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Introduction 1.Mixture model with varying mixing weights

Since more than 20 years, the mixture model has gained a lot of attention. This is due to its ease of interpretation by viewing each component as a distinct group in the data. This model has been widely applied in several areas such as finance, economy, biology, astronomy, survey methods,... Most of the theoretical results in the literature deal with the estimation of the components or of the mixing weights. There are two types of mixture models : the most popular one has fixed mixing weights and the other one has varying mixing weights. On the one hand, many statisticians have been interested in estimating the mixing weights. For example, Hall [START_REF] Hall | On the nonparametric estimation of mixture proportions[END_REF], Titterington [START_REF] Titterington | Minimum distance nonparametric estimation of mixture proportions[END_REF] and Hall and Titterington [START_REF] Hall | Efficient Nonparametric Estimation of Mixture Proportions[END_REF] have considered nonparametric estimation of the mixing weights.

Two other examples about the mixing weights are the estimation of a functional of the weights by van de Geer [START_REF] Van De Geer | Asymptotic normality in mixture models[END_REF] and the computation of confidence intervals by Qin [START_REF] Qin | Empirical likelihood ratio based confidence intervals for mixture proportions[END_REF]. On the other hand, one can be interested in estimating the components of the mixture. This can be easily done with varying mixture weights by applying several well-known methods such as histograms in Lodakto and Maiboroda [START_REF] Lodatko | Estimation of the density of a distribution from observations with an admixture[END_REF], empirical distribution in Maiboroda [START_REF] Maiboroda | An asymptotically effective estimate for a distribution from a sample with a varying mixture[END_REF] or wavelet thresholding methods in Pokhyl'ko [START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF]. Finally, the mixing weights and the mixture components can also be estimated both and at the same time, this result holds in a particular setting for k-variate data introduced by Hall and Zhou [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF].

More recently, the mixture model has also been studied in the testing problem framework. The usual addressed question is whether the observations come from a non-trivial mixture model or from a trivial one (i.e. with only one component). This has been done for example by Garel [START_REF] Garel | Likelihood ratio test for univariate Gaussian mixture[END_REF] and [START_REF] Garel | Asymptotic theory of the likelihood ratio test for the identification of a mixture[END_REF] and Delmas [START_REF] Delmas | On likelihood ratio tests in Gaussian mixture models[END_REF] in the case of fixed mixing weights and by Maiboroda [START_REF] Maiboroda | A homogeneity criterion for mixtures with varying concentrations[END_REF] in the case of varying mixing weights. Their homogeneity tests which rely respectively on the likelihood ratio test and on a Kolmogorov-Smirnov type test are proved to be consistent. Here we propose to study a testing problem with two samples in a mixture model with varying mixing weights. Although the varying mixing weights model does not seem natural at first sight, on can think of several situations where it can be useful. Let us give three examples that will help the reader to recognize its usefulness.

Social science

This first example is the closest to the varying mixing weights model that is studied here. Let us consider an organization divided into several departments such as an enterprise. Aggregated informations are only known at the department level, e.g. proportion of men and women, proportion of graduates and undergraduates, proportion of married and unmarried people,etc... The researcher is interested in a variable for these subgroups such as salary. For each person, the researcher has only recorded salary and department. The information of interest which allows to divide the sample into subgroups is unavailable at the individual level. This can happen if the researcher has forgotten to record this information when collecting the data; this frequently happens when a new question arises during the study of the data. Another reason can be that the law forbids to record such information at the individual level; for example this is the case of origins or races in many countries. There is a wealth of works on partially missing data (see McKnight et al. [START_REF] Mcknight | Missing data: a gentle introduction[END_REF] for example) but the case of entirely missing data has never been really considered. From our point of view, a varying mixing weights model is a way to cope with this lack of information at the individual level and to allow the researcher to reconstruct information for each subgroup. Although we are aware of methodological problems, we want to emphasize that in this case the varying mixing weights are exactly known to the researcher; indeed, aggregated information often exists and is much easier to collect than individual information.

Image analysis

Let us assume a simple picture taken at a party and consisting of people and background. There is usually no way to distinguish at the pixel level whether it comes from people or background. Nevertheless one can think of some kind of aggregated information to roughly divide the image into several areas. In the center of the image, there are usually mainly people and only little background. In the area surrounding the center, there is mainly background although few people can be scattered here and there. Therefore the image can be divided into two areas. This written description of the image can be translated into a mathematical description namely the varying mixing weights model. In this model, the statistician will be able to extract distinctive features of the picture concerning people or background. We are aware that methodological problems can appear in this setup. For example, spatial structure are not taken into account. One can consider that the weights are only roughly known which can be a problem. Nevertheless for some types of images, such as satellite images, one can assume that the weights are accurately known. Indeed, as the area under scrutiny is exactly known from a geographical point of view, one can use aggregated information about surfaces such as proportion of forest, land, city, water,etc... Finance Mixture densities have been proved to be useful in volatility modeling (see Bernhard and Leblang [START_REF] Bernhard | Democratic Processes and Financial Markets[END_REF], Avellaneda [START_REF] Avellaneda | Quantitative Analysis in Financial Markets: Collected Papers of the New York University Mathematical Finance Seminar Volumes I[END_REF] for example). If one consider the volatility clustering effect (see Cont [START_REF] Cont | Volatility clustering in financial markets: empirical facts and agent-based models[END_REF] for example), one can roughly divide time into periods where the proportions of high and low volatility are estimated. Indeed during each period it might be hard to exactly label observations corresponding to low or high volatility. Therefore the varying mixing weights model can be considered and help to extract useful features of the mixture components. This case with estimated proportions is not solved here. Although it is beyond the scope of this paper, we briefly discuss it in Section 4.

Let us now come back to our testing problem with two samples in a mixture model with varying mixing weights: let Y 1 , . . . , Y n and Z 1 , . . . , Z n be two independent n-samples of independent random variables. We propose to study in this paper whether these two samples of random variables come from the same mixture of M unknown densities p u (1 ≤ u ≤ M ) or not. We assume that the mixing weights associated with each observation are available to the statistician. In Butucea and Tribouley [START_REF] Butucea | Nonparametric homogeneity tests[END_REF] some procedures are proposed to test if two n-samples of i.i.d. variables have common probability density. Their setting is equivalent to the case M = 1 in our mixture problem. Here the problem appears more complex since the two samples are not based on random variables with the same marginal densities. Our results show that there is no loss in the minimax rate compared to the simpler case studied by Butucea and Tribouley [START_REF] Butucea | Nonparametric homogeneity tests[END_REF]. In Section 2 we provide an asymptotically minimax test which is based on wavelet methods and we prove the dependence between the mixing weights and the constants appearing in the definition of the minimax rate of testing. Until now this phenomenon has never been studied and is extensively discussed in this paper. In addition to our theoretical result some numerical experiments are given in Section 3 in order to illustrate the strong connection between the mixing weights and the performance of the test. As expected, our test performs very well for various mixture models. Sections 4 and 5 are respectively devoted to possible extensions of work and to proofs of main results.

Here we introduce the wavelet framework that will be used.

Wavelet framework

We first recall that wavelets have been often applied in different mathematical fields such as in approximation theory, in signal analysis and in statistics for instance. In particular, many recent statistical works on estimation (see among others Autin [START_REF] Autin | Maxiset for density estimation on R[END_REF], Donoho et al [START_REF] Donoho | Density estimation by wavelet tresholding[END_REF], Cohen et al [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] ) and on hypothesis testing (see Spokoiny [START_REF] Spokoiny | Adaptive hypothesis testing using wavelets[END_REF]) use the wavelet setting to provide efficient estimators and tests. There are many explanations for the huge interest of the wavelet setting. One of them is that wavelets bases are localized both in frequency and in time, contrary to the classical Fourier basis which is only localized in frequency. As a consequence, the wavelet setting appears to be well adapted to describe local characteristics of a signal to be reconstructed. Let φ andψ be two compactly supported functions of L 2 (R) and denote for all j in N and all k in Z and all x in R,

φ jk (x) = 2 j/2 φ(2 j x -k) and ψ jk (x) = 2 j/2 ψ(2 j x -k).
Suppose that for any j in N:

• {φ jk , ψ j ′ k ; j ′ ≥ j; k ∈ Z} constitutes an orthonormal basis of L 2 (R),

• support(φ) ∪ support(ψ) ⊂ [-L, L[ for some L > 0.
Some most popular examples of such bases, called compactly supported orthonormal wavelet bases, are given in Daubechies [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]. The function φ is called the scaling function and ψ the associated wavelet.

Any function h in L 2 (R) can be represented as:

h(t) = k∈Z α jk φ jk (t) + j ′ ≥j k∈Z β jk ψ j ′ k (t)
where ∀j ∈ N, ∀j ′ ≥ j, ∀k ∈ Z:

• α jk = I jk h(t)φ jk (t)dt and β j ′ k = I j ′ k h(t)ψ j ′ k (t)dt, • I jk = x ∈ R; -L ≤ 2 j x -k < L = k-L 2 j , k+L 2 j 
.

Let us now describe the testing problem we focus on.

Mathematical description of the testing problem

Let Y 1 , . . . , Y n be a sample of independent random variables with unknown marginal densities

f i (.) = M u=1 ω u (i)p u (.), 1 ≤ i ≤ n,
and let Z 1 , . . . , Z n be another sample of independent random variables with unknown marginal densities

g i (.) = M u=1 σ u (i)q u (.), 1 ≤ i ≤ n.
We also assume that the two samples are independent.

Here and in what follows, we suppose that the mixing weights (ω

u (i), 1 ≤ u ≤ M , 1 ≤ i ≤ n) and (σ u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n)
are known to the statistician and satisfy

• ∀(u, i) ∈ {1, . . . , M } × {1, . . . , n}, min(ω u (i), σ u (i)) ≥ 0, • ∀i ∈ {1, . . . , n}, M u=1 ω u (i) = M u=1 σ u (i) = 1,
and are known by the statistician whereas the densities p u and q u (1 ≤ u ≤ M ) are unknown.

Let us denote -→ p = (p 1 , . . . , p M ) and -→ q = (q 1 , . . . , q M ) .

We study in this paper a nonparametric procedure to test whether the samples result from the same mixture of densities. Let D denote the set of all probability densities with respect to the Lebesgue measure on R. For any real number R > 0, we define

Θ 0 (R) = {( -→ p , -→ q ) : ∀u ∈ {1, . . . , M }, p u = q u ∈ S(R)} where S(R) = D ∩ L ∞ (R) ∩ L 2 (R).
We consider the following null hypothesis

H 0 : ( -→ p , -→ q ) ∈ Θ 0 (R) .
For a given C > 0, we define

Θ 1 (R, C, n, s) = ( -→ p , -→ q ) : ∀u ∈ {1, . . . , M }, p u -q u ∈ B s 2,∞ (R), ∃u ∈ {1, . . . , M }, (p u , q u ) ∈ Λ n (R, C) , where Λ n (R, C) = (p, q) ∈ (D ∩ L ∞ (R)) 2 , p -q 2 ≥
Cr n , for a sequence r n tending to 0 when n goes to infinity and B s 2,∞ (R) is the R-ball of a functional space defined below. We consider the following alternative

H 1 : ( -→ p , -→ q ) ∈ Θ 1 (R, C, n, s) .
As usual in the nonparametric setting, we focus on a large class of functions having some regularity so as to derive optimal properties. For the chosen wavelet basis, the space B s 2,∞ (R) represents the R-ball of the so-called Besov body which is composed of all the functions h ∈ L 2 (R) for which the sequence of wavelet coefficients (α jk , β j ′ k , j ∈ N, j ′ ≥ j, k ∈ Z) satisfies:

sup j∈N 2 2js j ′ ≥j k∈Z β 2 j ′ k ≤ R.

The minimax setting

In this paragraph we recall the minimax approach which is often used to evaluate the performances of testing procedures. Given the sum of the probability errors, say γ ∈ [0, 1], we study the optimal separation rate r n between the null hypothesis and the alternative. This rate r n is the best possible rate separating at least one of the M couples of density components p u and q u . It is usually called the minimax rate. Let us recall the classical definition for the separation rate.

Definition 1.1 Let 0 < γ < 1. We say that r n is the minimax rate separating H 0 and H 1 of our testing problem at level γ if the two following statements are satisfied:

1. there exist a sequence of test procedures ∆ * n and a constant C γ such that

lim sup n→∞ sup ( - → p , - → q )∈Θ 0 (R) P-→ p , - → q (∆ * n = 1) + sup ( - → p , - → q )∈Θ 1 (R,C,n,s) P-→ p , - → q (∆ * n = 0) ≤ γ (1)
for all C > C γ ;

2. there exists a constant c γ such that

lim inf nto∞ inf ∆ sup ( - → p , - → q )∈Θ 0 (R) P-→ p , - → q (∆ = 1) + sup ( - → p , - → q )∈Θ 1 (R,C,n,s) P-→ p , - → q (∆ = 0) > γ (2)
for all C < c γ , where the infimum is taken over all test procedures ∆.

Hypothesis on the model

In our study we suppose that the mixing weights (ω

u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σ u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n
) satisfy an added hypothesis. Let us denote by Ω = (Ω) u,i the matrix with coefficients Ω u,i = ω u (i) and Σ = (Σ) u,i the matrix with coefficients Σ u,i = σ u (i).

HYP-1 The smallest eigenvalues of the (M × M )-matrices Γ n = ΩΩ * and Γ ′ n = ΣΣ * are both larger than or equal to Kn, with 0 < K < 1.

We recall the following proposition due to Maiboroda [START_REF] Maiboroda | An asymptotically effective estimate for a distribution from a sample with a varying mixture[END_REF].

Proposition 1.1 Suppose that the previous conditions are satisfied by the mixing weights (ω

u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σ u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n)
associated with the model. Then, there exists a solution of the two problems

[ find a l = {a l (i), i = 1, . . . , n} such that < ω k , a l > n := 1 n n i=1 ω k (i)a l (i) = δ kl ] , [ find b l = {b l (i), i = 1, . . . , n} such that < σ k , b l > n := 1 n n i=1 σ k (i)b l (i) = δ kl ] ,
where δ kl is the Kronecker delta. According to HYP-1 this solution satisfies

M l=1 < a l , a l > n := 1 n M l=1 n i=1 a 2 l (i) ≤ M K , (3) 
M l=1 < b l , b l > n := 1 n M l=1 n i=1 b 2 l (i) ≤ M K . ( 4 
)
2 Nonparametric test procedure

This paragraph deals with the case where the regularity s of the Besov body that appears in H 1 is known. From now on we denote by a l and b l the nvectors which are the solutions of the two optimization problems appearing in Proposition 1.1. Let us describe the asymptotically minimax decision rule.

Definition of the test procedure

For each level parameter j, we define the test procedure ∆ j comparing the test statistic

T j = 1 n 2 M l=1 k i1 =i2 [a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 )] [a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )]
with a threshold value t n = t r 2 n where t is a constant chosen later. We define

∆ j = 1 if T j > t n , 0 if T j ≤ t n .

Properties of the test statistic

In this section, we provide two propositions which will be crucial when evaluating the performance of our test procedure. They deal with the behaviors of its expectation and its variance.

Proposition 2.1 Let j be any given level parameter. Then,

E-→ p , - → q (Tj) = M l=1 k R (p l -q l )φ jk 2 - 1 n 2 M l=1 k n i=1 R (a l (i)fi -b l (i)gi) φ jk 2 .
Remark 2.1 For the particular case where the sequences of the mixing weights

(ω u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σ u (i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) are identical,
the test statistic T j is centered under the null hypothesis.

Corollary 2.1 For any j ∈ N,

E - → p , - → q (T j ) - M l=1 k R (p l -q l )φ jk 2 ≤ 8LM R 2 Kn .
Proposition 2.2 There exists a constant

C T = C T (R, L, φ ∞ ) > 0 such that Var - → p , - → q (T j ) ≤ C T 2 j n 2 + 1 n l p l -q l 2 2 + 2 j n 3 l p l -q l 2 M 2 K 2 .
Remark 2.2 Under the null hypothesis the variance of the test statistic T j is less than or equal to C T M 2 K -2 2 j n -2 .

Minimax performance of the test procedure

For any s > 0, let (r n ) n∈N be the sequence such that

r n = n -2s 1+4s ∀n ∈ N * .
The following theorem shows that the test procedure defined in section 2 provides an accurate upper bound when it is well calibrated.

Theorem 2.1 (Upper bound) Fix 0 < γ < 1 and consider the test procedure ∆ * s = ∆ jn where j n is the smallest integer such that 2 -jn ≤ n -2 1+4s . Let t and C γ be two positive real numbers defined as follows :

t = 2 C T γ + 8LR 2 M K , C 2 γ = 2 1 K 6 C T γ + R + t M .
Then

lim sup n→∞ sup ( - → p , - → q )∈Θ 0 (R) P-→ p , - → q (∆ * s = 1) + sup ( - → p , - → q )∈Θ 1 (R,C,n,s) P-→ p , - → q (∆ * s = 0) ≤ γ (5)
for all C > C γ .

Although the exact value of the constant C T is very complicated, it can be exactly calculated by following the proofs. Now, let us focus on the lower bound associated with our nonparametric testing problem H 0 versus H 1 .

We aim at providing a constant c γ such that we ensure that no test procedure is able to choose H 0 or H 1 with a sum of the probability errors less than γ (0 < γ < 1). Obviously, the smaller the distance between c γ and C γ the more accurate our results. The next theorem proves that our test procedure is asymptotically minimax.

Similarly to the classical methods for providing lower bounds (see for instance Gayraud and Pouet [START_REF] Gayraud | Adaptive Minimax Testing in the Discrete Regression Scheme[END_REF] or Butucea and Tribouley [START_REF] Butucea | Nonparametric homogeneity tests[END_REF]) we shall consider a subspace of Λ n (R, C) that is, for any chosen

C 1 > 0, Λn (R, C, C 1 ) = (p, q) ∈ Λ n (R, C); inf z∈[0,1[ min(p(z), q(z)) ≥ C 1 . (6) 
Theorem 2.2 (Lower bound) Let 0 < γ < 1, s > 0 and let c γ > 0 satisfy

c 4 γ = C 2 1 L K 2 ln[4(1 -γ) 2 + 1] ∧ 2R 2 2 -4s 4M 2 .
Then for all C < c γ lim inf

n→∞ inf ∆ sup ( - → p , - → q )∈Θ 0 (R) P-→ p , - → q (∆ = 1) + sup ( - → p , - → q )∈Θ 1 (R,C,n,s) P-→ p , - → q (∆ = 0) > γ (7)
where the infimum is taken over all test procedure ∆.

From Theorems 2.1 and 2.2 we deduce the minimax rate of testing. It is the same as the one found by Butucea and Tribouley [START_REF] Butucea | Nonparametric homogeneity tests[END_REF] when there is only one subgroup. Advances in our results are the extension to the varying mixing weights model which allows non-identically distributed random variables compared to Butucea and Tribouley [START_REF] Butucea | Nonparametric homogeneity tests[END_REF] and the role played by the mixing weights which is clearly exposed.

Corollary 2.2 For any s > 0, the test procedure ∆ * s is asymptically minimax and the minimax rate separating H 0 and H 1 is r n = n -2s 1+2s .

Discussion about the constants c γ and C γ

In the two previous theorems we exhibited two constants appearing in the upper and the lower bounds. We think that the connection between these constants and the model's parameters M and K is a novelty and really deserves a discussion. Indeed, we keep in mind that

• C γ is the minimal value for C such that our test statistic is able to detect if all the mixture components are identical in the two populations with the sum of the probability errors not exceeding γ;

• c γ is the maximal value for C such that no test statistic is able to detect if all the mixture components are identical in the two populations with the sum of probability errors not exceeding γ.

As a consequence we proved that our test statistic is optimal in the minimax sense since it attains the minimax rate of convergence separating H 0 and H 1 .

According to the definitions of c γ and C γ we let the reader be aware that:

• the smaller the constant K, the larger the family of the mixing weights satisfying HYP-1;

• the smaller the constant M , the bigger (= the worse) the constant C γ and the bigger the constant c γ ;

• the smaller the constant K, the bigger (= the worse) the constant C γ and the bigger the constant c γ .

Although the exact separation constant is not established in this study (since c γ = C γ ), we prove that c γ and C γ strongly depend on the smallest eigenvalue of the matrices ΩΩ * and ΣΣ * .

Numerical experiments and application

The aim of this section is twofold: to illustrate by numerical experiments the good performance of the test procedures based on the statistics T jn and to show the usefulness of our method on real data.

First, 2 examples of mixture models are given to show the interest of the problem we have considered. Next we illustrate the behaviour of the test statistics T jn . • the ranks of the matrices of the mixing weights Ω * and Σ * are 2,

Examples of mixture models

• the two components of the mixtures are the uniform density U ([-1, 0]) and the normal density N (3, 4). • the ranks of the matrices of the mixing weights Ω * and Σ * are 3,

• the three components of the mixtures are the normal densities N (-2, 1), N (0, 1) and N (2, 1). The histograms of the observations are quite different in Figures 1 and2, although they correspond to mixture models with the same components. So the previous schemes show how hard it is to guess whether the mixture components of the two populations (Y, Z) are exactly the same or not. Hence, it justifies that the statistician needs an adequate test statistic to decide whether the populations (Y, Z) have the same mixture components or not.

Construction of the test procedure: calibration of t n

In the theoretical part of this paper we provide a decision rule to test H 0 against H 1 . This decision rule ∆ jn relies on the sign of T jn -t n , where t n is the threshold value depending on the sum of the errors γ and T jn is the test statistic. In the positive case (resp. in the negative case) ∆ jn proposes to accept H 1 (resp. H 0 ). From the practical point of view, we give some hints to adjust the threshold value t n . Here we use the Haar basis and we set s = 4. For this, we consider two different approaches.

The first approach consists in fixing the first type error, 0 < γ 1 < 1, and in choosing t n as the quantile of order 1γ 1 of the test statistic obtained after 1000 replications of the chosen mixture model.

The second approach consists in choosing t n as the value for which the sum of the two errors is the minimal one according of the statistic of test obtained after 1000 replications of the mixture model chosen.

Connection between K and the performance of the test procedure.

The aim of this paragraph is to illustrate the connection between the value of K and the performance of our test procedure. We provide simulations of Gaussian mixture models and we give for several values of n

• the value of t n associated with a first type error equal to 10%,

• the power of the test procedure based on the threshold value t n ,

• the minimum of the global error γ opt -the sum of the first type and the second type errors -reachable by the test procedure,

• the value t opt which corresponds to the global error γ opt .

We consider two samples: Y 1 , . . . , Y n and Z 1 , . . . , Z n . Two mixture components are such that

• under H 0 , p 1 (•) = q 1 (•) ∼ N (-2, 1) and p 2 (•) = q 2 (•) ∼ N (3, 4), • under H 1 , p 1 (•) ∼ N (-2, 1), p 2 (•) ∼ N (3, 4), q 1 (•) ∼ N (0, 1) and q 2 (•) ∼ N (1, 1).
Weights of samples Y and Z for Gaussian Model 1 are described in Table 1. According to numerical results in Tables 2, 4 and 6, it is clear that for a fixed n, the larger the value of K, the better the performance of the test procedure. Indeed, when the first type error is 10%, we see that increasing values of K increases the power of the test procedure. Moreover, we remark that the optimal global error γ opt increases when the value of K decreases. In fact, this is not surprising as this behaviour was predicted by our theoretical results: the smaller the value of K the larger the constant C γ (see Theorem 2.1). In other words, in a mixture model with a small value of K one needs a lot of observations to ensure good performance of our test procedure.

Sample Range of i σ 1 (i) or ω 1 (i) σ 2 (i) or ω 2 (i) Y i = 1, . . . ,

Application to real data

In this part we apply our results to real data. ). As far as we are concerned, we focused on working time per year. More precisely our goal is to make two comparisons at the same time:

1. working time of men in Ile-de-France (region surrounding Paris in France, abbreviated to I below) and the one done by men in all other regions of France (abbreviated to P below), 2. working time of women in Ile-de-France and the one done by women in all other regions of France.

In this study we decide to only consider highly skilled workers such as executive staff, managers. There are two populations:

• commercial and administrative staff (abbreviated to CAd),

• technical staff (abbreviated to Tech).

We restrict to people working more than To begin, we pay attention to the mean of the working-ratio of each population, namely m I and m P . Although information about sex (men or women) is available in the study conducted by INSEE, we assume that it is unknown in order to show the interest of our model.

Let σ I and σ P denote the standard deviations of population I and P according to the variable of interest. We suppose that a random sampling of order n = 5 000 in each population is available and is conducted as follows:

• 2 500 people living in I are CAd and 2 500 people living in I are Tech,

• 2 500 people living in P are CAd and 2 500 people living in P are Tech .

We are interested in the preliminary testing problem (T 1 ):

H 0 : m I = m P vs H 1 : m I = m P .
We decide to address this testing problem by using the test statistic

U = | mI -mP | σ2 I + σ2 P ,
where mI (resp. mP ) and σI (resp. σP ) denote the usual estimators of m I (resp. m P ) and σ I (resp. σ P ), when using stratified random samplings like ours. Under the null hypothesis H 0 , the random variable U is asymptotically normally distributed with mean 0 and variance 1.

Here are the values computed from the samples:

Ile-de-France (I) Other regions (P) mI = 1.1605 mP = 1.1531 σI = 0.0015 σP = 0.0014 ) and working-ratio of population P (abbreviated to W.R. (P) ).

Trusting one of these new hypotheses becomes at first glance difficult to argue when only considering two random samples of size n in each population without the knowledge of sex (man or woman). Nevertheless, a way to address the testing problem (T 2 ):

H ′ 0 : distributions of W.R. (I) and W.R. (P) conditionnally to sex are identical vs H ′ 1 : distributions of W.R. (I) and W.R. (P) conditionnally to sex are different is to consider our testing procedure.

Let p 1 and p 2 (resp. q 1 and q 2 ) denote the density functions of the random variables W.R. The testing problem T 2 can be written as follows:

H ′ 0 : p 1 = q 1 and p 2 = q 2 vs H ′ 1 : p 1 = q 1 or p 2 = q 2 .
Observations of the working-ratio random variables Y 1 , . . . , Y n (resp. Z 1 , . . . , Z n ) in population I (resp. in P) are available. The mixture model we get is the one described in Section 1.3 with:

• M = 2 and n = 5 000,

• (ω 1 (i), ω 2 (i)) = (0.5899, 0.4101) for a n/2-tuple of indices,

• (ω 1 (i), ω 2 (i)) = (0.8108, 0.1892) for a n/2-tuple of indices,

• (σ 1 (i), σ 2 (i)) = (0.6796, 0.3204) for a n/2-tuple of indices, • (σ 1 (i), σ 2 (i)) = (0.8672, 0.1328) for a n/2-tuple of indices.
Let us describe the methodology of the testing procedure applied to these real data. We use the test studied in Section 2 with regularity parameter s = 4 and choose the usual Haar wavelet to construct our test statistic T js . The threshold value of the testing procedure is computed according to the following heuristics: t = st α where t α is the 1α Gaussian quantile and s is the standard deviation of the test statistics estimated by bootstrap (resampling is made 200 times). As we choose α = 10%, we have t 0.1 = 1.28.

The value of T js obtained is t js = 0.5412 whereas the threshold value is t = 0.3324. Since t js is larger than the threshold value t, we conclude that there exists a difference between the distributions W.R. (I) and W.R. (P) conditionnally to sex. In other words, H ′ 0 is rejected.

In this last paragraph, we study the numerical performances of our testing procedure, built from T js . For several values of n, a sample of size n is drawn from I (resp. P) and is divided into two subsamples : one subsample of size n/2 is drawn from the subpopulation CAd and the other is drawn from the subpopulation Tech.

For is the proportion of observations of T js larger than the threshold value, when comparing two samples of size n in I.

-First type error E (n) P is the proportion of observations of T js larger than the threshold value, when comparing two samples of size n in P.

-Power is the proportion of observations T js larger than the threshold value, when comparing a sample of size n in I and a sample of size n in P.

It appears that the testing procedure with the heuristically chosen threshold is very conservative. This is the only drawback of our methodology. Nevertheless the behaviour of the testing procedure is as expected: the larger the sample size the larger the power. As we see, for the cases n ≥ 5 000, our testing procedure is powerful. It tends to prove that there exists a difference between the working-ratios of the two populations conditionally to sex. This study on DADS 2007 demonstrates the usefulness of the varying mixing weights model. It really suggests that our testing procedure can be successfully applied to all types of data in social science. From our point of view, researchers in social science should consider the mixing varying weights model and our testing procedure as soon as some information at the individual level has been omitted during a survey and is available at higher levels.

Open questions

As a conclusion, we have provided a statistical procedure for a testing problem on the mixture components of two populations (Y, Z). This one was proved to be optimal in the minimax sense (Theorems 2.1 and 2.2). In addition, we explained how the weights of the mixture model influence the performance of the statistical rule. All these theoretical results are illustrated by our numerical experiments.

It seems to us important to give some hints about possible extensions of this work. From the theoretical and practical points of view, it would be interesting to study the same problem without assuming that the mixing weights are exactly known to the statistician. Several explanations can be given

• the statistician can estimate the mixing weights for an observation by using covariates and an appropriate predictive model such as the logistic one,

• a Bayesian approach is chosen for the mixing weights,

• exogenous information allows the statistician to roughly estimate the mixing weights.

In this case several natural questions arise

• What statistical rule should be considered?

• What kind of performance can be expected for such a rule?

• How much do random mixing weights deteriorate the performance? Such questions are beyond the scope of this article and their answers certainly involve random matrices theory.

Finally, it would be nice to show how to choose the adequate value of t n in a better way than the complicated one given in Theorem 2.2.

Proofs of main results

This section is devoted to the proofs of our results. The proofs often need technical lemmas which shall be proved in Appendix. For the sake of simplicity we sometimes omit -→ p and -→ q in the indices when there is no ambiguity.

Proofs of Propositions and Corollaries

Proof of Proposition 1.1: We refer to Maiboroda [START_REF] Maiboroda | An asymptotically effective estimate for a distribution from a sample with a varying mixture[END_REF]. A solution of the two problems is given for any (l, i) ∈ {1, . . . , M } × {1, . . . , n} by

a l (i) = 1 det(Γ n ) M u=1 (-1) l+u γ lu ω u (i) b l (i) = 1 det(Γ ′ n ) M u=1 (-1) l+u γ ′ lu σ u (i)
where γ lu and γ ′ lu are respectively the minor (l, u) of the matrix Γ n and the minor (l, u) of the matrix Γ ′ n . Inequalities (3) and ( 4) are obtained by using lemma 6.1.

Proof of Proposition 2.1:

Let us evaluate the expectation of T j .

E-→ p , - → q (Tj) = E-→ p , - → q   1 n 2 M l=1 k i 1 =i 2 (a l (i1)φ jk (Yi 1 ) -b l (i1)φ jk (Zi 1 ))(a l (i2)φ jk (Yi 2 ) -b l (i2)φ jk (Zi 2 ))   = 1 n 2 M l=1 k i 1 =i 2 E-→ p , - → q [a l (i1)φ jk (Yi 1 ) -b l (i1)φ jk (Zi 1 )] E-→ p , - → q [a l (i2)φ jk (Yi 2 ) -b l (i2)φ jk (Zi 2 )] ,
since the random variables (Y i1 , Z i1 ) and (Y i2 , Z i2 ) are independent.

We have for all 1 ≤ i ≤ n,

E-→ p , - → q [a l (i)φ jk (Y i ) -b l (i)φ jk (Z i )] = R M u=1 (a l (i)ω u (i)p u -b l (i)σ u (i)q u ) φ jk .
By introducing the diagonal term i 1 = i 2 in the sum, we get

E-→ p , - → q (T j ) = 1 n 2 M l=1 k R φ jk n i=1 M u=1 a l (i)ω u (i)p u - n i=1 M u=1 b l (i)σ u (i)q u 2 - 1 n 2 M l=1 k n i=1 R (a l (i)f i -b l (i)g i ) φ jk 2 = M l=1 k R (p l -q l )φ jk 2 - 1 n 2 M l=1 k n i=1 R (a l (i)f i -b l (i)g i ) φ jk 2 , because of the two properties 1 n n i=1 a l (i)ω u (i) = δ lu and 1 n n i=1 b l (i)σ u (i) = δ lu .
Thus the result for the expectation is proved.

Proof of Corollary 2.1:

According to proposition 2.1 we only have to bound the quantity

1 n 2 M l=1 k n i=1 R (a l (i)f i -b l (i)g i ) φ jk 2 .
Using the Cauchy-Schwarz inequality and lemma 6.3, we have

M l=1 k n i=1 R (a l (i)f i -b l (i)g i ) φ jk 2 ≤ M l=1 k n i=1 I jk (a l (i)f i -b l (i)g i ) 2 φ 2 jk = M l=1 n i=1 k I jk (a l (i)f i -b l (i)g i ) 2 ≤ 2 n i=1 M l=1 k I jk (a l (i)f i ) 2 + I jk (b l (i)g i ) 2 ≤ 4L n i=1 M l=1 a 2 l (i) f i 2 2 + n i=1 M l=1 b 2 l (i) g i 2 2 ≤ 8LM R 2 n K .
Last inequality is due to proposition 1.1 and the fact that for all 1 ≤ i ≤ n the density functions f i and g i belong to L 2 (R).

Proof of Proposition 2.2:

Let us consider the variance of T j . For all (i 1 , i 2 ), let h j (i 1 , i 2 ) denote the quantity

h j (i 1 , i 2 ) = k M l=1 (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 )) (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) . 20 
The variance of T j satisfies

n 4 Var-→ p , - → q (Tj) = Var-→ p , - → q   i 1 =i 2 hj (i1, i2)   = i 1 =i 2 ,i 3 =i 4
Cov (hj (i1, i2), hj(i3, i4))

= i 1 =i 2 Var (hj (i1, i2)) + i 1 =i 2
Cov (hj (i1, i2), hj (i2, i1))

+ i 1 =i 2 =i 3 Cov (hj (i1, i2), hj(i1, i3)) + i 1 =i 2 =i 3
Cov (hj (i1, i2), hj (i2, i3))

+ i 1 =i 2 =i 3 Cov (hj (i1, i2), hj(i3, i1)) + i 1 =i 2 =i 3
Cov (hj (i1, i2), hj (i3, i2))

+ i 1 =i 2 =i 3 =i 4 Cov (hj (i1, i2), hj (i3, i4)) = 7 u=1
Ai.

Using independence arguments,

A 7 = i1 =i2 =i3 =i4 Cov (h j (i 1 , i 2 ), h j (i 3 , i 4 )) = 0.
We are still required to bound for the quantities A i (1 ≤ i ≤ 6). Since the ways to bound A 1 and A 2 (resp. A 3 , A 4 , A 5 and A 6 ) are similar, we will only bound A 1 and A 3 . Such bounds are given in lemmas 6.7 and 6.8. The proof of proposition 2.2 is a direct consequence of lemmas 6.7 and 6.8 by taking C T = 2 CT ∨ 4 CT .

Proofs of Theorems

Proof of Theorem 2.1.

Let us fix 0 < γ < 1 and s > 0. Under the null hypothesis, we use directly the well-known Bienayme-Chebyshev inequality.

P-→ p , - → p (∆ * s = 1) = P-→ p , - → p (T jn > t n ) ≤ P-→ p , - → p T jn -E(T jn ) > t n - 8LM R 2 Kn ≤ Var-→ p , - → p (T jn ) t n -8LMR 2 Kn 2 ≤ C T M 2 2 jn n 2 K 2 t -8LMR 2 K 2 r 4 n .
The last inequality is obtained using remark 2.2. According to the choices of the level j n and the threshold t n , we have

C T M 2 2 jn n 2 K 2 t -8LMR 2 K 2 r 4 n ≤ 2C T M 2 K 2 t -8LMR 2 K 2 . Then P-→ p , - → p (∆ * s = 1) ≤ γ 2 .
Under the alternative, we use the expectation of the test statistic and some approximation argument. The second type error is

P-→ p , - → q (∆ * s = 0) = P-→ p , - → q -T jn + E-→ p , - → q (T jn ) ≥ -t n + E-→ p , - → q (T jn ) .
The wavelet expansion in the Besov body B s 2,∞ leads to

E-→ p , - → q (T jn ) -t n = M l=1 p l -q l 2 2 - M l=1 j≥jn k R (p l -q l )ψ jk 2 - 1 n 2 M l=1 k n i=1 R (a l (i)f i -b l (i)g i ) φ jnk 2 -t n ≥ M l=1 p l -q l 2 2 -M R 2 -2jns - 8LM R 2 Kn -t n . ≥ 1 2 M l=1 p l -q l 2 2 -M R 2 -2jns -t n ,
for any n large enough.

As a consequence, applying the Bienayme-Chebychev inequality leads to

P-→ p , - → q (-T jn + E f,g (T jn ) ≥ -t n + E f,g (T jn )) ≤ C T M 2 2 jn + n l p l -q l 2 2 + √ 2 jn n l p l -q l 2 n 2 K 2 1 2 M l=1 p l -q l 2 2 -M R 2 -2jns -t n 2 .
The choice of j n and the fact that the functions are in the alternative entail the following upper bound

P-→ p , - → q (∆ * s = 0) ≤ C T M 2 2 jn + n l p l -q l 2 2 + √ 2 jn n l p l -q l 2 K 2 n 2 1 2 M l=1 p l -q l 2 2 -M R 2 -2jns -t r 2 n 2 .
According to the choices of j n , and r n , one gets for n large enough:

P-→ p , - → q (∆ * s = 0) ≤ C T M 2 2 jn + n l p l -q l 2 2 + √ 2 jn n l p l -q l 2 n 2 K 2 1 2 -R C 2 -t MC 2 2 M l=1 p l -q l 2 2 2 ≤ 3C T 1 2 -R C 2 -t MC 2 2 K 2 C 4 .
For all C > C γ , we finally obtain

P-→ p , - → q (∆ * s = 0) ≤ γ 2 .
The results on the first-type and second-type errors show that if C > C γ the sum of the errors is less than γ. Therefore the upper bound is proved.

Proof of Theorem 2.2. Let γ ∈ ]0, 1[ , C > 0 and C 1 > 0. We define Θ1 (R, C, C 1 , n, s) = ( -→ p , -→ q ) : ∀u ∈ {1, . . . , M }, p u -q u ∈ B s 2,∞ (R), ∃u ∈ {1, . . . , M }, (p u , q u ) ∈ Λn (R, C, C 1 ) ,
where Λn (R, C, C 1 ) is defined in [START_REF] Cont | Volatility clustering in financial markets: empirical facts and agent-based models[END_REF]. It is well-known that

inf ∆ sup ( - → p , - → q )∈Θ 0 (R) P-→ p , - → q (∆ = 1) + sup ( - → p , - → q )∈Θ 1 (R,C,n,s) P-→ p , - → q (∆ = 0) ≥ inf ∆ sup ( - → p , - → q )∈Θ 0 (R) P-→ p , - → q (∆ = 1) + sup ( - → p , - → q )∈ Θ1 (R,C,C 1 ,n,s) P-→ p , - → q (∆ = 0) ≥ 1 - 1 2 P-→ p , - → p -Pπ ,
where . is the L 1 -distance and π is an a priori probability measure on the set Λ n (R, C). First we define the probability measure π and its support. Let θ = (θ 1 , . . . , θ M ) denote an eigenvector associated with the smallest eigenvalue of ΣΣ ⋆ -which is Kn according to HYP-1 -such that θ 2 = 1.

Recall that here j n is the same as the one defined in theorem 2.1. Let T be the subset of Z containing every integer k satisfying the following properties

• k ∈ T =⇒ k-L 2 jn , k+L 2 jn ⊂ [0, 1[; • (k, k ′ ) ∈ T × T with k = k ′ =⇒ k-L 2 jn , k+L 2 jn ∩ k ′ -L 2 jn , k ′ +L 2 jn = ∅.
The cardinal of T is clearly equal to T = ⌊ 2 jn -1 L ⌋ and we denote its elements k 1 , . . . , k T . The following parametric family of functions is considered

q l,ζ (z) = p l (z) + 2 s+1 C √ M L θ l k∈T ζ k 2 -jns-jn 2 ψ jnk (z),
where

ζ k = +1 or -1.
Remark that ζ k does not depend on the index l. Therefore the density of Z i is

g i,ζ (z) = M l=1 σ l (i) √ M L θ l 2 s+1 C k∈T ζ k 2 -jns-jn 2 ψ jnk (z) + M l=1 σ l (i)p l (z).
The probability measure π is such that the ζ k 's are independent Rademacher random variables with parameter 1 2 . The function q l,ζ is a density. Indeed, for n large, q l,ζ is non-negative. Moreover, as ψ jnk is a wavelet, we have ψ jnk = 0 and therefore q l,ζ = 1. If C < R/M 2 2s+2 , then q l,ζp l belongs to the ball of the Besov body B s 2,∞ (R). There exists l such that

M θ 2 l ≥ 1 and p l -q l,ζ 2 2 = T LM C 2 2 2+2s-2jns-jn θ 2 l ≥ C 2 n -4s 4s+1 .
Therefore the probability measure π is solely concentrated on the alternative. It is well-known that the L 1 distance can be bounded by the L 2 distance. We have

P-→ p , - → p -P π ≤ E-→ p , - → p dP π dP-→ p , - → p 2 -1 = E-→ p , - → p   E π n i=1 g i,ζ (Z i ) g i (Z i ) 2   -1. ( 8 
)
Therefore it suffices to evaluate the second-order moment of the likelihood ratio:

E-→ p , - → p   E π n i=1 g i,ζ (Z i ) g i (Z i ) 2   = E-→ p , - → p   k∈T n i=1 1 + 2 s+1 C √ M L ζ k 2 -jns-jn 2 ψ jnk (Z i ) g i (Z i ) M l=1 θ l σ l (i) dπ(ζ 1 , . . . , ζ T ) 2   .
Let us introduce the following random variables

Zik = 2 s+1 C √ M L 2 -jns-jn 2 ψ jnk (Z i ) g i (Z i ) M l=1 θ l σ l (i).
We have

E-→ p , - → p   k∈T n i=1 1 + 2 s+1 C √ M L ζ k 2 -jns-jn 2 ψ jnk (Z i ) g i (Z i ) M l=1 θ l σ l (i) dπ(ζ 1 , . . . , ζ T ) 2   = E-→ p , - → p   k∈T 1 4 n i=1 1 + Zik + n i=1 1 -Zik 2   = E-→ p , - → p k∈T 1 4 n i=1 (1 + 2 Zik + Z2 ik ) + n i=1 (1 -2 Zik + Z2 ik ) + 2 n i=1 (1 -Z2 ik ) = E-→ p , - → p k∈T 1 4 2 n i=1 (1 + Z2 ik ) + 2 n i=1 (1 -Z2 ik ) + n i=1 Zik h i ( Z1k , . . . , Zi-1,k , Zi+1,k , . . . , Znk ) = E-→ p , - → p k∈T 1 2 n i=1 (1 + Z2 ik ) + n i=1 (1 -Z2 ik ) + T r=1 n i=1
Zikr h( Z1k1 , . . . , Zn,kr-1 , Z1kr , . . . , Zi-1,kr , Zi+1,kr , . . . , Znkr , Z1,kr+1 , . . . , ZnkT ,

where the functions h i and hi are sums of products of their arguments. As E-→ p , - → p ( Zik ) = 0 and Zik Zik ′ = 0 for k = k ′ , the last term vanishes. Thus we are only interested in the first term. Define for all k ∈ T :

h l (k) = 1≤i1<i2<...<i l ≤n Z2 i1k Z2 i2k . . . Z2 i l k , h 0 (k) = 2.
Then, we have

E-→ p , - → p k∈T 1 2 n i=1 (1 + Z2 ik ) + n i=1 (1 -Z2 ik ) = E-→ p , - → p    1 2 T k∈T    n l=0 l even h l (k)       = n l1,...,lT =0 l1,...,lT even 1 2 T E-→ p , - → p T r=1 h lr (k r ) ≤ n l1,...,lT =0 1 2 T l1,...,lT even T r=1 E-→ p , - → p (h lr (k r )) ≤ k∈T 1 2    n l=0 l even E-→ p , - → p [h l (k)]    ≤ k∈T 1 2    n l=0 l even n 1≤i1<...<i l ≤n E-→ p , - → p Z2 i1k . . . E Z2 i l k    ≤ k∈T 1 2 n i=1 1 + E-→ p , - → p Z2 ik + n i=1 1 -E-→ p , - → p Z2 ik ≤ k∈T cosh n i=1 E-→ p , - → p Z2 ik ≤ exp   1 2 k∈T n i=1 E-→ p , - → p Z2 ik 2   . Each E-→ p , - → p Z2 ik is bounded as follows, E-→ p , - → p Z2 ik ≤ 2 2s+2-2jns-jn C 2 C 1 M L M l=1 θ l σ l (i) 2 .
Therefore this bound entails

exp 1 2 k∈T n i=1 E-→ p , - → p Z2 ik 2 ≤ exp   1 2 k∈T 2 4s+4 C 4 2 -4jn s-2jn L 2 M 2 C 2 1   n i=1 M l,m=1 θ l θmσ l (i)σm(i)   2   ≤ exp 1 2 k∈T 2 4s+4 C 4 2 -4jn s-2jn L 2 M 2 C 2 1 θ ⋆ Γ ′ n θ 2 = exp k∈T 2 4s+3 C 4 2 -4jn s-2jn L 2 M 2 C 2 1 (Kn) 2 ≤ exp 2 4s+2 M 2 K 2 LC 4 C 2 1 . (9) 
Inequalities ( 8) and ( 9) lead to

P-→ p , - → p -P π ≤ exp 2 4s+2 M 2 K 2 LC 4 C 2 1 -1.
The choice of any constant C such that C < c γ entails that the left-hand side of ( 9) is strictly smaller than 2(1γ).

Appendix

This section contains the technical lemmas used in the proofs of the main results.

Lemma 6.1 M l=1 n i=1 a 2 l (i) ≤ M n K , (10) 
M l=1 n i=1 b 2 l (i) ≤ M n K . ( 11 
)
Proof of Lemma 6.1:

The proofs of ( 10) and ( 11) are identical, that's why we only prove [START_REF] Garel | Likelihood ratio test for univariate Gaussian mixture[END_REF]. Let λ min (Γ n ) be the smallest non negative eigenvalue of the matrix Γ n . Let A = (A) 1≤j≤n,1≤l≤M denote the (n × M ) matrix with coefficients A j,l = a l (j). Since the matrix AA * has at most M non negative eigenvalues, we have

M l=1 n i=1 a 2 l (i) = trace(AA * ) ≤ M λ max (AA * ). (12) 
Clearly, the following implication holds λ is a non negative eigenvalue of AA * =⇒ n 2 λ -1 is an eigenvalue of Γ n .

So

λ max (AA * ) ≤ n 2 λ min (Γ n ) . (13) 
Lemma 6.1 is proved by inequalities ( 12) and ( 13) and under HYP-1.

Lemma 6.2 For all (j, k) ∈ Z × Z, let us put

I jk = k -L 2 j , k + L 2 j .
Then for any fixed (j, k)

Card{k ′ ∈ Z : I jk ∩ I jk ′ = ∅} ≤ 4L.
Proof of Lemma 6.2:

Clearly, I jk ∩ I jk ′ = ∅ ⇐⇒ k ′ -L ≥ k + L or k ′ + L ≤ k -L. Hence, I jk ∩ I jk ′ = ∅ ⇐⇒ k -2L < k ′ < k + 2L.
As a consequence, we have

Card{k ′ ∈ Z : I jk ∩ I jk ′ = ∅} ≤ 4L. Lemma 6.3 For any function h ∈ L 1 (R) k I jk |h(x)|dx ≤ 2L h 1 .
Proof of Lemma 6.3: Let us define for any h ∈ L 1 (R) :

p jk (h) = I jk |h(x)|dx, ∀j ∈ N, ∀k ∈ Z.
Judging from the definition of the intervals I jk , we easily prove that for any j ∈ N,

k p jk (h) = 2L u=1 i∈Z p j,2Li+u (h) ≤ 2L u=1 R |h(x)|dx = 2L h 1 .
Lemma 6.4 Let W be either Y or Z. For any 1 ≤ i ≤ n and any (j, k), we have

|E (φ jk (W i ))| ≤ 2L sup l ( p l ∞ ∨ q l ∞ ) 1 2 2 -j 2 .
Proof of Lemma 6.4: Using the Cauchy-Schwarz inequality, we obtain

|E (φ jk (W i ))| ≤ φ jk f i ∨ φ jk g i ≤ |φ jk | sup l p l ∞ ∨ |φ jk | sup l q l ∞ ≤ 2L sup l ( p l ∞ ∨ q l ∞ ) 1 2 2 -j 2 .
Lemma 6.5 Let W be either Y or Z and c be either a or b. For any 1 ≤ i ≤ n and any (j, k), the following inequalities hold

k ′ |E (φ jk (W i )φ jk ′ (W i ))| ≤ 4L sup l ( p l ∞ ∨ q l ∞ ), sup l k φ jk (p l -q l ) ≤ 4L φ ∞ 2 j 2 , sup l |c l (i)| ≤ n l c l , c l n .
Proof of Lemma 6.5: Since the wavelets are compactly supported, for any fixed k the sum over k ′ has at most 4L terms which are non zeros (see lemma 6.2). So, the Cauchy-Schwarz inequality entails that

k ′ |E (φ jk (W i )φ jk ′ (W i ))| ≤ k ′ |φ jk | |φ jk ′ | f i ∨ k ′ |φ jk | |φ jk ′ | g i ≤ k ′ f i ∞ |φ jk | |φ jk ′ | ∨ k ′ g i ∞ |φ jk | |φ jk ′ | ≤ sup l p l ∞ k ′ |φ jk | |φ jk ′ | ∨ sup l q l ∞ k ′ |φ jk | |φ jk ′ | ≤ 4L sup l ( p l ∞ ∨ q l ∞ ).
We also have sup

l k φ jk (p l -q l ) ≤ 2 j 2 φ ∞ sup l k I jk |p l -q l | ≤ 2L p l + q l φ ∞ 2 j 2 = 4L φ ∞ 2 j 2 .
Clearly, for any 1

≤ i ≤ n, sup l |c l (i)| ≤ sup l i c 2 l (i) ≤ n l c l , c l n .
Lemma 6.6 Let p l , q l p l ′ and q l ′ be four probability densities in L 2 . Then, for any j ∈ N

k φ jk p l -φ jk q l 2 ≤ 2L p l -q l 2 2 ; k k ′ :I jk ∩I jk ′ =∅ ( φ jk p l -φ jk q l )( φ jk ′ p l ′ -φ jk ′ q l ′ ) ≤ 4L 2 p l -q l 2 2 + p l ′ -q l ′ 2 2 .
Proof of Lemma 6.6: Using the Cauchy-Schwarz inequality, we have

k φ jk p l -φ jk q l 2 ≤ k I jk (p l -q l ) 2 ≤ 2L p l -q l 2 2 .
Lemma 6.3 entails that

k k ′ :I jk ∩I jk ′ =∅ ( φ jk p l -φ jk q l )( φ jk ′ p l ′ -φ jk ′ q l ′ ) ≤ 1 2   k k ′ :I jk ∩I jk ′ =∅ φ jk p l -φ jk q l 2 + k k ′ :I jk ∩I jk ′ =∅ φ jk p l ′ -φ jk q l ′ 2   ≤ 1 2 4L k φ 2 jk I jk (p l -q l ) 2 + 4L k φ 2 jk I jk (p l ′ -q l ′ ) 2 ≤ 1 2 8L 2 p l -q l 2 2 + 8L 2 p l ′ -q l ′ 2 2 ≤ 4L 2 p l -q l 2 2 + p l ′ -q l ′ 2 2 .
Lemma 6.7 There exists a constant CT = CT (R, L, φ ∞ ) > 0 such that

A 1 := i1 =i2 Var - → p , - → q (h j (i 1 , i 2 )) ≤ CT M 2 K 2 2 j n 2 .
Proof of Lemma 6.7: Let us evaluate each variance

Var - → p , - → q (h j (i 1 , i 2 )) = Cov (h j (i 1 , i 2 ), h j (i 1 , i 2 )) .
We expand the covariance

Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 )) (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) , (a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) (a l ′ (i 2 )φ jk ′ (Y i2 ) -b l ′ (i 2 )φ jk ′ (Z i2 )) = Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) -Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) -Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) +Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) -Cov (a l (i 1 )φ jk (Y i1 )b l (i 2 )φ jk (Z i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) +Cov (a l (i 1 )φ jk (Y i1 )b l (i 2 )φ jk (Z i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) +Cov (a l (i 1 )φ jk (Y i1 )b l (i 2 )φ jk (Z i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) -Cov (a l (i 1 )φ jk (Y i1 )b l (i 2 )φ jk (Z i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) -Cov (b l (i 1 )φ jk (Z i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) +Cov (b l (i 1 )φ jk (Z i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) +Cov (b l (i 1 )φ jk (Z i1 )a l (i 2 )φ jk (Y i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) -Cov (b l (i 1 )φ jk (Z i1 )a l (i 2 )φ jk (Y i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) +Cov (b l (i 1 )φ jk (Z i1 )b l (i 2 )φ jk (Z i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) -Cov (b l (i 1 )φ jk (Z i1 )b l (i 2 )φ jk (Z i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) -Cov (b l (i 1 )φ jk (Z i1 )b l (i 2 )φ jk (Z i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) +Cov (b l (i 1 )φ jk (Z i1 )b l (i 2 )φ jk (Z i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) .
According to independence arguments, the following terms are clearly equal to zero:

Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) , Cov (a l (i 1 )φ jk (Y i1 )b l (i 2 )φ jk (Z i2 ), b l ′ (i 1 )φ jk ′ (Z i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) , Cov (b l (i 1 )φ jk (Z i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 2 )φ jk ′ (Z i2 )) , Cov (b l (i 1 )φ jk (Z i1 )b l (i 2 )φ jk (Z i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) .
The remaining terms can be split into two types: those involving two different random variables and those involving three different random variables. Let us handle these two cases separately. First, we consider the case with two different random variables. We need to bound terms such as

i1 =i2 k,k ′ Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Y i2 )) = i1 =i2 k,k ′ a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )E (φ jk (Y i1 )φ jk ′ (Y i1 )) E (φ jk (Y i2 )φ jk ′ (Y i2 )) - i1 =i2 k,k ′ a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )E (φ jk (Y i1 )) E (φ jk ′ (Y i1 )) E (φ jk (Y i2 )) E (φ jk ′ (Y i2 )) .
As the wavelets are compactly supported, we get for any (i 1 , i 2 ),

k,k ′ a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )E (φ jk (Y i1 )φ jk ′ (Y i1 )) E (φ jk (Y i2 )φ jk ′ (Y i2 )) ≤ f i1 ∞ k,k ′ |a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )| |φ jk φ jk ′ |f i2 ≤ 2 j+3 L 2 φ 2 ∞ sup l ( p l ∞ ∨ q l ∞ )|a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )|.
The second sum is much simpler to bound. According to lemma 6.4 it can be bounded as follows

k,k ′ a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )E (φ jk (Y i1 )) E (φ jk ′ (Y i1 )) E (φ jk (Y i2 )) E (φ jk ′ (Y i2 )) ≤ k,k ′ |a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )|E (|φ jk (Y i1 )|) E (|φ jk ′ (Y i1 )|) √ 2L 2 -j 2 2 sup l ( p l ∞ ∨ q l ∞ ) = L 2 1-j k,k ′ |a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )| I jk |φ jk |f i1 I jk ′ |φ jk ′ |f i1 sup l ( p l ∞ ∨ q l ∞ ) ≤ 8L 3 |a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )| φ 2 ∞ sup l ( p l ∞ ∨ q l ∞ ).
Let us now focus on the sums over i 1 , i 2 , l and l ′ .

i1 =i2 l, l ′ |a l (i 1 )a l (i 2 )a l ′ (i 1 )a l ′ (i 2 )| ≤ i1,i2 l, l ′ 1 2 a l (i 1 ) 2 a l ′ (i 2 ) 2 + a l ′ (i 1 ) 2 a l (i 2 ) 2 ≤ n 2 l, l ′ a l , a l n a l ′ , a l ′ n ≤ M 2 n 2 K 2 .
We see that this term behaves like n 2 . The three other terms featuring only two different random variables are handled in the same way. Therefore it remains to evaluate the eight terms with three different random variables. For example, let us consider

Cov (a l (i 1 )φ jk (Y i1 )a l (i 2 )φ jk (Y i2 ), a l ′ (i 1 )φ jk ′ (Y i1 )a l ′ (i 2 )φ jk ′ (Z i2 )) ,
and let us omit for a moment the sums over i 1 , i 2 , k, k ′ , l and l ′ . The covariance can be expanded as

Cov (φ jk (Y i1 )φ jk (Y i2 ), φ jk ′ (Y i1 )φ jk ′ (Z i2 )) = E (φ jk ′ (Z i2 )) E (φ jk (Y i2 )) Cov (φ jk (Y i1 ), φ jk ′ (Y i1 )) .
When we add the sums over k and k ′ , the second term is exactly handled as the second term above in the case of two different random variables. Thus, it remains to consider the first summand. As above, the compactness of the wavelet entails that

k,k ′ E (φ jk ′ (Z i2 )) E (φ jk (Y i2 )) Cov (φ jk (Y i1 ), φ jk ′ (Y i1 )) ≤ k,k ′ |E (φ jk ′ (Z i2 )) E (φ jk (Y i2 )) E (φ jk (Y i1 )) E (φ jk ′ (Y i1 )) | + k,k ′ |E (φ jk ′ (Z i2 )) E (φ jk (Y i2 )) E (φ jk (Y i1 )φ jk ′ (Y i1 )) | = A 11 + A 12 ,
According to lemmas 6.4 and 6.5, we have

A 11 = k,k ′ |E (φ jk ′ (Z i2 )) E (φ jk (Y i2 )) E (φ jk (Y i1 )) E (φ jk ′ (Y i1 )) | ≤ 2 1-j L sup l ( p l ∞ ∨ q l ∞ ) k |φ jk |g i2 k ′ |φ jk ′ |f i2 ≤ 8L 3 φ 2 ∞ sup l ( p l ∞ ∨ q l ∞ )
and

A 12 = k,k ′ |E (φ jk ′ (Z i2 )) E (φ jk (Y i2 )) E (φ jk (Y i1 )φ jk ′ (Y i1 )) | ≤ 2 1-j L sup l ( p l ∞ ∨ q l ∞ ) k,k ′ |E (φ jk (Y i1 )φ jk ′ (Y i1 )) | ≤ 4L 2 1-j L sup l ( p l ∞ ∨ q l ∞ ) 2 j 2 φ ∞ k |φ jk |f i1 ≤ 8L 2 2L sup l ( p l ∞ ∨ q l ∞ ) φ 2 ∞ f i1 ≤ 16L 3 φ 2 ∞ sup l ( p l ∞ ∨ q l ∞ ).
It remains to sum over i 1 and i 2 as the sums over l and l ′ are not important (they only change the constant). We have

i1 =i2 l,l ′ |a l (i 1 )a l (i 2 )a l ′ (i 1 )b l ′ (i 2 )| ≤ i1,i2 l,l ′ |a l (i 1 )a l (i 2 )a l ′ (i 1 )b l ′ (i 2 )| ≤ 1 2 l,l ′   i1,i2 a l (i 1 ) 2 b l ′ (i 2 ) 2 + i1,i2 a l ′ (i 1 ) 2 a l (i 2 ) 2   = n 2 2 l,l ′ ( a l , a l n b l ′ , b l ′ n + a l ′ , a l ′ n a l , a l n ) ≤ M 2 n 2 K 2 .
Clearly, this term behaves like n 2 . The other covariances involving three random variables are handled exactly in the same way.

By combining all the previous bounds, we conclude that

A 1 ≤ (k 1 + k 2 2 j ) M 2 n 2 K 2 , with k 1 = 224RL 3 φ 2 ∞ , k 2 = 32RL 2 φ 2 ∞ .
As a consequence if we write CT = k 1 + k 2 one gets

A 1 ≤ CT M 2 K 2 2 j n 2 .
Lemma 6.8 There exists a constant CT = CT (R, L, φ ∞ ) > 0 such that for any j ∈ N

A 3 := i1 =i2 =i3 Cov (h j (i 1 , i 2 ) , h j (i 1 , i 3 )) ≤ CT M 2 K 2 n 3 l p l -q l 2 2 + 2 j 2 n 5 2 l p l -q l 2 .
Proof of Lemma 6.8: Clearly, the term A 3 can be bounded as follows

A 3 = i1 =i2 =i3 Cov (h j (i 1 , i 2 ) , h j (i 1 , i 3 )) = i1 =i2 =i3 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 )) (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) , (a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) (a l ′ (i 3 )φ jk ′ (Y i3 ) -b l ′ (i 3 )φ jk ′ (Z i3 )) = i1 =i2 =i3 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) ×E (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) E (a l (i 3 )φ jk ′ (Y i3 ) -b l ′ (i 3 )φ jk ′ (Z i3 )) = i1,i2,i3 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) E (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) E (a l ′ (i 3 )φ jk ′ (Y i3 ) -b l ′ (i 3 )φ jk ′ (Z i3 )) - i1=i2,i3 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) E (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) E (a l ′ (i 3 )φ jk ′ (Y i3 ) -b l ′ (i 3 )φ jk ′ (Z i3 )) - i1=i3,i2 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) E (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) E (a l ′ (i 3 )φ jk ′ (Y i3 ) -b l ′ (i 3 )φ jk ′ (Z i3 )) + i1=i2=i3 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) E (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) E (a l ′ (i 3 )φ jk ′ (Y i3 ) -b l ′ (i 3 )φ jk ′ (Z i3 )) = A 31 -A 32 -A 33 + A 34 ≤ |A 31 | + |A 32 | + |A 33 | + |A 34 |.
We will separetely bound each term. Let us start with |A 31 |. The first step is to expand the covariance.

|A 31 | = | i1,i2,i3 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) E (a l (i 2 )φ jk (Y i2 ) -b l (i 2 )φ jk (Z i2 )) | = n 2 i1 k,k ′ l,l ′ Cov ((a l (i 1 )φ jk (Y i1 ) -b l (i 1 )φ jk (Z i1 )) , (a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 ))) ( φ jk p l -φ jk q l )( φ jk ′ p l ′ -φ jk ′ q l ′ ) = n 2 i1 k,k ′ l,l ′ E (a l (i 1 )φ jk (Y i1 )a l ′ (i 1 )φ jk ′ (Y i1 )) + E (b l (i 1 )φ jk (Z i1 )b l ′ (i 1 )φ jk ′ (Z i1 )) -E (a l (i 1 )φ jk (Y i1 )) E (a l ′ (i 1 )φ jk ′ (Y i1 )) -E (b l (i 1 )φ jk (Z i1 )) E (b l ′ (i 1 )φ jk ′ (Z i1 ))
( φ jk p lφ jk q l )( φ jk ′ p l ′φ jk ′ q l ′ ) .

The first two terms involve only one expectation and can be bounded in the same way. Therefore let us bound the quantity i1 k,k ′ l,l ′ E (a l (i 1 )φ jk (Y i1 )a l ′ (i 1 )φ jk ′ (Y i1 )) ( φ jk p lφ jk q l )( φ jk ′ p l ′φ jk ′ q l ′ ) . ( φ jk p lφ jk q l )( φ jk ′ p l ′φ jk ′ q l ′ ) ≤ 4L 2 p lq l 2 2 + p l ′q l ′ 2 2 .

Then one deduces that for any 1

≤ i 1 ≤ n k,k ′ l,l ′ |E (φ jk (Y i1 )φ jk ′ (Y i1 )) | ( φ jk p l -φ jk q l )( φ jk ′ p l ′ -φ jk ′ q l ′ ) ≤ 8L 2 sup l ( p l ∞ ∨ q l ∞ ) l p l -q l 2 2 .
Hence i1 k,k ′ l,l ′ E (a l (i 1 )φ jk (Y i1 )a l ′ (i 1 )φ jk ′ (Y i1 )) ( φ jk p lφ jk q l )( φ jk ′ p l ′φ jk ′ q l ′ )

≤ 8M L 2 K sup l ( p l ∞ ∨ q l ∞ ) l p l -q l 2 2 n.
Now we come to the last two terms which involve two expectations. Let us consider for example the quantity

k,k ′ E (φ jk (Y i1 )) E (φ jk ′ (Y i1 )) ( φ jk p l -φ jk q l )( φ jk ′ p l ′ -φ jk ′ q l ′ ) ≤ k,k ′ |E (φ jk (Y i1 )) E (φ jk ′ (Y i1 ))| 1 2 φ jk p l -φ jk q l 2 + φ jk ′ p l ′ -φ jk ′ q l ′ 2 ≤ sup l,l ′ √ 2L ( p l ∞ ∨ q l ∞ ) 1 2 2 -j 2 k |E (φ jk (Y i1 )) | k ′ φ jk ′ p l ′ -φ jk ′ q l ′ 2 ≤ 4 √ 2L 5 2 φ ∞ sup l ( p l ∞ ∨ q l ∞ ) 1 2 sup l ′ p l ′ -q l ′ 2 2 .
Last inequalities are obtained by using lemma 6.6 for any 1 ≤ i 1 ≤ n. Hence i1 k,k ′ l,l ′ E (a l (i 1 )φ jk (Y i1 )) E (a l ′ (i 1 )φ jk ′ (Y i1 )) ( φ jk p lφ jk q l )( φ jk ′ p l ′φ jk ′ q l ′ )

≤ 4 √ 2M K L 5 2 φ ∞ sup l ( p l ∞ ∨ q l ∞ ) 1 2 sup l ′ p l ′ -q l ′ 2 2 n.
Therefore the two last bounds entail that

|A 31 | ≤ c 31 M 2 n 3 K l p l -q l 2 2
, where

c 31 = 4L 2 √ R 2 √ R + √ 2L φ ∞ .
The way to bound A 32 and A 33 is trickier. We have [a l (i 1 )E (φ jk (Y i1 ))b l (i 1 )E (φ jk (Z i1 ))] n φ jk ′ p l ′n φ jk ′ q l ′ ≤ l,l ′ i1 k,k ′ a l (i 1 )a l ′ (i 1 )E (φ jk (Y i1 )φ jk ′ (Y i1 ))

|A 32 | ≤ l,l ′ i1,i2 k,k ′
(a l (i 1 )E (φ jk (Y i1 ))b l (i 1 )E (φ jk (Z i1 ))) n φ jk ′ p l ′n φ jk ′ q l ′ + l,l ′ i1 k,k ′ a l (i 1 )a l ′ (i 1 )E (φ jk (Y i1 )) E (φ jk ′ (Y i1 ))

(a l (i 1 )E (φ jk (Y i1 )) -b l (i 1 )E (φ jk (Z i1 ))) n φ jk ′ p l ′ -n φ jk ′ q l ′ + l,l ′ i1 k,k ′ b l (i 1 )b l ′ (i 1 )E (φ jk (Z i1 )φ jk ′ (Z i1 )) (a l (i 1 )E (φ jk (Y i1 )) -b l (i 1 )E (φ jk (Z i1 ))) n φ jk ′ p l ′ -n φ jk ′ q l ′ + l,l ′ i1 k,k ′ b l (i 1 )b l ′ (i 1 )E (φ jk (Z i1 )) E (φ jk ′ (Z i1 ))
(a l (i 1 )E (φ jk (Y i1 ))b l (i 1 )E (φ jk (Z i1 ))) n φ jk ′ p l ′n φ jk ′ q l ′ .

The calculations are rather lengthy and involve eight terms. But the bright side is that the terms can be split into two groups. There are terms involving two expectations such as l,l ′ i1 k,k ′ a l (i 1 )a l ′ (i 1 )E (φ jk (Y i1 )φ jk ′ (Y i1 )) a l (i 1 )E (φ jk (Y i1 )) n φ jk ′ p l ′n φ jk ′ q l ′ , and terms involving three expectations such as l,l ′ i1 k,k ′ a l (i 1 )a l ′ (i 1 )E (φ jk (Y i1 )) E (φ jk ′ (Y i1 )) a l (i 1 )E (φ jk (Y i1 )) n φ jk ′ p l ′n φ jk ′ q l ′ .

Still using lemmas 6.4 and 6.5, we have l,l ′ i1 k,k ′ a l (i 1 )a l ′ (i 1 )E (φ jk (Y i1 )φ jk ′ (Y i1 )) a l (i 1 )E (φ jk (Y i1 )) n φ jk ′ p l ′n φ jk ′ q l ′ Once again, we apply the Cauchy-Schwarz inequality,

i1 l ′ E (a l ′ (i 1 )φ jk ′ (Y i1 ) -b l ′ (i 1 )φ jk ′ (Z i1 )) = n l ′ φ jk ′ (p l ′ -q l ′ ) ≤ n l ′ p l ′ -q l ′ 2 .
According to lemma 6.5, we have for any 1 ≤ i 1 ≤ n and any l, √ n

≤ 2L M K φ ∞ 2 j 2 √ n.
According to lemmas 6.4 and 6.5, we have for any fixed k,

i1 k ′ |a l (i 1 )a l ′ (i 1 )| φ jk φ jk ′ f i1 + φ jk f i1 φ jk ′ f i1 ≤ n a l , a l n a l ′ , a l ′ n k ′ φ jk φ jk ′ f i1 + φ jk f i1 k ′ φ jk ′ f i1
≤ n a l , a l n a l ′ , a l ′ n 4L sup l ( p l ∞ ∨ q l ∞ ) + (2L) 

3 2 φ ∞ sup l ( p l ∞ ∨ q l ∞ ) 1 2 ≤ M K 4L sup l ( p l ∞ ∨ q l ∞ ) + (2L)

Figure 1 :

 1 Figure 1: [Mixture with two components] Consider two populations sampled from the same mixture densities such that • the size of the two populations (Y, Z) is n = 500,

Figure 2 :

 2 Figure 2: [Mixture with three components] Consider two populations sampled from the same mixture densities such that • the size of the two populations (Y, Z) is n = 500,

Figure 1 :

 1 Figure 1: Histogram (a) of population Y and histogram (b) population Z.

Figure 2 :

 2 Figure 2: Histogram (a) of population Y and histogram (b) of population Z.

  (I) | man and W.R.(I) | woman (resp. W.R.(P) | man and W.R. (P) | woman ).

  Clearly i1 |a l (i 1 )a l ′ (i 1 )| ≤ n a l , a l n a l ′ , a l ′ n ≤ M K n. Since |E (φ jk (Y i1 )φ jk ′ (Y i1 )) | ≤ sup l ( p l ∞ ∨ q l ∞ ),lemma 6.6 entails that k k ′ :I jk ∩I jk ′ =∅

[a l (i 1

 1 )a l ′ (i 1 )Cov (φ jk (Y i1 ), φ jk ′ (Y i1 )) + b l (i 1 )b l ′ (i 1 )Cov (φ jk (Z i1 ), φ jk ′ (Z i1 ))] [a l (i 1 )E (φ jk (Y i1 ))b l (i 1 )E (φ jk (Z i1 ))] [a l ′ (i 2 )E (φ jk ′ (Y i2 ))b l ′ (Z i2 )E (φ jk ′ (Z i2 ))] ≤ l,l ′ i1 k,k ′ [a l (i 1 )a l ′ (i 1 )Cov (φ jk (Y i1 ), φ jk ′ (Y i1 )) + b l (i 1 )b l ′ (i 1 )Cov (φ jk (Z i1 ), φ jk ′ (Z i1 ))]

p l -q l 2 ,p l -q l 2 ,

 22 with c 32 = 48 √ 2RL 5 φ 2 ∞ . As a consequence, one similarly gets|A 33 | ≤ c 33 with c 33 = c 32 . Let us now consider |A 34 |. |A 34 | ≤ | i1 k,k ′ l,l ′ Cov (a l (i 1 )φ jk (Y i1 )b l (i 1 )φ jk (Z i1 ), a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 1 )φ jk ′ (Z i1 )) E (a l (i 1 )φ jk (Y i1 )b l (i 1 )φ jk (Z i1 )) E (a l ′ (i 1 )φ jk ′ (Y i1 )b l ′ (i 1 )φ jk ′ (Z i1 ))| .

kE

  (a l (i 1 )φ jk (Y i1 )b l (i 1 )φ jk (Z i1 )) ≤ |a l (i 1 )| k φ jk f i1 ∨ |b l (i 1 )| k φ jk g i1 ≤ 2L(|a l (i 1 )| ∨ |b l (i 1 )

3 2 φ ∞ sup l (

 3l p l ∞ ∨ q l ∞ ) |b l (i 1 )b l ′ (i 1 )| φ jk φ jk ′ g i1 + φ jk g i1 φ jk ′ g i1 ≤ n b l , b l n b l ′ , b l ′ n k ′ φ jk φ jk ′ g i1 + φ jk g i1 k ′ φ jk ′ g i1 ≤ n b l , b l n b l ′ , b l ′ n 4L sup l

Table 1 :

 1 Model 1The results are given in Table2. We point out that the constant K related to the smallest eigenvalue is very close to 0. Therefore we expect poor results.

		0.8 n	0.6	0.4
		i = 0.8 n + 1, . . . , n	0.4	0.6
	Z	i = 1, . . . , 0.3 n	0.2	0.8
		i = 0.3 n + 1, . . . , n	0.5	0.5

Table 2 :

 2 K = 0.013Weights of samples Y and Z for Gaussian Model 2 are described in Table3.

	Sample Range of i	σ 1 (i) or ω 1 (i) σ 2 (i) or ω 2 (i)
	Y	i = 1, . . . , 0.8 n	0.8	0.2
		i = 0.8 n + 1, . . . , n	0.3	0.7
	Z	i = 1, . . . , 0.3 n	0.1	0.9
		i = 0.3 n + 1, . . . , n	0.4	0.6

Table 3 :

 3 Model 2 For this setup, the constant K is almost three times the one appearing in Gaussian Model 1. Therefore we expect improved results.

	Gaussian Model 2 n = 200 n = 500 n = 1000
	t n	0.994	0.061	0.027
	Power	85.2%	91.5%	96.8%
	γ opt	24.6%	16.3%	9.5%
	t opt	0.078	0.103	0.047

Table 4 :

 4 

			0.8	0.2
		i = 0.8 n + 1, . . . , n	0.3	0.7
	Z	i = 1, . . . , 0.3 n	0.9	0.1
		i = 0.3 n + 1, . . . , n	0.3	0.7

K = 0.033 Weights of samples Y and Z for Gaussian Model 3 are described in Table

5

.

Sample Range of

i σ 1 (i) or ω 1 (i) σ 2 (i) or ω 2 (i) Y i = 1, . . . , 0.8 n

Table 5 :

 5 Model 3 In this setup, the constant K is more than five times the one appearing in Gaussian Model 1 and more than twice the one appearing in Gaussian Model 2. Therefore we expect better results.

	Gaussian Model 3 n = 200 n = 500 n = 1000
	t n	0.054	0.030	0.015
	P γ opt	97.1% 10.5%	96.7% 9.6%	98.1% 6.5%
	t opt	0.066	0.064	0.034

Table 6 :

 6 K = 0.068

Table 7 :

 7 Proportions of subpopulations by sex, area and jobThere are 65 558 people in I and 75 062 people in P.

	1 645 hours per year. The variable of

Table 8 :

 8 Estimated means and standard deviations by areaThe value of the test statistic U is 3.5582. The related p-value is close to 0.0026. According to that, it strongly seems that m I = m P . In other words, H 0 is rejected.At this stage, a natural question arises : what is the reason of such a difference? Two hypotheses could explain it:1. distincts values of m I and m P are only related to the different proportions of men (or analogously women) between the two populations:

		Ile-de-France (I) Other regions (P)
	Men	68.93% (45187)	76.70% (57575)
	Women	31.07% (20371)	23.30% (17487)

Table 9 :

 9 Proportions of subpopulations by area and sex 2. distincts values of m I and m P are also related to different distributions of working-ratio of population I (abbreviated to W.R. (I)

Table 10 :

 10 each value of n, 200 samples are drawn. The results are gathered in the following table: First type error and power of the method

	Sample size n First type error: E I (n)	First type error: E P (n)	Power
	1 000	0	0	0.110
	2 000	0	0.005	0.185
	3 000	0.005	0.005	0.335
	4 000	0	0.005	0.530
	5 000	0.005	0	0.635
	6 000	0.005	0	0.745
	8 000	0.005	0.005	0.925
	(n) I -First type error E