theorem is of common knowledge today, once we know how to q-transpose the calculation made by André in his memoirs (see, e.g., [START_REF] Andrews | Congruences for the q-secant number[END_REF], Proposition 4.1.) Theorem 5. For each n ≥ 0 we have σ∈T2n+1 q inv σ = σ∈T ′ 2n+1 q inv σ = T 2n+1 (q), and σ∈T2n q inv σ = E 2n (q). Next, consider the left-hand side LHS of (3.8) (resp. of (3.7)). The sum may be regarded as being over all hook factorizations pτ 1 τ 2 • • • τ r of permutations from S 2n+1 (resp. S 2n ). Let A 0 be the set of the letters in p and, as before, let A i be the set of all letters in τ i (1 ≤ i ≤ r). As above, we may apply the involution Ω → Ω ′ to all contents Ω = (A 1 , A 2 , . . . , A r ), remembering that this time Ω is an ordered partition of [2n + 1] \ A 0 (resp. of [2n] \ A 0 ). After applying Ω → Ω ′ we get (-1) n+r q inv(A0,A1,... ,Ar) , where the sum is over all ordered partitions Θ = (A 0 , A 1 , . . . , A r ) of [2n + 1] (resp. of [2n] with the convention that A 0 may be empty), having the property that (A 1 , . . . , A r ) is an ordered partition of a subset of [2n + 1] (resp. of [2n]) into blocks of cardinality 2 having no increase.

Another sign-reversing involution. Each ordered partition Θ = (A 0 , A 1 , . . . , A r ) of [2n+ 1] (resp. of [2n]) is said to be of type D, if max A 0 < min A 1 (by convention, max ∅ = -∞). It is of type D ′′ if max A 0 < min A 1 does not hold and #A 0 ≥ 2. If Θ is of type D, define Θ ′′ = (A 0 ∪ A 1 , A 2 , . . . , A r ). Then, Θ ′′ is of type D ′′ and inv Θ ′′ = inv Θ, so that (4.3) (-1) n+r q inv Θ + (-1) n+r-1 q inv Θ ′′ = 0.

Thus Θ → Θ ′′ is a sign-reversing involution.

After applying the transformation Θ → Θ ′′ to the summands in (4.2) there remains no term if the sum is made over the ordered partitions of [2n]. This proves identity (3.7). When making the sum over ordered partitions of [2n+1], the remaining terms correspond to the ordered partitions (A 0 , A 1 , . . . , A r ) having no increase and such that A 0 is a singleton. In particular, r = n. Such a partition is of the form ({a 0 }, {a 1 < b 1 }, {a 2 < b 2 }, . . . , {a n < b n }) having the property that a 0 > a 1 and for each i = 2, . . . , n the relation b i-1 > a i holds. Hence ω = a 0 a 1 b 1 a 2 b 2 • • • a n b n is a falling alternating permutation. We have then proved σ∈S2n+1 (-1) n+lec σ q (inv -lec)σ = ω∈T ′ 2n+1 q inv ω (n ≥ 0). This establishes (3.8) by Theorem 5.

(1. 2 )

 2 A 2n (-1, 1) = 0 (n ≥ 1); (-1) n A 2n+1 (-1, 1) = T 2n+1 (n ≥ 0);where T 2n+1 (n ≥ 0) are the coefficients of the Taylor expansion of tan u,

We first prove identities (3.9) and (3.10). With the notations of the previous section the content of each desarrangement is of the form (∅, A 1 , . . . , A r ), so that σ∈Desarn (-1) lec σ q (inv -lec)σ = A lec,pix,inv n (-q -1 , 0, q) = a1+•••+ar=n ai≥2 1≤i≤r

P ai (-q -1 , q) (A1,... ,Ar) #Ai=ai q inv(A1,... ,Ar) .

From the very definition of P m (s, q) we have:

Hence, if the ordered partition (A 1 , A 2 , . . . , A r ) has at least one block of odd cardinality and #A i = a i (1 ≤ i ≤ r), the product 1≤i≤r P ai (-q -1 , q) is null. As each desarrangement from S 2n-1 has at least one hook of odd length, the sum σ∈Desar2n-1 (-1) lec σ q (inv -lec)σ is zero. This already proves identity (3.9). Next, consider the even case. If all the blocks A 1 , A 2 , . . . , A r of the ordered partition (A 1 , A 2 , . . . , A r ) are of even cardinality, then σ∈Cont(A1,... ,Ar) (-1) n+lec σ q (inv -lec)σ = (-1) n+r q inv(A1,... ,Ar ) .

Hence, σ∈Desar2n (-1) n+lec σ q (inv -lec)σ = (A1,... ,Ar) #Ai even (-1) n+r q inv(A1,... ,Ar) . (4.1)

Sign-reversing involution. An ordered partition Ω = (A 1 , A 2 , . . . , A r ) is said to have an increase at i if 1 ≤ i ≤ r -1 and max A i < min A i+1 . If it has no increase and all its blocks A j are of cardinality 2, then r = n and the corresponding term in (4.1) is equal to q inv Ω . If it is not the case, let i be the integer with the following properties:

(ii) no increase at 1, 2, . . . , (i -1); (iii) either #A i ≥ 4, or (iv) #A i = 2 and there is an increase at i. Say that the partition Ω is of class C i (resp. C ′ i ) if (i), (ii) and (iii) (resp. and (iv

i , which is sign-reversing since inv Ω ′ = inv Ω and (-1) n+r q inv Ω + (-1) n+r+1 q inv Ω ′ = 0.

By applying the involution Ω → Ω ′ , the only partitions (A 1 , . . . , A r ) remaining in We have then proved σ∈Desar2n (-1) n+lec σ q (inv -lec)σ = ω q inv ω , where the sum is over all alternating permutations of order 2n, which establishes identity (3.10) by Theorem 5.