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Florent AUTIN∗ (Université Aix-Marseille 1)
and Christophe POUET† (Ecole Centrale Marseille)

April 14, 2010

Abstract

This paper deals with statistical tests on the components of mixture
densities. We propose to test whether the densities of two independent
samples of independent random variables Y1, . . . , Yn and Z1, . . . , Zn re-
sult from the same mixture of M components or not. We provide a test
procedure which is proved to be asymptotically optimal according to the
minimax setting. We extensively discuss the connection between the mix-
ing weights and the performance of the testing procedure and illustrate it
with numerical examples. This link had never been clearly exposed up to
now.

1 Introduction

1.1 Mixture model with varying mixing weights

Since more than 20 years, the mixture model has gained a lot of attention. This
is due to its ease of interpretation by viewing each component as a distinct
group in the data. This model has been widely applied in several areas such as
finance, economy, biology, astronomy, survey methods,...
Most of the theoretical results in the literature deal with the estimation of the
components or of the mixing weights. There are two types of mixture models :
the most popular one has fixed mixing weights and the other one has varying
mixing weights.
On the one hand, many statisticians have been interested in estimating the
mixing weights. For example, Hall [12], Titterington [24] and Hall and Tit-
terington [13] have considered nonparametric estimation of the mixing weights.
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Two other examples about the mixing weights are the estimation of a func-
tional of the weights by van de Geer [25] and the computation of confidence
intervals by Qin [22]. On the other hand, one can be interested in estimating
the components of the mixture. This can be easily done with varying mixture
weights by applying several well-known methods such as histograms in Lodakto
and Maiboroda [16], empirical distribution in Maiboroda [19] or wavelet thresh-
olding methods in Pokhyl’ko [20]. Finally, the mixing weights and the mixture
components can also be estimated both and at the same time, this result holds
in a particular setting for k-variate data introduced by Hall and Zhou [14].

More recently, the mixture model has also been studied in the testing problem
framework. The usual addressed question is whether the observations come from
a non-trivial mixture model or from a trivial one (i.e. with only one component).
This has been done for example by Garel [10] and [11] and Delmas [8] in the
case of fixed mixing weights and by Maiboroda [18] in the case of varying mixing
weights. Their homogeneity tests which rely respectively on the likelihood ratio
test and on a Kolmogorov-Smirnov type test are proved to be consistent. Here
we propose to study a testing problem with two samples in a mixture model
with varying mixing weights.
Although the varying mixing weights model does not seem natural at first sight,
on can think of several situations where it can be useful. Let us give three
examples that will help the reader to recognize its usefulness.

Social science
This first example is the closest to the varying mixing weights model that is stud-
ied here. Let us consider an organization divided into several departments such
as an enterprise. Aggregated informations are only known at the department
level, e.g. proportion of men and women, proportion of graduates and under-
graduates, proportion of married and unmarried people,etc... The researcher
is interested in a variable for these subgroups such as salary. For each person,
the researcher has only recorded salary and department. The information of
interest which allows to divide the sample into subgroups is unavailable at the
individual level. This can happen if the researcher has forgotten to record this
information when collecting the data; this frequently happens when a new ques-
tion arises during the study of the data. Another reason can be that the law
forbids to record such information at the individual level; for example this is
the case of origins or races in many countries. There is a wealth of works on
partially missing data (see McKnight et al. [17] for example) but the case of
entirely missing data has never been really considered. From our point of view,
a varying mixing weights model is a way to cope with this lack of information
at the individual level and to allow the researcher to reconstruct information for
each subgroup. Although we are aware of methodological problems, we want
to emphasize that in this case the varying mixing weights are exactly known to
the researcher; indeed, aggregated information often exists and is much easier
to collect than individual information.
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Image analysis
Let us assume a simple picture taken at a party and consisting of people and
background. There is usually no way to distinguish at the pixel level whether it
comes from people or background. Nevertheless one can think of some kind of
aggregated information to roughly divide the image into several areas. In the
center of the image, there are usually mainly people and only little background.
In the area surrounding the center, there is mainly background although few
people can be scattered here and there. Therefore the image can be divided
into two areas. This written description of the image can be translated into
a mathematical description namely the varying mixing weights model. In this
model, the statistician will be able to extract distinctive features of the picture
concerning people or background. We are aware that methodological problems
can appear in this setup. For example, spatial structure are not taken into
account. One can consider that the weights are only roughly known which can
be a problem. Nevertheless for some types of images, such as satellite images,
one can assume that the weights are accurately known. Indeed, as the area
under scrutiny is exactly known from a geographical point of view, one can use
aggregated information about surfaces such as proportion of forest, land, city,
water,etc...

Finance
Mixture densities have been proved to be useful in volatility modeling (see Bern-
hard and Leblang [3], Avellaneda [2] for example). If one consider the volatility
clustering effect (see Cont [6] for example), one can roughly divide time into
periods where the proportions of high and low volatility are estimated. Indeed
during each period it might be hard to exactly label observations corresponding
to low or high volatility. Therefore the varying mixing weights model can be
considered and help to extract useful features of the mixture components. This
case with estimated proportions is not solved here. Although it is beyond the
scope of this paper, we briefly discuss it in Section 4.

Let us now come back to our testing problem with two samples in a mixture
model with varying mixing weights: let Y1, . . . , Yn and Z1, . . . , Zn be two inde-
pendent n-samples of independent random variables. We propose to study in
this paper whether these two samples of random variables come from the same
mixture of M unknown densities pu (1 ≤ u ≤ M) or not. We assume that the
mixing weights associated with each observation are available to the statisti-
cian. In Butucea and Tribouley [4] some procedures are proposed to test if two
n-samples of i.i.d. variables have common probability density. Their setting
is equivalent to the case M = 1 in our mixture problem. Here the problem
appears more complex since the two samples are not based on random variables
with the same marginal densities. Our results show that there is no loss in the
minimax rate compared to the simpler case studied by Butucea and Tribouley
[4]. In Section 2 we provide an asymptotically minimax test which is based on
wavelet methods and we prove the dependence between the mixing weights and
the constants appearing in the definition of the minimax rate of testing. Until
now this phenomenon has never been studied and is extensively discussed in
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this paper. In addition to our theoretical result some numerical experiments
are given in Section 3 in order to illustrate the strong connection between the
mixing weights and the performance of the test. As expected, our test performs
very well for various mixture models. Sections 4 and 5 are respectively devoted
to possible extensions of work and to proofs of main results.

Here we introduce the wavelet framework that will be used.

1.2 Wavelet framework

We first recall that wavelets have been often applied in different mathematical
fields such as in approximation theory, in signal analysis and in statistics for
instance. In particular, many recent statistical works on estimation (see among
others Autin [1], Donoho et al [9], Cohen et al [5] ) and on hypothesis testing
(see Spokoiny [23]) use the wavelet setting to provide efficient estimators and
tests. There are many explanations for the huge interest of the wavelet setting.
One of them is that wavelets bases are localized both in frequency and in time,
contrary to the classical Fourier basis which is only localized in frequency. As
a consequence, the wavelet setting appears to be well adapted to describe local
characteristics of a signal to be reconstructed.

Let φ andψ be two compactly supported functions of L2(R) and denote for all

j in N and all k in Z and all x in R, φjk(x) = 2
j/2

φ(2
j

x − k) and ψjk(x) =

2
j/2

ψ(2
j

x− k).

Suppose that for any j in N:

• {φjk, ψj′k; j
′ ≥ j; k ∈ Z} constitutes an orthonormal basis of L2(R),

• support(φ) ∪ support(ψ) ⊂ [−L,L[ for some L > 0.

Some most popular examples of such bases, called compactly supported or-
thonormal wavelet bases, are given in Daubechies [7]. The function φ is called
the scaling function and ψ the associated wavelet.

Any function h in L2(R) can be represented as:

h(t) =
∑

k∈Z

αjkφjk(t) +
∑

j′≥j

∑

k∈Z

βjkψj′k(t)

where ∀j ∈ N, ∀j′ ≥ j, ∀k ∈ Z:

• αjk =

∫

Ijk

h(t)φjk(t)dt and βj′k =

∫

Ij′k

h(t)ψj′k(t)dt,

• Ijk =
{

x ∈ R;−L ≤ 2jx− k < L
}

=
[

k−L
2j , k+L

2j

[

.

Let us now describe the testing problem we focus on.
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1.3 Mathematical description of the testing problem

Let Y1, . . . , Yn be a sample of independent random variables with unknown
marginal densities

fi(.) =
M
∑

u=1

ωu(i)pu(.), 1 ≤ i ≤ n,

and let Z1, . . . , Zn be another sample of independent random variables with
unknown marginal densities

gi(.) =

M
∑

u=1

σu(i)qu(.), 1 ≤ i ≤ n.

We also assume that the two samples are independent.
Here and in what follows, we suppose that the mixing weights (ωu(i), 1 ≤ u ≤
M , 1 ≤ i ≤ n) and (σu(i), 1 ≤ u ≤M, 1 ≤ i ≤ n) are known to the statistician
and satisfy

• ∀(u, i) ∈ {1, . . . ,M} × {1, . . . , n}, min(ωu(i), σu(i)) ≥ 0,

• ∀i ∈ {1, . . . , n},
M
∑

u=1

ωu(i) =

M
∑

u=1

σu(i) = 1,

and are known by the statistician whereas the densities pu and qu (1 ≤ u ≤M)
are unknown.

Let us denote −→p = (p1, . . . , pM ) and −→q = (q1, . . . , qM ) .
We study in this paper a nonparametric procedure to test whether the samples
result from the same mixture of densities. Let D denote the set of all probability
densities with respect to the Lebesgue measure on R. For any real number
R > 0, we define

Θ0 (R) = {(−→p ,−→q ) : ∀u ∈ {1, . . . ,M}, pu = qu ∈ S(R)}
where S(R) = D ∩ L∞(R) ∩ L2(R).
We consider the following null hypothesis

H0 : (−→p ,−→q ) ∈ Θ0 (R) .

For a given C > 0, we define

Θ1 (R,C, n, s) =
{

(−→p ,−→q ) : ∀u ∈ {1, . . . ,M}, pu − qu ∈ Bs
2,∞(R),

∃u ∈ {1, . . . ,M}, (pu, qu) ∈ Λn(R,C)
}

,

where Λn(R,C) =
{

(p, q) ∈ (D ∩ L∞(R))2, ‖p− q‖2 ≥ Crn
}

, for a sequence rn
tending to 0 when n goes to infinity and Bs

2,∞(R) is the R-ball of a functional
space defined below. We consider the following alternative

H1 : (−→p ,−→q ) ∈ Θ1 (R,C, n, s) .
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As usual in the nonparametric setting, we focus on a large class of functions
having some regularity so as to derive optimal properties. For the chosen wavelet
basis, the space Bs

2,∞(R) represents the R-ball of the so-called Besov body which
is composed of all the functions h ∈ L2(R) for which the sequence of wavelet
coefficients (αjk, βj′k, j ∈ N, j′ ≥ j, k ∈ Z) satisfies:

sup
j∈N

22js
∑

j′≥j

∑

k∈Z

β2
j′k ≤ R.

The minimax setting
In this paragraph we recall the minimax approach which is often used to eval-
uate the performances of testing procedures. Given the sum of the probability
errors, say γ ∈ [0, 1], we study the optimal separation rate rn between the null
hypothesis and the alternative. This rate rn is the best possible rate separating
at least one of the M couples of density components pu and qu. It is usually
called the minimax rate. Let us recall the classical definition for the separation
rate.

Definition 1.1 Let 0 < γ < 1. We say that rn is the minimax rate separating

H0 and H1 of our testing problem at level γ if the two following statements are

satisfied:

1. there exist a sequence of test procedures ∆∗
n and a constant Cγ such that

lim sup
n→∞

(

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆
∗
n = 1) + sup

(−→p ,−→q )∈Θ1(R,C,n,s)

P−→p ,−→q (∆
∗
n = 0)

)

≤ γ (1)

for all C > Cγ ;

2. there exists a constant cγ such that

lim inf
nto∞

inf
∆

(

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆ = 1) + sup
(−→p ,−→q )∈Θ1(R,C,n,s)

P−→p ,−→q (∆ = 0)

)

> γ (2)

for all C < cγ , where the infimum is taken over all test procedures ∆.

Hypothesis on the model
In our study we suppose that the mixing weights (ωu(i), 1 ≤ u ≤M, 1 ≤ i ≤ n)
and (σu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) satisfy an added hypothesis. Let us denote
by Ω = (Ω)u,i the matrix with coefficients Ωu,i = ωu(i) and Σ = (Σ)u,i the
matrix with coefficients Σu,i = σu(i).

HYP-1 The smallest eigenvalues of the (M ×M)-matrices Γn = ΩΩ∗ and Γ′
n =

ΣΣ∗ are both larger than or equal to Kn, with 0 < K < 1.

We recall the following proposition due to Maiboroda [19].
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Proposition 1.1 Suppose that the previous conditions are satisfied by the mix-

ing weights (ωu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n)
associated with the model. Then, there exists a solution of the two problems

[ find al = {al(i), i = 1, . . . , n} such that < ωk, al >n:=
1
n

n
∑

i=1

ωk(i)al(i) = δkl ] ,

[ find bl = {bl(i), i = 1, . . . , n} such that < σk, bl >n:=
1
n

n
∑

i=1

σk(i)bl(i) = δkl ] ,

where δkl is the Kronecker delta. According to HYP-1 this solution satisfies

M
∑

l=1

< al, al >n:=
1

n

M
∑

l=1

n
∑

i=1

a2l (i) ≤
M

K
, (3)

M
∑

l=1

< bl, bl >n:=
1

n

M
∑

l=1

n
∑

i=1

b2l (i) ≤
M

K
. (4)

2 Nonparametric test procedure

This paragraph deals with the case where the regularity s of the Besov body
that appears in H1 is known. From now on we denote by al and bl the n-
vectors which are the solutions of the two optimization problems appearing in
Proposition 1.1. Let us describe the asymptotically minimax decision rule.

2.1 Definition of the test procedure

For each level parameter j, we define the test procedure ∆j comparing the test
statistic

Tj =
1

n2

M
∑

l=1

∑

k

∑

i1 6=i2

[al(i1)φjk(Yi1)− bl(i1)φjk(Zi1)] [al(i2)φjk(Yi2 )− bl(i2)φjk(Zi2)]

with a threshold value tn = t r2n where t is a constant chosen later. We define

∆j =

{

1 if Tj > tn,
0 if Tj ≤ tn.

2.2 Properties of the test statistic

In this section, we provide two propositions which will be crucial when evaluating
the performance of our test procedure. They deal with the behaviors of its
expectation and its variance.

Proposition 2.1 Let j be any given level parameter. Then,

E−→p ,−→q
(Tj) =

M
∑

l=1

∑

k

(∫

R

(pl − ql)φjk

)2

−
1

n2

M
∑

l=1

∑

k

n
∑

i=1

(∫

R

(al(i)fi − bl(i)gi)φjk

)2

.
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Remark 2.1 For the particular case where the sequences of the mixing weights

(ωu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) and (σu(i), 1 ≤ u ≤ M, 1 ≤ i ≤ n) are identical,

the test statistic Tj is centered under the null hypothesis.

Corollary 2.1 For any j ∈ N,

∣

∣

∣

∣

∣

E−→p ,−→q
(Tj)−

M
∑

l=1

∑

k

(∫

R

(pl − ql)φjk

)2
∣

∣

∣

∣

∣

≤ 8LMR2

Kn
.

Proposition 2.2 There exists a constant C
T
= C

T
(R,L, ‖φ‖∞) > 0 such that

Var−→p ,−→q
(Tj) ≤ C

T

(

2j

n2
+

1

n

∑

l

‖pl − ql‖22 +
√

2j

n3

∑

l

‖pl − ql‖2
)

M2

K2
.

Remark 2.2 Under the null hypothesis the variance of the test statistic Tj is

less than or equal to C
T
M2K−2 2j n−2.

2.3 Minimax performance of the test procedure

For any s > 0, let (rn)n∈N be the sequence such that

rn = n− 2s
1+4s ∀n ∈ N

∗.

The following theorem shows that the test procedure defined in section 2 pro-
vides an accurate upper bound when it is well calibrated.

Theorem 2.1 (Upper bound) Fix 0 < γ < 1 and consider the test procedure

∆∗
s = ∆jn where jn is the smallest integer such that 2−jn ≤ n− 2

1+4s . Let t and
Cγ be two positive real numbers defined as follows :

t =

(

2

√

C
T

γ
+ 8LR2

)

M

K
,

C2
γ = 2

(

1

K

√

6 C
T

γ
+R+

t

M

)

.

Then

lim sup
n→∞

(

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆
∗
s = 1) + sup

(−→p ,−→q )∈Θ1(R,C,n,s)

P−→p ,−→q (∆
∗
s = 0)

)

≤ γ (5)

for all C > Cγ .
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Although the exact value of the constant CT is very complicated, it can be
exactly calculated by following the proofs.
Now, let us focus on the lower bound associated with our nonparametric testing
problem H0 versus H1.
We aim at providing a constant cγ such that we ensure that no test procedure
is able to choose H0 or H1 with a sum of the probability errors less than γ
(0 < γ < 1). Obviously, the smaller the distance between cγ and Cγ the more
accurate our results. The next theorem proves that our test procedure is asymp-
totically minimax.
Similarly to the classical methods for providing lower bounds (see for instance
Gayraud and Pouet [21] or Butucea and Tribouley [4]) we shall consider a sub-
space of Λn(R,C) that is, for any chosen C1 > 0,

Λ̃n(R,C,C1) =

{

(p, q) ∈ Λn(R,C); inf
z∈[0,1[

min(p(z), q(z)) ≥ C1

}

. (6)

Theorem 2.2 (Lower bound) Let 0 < γ < 1, s > 0 and let cγ > 0 satisfy

c4γ =

(

C2
1

L K2
ln[4(1− γ)2 + 1] ∧ 2R2

)

2−4s

4M2
.

Then for all C < cγ

lim inf
n→∞

inf
∆

(

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆ = 1) + sup
(−→p ,−→q )∈Θ1(R,C,n,s)

P−→p ,−→q (∆ = 0)

)

> γ (7)

where the infimum is taken over all test procedure ∆.

From Theorems 2.1 and 2.2 we deduce the minimax rate of testing. It is the same
as the one found by Butucea and Tribouley [4] when there is only one subgroup.
Advances in our results are the extension to the varying mixing weights model
which allows non-identically distributed random variables compared to Butucea
and Tribouley [4] and the role played by the mixing weights which is clearly
exposed.

Corollary 2.2 For any s > 0, the test procedure ∆∗
s is asymptically minimax

and the minimax rate separating H0 and H1 is rn = n− 2s
1+2s .

2.4 Discussion about the constants cγ and Cγ

In the two previous theorems we exhibited two constants appearing in the upper
and the lower bounds. We think that the connection between these constants
and the model’s parameters M and K is a novelty and really deserves a discus-
sion. Indeed, we keep in mind that

• Cγ is the minimal value for C such that our test statistic is able to detect
if all the mixture components are identical in the two populations with
the sum of the probability errors not exceeding γ;
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• cγ is the maximal value for C such that no test statistic is able to detect if
all the mixture components are identical in the two populations with the
sum of probability errors not exceeding γ.

As a consequence we proved that our test statistic is optimal in the minimax
sense since it attains the minimax rate of convergence separating H0 and H1.

According to the definitions of cγ and Cγ we let the reader be aware that:

• the smaller the constant K, the larger the family of the mixing weights
satisfying HYP-1;

• the smaller the constantM , the bigger (= the worse) the constant Cγ and
the bigger the constant cγ ;

• the smaller the constant K, the bigger (= the worse) the constant Cγ and
the bigger the constant cγ .

Although the exact separation constant is not established in this study (since
cγ 6= Cγ), we prove that cγ and Cγ strongly depend on the smallest eigenvalue
of the matrices ΩΩ∗ and ΣΣ∗.

3 Numerical experiments and application

The aim of this section is twofold: to illustrate by numerical experiments the
good performance of the test procedures based on the statistics Tjn and to show
the usefulness of our method on real data.

First, 2 examples of mixture models are given to show the interest of the problem
we have considered. Next we illustrate the behaviour of the test statistics Tjn .

3.1 Examples of mixture models

Figure 1: [Mixture with two components]
Consider two populations sampled from the same mixture densities such that

• the size of the two populations (Y, Z) is n = 500,

• the ranks of the matrices of the mixing weights Ω∗ and Σ∗ are 2,

• the two components of the mixtures are the uniform density U ([−1, 0])
and the normal density N (3, 4).

Figure 2: [Mixture with three components]
Consider two populations sampled from the same mixture densities such that

• the size of the two populations (Y, Z) is n = 500,

• the ranks of the matrices of the mixing weights Ω∗ and Σ∗ are 3,

• the three components of the mixtures are the normal densities N (−2, 1),
N (0, 1) and N (2, 1).
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Figure 1: Histogram (a) of population Y and histogram (b) population Z.
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Figure 2: Histogram (a) of population Y and histogram (b) of population Z.

The histograms of the observations are quite different in Figures 1 and 2, al-
though they correspond to mixture models with the same components. So the
previous schemes show how hard it is to guess whether the mixture components
of the two populations (Y, Z) are exactly the same or not. Hence, it justi-
fies that the statistician needs an adequate test statistic to decide whether the
populations (Y, Z) have the same mixture components or not.

3.2 Construction of the test procedure: calibration of tn

In the theoretical part of this paper we provide a decision rule to test H0 against
H1. This decision rule ∆jn relies on the sign of Tjn−tn, where tn is the threshold
value depending on the sum of the errors γ and Tjn is the test statistic. In the
positive case (resp. in the negative case) ∆jn proposes to accept H1 (resp. H0).
From the practical point of view, we give some hints to adjust the threshold
value tn. Here we use the Haar basis and we set s = 4. For this, we consider
two different approaches.
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The first approach consists in fixing the first type error, 0 < γ1 < 1, and in
choosing tn as the quantile of order 1 − γ1 of the test statistic obtained after
1000 replications of the chosen mixture model.

The second approach consists in choosing tn as the value for which the sum of
the two errors is the minimal one according of the statistic of test obtained after
1000 replications of the mixture model chosen.

3.3 Connection between K and the performance of the

test procedure.

The aim of this paragraph is to illustrate the connection between the value of K
and the performance of our test procedure. We provide simulations of Gaussian
mixture models and we give for several values of n

• the value of tn associated with a first type error equal to 10%,

• the power of the test procedure based on the threshold value tn,

• the minimum of the global error γopt - the sum of the first type and the
second type errors - reachable by the test procedure,

• the value topt which corresponds to the global error γopt.

We consider two samples: Y1, . . . , Yn and Z1, . . . , Zn. Two mixture components
are such that

• under H0, p1(·) = q1(·) ∼ N (−2, 1) and p2(·) = q2(·) ∼ N (3, 4),

• under H1, p1(·) ∼ N (−2, 1), p2(·) ∼ N (3, 4), q1(·) ∼ N (0, 1) and q2(·) ∼
N (1, 1).

Weights of samples Y and Z for Gaussian Model 1 are described in Table 1.

Sample Range of i σ1(i) or ω1(i) σ2(i) or ω2(i)
Y i = 1, . . . , 0.8 n 0.6 0.4

i = 0.8 n+ 1, . . . , n 0.4 0.6
Z i = 1, . . . , 0.3 n 0.2 0.8

i = 0.3 n+ 1, . . . , n 0.5 0.5

Table 1: Model 1

The results are given in Table 2. We point out that the constant K related to
the smallest eigenvalue is very close to 0. Therefore we expect poor results.
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Gaussian Model 1 n = 200 n = 500 n = 1000
tn 0.289 0.135 0.080

Power 36.7% 68.1% 85.7%
γopt 52.6% 38.2% 23.5%
topt 0.022 0.080 0.092

Table 2: K = 0.013

Weights of samples Y and Z for Gaussian Model 2 are described in Table 3.

Sample Range of i σ1(i) or ω1(i) σ2(i) or ω2(i)
Y i = 1, . . . , 0.8 n 0.8 0.2

i = 0.8 n+ 1, . . . , n 0.3 0.7
Z i = 1, . . . , 0.3 n 0.1 0.9

i = 0.3 n+ 1, . . . , n 0.4 0.6

Table 3: Model 2

For this setup, the constant K is almost three times the one appearing in Gaus-
sian Model 1. Therefore we expect improved results.

Gaussian Model 2 n = 200 n = 500 n = 1000
tn 0.994 0.061 0.027

Power 85.2% 91.5% 96.8%
γopt 24.6% 16.3% 9.5%
topt 0.078 0.103 0.047

Table 4: K = 0.033

Weights of samples Y and Z for Gaussian Model 3 are described in Table 5.

Sample Range of i σ1(i) or ω1(i) σ2(i) or ω2(i)
Y i = 1, . . . , 0.8 n 0.8 0.2

i = 0.8 n+ 1, . . . , n 0.3 0.7
Z i = 1, . . . , 0.3 n 0.9 0.1

i = 0.3 n+ 1, . . . , n 0.3 0.7

Table 5: Model 3

In this setup, the constant K is more than five times the one appearing in
Gaussian Model 1 and more than twice the one appearing in Gaussian Model
2. Therefore we expect better results.
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Gaussian Model 3 n = 200 n = 500 n = 1000
tn 0.054 0.030 0.015
P 97.1% 96.7% 98.1%
γopt 10.5% 9.6% 6.5%
topt 0.066 0.064 0.034

Table 6 : K = 0.068

According to numerical results in Tables 2, 4 and 6, it is clear that for a fixed
n, the larger the value of K, the better the performance of the test procedure.
Indeed, when the first type error is 10%, we see that increasing values of K
increases the power of the test procedure. Moreover, we remark that the optimal
global error γopt increases when the value of K decreases. In fact, this is not
surprising as this behaviour was predicted by our theoretical results: the smaller
the value of K the larger the constant Cγ (see Theorem 2.1). In other words,
in a mixture model with a small value of K one needs a lot of observations to
ensure good performance of our test procedure.

3.4 Application to real data

In this part we apply our results to real data. The dataset comes from a survey
conducted by the french national statistical agency called InstituT National de
Statistique et d’Etudes Economiques (abbreviated to INSEE). This survey called
Déclaration Annuelle des Données Sociales (abbreviated to DADS) took place
in 2007 and is about employees and related variables such as salary, working
time or type of jobs. All information regarding this survey can be found on the
website of INSEE (see DADS 2007 postes et salariés, http://www.insee.fr.). As
far as we are concerned, we focused on working time per year. More precisely
our goal is to make two comparisons at the same time:

1. working time of men in Ile-de-France (region surrounding Paris in France,
abbreviated to I below) and the one done by men in all other regions of
France (abbreviated to P below),

2. working time of women in Ile-de-France and the one done by women in all
other regions of France.

In this study we decide to only consider highly skilled workers such as executive
staff, managers. There are two populations:

• commercial and administrative staff (abbreviated to CAd),

• technical staff (abbreviated to Tech).

We restrict to people working more than 1 645 hours per year. The variable of
interest is the number of working hours per year divided by 1 645. Therefore it
is a ratio equals to or greater than 1.
Available information about different subpopulations of I and P is gathered in
the following table:
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Ile-de-France (I) Other regions (P)
Executive staff Men Women Men Women

CAd 58.99% 41.01% 67.96% 32.04%
Tech 81.08% 18.92% 86.72% 13.28%

Table 7: Proportions of subpopulations by sex, area and job

There are 65 558 people in I and 75 062 people in P .

To begin, we pay attention to the mean of the working-ratio of each population,
namely mI and mP . Although information about sex (men or women) is avail-
able in the study conducted by INSEE, we assume that it is unknown in order
to show the interest of our model.

Let σI and σP denote the standard deviations of population I and P according
to the variable of interest. We suppose that a random sampling of order n =
5 000 in each population is available and is conducted as follows:

• 2 500 people living in I are CAd and 2 500 people living in I are Tech,

• 2 500 people living in P are CAd and 2 500 people living in P are Tech .

We are interested in the preliminary testing problem (T1):
H0 : mI = mP vs H1 : mI 6= mP .

We decide to address this testing problem by using the test statistic

U =
|m̂I − m̂P |
√

σ̂2
I + σ̂2

P

,

where m̂I (resp. m̂P) and σ̂I (resp. σ̂P ) denote the usual estimators of mI

(resp. mP) and σI (resp. σP ), when using stratified random samplings like
ours. Under the null hypothesis H0, the random variable U is asymptotically
normally distributed with mean 0 and variance 1.

Here are the values computed from the samples:

Ile-de-France (I) Other regions (P)
m̂I = 1.1605 m̂P = 1.1531
σ̂I = 0.0015 σ̂P = 0.0014

Table 8: Estimated means and standard deviations by area

The value of the test statistic U is 3.5582. The related p-value is close to 0.0026.
According to that, it strongly seems that mI 6= mP . In other words, H0 is re-
jected.

At this stage, a natural question arises : what is the reason of such a difference?
Two hypotheses could explain it:
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1. distincts values ofmI andmP are only related to the different proportions
of men (or analogously women) between the two populations:

Ile-de-France (I) Other regions (P)
Men 68.93% (45187) 76.70% (57575)

Women 31.07% (20371) 23.30% (17487)

Table 9: Proportions of subpopulations by area and sex

2. distincts values of mI and mP are also related to different distributions of
working-ratio of population I (abbreviated to W.R.(I)) and working-ratio
of population P (abbreviated to W.R.(P)).

Trusting one of these new hypotheses becomes at first glance difficult to argue
when only considering two random samples of size n in each population without
the knowledge of sex (man or woman). Nevertheless, a way to address the
testing problem (T2):

H′
0 : distributions of W.R.(I)and W.R.(P)conditionnally to sex are identical

vs H′
1 : distributions of W.R.(I)and W.R.(P)conditionnally to sex are different

is to consider our testing procedure.

Let p1 and p2 (resp. q1 and q2) denote the density functions of the random vari-
ables W.R.(I)|man and W.R.(I)|woman (resp. W.R.(P)|man and W.R.(P)|woman).

The testing problem T2 can be written as follows:

H′
0 : p1 = q1 and p2 = q2 vs H′

1 : p1 6= q1 or p2 6= q2.

Observations of the working-ratio random variables Y1, . . . , Yn (resp. Z1, . . . , Zn)
in population I (resp. in P) are available. The mixture model we get is the one
described in Section 1.3 with:

• M = 2 and n = 5 000,

• (ω1(i), ω2(i)) = (0.5899, 0.4101) for a n/2-tuple of indices,

• (ω1(i), ω2(i)) = (0.8108, 0.1892) for a n/2-tuple of indices,

• (σ1(i), σ2(i)) = (0.6796, 0.3204) for a n/2-tuple of indices,

• (σ1(i), σ2(i)) = (0.8672, 0.1328) for a n/2-tuple of indices.

Let us describe the methodology of the testing procedure applied to these real
data. We use the test studied in Section 2 with regularity parameter s = 4 and
choose the usual Haar wavelet to construct our test statistic Tjs . The threshold
value of the testing procedure is computed according to the following heuristics:
t = stα where tα is the 1−α Gaussian quantile and s is the standard deviation
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of the test statistics estimated by bootstrap (resampling is made 200 times). As
we choose α = 10%, we have t0.1 = 1.28.

The value of Tjs obtained is tjs = 0.5412 whereas the threshold value is t =
0.3324. Since tjs is larger than the threshold value t, we conclude that there ex-
ists a difference between the distributions W.R.(I) and W.R.(P) conditionnally
to sex. In other words, H′

0 is rejected.

In this last paragraph, we study the numerical performances of our testing pro-
cedure, built from Tjs . For several values of n, a sample of size n is drawn from
I (resp. P) and is divided into two subsamples : one subsample of size n/2 is
drawn from the subpopulation CAd and the other is drawn from the subpopu-
lation Tech.

For each value of n, 200 samples are drawn. The results are gathered in the
following table:

Sample size n First type error: E
(n)
I First type error: E

(n)
P Power

1 000 0 0 0.110
2 000 0 0.005 0.185
3 000 0.005 0.005 0.335
4 000 0 0.005 0.530
5 000 0.005 0 0.635
6 000 0.005 0 0.745
8 000 0.005 0.005 0.925

Table 10: First type error and power of the method

− First type error E
(n)
I is the proportion of observations of Tjs larger than the

threshold value, when comparing two samples of size n in I.
− First type error E

(n)
P is the proportion of observations of Tjs larger than the

threshold value, when comparing two samples of size n in P .
− Power is the proportion of observations Tjs larger than the threshold value,
when comparing a sample of size n in I and a sample of size n in P .

It appears that the testing procedure with the heuristically chosen threshold is
very conservative. This is the only drawback of our methodology. Nevertheless
the behaviour of the testing procedure is as expected: the larger the sample
size the larger the power. As we see, for the cases n ≥ 5 000, our testing pro-
cedure is powerful. It tends to prove that there exists a difference between the
working-ratios of the two populations conditionally to sex.

This study on DADS 2007 demonstrates the usefulness of the varying mixing
weights model. It really suggests that our testing procedure can be successfully
applied to all types of data in social science. From our point of view, researchers
in social science should consider the mixing varying weights model and our

17



testing procedure as soon as some information at the individual level has been
omitted during a survey and is available at higher levels.

4 Open questions

As a conclusion, we have provided a statistical procedure for a testing problem
on the mixture components of two populations (Y, Z). This one was proved
to be optimal in the minimax sense (Theorems 2.1 and 2.2). In addition, we
explained how the weights of the mixture model influence the performance of
the statistical rule. All these theoretical results are illustrated by our numerical
experiments.

It seems to us important to give some hints about possible extensions of this
work. From the theoretical and practical points of view, it would be interesting
to study the same problem without assuming that the mixing weights are exactly
known to the statistician. Several explanations can be given

• the statistician can estimate the mixing weights for an observation by
using covariates and an appropriate predictive model such as the logistic
one,

• a Bayesian approach is chosen for the mixing weights,

• exogenous information allows the statistician to roughly estimate the mix-
ing weights.

In this case several natural questions arise

• What statistical rule should be considered?

• What kind of performance can be expected for such a rule?

• How much do random mixing weights deteriorate the performance?

Such questions are beyond the scope of this article and their answers certainly
involve random matrices theory.

Finally, it would be nice to show how to choose the adequate value of tn in a
better way than the complicated one given in Theorem 2.2.

5 Proofs of main results

This section is devoted to the proofs of our results. The proofs often need
technical lemmas which shall be proved in Appendix. For the sake of simplicity
we sometimes omit −→p and −→q in the indices when there is no ambiguity.
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5.1 Proofs of Propositions and Corollaries

Proof of Proposition 1.1: We refer to Maiboroda [19]. A solution of the two
problems is given for any (l, i) ∈ {1, . . . ,M} × {1, . . . , n} by

al(i) =
1

det(Γn)

M
∑

u=1

(−1)l+uγ
lu
ωu(i)

bl(i) =
1

det(Γ′
n)

M
∑

u=1

(−1)l+uγ′
lu
σu(i)

where γ
lu
and γ′

lu
are respectively the minor (l, u) of the matrix Γn and the minor

(l, u) of the matrix Γ′
n. Inequalities (3) and (4) are obtained by using lemma 6.1.

�

Proof of Proposition 2.1: Let us evaluate the expectation of Tj .

E−→p ,−→q (Tj) = E−→p ,−→q





1

n2

M
∑

l=1

∑

k

∑

i1 6=i2

(al(i1)φjk(Yi1)− bl(i1)φjk(Zi1))(al(i2)φjk(Yi2)− bl(i2)φjk(Zi2))





=
1

n2

M
∑

l=1

∑

k

∑

i1 6=i2

E−→p ,−→q [al(i1)φjk(Yi1)− bl(i1)φjk(Zi1)]E−→p ,−→q [al(i2)φjk(Yi2)− bl(i2)φjk(Zi2)] ,

since the random variables (Yi1 , Zi1) and (Yi2 , Zi2) are independent.
We have for all 1 ≤ i ≤ n,

E−→p ,−→q [al(i)φjk(Yi)− bl(i)φjk(Zi)] =

∫

R

(

M
∑

u=1

(al(i)ωu(i)pu − bl(i)σu(i)qu)

)

φjk.

By introducing the diagonal term i1 = i2 in the sum, we get

E−→p ,−→q (Tj) =
1

n2

M
∑

l=1

∑

k

(

∫

R

φjk

(

n
∑

i=1

M
∑

u=1

al(i)ωu(i)pu −
n
∑

i=1

M
∑

u=1

bl(i)σu(i)qu

))2

− 1

n2

M
∑

l=1

∑

k

n
∑

i=1

(∫

R

(al(i)fi − bl(i)gi)φjk

)2

=

M
∑

l=1

∑

k

(∫

R

(pl − ql)φjk

)2

− 1

n2

M
∑

l=1

∑

k

n
∑

i=1

(∫

R

(al(i)fi − bl(i)gi)φjk

)2

,

because of the two properties
1

n

n
∑

i=1

al(i)ωu(i) = δlu and
1

n

n
∑

i=1

bl(i)σu(i) = δlu.

Thus the result for the expectation is proved. �
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Proof of Corollary 2.1:
According to proposition 2.1 we only have to bound the quantity

1

n2

M
∑

l=1

∑

k

n
∑

i=1

(∫

R

(al(i)fi − bl(i)gi)φjk

)2

.

Using the Cauchy-Schwarz inequality and lemma 6.3, we have

M
∑

l=1

∑

k

n
∑

i=1

(∫

R

(al(i)fi − bl(i)gi)φjk

)2

≤
M
∑

l=1

∑

k

n
∑

i=1

∫

Ijk

(al(i)fi − bl(i)gi)
2
∫

φ2jk

=

M
∑

l=1

n
∑

i=1

[

∑

k

∫

Ijk

(al(i)fi − bl(i)gi)
2

]

≤ 2

n
∑

i=1

M
∑

l=1

[

∑

k

∫

Ijk

(al(i)fi)
2
+

∫

Ijk

(bl(i)gi)
2

]

≤ 4L

(

n
∑

i=1

M
∑

l=1

a2l (i)‖fi‖22 +
n
∑

i=1

M
∑

l=1

b2l (i)‖gi‖22

)

≤ 8LMR2n

K
.

Last inequality is due to proposition 1.1 and the fact that for all 1 ≤ i ≤ n the
density functions fi and gi belong to L2(R). �

Proof of Proposition 2.2: Let us consider the variance of Tj. For all (i1, i2), let
hj(i1, i2) denote the quantity

hj (i1, i2) =
∑

k

M
∑

l=1

(al(i1)φjk(Yi1 )− bl(i1)φjk(Zi1)) (al(i2)φjk(Yi2)− bl(i2)φjk(Zi2)) .
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The variance of Tj satisfies

n
4
Var−→p ,−→q (Tj) = Var−→p ,−→q





∑

i1 6=i2

hj(i1, i2)





=
∑

i1 6=i2,i3 6=i4

Cov (hj(i1, i2), hj(i3, i4))

=
∑

i1 6=i2

Var (hj(i1, i2)) +
∑

i1 6=i2

Cov (hj(i1, i2), hj(i2, i1))

+
∑

i1 6=i2 6=i3

Cov (hj(i1, i2), hj(i1, i3)) +
∑

i1 6=i2 6=i3

Cov (hj(i1, i2), hj(i2, i3))

+
∑

i1 6=i2 6=i3

Cov (hj(i1, i2), hj(i3, i1)) +
∑

i1 6=i2 6=i3

Cov (hj(i1, i2), hj(i3, i2))

+
∑

i1 6=i2 6=i3 6=i4

Cov (hj(i1, i2), hj(i3, i4))

=

7
∑

u=1

Ai.

Using independence arguments,

A7 =
∑

i1 6=i2 6=i3 6=i4

Cov (hj(i1, i2), hj(i3, i4)) = 0.

We are still required to bound for the quantities Ai (1 ≤ i ≤ 6). Since the ways to
bound A1 and A2 (resp. A3, A4, A5 and A6) are similar, we will only bound A1

and A3. Such bounds are given in lemmas 6.7 and 6.8. The proof of proposition
2.2 is a direct consequence of lemmas 6.7 and 6.8 by taking C

T
= 2 C̄

T
∨ 4 C̃

T
.�

5.2 Proofs of Theorems

Proof of Theorem 2.1.

Let us fix 0 < γ < 1 and s > 0. Under the null hypothesis, we use directly the
well-known Bienayme-Chebyshev inequality.

P−→p ,−→p (∆∗
s = 1) = P−→p ,−→p (Tjn > tn)

≤ P−→p ,−→p

(

Tjn − E(Tjn) > tn − 8LMR2

Kn

)

≤ Var−→p ,−→p (Tjn)
(

tn − 8LMR2

Kn

)2

≤ CT M2 2jn

n2 K2
(

t− 8LMR2

K

)2
r4n

.
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The last inequality is obtained using remark 2.2. According to the choices of
the level jn and the threshold tn, we have

C
T
M2 2jn

n2 K2
(

t− 8LMR2

K

)2
r4n

≤ 2C
T
M2

K2
(

t− 8LMR2

K

)2 .

Then
P−→p ,−→p (∆∗

s = 1) ≤ γ

2
.

Under the alternative, we use the expectation of the test statistic and some
approximation argument. The second type error is

P−→p ,−→q (∆∗
s = 0) = P−→p ,−→q

(

−Tjn + E−→p ,−→q (Tjn) ≥ −tn + E−→p ,−→q (Tjn)
)

.

The wavelet expansion in the Besov body Bs
2,∞ leads to

E−→p ,−→q (Tjn)− tn =

M
∑

l=1

‖pl − ql‖22 −
M
∑

l=1

∑

j≥jn

∑

k

(∫

R

(pl − ql)ψjk

)2

− 1

n2

M
∑

l=1

∑

k

n
∑

i=1

(∫

R

(al(i)fi − bl(i)gi)φjnk

)2

− tn

≥
M
∑

l=1

‖pl − ql‖22 −M R 2−2jns − 8LMR2

Kn
− tn.

≥ 1

2

M
∑

l=1

‖pl − ql‖22 −M R 2−2jns − tn,

for any n large enough.

As a consequence, applying the Bienayme-Chebychev inequality leads to

P−→p ,−→q (−Tjn + Ef,g(Tjn) ≥ −tn + Ef,g(Tjn))

≤
C

T
M2

(

2jn + n
∑

l

‖pl − ql‖22 +
√
2jnn

∑

l

‖pl − ql‖2
)

n2 K2

(

1

2

M
∑

l=1

‖pl − ql‖22 −M R 2−2jns − tn

)2 .

The choice of jn and the fact that the functions are in the alternative entail the
following upper bound

P−→p ,−→q (∆∗
s = 0) ≤

C
T
M2

(

2jn + n
∑

l

‖pl − ql‖22 +
√
2jnn

∑

l

‖pl − ql‖2
)

K2n2

(

1
2

M
∑

l=1

‖pl − ql‖22 −M R 2−2jns − t r2n

)2 .
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According to the choices of jn, and rn, one gets for n large enough:

P−→p ,−→q (∆∗
s = 0) ≤

C
T
M2

(

2jn + n
∑

l

‖pl − ql‖22 +
√
2jnn

∑

l

‖pl − ql‖2
)

n2 K2
(

1
2 − R

C2 − t
MC2

)2

(

M
∑

l=1

‖pl − ql‖22

)2

≤ 3C
T

(

1
2 − R

C2 − t
MC2

)2
K2C4

.

For all C > Cγ , we finally obtain

P−→p ,−→q (∆∗
s = 0) ≤ γ

2
.

The results on the first-type and second-type errors show that if C > Cγ the
sum of the errors is less than γ. Therefore the upper bound is proved. �

Proof of Theorem 2.2.

Let γ ∈ ]0, 1[ , C > 0 and C1 > 0. We define

Θ̃1 (R,C,C1, n, s) =
{

(−→p ,−→q ) : ∀u ∈ {1, . . . ,M}, pu − qu ∈ Bs
2,∞(R),

∃u ∈ {1, . . . ,M}, (pu, qu) ∈ Λ̃n(R,C,C1)
}

,

where Λ̃n(R,C,C1) is defined in (6). It is well-known that

inf
∆

(

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆ = 1) + sup
(−→p ,−→q )∈Θ1(R,C,n,s)

P−→p ,−→q (∆ = 0)

)

≥ inf
∆

(

sup
(−→p ,−→q )∈Θ0(R)

P−→p ,−→q (∆ = 1) + sup
(−→p ,−→q )∈Θ̃1(R,C,C1,n,s)

P−→p ,−→q (∆ = 0)

)

≥ 1−
1

2

∥

∥P−→p ,−→p − Pπ

∥

∥ ,

where ‖.‖ is the L1- distance and π is an a priori probability measure on the
set Λn(R,C). First we define the probability measure π and its support. Let
θ = (θ1, . . . , θM ) denote an eigenvector associated with the smallest eigenvalue
of ΣΣ⋆ - which is Kn according to HYP-1 - such that ‖θ‖2 = 1.

Recall that here jn is the same as the one defined in theorem 2.1. Let T be the
subset of Z containing every integer k satisfying the following properties

• k ∈ T =⇒
[

k−L
2jn ,

k+L
2jn

[

⊂ [0, 1[;

• (k, k′) ∈ T × T with k 6= k′ =⇒
[

k−L
2jn ,

k+L
2jn

[

∩
[

k′−L
2jn , k

′+L
2jn

[

= ∅.
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The cardinal of T is clearly equal to T = ⌊ 2jn−1

L
⌋ and we denote its elements

k1, . . . , kT . The following parametric family of functions is considered

ql,ζ(z) = pl(z) + 2s+1C
√
ML θl

∑

k∈T

ζk2
−jns−

jn
2 ψjnk(z),

where ζk = +1 or −1.
Remark that ζk does not depend on the index l. Therefore the density of Zi is

gi,ζ(z) =

M
∑

l=1

σl(i)
√
ML θl 2

s+1C
∑

k∈T

ζk2
−jns−

jn
2 ψjnk(z) +

M
∑

l=1

σl(i)pl(z).

The probability measure π is such that the ζk’s are independent Rademacher
random variables with parameter 1

2 .
The function ql,ζ is a density. Indeed, for n large, ql,ζ is non-negative. Moreover,
as ψjnk is a wavelet, we have

∫

ψjnk = 0 and therefore
∫

ql,ζ = 1. If C <
√

R/M22s+2, then ql,ζ − pl belongs to the ball of the Besov body Bs
2,∞(R).

There exists l such that

Mθ2l ≥ 1 and ‖pl − ql,ζ‖22 = TLMC222+2s−2jns−jnθ2l ≥ C2 n− 4s
4s+1 .

Therefore the probability measure π is solely concentrated on the alternative.
It is well-known that the L1 distance can be bounded by the L2 distance. We
have

∥

∥P−→p ,−→p − Pπ

∥

∥ ≤

√

√

√

√E−→p ,−→p

[

(

dPπ

dP−→p ,−→p

)2
]

− 1

=

√

√

√

√

√E−→p ,−→p





(

Eπ

(

n
∏

i=1

gi,ζ(Zi)

gi(Zi)

))2


− 1. (8)

Therefore it suffices to evaluate the second-order moment of the likelihood ratio:

E−→p ,−→p





(

Eπ

(

n
∏

i=1

gi,ζ(Zi)

gi(Zi)

))2




= E−→p ,−→p





(

∏

k∈T

∫ n
∏

i=1

(

1 + 2s+1C
√
ML ζk 2−jns−

jn
2
ψjnk(Zi)

gi(Zi)

M
∑

l=1

θlσl(i)

)

dπ(ζ1, . . . , ζT )

)2


 .

Let us introduce the following random variables

Z̃ik = 2s+1C
√
ML 2−jns−

jn
2
ψjnk(Zi)

gi(Zi)

M
∑

l=1

θlσl(i).
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We have

E−→p ,−→p





(

∏

k∈T

∫ n
∏

i=1

(

1 + 2s+1C
√
ML ζk 2−jns−

jn
2
ψjnk(Zi)

gi(Zi)

M
∑

l=1

θlσl(i)

)

dπ(ζ1, . . . , ζT )

)2




= E−→p ,−→p





∏

k∈T

1

4

[

n
∏

i=1

(

1 + Z̃ik

)

+

n
∏

i=1

(

1− Z̃ik

)

]2




= E−→p ,−→p

[

∏

k∈T

1

4

(

n
∏

i=1

(1 + 2Z̃ik + Z̃2
ik) +

n
∏

i=1

(1− 2Z̃ik + Z̃2
ik) + 2

n
∏

i=1

(1 − Z̃2
ik)

)]

= E−→p ,−→p

[

∏

k∈T

1

4

{

2

n
∏

i=1

(1 + Z̃2
ik) + 2

n
∏

i=1

(1− Z̃2
ik)

+

n
∑

i=1

Z̃ikhi(Z̃1k, . . . , Z̃i−1,k, Z̃i+1,k, . . . , Z̃nk)
}

]

= E−→p ,−→p

[

∏

k∈T

1

2

(

n
∏

i=1

(1 + Z̃2
ik) +

n
∏

i=1

(1 − Z̃2
ik)

)

+

T
∑

r=1

n
∑

i=1

Z̃ikr h̃(Z̃1k1
, . . . , Z̃n,kr−1

, Z̃1kr , . . . , Z̃i−1,kr , Z̃i+1,kr , . . . , Z̃nkr , Z̃1,kr+1
, . . . , Z̃nkT

]

,

where the functions hi and h̃i are sums of products of their arguments. As
E−→p ,−→p (Z̃ik) = 0 and Z̃ikZ̃ik′ = 0 for k 6= k′, the last term vanishes. Thus we are
only interested in the first term.
Define for all k ∈ T :

hl(k) =
∑

1≤i1<i2<...<il≤n

Z̃2
i1k
Z̃2
i2k

. . . Z̃2
ilk
,

h0(k) = 2.

Then, we have

E−→p ,−→p

[

∏

k∈T

1

2

(

n
∏

i=1

(1 + Z̃2
ik) +

n
∏

i=1

(1− Z̃2
ik)

)]

= E−→p ,−→p







(

1

2

)T
∏

k∈T







n
∑

l=0
l even

hl(k)













=

n
∑

l1,...,lT=0

l1,...,lT even

(

1

2

)T

E−→p ,−→p

(

T
∏

r=1

hlr (kr)

)
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≤
n
∑

l1,...,lT=0

(

1

2

)T

l1,...,lT even

T
∏

r=1

E−→p ,−→p (hlr (kr))

≤
∏

k∈T

1

2







n
∑

l=0
l even

E−→p ,−→p [hl(k)]







≤
∏

k∈T

1

2







n
∑

l=0
l even

n
∑

1≤i1<...<il≤n

E−→p ,−→p

[

Z̃2
i1k

]

. . .E
[

Z̃2
ilk

]







≤
∏

k∈T

1

2

(

n
∏

i=1

(

1 + E−→p ,−→p

[

Z̃2
ik

])

+

n
∏

i=1

(

1− E−→p ,−→p

[

Z̃2
ik

])

)

≤
∏

k∈T

cosh

(

n
∑

i=1

E−→p ,−→p

(

Z̃2
ik

)

)

≤ exp





1

2

∑

k∈T

(

n
∑

i=1

E−→p ,−→p

(

Z̃2
ik

)

)2


 .

Each E−→p ,−→p

(

Z̃2
ik

)

is bounded as follows,

E−→p ,−→p

(

Z̃2
ik

)

≤ 22s+2−2jns−jn
C2

C1
ML

(

M
∑

l=1

θlσl(i)

)2

.

Therefore this bound entails

exp

(

1

2

∑

k∈T

(

n
∑

i=1

E−→p ,−→p

(

Z̃
2
ik

)

)2)

≤ exp





1

2

∑

k∈T

24s+4
C

42−4jns−2jn L2M2

C2
1





n
∑

i=1

M
∑

l,m=1

θlθmσl(i)σm(i)





2



≤ exp

(

1

2

∑

k∈T

24s+4
C

42−4jns−2jn L2M2

C2
1

(

θ
⋆Γ′

nθ
)2

)

= exp

(

∑

k∈T

24s+3
C

42−4jns−2jn L2M2

C2
1

(Kn)2
)

≤ exp

(

24s+2
M

2
K

2 LC4

C2
1

)

. (9)

Inequalities (8) and (9) lead to

∥

∥P−→p ,−→p − Pπ

∥

∥ ≤
√

exp

(

24s+2M2K2
LC4

C2
1

)

− 1.

The choice of any constant C such that C < cγ entails that the left-hand side
of (9) is strictly smaller than 2(1− γ).
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6 Appendix

This section contains the technical lemmas used in the proofs of the main results.

Lemma 6.1

M
∑

l=1

n
∑

i=1

a2l (i) ≤ Mn

K
, (10)

M
∑

l=1

n
∑

i=1

b2l (i) ≤ Mn

K
. (11)

Proof of Lemma 6.1:
The proofs of (10) and (11) are identical, that’s why we only prove (10). Let
λmin(Γn) be the smallest non negative eigenvalue of the matrix Γn. Let A =
(A)1≤j≤n,1≤l≤M denote the (n×M) matrix with coefficients Aj,l = al(j). Since
the matrix AA∗ has at most M non negative eigenvalues, we have

M
∑

l=1

n
∑

i=1

a2l (i) = trace(AA∗) ≤M λmax(AA
∗). (12)

Clearly, the following implication holds

λ is a non negative eigenvalue of AA∗ =⇒ n2λ−1 is an eigenvalue of Γn.

So

λmax(AA
∗) ≤ n2

λmin(Γn)
. (13)

Lemma 6.1 is proved by inequalities (12) and (13) and under HYP-1. �

Lemma 6.2 For all (j, k) ∈ Z× Z, let us put

Ijk =

[

k − L

2j
,
k + L

2j

[

.

Then for any fixed (j, k)

Card{k′ ∈ Z : Ijk ∩ Ijk′ 6= ∅} ≤ 4L.
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Proof of Lemma 6.2:
Clearly, Ijk ∩ Ijk′ = ∅ ⇐⇒ k′ − L ≥ k + L or k′ + L ≤ k − L.
Hence, Ijk ∩ Ijk′ 6= ∅ ⇐⇒ k − 2L < k′ < k + 2L.
As a consequence, we have

Card{k′ ∈ Z : Ijk ∩ Ijk′ 6= ∅} ≤ 4L.

�

Lemma 6.3 For any function h ∈ L1(R)

∑

k

∫

Ijk

|h(x)|dx ≤ 2L‖h‖1.

Proof of Lemma 6.3: Let us define for any h ∈ L1(R) :

pjk(h) =

∫

Ijk

|h(x)|dx, ∀j ∈ N, ∀k ∈ Z.

Judging from the definition of the intervals Ijk , we easily prove that for any
j ∈ N,

∑

k

pjk(h) =

2L
∑

u=1

∑

i∈Z

pj,2Li+u(h) ≤
2L
∑

u=1

∫

R

|h(x)|dx = 2L‖h‖1.

�

Lemma 6.4 Let W be either Y or Z. For any 1 ≤ i ≤ n and any (j, k), we
have

|E (φjk(Wi))| ≤
(

2L sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)
1
2

2−
j
2 .

Proof of Lemma 6.4:
Using the Cauchy-Schwarz inequality, we obtain

|E (φjk(Wi))| ≤
∣

∣

∣

∣

∫

φjk fi

∣

∣

∣

∣

∨
∣

∣

∣

∣

∫

φjk gi

∣

∣

∣

∣

≤
∫

|φjk| sup
l

‖pl‖∞ ∨
∫

|φjk | sup
l

‖ql‖∞

≤
(

2L sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)
1
2

2−
j
2 .

�
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Lemma 6.5 Let W be either Y or Z and c be either a or b. For any 1 ≤ i ≤ n
and any (j, k), the following inequalities hold

∑

k′

|E (φjk(Wi)φjk′ (Wi))| ≤ 4L sup
l

(‖pl‖∞ ∨ ‖ql‖∞),

sup
l

∣

∣

∣

∣

∣

∑

k

∫

φjk(pl − ql)

∣

∣

∣

∣

∣

≤ 4L ‖φ‖∞ 2
j
2 ,

sup
l

|cl(i)| ≤
√

n
∑

l

〈cl, cl〉n.

Proof of Lemma 6.5:
Since the wavelets are compactly supported, for any fixed k the sum over k′ has
at most 4L terms which are non zeros (see lemma 6.2). So, the Cauchy-Schwarz
inequality entails that

∑

k′

|E (φjk(Wi)φjk′ (Wi))| ≤
∑

k′

∫

|φjk| |φjk′ | fi ∨
∑

k′

∫

|φjk | |φjk′ | gi

≤
∑

k′

(

‖fi‖∞
∫

|φjk| |φjk′ |
)

∨
∑

k′

(

‖gi‖∞
∫

|φjk| |φjk′ |
)

≤
(

sup
l

‖pl‖∞
∑

k′

∫

|φjk| |φjk′ |
)

∨
(

sup
l

‖ql‖∞
∑

k′

∫

|φjk | |φjk′ |
)

≤ 4L sup
l

(‖pl‖∞ ∨ ‖ql‖∞).

We also have

sup
l

∣

∣

∣

∣

∣

∑

k

∫

φjk(pl − ql)

∣

∣

∣

∣

∣

≤ 2
j
2 ‖φ‖∞ sup

l

∑

k

∫

Ijk

|pl − ql|

≤ 2L

(∫

pl +

∫

ql

)

‖φ‖∞ 2
j
2

= 4L‖φ‖∞ 2
j
2 .

Clearly, for any 1 ≤ i ≤ n,

sup
l

|cl(i)| ≤ sup
l

√

∑

i

c2l (i)

≤
√

n
∑

l

〈cl, cl〉n.

�
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Lemma 6.6 Let pl, ql pl′ and ql′ be four probability densities in L2. Then, for

any j ∈ N

∑

k

(∫

φjkpl −
∫

φjkql

)2

≤ 2L‖pl − ql‖22;

∑

k

∑

k′ :Ijk∩Ijk′ 6=∅

∣

∣

∣

∣

(

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

≤ 4L2
(

‖pl − ql‖22 + ‖pl′ − ql′‖22
)

.

Proof of Lemma 6.6:
Using the Cauchy-Schwarz inequality, we have

∑

k

(∫

φjkpl −
∫

φjkql

)2

≤
∑

k

∫

Ijk

(pl − ql)
2

≤ 2L‖pl − ql‖22.

Lemma 6.3 entails that

∑

k

∑

k′:Ijk∩Ijk′ 6=∅

∣

∣

∣

∣

(

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

≤ 1

2





∑

k

∑

k′:Ijk∩Ijk′ 6=∅

(∫

φjkpl −
∫

φjkql

)2

+
∑

k

∑

k′:Ijk∩Ijk′ 6=∅

(∫

φjkpl′ −
∫

φjkql′

)2




≤ 1

2

[

4L
∑

k

∫

φ2jk

∫

Ijk

(pl − ql)
2 + 4L

∑

k

∫

φ2jk

∫

Ijk

(pl′ − ql′)
2

]

≤ 1

2

(

8L2‖pl − ql‖22 + 8L2‖pl′ − ql′‖22
)

≤ 4L2
(

‖pl − ql‖22 + ‖pl′ − ql′‖22
)

.

�

Lemma 6.7 There exists a constant C̄
T
= C̄

T
(R,L, ‖φ‖∞) > 0 such that

A1 :=
∑

i1 6=i2

Var−→p ,−→q
(hj(i1, i2)) ≤ C̄

T

M2

K2
2j n2.

Proof of Lemma 6.7:
Let us evaluate each variance

Var−→p ,−→q
(hj (i1, i2)) = Cov (hj(i1, i2), hj(i1, i2)) .
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We expand the covariance

Cov
(

(al(i1)φjk(Yi1 )− bl(i1)φjk(Zi1)) (al(i2)φjk(Yi2)− bl(i2)φjk(Zi2)) ,

(al′(i1)φjk′ (Yi1)− bl′(i1)φjk′ (Zi1)) (al′(i2)φjk′ (Yi2 )− bl′(i2)φjk′ (Zi2))
)

= Cov (al(i1)φjk(Yi1)al(i2)φjk(Yi2 ), al′(i1)φjk′ (Yi1 )al′(i2)φjk′ (Yi2))

−Cov (al(i1)φjk(Yi1 )al(i2)φjk(Yi2 ), al′(i1)φjk′ (Yi1)bl′(i2)φjk′ (Zi2))

−Cov (al(i1)φjk(Yi1 )al(i2)φjk(Yi2 ), bl′(i1)φjk′ (Zi1)al′(i2)φjk′ (Yi2 ))

+Cov (al(i1)φjk(Yi1 )al(i2)φjk(Yi2 ), bl′(i1)φjk′ (Zi1)bl′(i2)φjk′ (Zi2))

−Cov (al(i1)φjk(Yi1 )bl(i2)φjk(Zi2), al′(i1)φjk′ (Yi1)al′(i2)φjk′ (Yi2 ))

+Cov (al(i1)φjk(Yi1 )bl(i2)φjk(Zi2), al′(i1)φjk′ (Yi1)bl′(i2)φjk′ (Zi2))

+Cov (al(i1)φjk(Yi1 )bl(i2)φjk(Zi2), bl′(i1)φjk′ (Zi1)al′(i2)φjk′ (Yi2))

−Cov (al(i1)φjk(Yi1 )bl(i2)φjk(Zi2), bl′(i1)φjk′ (Zi1)bl′(i2)φjk′ (Zi2))

−Cov (bl(i1)φjk(Zi1)al(i2)φjk(Yi2 ), al′(i1)φjk′ (Yi1)al′(i2)φjk′ (Yi2 ))

+Cov (bl(i1)φjk(Zi1)al(i2)φjk(Yi2 ), al′(i1)φjk′ (Yi1)bl′(i2)φjk′ (Zi2))

+Cov (bl(i1)φjk(Zi1)al(i2)φjk(Yi2 ), bl′(i1)φjk′ (Zi1)al′(i2)φjk′ (Yi2))

−Cov (bl(i1)φjk(Zi1)al(i2)φjk(Yi2 ), bl′(i1)φjk′ (Zi1)bl′(i2)φjk′ (Zi2))

+Cov (bl(i1)φjk(Zi1)bl(i2)φjk(Zi2), al′(i1)φjk′ (Yi1 )al′(i2)φjk′ (Yi2))

−Cov (bl(i1)φjk(Zi1)bl(i2)φjk(Zi2), al′(i1)φjk′ (Yi1 )bl′(i2)φjk′ (Zi2))

−Cov (bl(i1)φjk(Zi1)bl(i2)φjk(Zi2), bl′(i1)φjk′ (Zi1)al′(i2)φjk′ (Yi2))

+Cov (bl(i1)φjk(Zi1)bl(i2)φjk(Zi2), bl′(i1)φjk′ (Zi1)bl′(i2)φjk′ (Zi2)) .

According to independence arguments, the following terms are clearly equal to
zero:

Cov (al(i1)φjk(Yi1)al(i2)φjk(Yi2), bl′(i1)φjk′ (Zi1)bl′(i2)φjk′ (Zi2)) ,

Cov (al(i1)φjk(Yi1)bl(i2)φjk(Zi2), bl′(i1)φjk′ (Zi1)al′(i2)φjk′ (Yi2 )) ,

Cov (bl(i1)φjk(Zi1)al(i2)φjk(Yi2), al′(i1)φjk′ (Yi1 )bl′(i2)φjk′ (Zi2)) ,

Cov (bl(i1)φjk(Zi1)bl(i2)φjk(Zi2), al′(i1)φjk′ (Yi1)al′(i2)φjk′ (Yi2 )) .

The remaining terms can be split into two types: those involving two different
random variables and those involving three different random variables. Let us
handle these two cases separately. First, we consider the case with two different
random variables. We need to bound terms such as

∑

i1 6=i2

∑

k,k′

Cov (al(i1)φjk(Yi1)al(i2)φjk(Yi2 ), al′(i1)φjk′ (Yi1)al′ (i2)φjk′ (Yi2))

=
∑

i1 6=i2

∑

k,k′

al(i1)al(i2)al′(i1)al′(i2)E (φjk(Yi1 )φjk′ (Yi1))E (φjk(Yi2 )φjk′ (Yi2))

−
∑

i1 6=i2

∑

k,k′

al(i1)al(i2)al′ (i1)al′(i2)E (φjk(Yi1))E (φjk′ (Yi1))E (φjk(Yi2 ))E (φjk′ (Yi2 )) .
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As the wavelets are compactly supported, we get for any (i1, i2),

∣

∣

∣

∣

∣

∣

∑

k,k′

al(i1)al(i2)al′(i1)al′(i2)E (φjk(Yi1)φjk′ (Yi1 ))E (φjk(Yi2)φjk′ (Yi2 ))

∣

∣

∣

∣

∣

∣

≤ ‖fi1‖∞
∑

k,k′

|al(i1)al(i2)al′(i1)al′(i2)|
∫

|φjkφjk′ |fi2

≤ 2j+3L2 ‖φ‖2∞ sup
l

(‖pl‖∞ ∨ ‖ql‖∞)|al(i1)al(i2)al′(i1)al′(i2)|.

The second sum is much simpler to bound. According to lemma 6.4 it can be
bounded as follows
∣

∣

∣

∣

∣

∣

∑

k,k′

al(i1)al(i2)al′ (i1)al′(i2)E (φjk(Yi1))E (φjk′ (Yi1))E (φjk(Yi2 ))E (φjk′ (Yi2 ))

∣

∣

∣

∣

∣

∣

≤
∑

k,k′

|al(i1)al(i2)al′ (i1)al′(i2)|E (|φjk(Yi1 )|)E (|φjk′ (Yi1 )|)
(√

2L 2−
j
2

)2

sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

= L 21−j
∑

k,k′

|al(i1)al(i2)al′(i1)al′(i2)|
∫

Ijk

|φjk |fi1
∫

Ijk′

|φjk′ |fi1
(

sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)

≤ 8L3 |al(i1)al(i2)al′(i1)al′(i2)| ‖φ‖2∞ sup
l

(‖pl‖∞ ∨ ‖ql‖∞).

Let us now focus on the sums over i1, i2, l and l
′.

∑

i1 6=i2

∑

l, l′

|al(i1)al(i2)al′ (i1)al′(i2)| ≤
∑

i1,i2

∑

l, l′

1

2

(

al(i1)
2al′(i2)

2 + al′(i1)
2al(i2)

2
)

≤ n2
∑

l, l′

〈al, al〉n 〈al′ , al′〉n

≤ M2n2

K2
.

We see that this term behaves like n2. The three other terms featuring only two
different random variables are handled in the same way.
Therefore it remains to evaluate the eight terms with three different random
variables. For example, let us consider

Cov (al(i1)φjk(Yi1)al(i2)φjk(Yi2), al′(i1)φjk′ (Yi1 )al′(i2)φjk′ (Zi2)) ,

and let us omit for a moment the sums over i1, i2, k, k
′, l and l′. The covariance

can be expanded as

Cov (φjk(Yi1 )φjk(Yi2 ), φjk′ (Yi1)φjk′ (Zi2)) = E (φjk′ (Zi2))E (φjk(Yi2 ))Cov (φjk(Yi1 ), φjk′ (Yi1 )) .

When we add the sums over k and k′, the second term is exactly handled as
the second term above in the case of two different random variables. Thus,
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it remains to consider the first summand. As above, the compactness of the
wavelet entails that

∣

∣

∣

∣

∣

∣

∑

k,k′

E (φjk′ (Zi2))E (φjk(Yi2))Cov (φjk(Yi1 ), φjk′ (Yi1 ))

∣

∣

∣

∣

∣

∣

≤
∑

k,k′

|E (φjk′ (Zi2))E (φjk(Yi2))E (φjk(Yi1 ))E (φjk′ (Yi1 )) |

+
∑

k,k′

|E (φjk′ (Zi2))E (φjk(Yi2 ))E (φjk(Yi1)φjk′ (Yi1 )) |

= A11 +A12,

According to lemmas 6.4 and 6.5, we have

A11 =
∑

k,k′

|E (φjk′ (Zi2))E (φjk(Yi2 ))E (φjk(Yi1))E (φjk′ (Yi1)) |

≤
(

21−jL sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)

∑

k

∫

|φjk|gi2
∑

k′

∫

|φjk′ |fi2

≤ 8L3 ‖φ‖2∞ sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

and

A12 =
∑

k,k′

|E (φjk′ (Zi2))E (φjk(Yi2 ))E (φjk(Yi1)φjk′ (Yi1 )) |

≤
(

21−jL sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)

∑

k,k′

|E (φjk(Yi1 )φjk′ (Yi1)) |

≤ 4L

(

21−jL sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)

2
j
2 ‖φ‖∞

∑

k

∫

|φjk|fi1

≤ 8L2

(

2L sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)

‖φ‖2∞
∫

fi1

≤ 16L3 ‖φ‖2∞ sup
l

(‖pl‖∞ ∨ ‖ql‖∞).

It remains to sum over i1 and i2 as the sums over l and l′ are not important
(they only change the constant). We have
∑

i1 6=i2

∑

l,l′

|al(i1)al(i2)al′ (i1)bl′(i2)| ≤
∑

i1,i2

∑

l,l′

|al(i1)al(i2)al′(i1)bl′(i2)|

≤ 1

2

∑

l,l′





∑

i1,i2

al(i1)
2bl′(i2)

2 +
∑

i1,i2

al′(i1)
2al(i2)

2





=
n2

2

∑

l,l′

(〈al, al〉n 〈bl′ , bl′〉n + 〈al′ , al′〉n 〈al, al〉n)

≤ M2n2

K2
.
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Clearly, this term behaves like n2. The other covariances involving three ran-
dom variables are handled exactly in the same way.

By combining all the previous bounds, we conclude that

A1 ≤ (k1 + k2 2j)
M2n2

K2
, with k1 = 224RL3‖φ‖2∞, k2 = 32RL2‖φ‖2∞.

As a consequence if we write C̄
T
= k1 + k2 one gets

A1 ≤ C̄T

M2

K2
2j n2.

�

Lemma 6.8 There exists a constant C̃
T
= C̃

T
(R,L, ‖φ‖∞) > 0 such that for

any j ∈ N

A3 :=
∑

i1 6=i2 6=i3

Cov (hj (i1, i2) , hj (i1, i3)) ≤ C̃
T

M2

K2

[

n3
∑

l

‖pl − ql‖22 + 2
j
2 n

5
2

∑

l

‖pl − ql‖2
]

.

Proof of Lemma 6.8:
Clearly, the term A3 can be bounded as follows

A3 =
∑

i1 6=i2 6=i3

Cov (hj (i1, i2) , hj (i1, i3))

=
∑

i1 6=i2 6=i3

∑

k,k′

∑

l,l′

Cov
(

(al(i1)φjk(Yi1)− bl(i1)φjk(Zi1)) (al(i2)φjk(Yi2 )− bl(i2)φjk(Zi2)) ,

(al′(i1)φjk′ (Yi1 )− bl′(i1)φjk′ (Zi1)) (al′(i3)φjk′ (Yi3)− bl′(i3)φjk′ (Zi3))
)

=
∑

i1 6=i2 6=i3

∑

k,k′

∑

l,l′

Cov (al(i1)φjk(Yi1)− bl(i1)φjk(Zi1), al′(i1)φjk′ (Yi1)− bl′(i1)φjk′ (Zi1))

×E (al(i2)φjk(Yi2 )− bl(i2)φjk(Zi2))E (al(i3)φjk′ (Yi3)− bl′(i3)φjk′ (Zi3))

=
∑

i1,i2,i3

∑

k,k′

∑

l,l′

Cov (al(i1)φjk(Yi1 )− bl(i1)φjk(Zi1), al′(i1)φjk′ (Yi1 )− bl′(i1)φjk′ (Zi1))

E (al(i2)φjk(Yi2)− bl(i2)φjk(Zi2))E (al′(i3)φjk′ (Yi3 )− bl′(i3)φjk′ (Zi3))

−
∑

i1=i2,i3

∑

k,k′

∑

l,l′

Cov (al(i1)φjk(Yi1)− bl(i1)φjk(Zi1), al′(i1)φjk′ (Yi1)− bl′(i1)φjk′ (Zi1))

E (al(i2)φjk(Yi2)− bl(i2)φjk(Zi2))E (al′(i3)φjk′ (Yi3 )− bl′(i3)φjk′ (Zi3))

−
∑

i1=i3,i2

∑

k,k′

∑

l,l′

Cov (al(i1)φjk(Yi1)− bl(i1)φjk(Zi1), al′(i1)φjk′ (Yi1)− bl′(i1)φjk′ (Zi1))

E (al(i2)φjk(Yi2)− bl(i2)φjk(Zi2))E (al′(i3)φjk′ (Yi3 )− bl′(i3)φjk′ (Zi3))

+
∑

i1=i2=i3

∑

k,k′

∑

l,l′

Cov (al(i1)φjk(Yi1 )− bl(i1)φjk(Zi1), al′(i1)φjk′ (Yi1 )− bl′(i1)φjk′ (Zi1))

E (al(i2)φjk(Yi2)− bl(i2)φjk(Zi2))E (al′(i3)φjk′ (Yi3 )− bl′(i3)φjk′ (Zi3))

= A31 −A32 − A33 +A34

≤ |A31|+ |A32|+ |A33|+ |A34|.
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We will separetely bound each term.
Let us start with |A31|. The first step is to expand the covariance.

|A31| = |
∑

i1,i2,i3

∑

k,k′

∑

l,l′

Cov (al(i1)φjk(Yi1)− bl(i1)φjk(Zi1), al′(i1)φjk′ (Yi1)− bl′(i1)φjk′ (Zi1))

E (al(i2)φjk(Yi2 )− bl(i2)φjk(Zi2)) |
= n2

∣

∣

∣

∑

i1

∑

k,k′

∑

l,l′

Cov ((al(i1)φjk(Yi1 )− bl(i1)φjk(Zi1)) , (al′(i1)φjk′ (Yi1)− bl′(i1)φjk′ (Zi1)))

(

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)
∣

∣

∣

= n2
∣

∣

∣

∑

i1

∑

k,k′

∑

l,l′

[

E (al(i1)φjk(Yi1)al′ (i1)φjk′ (Yi1)) + E (bl(i1)φjk(Zi1)bl′(i1)φjk′ (Zi1))

−E (al(i1)φjk(Yi1 ))E (al′(i1)φjk′ (Yi1))− E (bl(i1)φjk(Zi1))E (bl′(i1)φjk′ (Zi1))
]

(

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)
∣

∣

∣.

The first two terms involve only one expectation and can be bounded in the
same way. Therefore let us bound the quantity
∣

∣

∣

∣

∣

∣

∑

i1

∑

k,k′

∑

l,l′

E (al(i1)φjk(Yi1 )al′(i1)φjk′ (Yi1)) (

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

∣

∣

.

Clearly
∑

i1

|al(i1)al′(i1)| ≤ n
√

〈al, al〉n 〈al′ , al′〉n ≤ M

K
n.

Since |E (φjk(Yi1 )φjk′ (Yi1)) | ≤ sup
l

(‖pl‖∞ ∨ ‖ql‖∞), lemma 6.6 entails that

∑

k

∑

k′ :Ijk∩Ijk′ 6=∅

∣

∣

∣

∣

(

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

≤ 4L2
(

‖pl − ql‖22 + ‖pl′ − ql′‖22
)

.

Then one deduces that for any 1 ≤ i1 ≤ n

∑

k,k′

∑

l,l′

|E (φjk(Yi1)φjk′ (Yi1)) |
∣

∣

∣

∣

(

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

≤ 8L2 sup
l

(‖pl‖∞ ∨ ‖ql‖∞)
∑

l

‖pl − ql‖22 .

Hence
∣

∣

∣

∣

∣

∣

∑

i1

∑

k,k′

∑

l,l′

E (al(i1)φjk(Yi1)al′(i1)φjk′ (Yi1 )) (

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

∣

∣

≤ 8ML2

K
sup
l

(‖pl‖∞ ∨ ‖ql‖∞)
∑

l

‖pl − ql‖22 n.
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Now we come to the last two terms which involve two expectations. Let us
consider for example the quantity

∣

∣

∣

∣

∣

∣

∑

k,k′

E (φjk(Yi1))E (φjk′ (Yi1)) (

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

∣

∣

≤
∑

k,k′

|E (φjk(Yi1))E (φjk′ (Yi1))|
1

2

{

(
∫

φjkpl −
∫

φjkql

)2

+

(
∫

φjk′pl′ −
∫

φjk′ql′

)2
}

≤ sup
l,l′

[

√
2L (‖pl‖∞ ∨ ‖ql‖∞)

1
2 2−

j
2

∑

k

|E (φjk(Yi1)) |
∑

k′

(∫

φjk′pl′ −
∫

φjk′ql′

)2
]

≤ 4
√
2L

5
2 ‖φ‖∞

(

sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)
1
2

sup
l′

‖pl′ − ql′‖22 .

Last inequalities are obtained by using lemma 6.6 for any 1 ≤ i1 ≤ n. Hence

∣

∣

∣

∣

∣

∣

∑

i1

∑

k,k′

∑

l,l′

E (al(i1)φjk(Yi1))E (al′(i1)φjk′ (Yi1)) (

∫

φjkpl −
∫

φjkql)(

∫

φjk′pl′ −
∫

φjk′ql′)

∣

∣

∣

∣

∣

∣

≤ 4
√
2M

K
L

5
2 ‖φ‖∞

(

sup
l

(‖pl‖∞ ∨ ‖ql‖∞)

)
1
2

sup
l′

‖pl′ − ql′‖22 n.

Therefore the two last bounds entail that

|A31| ≤ c31
M2n3

K

∑

l

‖pl − ql‖22 , where c31 = 4L2
√
R
(

2
√
R+

√
2L‖φ‖∞

)

.

The way to bound A32 and A33 is trickier. We have

|A32| ≤
∣

∣

∣

∑

l,l′

∑

i1,i2

∑

k,k′

[al(i1)al′(i1)Cov (φjk(Yi1 ), φjk′ (Yi1)) + bl(i1)bl′(i1)Cov (φjk(Zi1), φjk′ (Zi1))]

[al(i1)E (φjk(Yi1))− bl(i1)E (φjk(Zi1))] [al′(i2)E (φjk′ (Yi2 ))− bl′(Zi2)E (φjk′ (Zi2))]
∣

∣

∣

≤
∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

[al(i1)al′ (i1)Cov (φjk(Yi1), φjk′ (Yi1)) + bl(i1)bl′(i1)Cov (φjk(Zi1), φjk′ (Zi1))]

[al(i1)E (φjk(Yi1))− bl(i1)E (φjk(Zi1))]

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣
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≤
∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

al(i1)al′(i1)E (φjk(Yi1 )φjk′ (Yi1))

(al(i1)E (φjk(Yi1))− bl(i1)E (φjk(Zi1)))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

+
∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

al(i1)al′(i1)E (φjk(Yi1 ))E (φjk′ (Yi1 ))

(al(i1)E (φjk(Yi1))− bl(i1)E (φjk(Zi1)))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

+
∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

bl(i1)bl′(i1)E (φjk(Zi1)φjk′ (Zi1))

(al(i1)E (φjk(Yi1))− bl(i1)E (φjk(Zi1)))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

+
∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

bl(i1)bl′(i1)E (φjk(Zi1))E (φjk′ (Zi1))

(al(i1)E (φjk(Yi1))− bl(i1)E (φjk(Zi1)))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣
.

The calculations are rather lengthy and involve eight terms. But the bright side
is that the terms can be split into two groups. There are terms involving two
expectations such as

∑

l,l′

∑

i1

∑

k,k′

al(i1)al′(i1)E (φjk(Yi1)φjk′ (Yi1 )) al(i1)E (φjk(Yi1 ))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

,

and terms involving three expectations such as

∑

l,l′

∑

i1

∑

k,k′

al(i1)al′(i1)E (φjk(Yi1))E (φjk′ (Yi1)) al(i1)E (φjk(Yi1 ))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

.

Still using lemmas 6.4 and 6.5, we have

∣

∣

∣

∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

al(i1)al′(i1)E (φjk(Yi1 )φjk′ (Yi1 )) al(i1)E (φjk(Yi1))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

∣

∣

∣

≤ 8
√
2 L

5
2 ‖φ‖2∞ sup

l

‖pl‖
1
2

∞

M
∑

l=1

‖pl − ql‖2

(

M
∑

l=1

〈al, al〉n

)

3
2

2
j
2 n

5
2

≤ 8

√

2M3

K3
L

5
2 ‖φ‖2∞ sup

l

‖pl‖
1
2

∞

M
∑

l=1

‖pl − ql‖2 2
j
2 n

5
2 ;
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∣

∣

∣

∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

al(i1)al′(i1)E (φjk(Yi1 )φjk′ (Yi1)) bl(i1)E (φjk(Zi1))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

∣

∣

∣

≤ 4
√
2 L

5
2 ‖φ‖2∞ sup

l

‖ql‖
1
2

∞

M
∑

l=1

‖pl − ql‖2

(

M
∑

l=1

〈al, al〉n

)

1
2 M
∑

l=1

(〈al, al〉n + 〈bl, bl〉n) 2
j
2 n

5
2

≤ 8

√

2M3

K3
L

5
2 ‖φ‖2∞ sup

l

‖ql‖
1
2

∞

M
∑

l=1

‖pl − ql‖2 2
j
2 n

5
2 ;

∣

∣

∣

∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

bl(i1)bl′(i1)E (φjk(Zi1)φjk′ (Zi1)) bl(i1)E (φjk(Zi1))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

∣

∣

∣

≤ 8
√
2 L

5
2 ‖φ‖2∞ sup

l

‖ql‖
1
2

∞

M
∑

l=1

‖pl − ql‖2

(

M
∑

l=1

〈bl, bl〉n

)

3
2

2
j
2 n

5
2

≤ 8

√

2M3

K3
L

5
2 ‖φ‖2∞ sup

l

‖ql‖
1
2

∞

M
∑

l=1

‖pl − ql‖2 2
j
2 n

5
2 ;

∣

∣

∣

∣

∣

∣

∑

l,l′

∑

i1

∑

k,k′

bl(i1)bl′(i1)E (φjk(Zi1)φjk′ (Zi1)) al(i1)E (φjk(Yi1))

(

n

∫

φjk′pl′ − n

∫

φjk′ql′

)

∣

∣

∣

∣

∣

∣

≤ 4
√
2 L

5
2 ‖φ‖2∞ sup

l

‖pl‖
1
2

∞

M
∑

l=1

‖pl − ql‖2

(

M
∑

l=1

〈bl, bl〉n

)

1
2 M
∑

l=1

(〈al, al〉n + 〈bl, bl〉n) 2
j
2 n

5
2

≤ 8

√

2M3

K3
L

5
2 ‖φ‖2∞ sup

l

‖pl‖
1
2

∞

M
∑

l=1
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Next we come to the second term. We have
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All these bounds entail that
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with c32 = 48
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with c33 = c32.
Let us now consider |A34|.
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Once again, we apply the Cauchy-Schwarz inequality,
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According to lemma 6.5, we have for any 1 ≤ i1 ≤ n and any l,
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According to lemmas 6.4 and 6.5, we have for any fixed k,
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Hence,
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with c34 = 4L‖φ‖∞
√
R
(
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3
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.

When we carefully look at the bounds of A3i for i ∈ {1, 2, 3, 4}, we deduce that
there exists a Cste > 0 such that
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References

[1] Autin, F. (2006). Maxiset for density estimation on R. Math. Methods

Statist., vol. 15 (2), 123-145.

[2] Avellaneda, M. (1999, 2000, 2001) Quantitative Analysis in Financial Mar-
kets: Collected Papers of the New York University Mathematical Finance
Seminar Volumes I,II, III, World Scientific.

[3] Bernhard, W., and Leblang, D. (2006). Democratic Processes and Financial
Markets, Cambridge University Press, New York.

[4] Butucea, C., and Tribouley, K. (2006). Nonparametric homogeneity tests.
J. Statist. Plann. and Inference, vol. 136, 597-639.

[5] Cohen, A., DeVore, R., Kerkyacharian, G., and Picard, D. (2001). Maxi-
mal spaces with given rate of convergence for thresholding algorithms. Appl.
Comput. Harmon. Anal., vol. 11 (2), 167-191.

[6] Cont, R. (2007). Volatility clustering in financial markets: empirical facts
and agent-based models. In Long memory in economics (eds. A. Kirman and
G. Teyssiere), pp 289–309. Springer, Berlin.

[7] Daubechies, I. (1996). Ten Lectures on Wavelets, SIAM, Philadelphia.

[8] Delmas, C. (2003). On likelihood ratio tests in Gaussian mixture models.
Indian J. Statist., vol. 65 (3), 513-531.

[9] Donoho, D., Johnstone, I., Kerkyacharian, G., and Picard, D. (1996). Den-
sity estimation by wavelet tresholding. Ann. Statist., vol. 24 (2), 508-539.

[10] Garel, B. (2001). Likelihood ratio test for univariate Gaussian mixture. J.
Statist. Plann. Inference, vol. 96 (2), 325-350.

[11] Garel, B. (2005). Asymptotic theory of the likelihood ratio test for the
identification of a mixture. J. Statist. Plann. Inference, vol. 131 (2), 271-296.

41



[12] Hall, P. (1981). On the nonparametric estimation of mixture proportions.
J. Roy. Statist. Soc. Ser B, vol. 43 2), 147-156.

[13] Hall, P., and Titterington, D. M. (1984). Efficient Nonparametric Estima-
tion of Mixture Proportions. J. Roy. Statist. Soc. Ser. B, vol. 46 (3), 465-473.

[14] Hall, P., and Zhou, X.H. (2003). Nonparametric estimation of component
distributions in a multivariate mixture. Ann. Statist., vol. 31 (1), 201-224.

[15] Hosmer, D.W. (1973). A comparison of iterative maximum likelihood esti-
mates of the parameters of a mixture of two normal distributions under three
types of sample. Biometrics, vol. 29, 761-770.

[16] Lodatko, N., and Maiboroda, R. (2007). Estimation of the density of a
distribution from observations with an admixture. Theory Probab. Math.

Statist. vol. 73 , 99-108.

[17] McKnight, P.E., McKnight, K.M., Figueredo, A.J., and Sidani, S. (2007).
Missing data: a gentle introduction. Guilford Press, New York.

[18] Maiboroda, R.E. (2000). A homogeneity criterion for mixtures with varying
concentrations. Ukrainian Math. J., vol. 52 (8), 1256-1263.

[19] Maiboroda, R.E. (2000). An asymptotically effective estimate for a distri-
bution from a sample with a varying mixture. Theory Probab. Math. Statist.,
vol. 61, 121-130.

[20] Pokhyl’ko, D. (2005). Wavelet estimators of a density constructed from
observations of a mixture. Theor. Prob. and Math. Statist. vol. 70, 135-145.

[21] Gayraud, G., and Pouet, C.(2005). Adaptive Minimax Testing in the Dis-
crete Regression Scheme. Probab. Theory Related Fields vol. 133 (4), 531-558.

[22] Qin, J. (1999). Empirical likelihood ratio based confidence intervals for
mixture proportions. Annals of Statist., vol. 27 (4), 1368-1384.

[23] Spokoiny, V.G. (1996). Adaptive hypothesis testing using wavelets. Ann.
Statist., 24 (6), 2477-2498

[24] Titterington, D.M. (1983). Minimum distance nonparametric estimation of
mixture proportions. J. Roy. Statist. Soc. Ser. B, Series B, vol. 45 (1), 37-46.

[25] van de Geer, S. (1995). Asymptotic normality in mixture models. ESAIM
Probab. Statist., vol. 1, 17-33.

42


