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Abstract. In several applications, microwave imaging systems are enclosed in a

dielectric or metallic casing, which is aimed at hosting a matching fluid and/or enabling

a “removal” of the parasitic interactions with the surrounding environment. In order

to understand which are the expected results of an imaging process carried out in

such a configuration, in this paper we study the spectral properties of the integral

radiation operator relative to an imaging system hosted in a circular metallic cavity.

The analysis allows us to explain the role of the several parameters coming into play

in the design of such a system, as well as their effect on the imaging procedure.
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1. Introduction

Microwave imaging techniques have been a topic of active research in the last years.

Indeed, researchers from many groups in the world have spent their efforts in developing

several inversion techniques and providing evidences of their actual feasibility for

quantitative imaging purposes. An almost comprehensive overview on these results

is for instance given in some special sections published by this journal [1, 2, 3].

With respect to this context, besides the interest in developing new approaches and

algorithms, there is a growing need of making the approaches suited to the practical

conditions actually faced in the applications. This is for instance the case of subsurface

imaging via Ground Penetrating Radar, wherein the modification of the radiation

pattern of the antenna is important for the correct setting of the inversion [4].

Another example, which is of interest in biomedical applications and non-

destructive testing, is the one in which the imaging system is immersed in a matching

fluid aimed at improving the coupling between the target under test and the probing

wave [5, 6, 7, 8, 9, 10]. In such a case, the overall system is enclosed in a casing,

either dielectric or metallic, needed to confine the fluid and helpful in shielding or at

least controlling the electromagnetic interactions between the imaging system and the

surrounding environment. Of course, the presence of the casing must be properly taken

into account in the imaging procedure [5, 11, 12, 13, 14], but it is also of importance to

understand which constraints on the design of the overall imaging system are introduced

by its presence. In addition, it is of interest to understand the effect of the presence

of an embedding on the performances of the imaging procedures. It is worth to note

that, the proper design of such a system is nowadays an issue of extreme relevance, since

this kind of devices are the mostly considered ones in microwave diagnostics for breast

cancer, probably the most promising and challenging context for inverse scattering based

microwave imaging methods [8, 10].

Nevertheless, to the best of our knowledge, a systematic study of the factors which

arise in this context has not been carried out yet, even in canonical configurations. For

instance, it seems still not clear at all if and to what extent the imaging system may

benefit from the presence of the casing [11, 14]. With respect to such a framework, the

aim of this paper is to study the case of a two-dimensional circular scanning system

embedded in a metallic casing. It is worth to note that this configuration corresponds

to an actual device, which has been realized and exploited [5, 6, 15].

In order to pursue the above aim, we take advantage of an analysis of the properties

of the radiation operator that relates the induced contrast sources to the scattered fields.

In particular, by computing its singular value decomposition [16], we investigate the

number of degrees of freedom (NDF) [17] pertaining to this linear operator. As well

known, the NDF provides a convenient tool to understand those features of the inverse

scattering problem which are of interest in the design of the imaging system, that is:

(i) the minimum number of independent measurements needed to correctly perform

the experiment;
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(ii) the amount of parameters which can be reliably extracted from the inversion of

data (in the lack of any other a priori information);

(iii) the “class” of unknown functions which can be reconstructed in the imaging process.

Therefore, a study of the NDF allows to assess both the quantity and the quality of

the information available in the inverse problem at hand. As it will be shown, in the

specific case considered, these features are influenced by the various parameters that

come into play (e.g., the working frequency, the position of the probes, the size of the

metallic casing and of the targets), so that the provided analysis will give an insight on

how to properly choose these quantities with respect to the performance of an imaging

procedure carried out in an embedded set-up.

It is worth to remark that the study of the NDF of the relevant linear operator

has been widely adopted in the literature to address the problem of characterizing

the information content of an inverse problem, meant as the number of parameters

and the class of functions which can be reliably retrieved. For instance, this tool

has been exploited to study the features of the linear inverse scattering problem in

the canonical free space configuration [18, 19, 20], in the subsurface or aspect-limited

geometries [21, 22], as well as to study the inverse source problem in nonhomogeneous

backgrounds or in presence of unconventional media [23, 24]. It is also worth noting

that the information content of the inverse problem at hand could be also instigated by

exploiting a statistical framework based on the Fisher information analysis [25, 26].

The paper is organized as follows. In section 2 the scattering problem underlying

an imaging system hosted in a perfectly conducting casing is formulated with respect to

the two-dimensional scalar case (TM polarization). Section 3 is devoted to briefly recall

the properties of the radiation operator in the canonical idealized situation, in which the

system is hosted in an unbounded medium. Section 4 introduces the singular system

of the radiation operator as valuated in the presence of the embedding, while section 5

investigates the role of the factors that affect the spectral properties of this latter, in

order to address the choice of these parameters in the design of the imaging system.

Once that these tools have been assessed, the comparison of the expected performances

of an embedded imaging system versus those of an “unbounded” one is discussed in

section 6. Concluding remarks follows.

2. Formulation and tools

2.1. Description of the problem

The imaging system configuration which will be considered in the following is depicted

in figure 1. The system (made by the scatterer and the probes) is enclosed in a metallic

casing of circular cross-section Σ having radius RΣ that is filled with a medium Ωb

having (complex) permittivity εrb = ε′rb− iε′′rb. All the considered materials are assumed

to be non-magnetic, hence the magnetic permeability is everywhere equal to that of

vacuum, µ0. An array of time-harmonic ideal 2D point sources, that is filamentary
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Figure 1. Cross-section of the imaging system enclosed in a cavity. The metallic

border Σ has a circular cross-section of radius RΣ. The emitters and receivers are

placed within the cavity on the circular probing line Γ. The investigation domain Ω is

also circular, it is placed at the center of the setup and encloses the unknown targets

that have arbitrary cross-sections.

current distributions infinitely extended along the z-axis, is placed on a circle Γ with

radius RΓ and exploited to produce the primary field and measure the scattered field

due to a set of non-magnetic targets having arbitrary cross-section and of infinite extent

along the z direction. These latter are located at the center of the setup, within a

cylindrical volume of circular cross-section Ω with radius RΩ.

By assuming and omitting the time factor exp(iωt), the propagation problem can

be modeled as a scalar one, owing to the invariance properties, and cast as the pair of

equations:

Es(~r) = k2
b

∫

Ω
G(~r, ~r′)Et(~r′)χ(~r′)d~r′, ~r ∈ Γ (1)

Et(~r) = Ei(~r) + k2
b

∫

Ω
G(~r, ~r′)Et(~r′)χ(~r′)d~r′, ~r ∈ Ω (2)

where kb = ω
√

εrbµ0 is the wavenumber in the host medium Ωb at the pulsation ω, and

Ei, Et and Es are the z-components of the field radiated from the primary sources, the

total field induced by this latter inside the targets and the field scattered by the objects

under test on Γ, respectively. The function

χ(~r) =
εr(~r)

εrb
− 1 (3)

defines the “contrast” between the host medium permittivity and that corresponding to

the targets embedded in Ω, εr(~r) = ε′r(~r) − iε′′r(~r).

The kernel G(~r, ~r′) of the integral equations (1),(2) is the Green function of the

problem that expresses the field of an elementary source located in ~r′ = (ρ′, θ′) as

observed in the point ~r = (ρ, θ). In the considered configuration, it has been shown that
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such a function can be expressed as a single summation of Bessel functions [5, 12] as:

G(~r, ~r′) =
1

4

+∞
∑

n=−∞

Jn(kbρ<)

Jn(kbRΣ)
[Yn(kbRΣ)Jn(kbρ>) − Jn(kbRΣ)Yn(kbρ>)] ein(θ−θ′) (4)

where ρ< = min(ρ, ρ′) and ρ> = max(ρ, ρ′) and Jn, Yn denote the first and second kind

Bessel functions of order n, respectively.

2.2. Field properties via spectral analysis

As long as one is interested in understanding the properties of the fields in the considered

configuration, it proves convenient to rewrite (1) in an operator formalism. To this aim,

let us denote with J(~r) = χ(~r)Et(~r) the contrast source induced by the incident field in

Ω and define the integral operator:

A : J ∈ L2(Ω) → Es ∈ L2(Γ) = k2
b

∫

Ω
G(~r, ~r′)J(~r′)d~r′, (5)

that relates the current induced in the investigated region to the field scattered by the

anomalies therein located as evaluated at the receivers locations. Owing to the Green’s

function properties, the radiation operator A is compact, so that it can be represented

through its singular value decomposition (SVD) as [16]:

A(J)(~r) =
+∞
∑

n=−∞

σn〈J | vn〉Ωun(~r) (6)

where the scalar product on Ω is defined by

〈f | g〉Ω =
∫

Ω
f(~r)g∗(~r)d~r, (7)

with g∗ denoting the complex conjugate of g.

In eq.(6), {σn} are the singular values ordered for decreasing magnitude and

accumulating to zero for n → ∞, while {vn} and {un} correspond to the singular

functions. In particular, the left-hand singular functions un provide a basis for the

space of the scattered fields on Γ, while the right-hand ones, vn, are a basis for the set

of the radiating part of the contrast sources defined on Ω.

Now, the properties of the scattered fields can be inferred from the SVD equation

(6). As a matter of fact, the decaying behavior of the singular values introduces a

spectral cut-off that essentially defines the dimension of the scattered field’s space. This

in turn fixes the number of degrees of freedom of the field [17], that identifies the

number of parameters needed to represent the field, within a given accuracy, as well as

the number of basis functions that contribute in a meaningful way to the radiation of

the (induced or impressed) sources J . The span of these latter identifies the allowable

spatial content for a radiating contrast source and therefore it is useful in defining the

class of retrievable contrast functions in the inversion procedure [19, 22, 21, 20].

It is worth to explicitly note that, due to reciprocity and due to the fact that

the receiving and transmitting probes are located on the same curve, the study of the

singular system of A also determines the number of independent scattering experiments

that can be realized with the imaging system at hand, as well as the kind of incident

fields that can be induced by means of the adopted set-up.
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3. Field properties in the unbounded medium configuration

For the sake of clarity, we briefly recall in this Section the well known results concerning

the radiation operator in the canonical unbounded medium configuration [18, 19, 20].

In this configuration, which corresponds to removing the metal casing present in

figure 1 and thus considering the medium Ωb to be unbounded, the singular system is

given by [19]:

vu
n(~r′) = cu

n[Jn(kbρ
′)]∗ exp(inθ′) (8)

uu
n(~r) = du

nH
(2)
n (kbRΓ) exp(inθ) (9)

σu
n =

1

cu
ndu

n

, (10)

H(2)
n being the second kind Hankel function of order n and

cu
n =

(

2π
∫ RΩ

0
|Jn(kbρ

′)|2ρ′dρ′

)−1/2

(11)

du
n =

(

2πRΓ|H(2)
n (kbRΓ)|2

)−1/2
, (12)

where the superscript u is meant to recall that an unbounded medium is being considered.

Note that, for a fixed position of the observation domain RΓ, the singular functions uu
n

only depend on the angular variable.

From the analysis of this singular system, the following main observations arise:

• when primary sources and measurement probes are placed at some wavelengths

apart from the object under test, the field can be represented, within a given

accuracy, with a finite number of parameters [18, 17];

• if the scatterer is in size sufficiently large with respect to the wavelength, such a

number only depends on the electrical dimension of the scatterer, whatever the

required accuracy [18, 17];

• an increase in the number of parameters (this time depending on the considered

accuracy) can be induced by moving the probes, in the “close-proximity” of

the scatterer. Such an enlargement can be explained by considering that the

higher spatial frequency components of the fields are catched by the probes when

positioned in the vicinity of the targets [19].

These observations provide some clues on the quantity of information that is

associated with the measured field and that can be extracted in the inverse problem.

Moreover, the singular functions also provide a characterization of the kind of incident

fields that can be realized, as well as of the components of the contrast source that can

be reconstructed. When a linear inverse scattering problem is dealt with, this knowledge

directly furnishes a definition of the class of retrievable contrast functions, in both the

single view and multi-view cases [17, 19, 20]. In the general non-linear case, no general

result can be drawn. Nevertheless, the observation of the singular functions still provides

some hints on the kind of retrievable functions [19].
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Figure 2. Singular spectrum in the unbounded medium configuration for several

values of the distance ∆ΩΓ. The probing line RΓ is moving (a) with a step of

λb/2 + pλb/2 from Rmax

Γ
, (b) with a step of λb/4 + pλb/2 from Rmax

Γ
. The embedding

medium Ωb is lossless.

In order to give an example of the above observations, let us observe figure 2, where

it is reported the behavior of the singular values σu
n for a source domain RΩ = 1.5λb

hosted in a lossless medium, when varying the position of the probes RΓ between

Rmin
Γ = RΩ and Rmax

Γ = RΩ + 2.5λb = 4λb. The wavelength of the embedding medium

λb is given by λb = 2π/kb. In particular, in panel (a) RΓ is decreased with a step

of λb/2 from Rmax
Γ , while in panel (b) it is decreased with the same step but starting

from Rmax
Γ −λb/4. As it can be observed, for a fixed accuracy, the number of significant

singular values depends on the distance ∆ΩΓ = |RΓ−RΩ| [19]. As a matter of fact, when

such a distance is larger than λb/2, the singular values have an almost identical decay

regardless of the particular value. In particular, being the scatterer not extremely large,

the number of significant singular values slightly depends on the considered accuracy,

but it is always larger than kbRΩ. On the other hand, when the probes approach the

investigation area, the decay becomes slower and strongly depends on the position of the

probes. Accordingly, the number of significant singular values strongly depends on the

considered accuracy. It is worth noting that, in agreement with the physical intuition,

this increase of the NDF does not entail a straightforward improvement of the achievable

spatial resolution. As a matter of fact, as shown in [19], owing to the spatial properties

of the singular functions associated with the “extra” above-threshold singular values,

the resolution improvement is circumscribed to those parts of the domain under test

that are actually in the near-field region of the probes.

In figure 3, we reported the behavior of the singular values σu
n in the same

conditions as before, but assuming a lossy host medium having a loss tangent of

tan(δ) = ε′′rb/ε
′
rb = 0.051. In this case, the background wavelength of the embedding

medium is defined as λb = 2π/ℜ(kb). As it can be observed, while the presence of losses

leaves unaltered both the “far-field” and “proximity” features of the singular values’

spectrum, it affects the overall spectrum level, which appears to be slightly attenuated
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Figure 3. Singular spectrum in the unbounded medium configuration for several

values of the distance ∆ΩΓ. The probing line RΓ is moving (a) with a step of

λb/2 + pλb/2 from Rmax

Γ
, (b) with a step of λb/4 + pλb/2 from Rmax

Γ
. The embedding

medium Ωb is lossy, with a loss tangent of tan(δ) = 0.051.

when the distance between targets and probes increases.

4. Field properties in the embedded configuration

Let us now turn to the study of the singular system of the radiation operator A
pertaining to the embedded configuration. By exploiting similar tools as those used

to compute the singular system in the unbounded medium case, it is possible to show

that the associated singular system is given by (see appendix):

vn(~r′) = cn[Jn(kbρ
′)]∗ exp(inθ′) (13)

un(~r) = dn

[

Yn(kbRΣ)Jn(kbRΓ) − Jn(kbRΣ)Yn(kbRΓ)

Jn(kbRΣ)

]

exp(inθ) (14)

with

cn =

(

2π
∫ RΩ

0
|Jn(kbρ

′)|2ρ′dρ′

)−1/2

(15)

dn =

(

2πRΓ | Yn(kbRΣ)Jn(kbRΓ) − Jn(kbRΣ)Yn(kbRΓ)

Jn(kbRΣ)
|2
)−1/2

(16)

and the singular values are still given by

σn =
1

cndn
. (17)

As it can be observed, several analogies and differences hold with respect to the

previous case. In particular, as far as the singular functions are concerned, one can

immediately notice that the right singular functions vn and vu
n coincide in the two cases,

whereas the left singular ones un and uu
n share the same dependance on the angular

variable, consistently with the fact that the observation domain is the same, but are
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weighted for different factors owing to the different boundary conditions arising in the

cases considered.

When turning to the analysis of the singular spectrum, the first analogy which

appears is that the factor cn, which only depends on the electric dimension of the

investigated region kbRΩ, is exactly coincident with that of the unbounded medium

configuration, cu
n. As such, it will provide the aforementioned decay of the singular

spectrum for n > kbRΩ. Such a decay will be exponentially fast in the high frequency

regime (i.e., for kbRΩ >> 1), while it will exhibit a slower rate when considering a region

in size comparable or smaller than the wavelength.

In order to proceed with the analysis of the singular spectrum’s properties, we

have now to concentrate on the term dn. To this aim, it is worth to first recall that

the considered configuration can be seen, in the absence of the scatterer, as a resonant

cavity, which will be therefore characterized by the eigenmodes provided by the solution

of the following set of equations
{

∆E(~r) + kbE(~r) = 0 ~r ∈ Ωb ∪ Ω

E(~r) = 0 ~r ∈ Σ
(18)

Apart from the trivial null solutions, the eigenmodes for the considered geometry are of

the form [27]

En,m(~r) = an,mJn(kn,mρ) exp(inθ), n ≥ 0, m ≥ 1 (19)

with the condition that

kn,m =
jn,m

RΣ
, (20)

where jn,m corresponds to the m-th zero of the n-th Bessel function Jn.

In particular, for a given size of the embedding kbRΣ, there exist a finite number

of pairs n,m such that the condition

jn,m

kb
< RΣ (21)

is matched. This means that the associated eigenmodes are present in the cavity, since

the corresponding Bessel function admits at least a zero inside the embedding. The

largest order nmax that can be allowed is given by the condition

jnmax,1 ≤ kbRΣ < jnmax+1,1. (22)

5. Molding the singular spectrum through eigenmodes excitation

Some interesting observations can be done if the condition

jñ,m̃

kb
= RΣ (23)

holds for some ñ and m̃, i.e., if, for a given dimension of the empty cavity, a Bessel

function of order ñ exists, whose m̃-th zero exactly falls on the cavity border. Indeed,

if this happens, the excited eigenmode coincides with the ñ-th singular function vñ.
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Moreover, due to the fact that owing to (23) Jñ(kbRΣ) = 0, it follows that the

corresponding singular value becomes infinite. As a consequence, the spectrum of the

operator A has an abrupt modification with respect to the unbounded medium case

depicted in figure 2, as it will only present a very large (infinite, actually) singular value

which will dominate all the others, becoming the only significant contribution to the

data in the inverse problem.

However, by observing the expression of dn in (16), one can understand that this

circumstance can be avoided by properly positioning the probing/observation circle RΓ.

Indeed, by choosing this latter in such a way that RΓ exactly falls on a p̃-th zero of Jñ,

i.e., Jñ(kbRΓ) = 0, of course under the constraint p̃ < m̃, i.e., RΓ < RΣ, it follows that

the considered eigenmode is still excited, but the corresponding singular value attains

a finite value, i.e.,

σ2
ñ =

2πRΓ

cñ
× | Yñ(kbRΓ) + Yñ(kbRΣ)

∞
∏

k=1,k 6=m̃,k 6=p̃

j2
ñ,k − j2

ñ,p̃

j2
ñ,k − j2

ñ,m̃

|2 . (24)

By doing so, it is possible therefore to mold the spectrum of the operator by properly

enhancing the contribution of a specific singular function, through the increase of the

corresponding singular value. In particular, since the singular values are by definition

ordered in a decreasing fashion, this means that the choice of the design parameters

of the embedded system (i.e., working frequency, embedding medium, RΣ and RΓ)

introduces a modification in the ordering of the singular functions with respect to the

unbounded configuration, thus actually modifying the class of “retrievable” functions in

the inversion.

The previous considerations were drawn by considering that the size of the

embedding was exactly matching a zero of a particular Bessel function and assuming

a purely dielectric embedding medium. However these conditions, especially the latter,

are seldom satisfied in the applications, so that it is of interest to understand if and to

what extent the above observations apply.

To this aim, note that, when a lossy medium is considered and/or when condition

(23) is not met, nevertheless, owing to (21), several eigenmodes will be present in the

embedding. In particular, these latter will exactly coincide (in the imaged region) with

the singular functions vn corresponding to the relevant Bessel functions.

Now, by observing the expression of dn (16), one can understand that the singular

values corresponding to these particular singular functions will be more or less enhanced

depending on the relative distance of the zero of the pertaining singular function from

the cavity border, as this parameter directly influences the denominator of dn, i.e.,

Jn (kbRΣ). As a consequence, even in this case, it is possible to properly act on the

spectral content of the singular functions span by means of a convenient ordering of the

sequence of the zeros.

However, it must be recalled that RΣ is not the only quantity that comes into play.

As a matter of fact, one must take also into account the effect of the probing line position

RΓ on which the factor dn depends in a periodic way, with a different periodicity for

different values of the index n.
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Figure 4. Evolution of the amplitude of fn with respect to the distance between the

probing line RΓ and the metallic casing, RΣ. The external medium is (a) lossless or

(b) with a loss tangent of tan(δ) = 0.051.

In particular, it is useful to observe the behavior of the amplitude of

fn(ρ) =
Yn(kbRΣ)Jn(kbρ) − Jn(kbRΣ)Yn(kbρ)

Jn(kbRΣ)
, (25)

as a function of the distance RΣ − RΓ. For some values of n, a plot of this latter is

given, for both the lossless and lossy cases, in figure 4. As it can be noticed, for all the

indices, fn(ρ) reaches a maximum of the amplitude for RΣ −RΓ = λb/4 and a minimum

amplitude for RΣ − RΓ = λb/2. As a consequence, whatever the choice of the casing

size RΣ (which entails a particular ordering of the singular functions), when the probing

line is placed at RΣ − RΓ = λb/2, the singular value spectrum will be lowered. Clearly

this does not happen if RΣ − RΓ = λb/4, so that, provided this condition is fulfilled, it

follows that it is still possible to selectively enhance the singular values by fixing the size

of the embedding. It is also worth to note that when the distance becomes larger than

λb/2, the periodicity of the extremal points of (25) is not the same for all the values of

n, so that the effect is not anymore easily predictable. Accordingly, RΣ − RΓ = λb/4

appears as convenient practical choice.

A simple physical explanation of the above findings is that, when considering a

source located in the imaged domain Ω, the interaction between this latter and the casing

gives raise to different destructive and constructive patterns. Therefore, depending

on the observation line’s position, different field levels can be detected. Exploiting

reciprocity arguments, this also suggests that the probing line has to be properly

positioned (i.e., in a location corresponding to a constructive interference), in order

to provide a meaningful incident field in the imaged region. Of course, such an effect

will be generally smoothed when losses are present in the host medium Ωb.
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5.1. A practical example

In order to observe the above described effects, we have evaluated the singular spectrum

in the same cases considered in the unbounded configuration, section 3, assuming that

the metallic boundary is located at RΣ = Rmax
Γ = 4λb. The results obtained for the case

in which the host medium Ωb is lossless are shown in figure 5.

Some comments are now in order.

• First, note that the spectra are ordered according to the indices of the

pertaining Bessel function. By so doing, one can indeed appreciate the “selective

enhancement” effect induced by the presence of the casing.

• It can also be noticed that, as expected, the spectra are different depending on the

relative position of the probing line with respect to the casing. As a matter of fact,

for values of n below kbRΩ, when the probing line is placed in such a way that

RΣ − RΓ is a multiple of λb/2, the amplitude of the “low order” singular values

is generally lowered, whereas, when RΣ − RΓ is a multiple of λ/4, this does not

happen.

• When RΣ − RΓ is a multiple of λ/2, the low order singular values increase when

approaching the boundary of the investigated region RΩ. This is due to the increase

of the minima of (25) as well as to the different periodicity of its extremal points,

see figure 4.

• Conversely, for values of n above kbRΩ, all the spectra exhibit a very similar

behavior, since they are basically dominated by the factor cn, which is independent

of the set-up parameters (RΣ and RΓ).

• It is worth to observe that, for n > kbRΩ, an increase or a decrease of some singular

values can still be observed, as long as the probes are far from the investigation

domain. In the close proximity case (i.e., when RΓ → RΩ), no specific singular

value is enhanced. This circumstance is due to the fact that probes positioned

close to the domain do not intersect the zeros of the high order Bessel functions

(that are relevant to that part of the spectrum), which are indeed located in the

vicinity of the metallic casing.

In figure 6, the same situation as before has been considered, but for the presence of

losses in the embedding medium Ωb. As it can be noticed, despite the obvious smoothing

introduced by the attenuation, still similar considerations as those done in the previous

case hold true.

For the considered geometry, it is also interesting to observe the displacement of

the zeroes of the Bessel functions, since their ordering with respect to their distance

from the embedding exactly provides the “molding” rule for the singular values and

functions. This circumstance is shown in figure 7(a), wherein it is reported the position

of the zeroes of the first 8 eigenmodes that fall close to the boundary. As it can be seen

by comparing figure 7(b) and figure 5(b), the eigemode’s zero distance from the border

is exactly proportional to the magnitude of the singular values.
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Figure 5. Singular spectrum for the embedded configuration with RΣ = 4λb,

RΩ = 1.5λb and different values of ∆ΩΓ. The probing line moves (a) with a step

of λb/2 + pλb/2 from RΣ or (b) with a step of λb/4 + pλb/2 from RΣ. The embedding

medium is lossless.
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Figure 6. Singular spectrum for the embedded configuration with RΣ = 4λb,

RΩ = 1.5λb and different values of ∆ΩΓ. The probing line moves (a) with a step

of λb/2 + pλb/2 from RΣ or (b) with a step of λb/4 + pλb/2 from RΣ. The embedding

medium is lossy, with a loss tangent of tan(δ) = 0.051.

5.2. A simple tool to design the imaging set-up

According to the above observations, it follows that a simple and useful tool to design

an embedded imaging system like the one at hand is constituted by the plot shown in

figure 8, wherein the sequence of the zeros of several Bessel functions in normalized

coordinates is reported. As a matter of fact, by just entering the ordinate of this plot

with a value of RΣ normalized to the wavelength, it is possible to immediately draw the

ordering of the corresponding singular values. By so doing, one can then foresee which

are the singular functions onto which the most part of the field (if the un are concerned)

or the contrast source (if the vn are considered) is projected. Then, depending on which

of the two conditions (21) or (23) is being fulfilled, the probing line has to be positioned
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Figure 8. A simple abacus for the design of the embedded imaging system.

either on a zero of the Bessel function supporting the excited eigenmode or at a distance

of λb/4 from the casing.

6. Some considerations on embedded vs. unbounded imaging systems

The analysis and the tools described in the previous section can be of help in trying to

address a question which naturally comes to mind, i.e., how the presence of the metallic

embedding affects the imaging process with respect to the corresponding unbounded

situation. To this end, let us again consider the particular set-up described in the

example of the previous sections. Although this is of course a particular case, it allows

us to draw some general conclusions, thanks to the results achieved in section 5.

In figure 9, we have reported the singular values spectra in the two cases (unbounded

and embedded), for several positioning of the probing line (away from the targets and



15

0 0.5 1 1.5 2 2.5 3 3.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

n / (k
b
 R

Ω
)

S
or

te
d 

σ n (
dB

)

 

 

∆
ΩΓ

 =2.25λ
b

∆
ΩΓ

 =0.25λ
b

(a) Without loss

0 0.5 1 1.5 2 2.5 3 3.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

n / (k
b
 R

Ω
)

S
or

te
d 

σ n (
dB

)

 

 

∆
ΩΓ

 =2.25λ
b

∆
ΩΓ

 =0.25λ
b

(b) With loss

Figure 9. Comparisons of the unbounded configuration (dashed line) and the

embedded configuration (full line) spectra for two positions of the receiving line. The

target is located inside the domain Ω of radius RΩ = 1.5λb and the casing, if present,

is located at RΣ = 4λb. The embedding medium is either (a) lossless or (b) with some

losses with a loss tangent of tan(δ) = 0.051.

in the close proximity) and considering a lossless/lossy host medium Ωb. Note that,

unlike the previous plots, the singular values have been properly ordered in the case of

the embedded system, in order to make a fair comparison between the spectra.

A first feature to notice is that the general trend of the singular values in either

the transition (n ≈ kbRΩ) and the asymptotic regions is the same for both cases. This

outcome, which is not surprising, being dictated by the factor cn that is common to both

σn and σu
n, entails that the amount of independent information carried by the fields is

the same in the two configurations. Hence, no modification of the quantity of available

independent information is introduced by considering a properly designed embedded

imaging system.

Conversely, it appears that a different signal energy pertains to the two cases (i.e.,

the area subtended by the spectrum curve). As it can be observed, when the embedding

and probing line are properly selected, the energy is larger in the presence of the casing,

than in the unbounded configuration. This circumstance is physically related to the

constructive interactions between the sources (primary or induced) and the casing and

entails that a larger signal-to-noise ratio is expected when the imaging system is properly

embedded. As a consequence, the imaging process in this configuration can be either

more stable against the unavoidable uncertainties on the measured data and/or lead to

the stable retrieval of a (slightly) larger number of spectral components when considering

a fixed accuracy level. On the other hand, if the design of the embedding is not fulfilling

the given criteria concerning the probing line positioning, the spectrum pertaining to

the embedded configuration can be lower that the unbounded one.

A further difference can be pointed out recalling that, while the singular value index

of the unbounded case corresponds to a singular function containing a Bessel function

and a complex exponential of the same order, this is not the case for the embedded
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system configuration, in which the ordering is dictated by the relative position of the

zeroes of the eigenmodes with respect to the casing. For instance, in the lossless case,

this could mean that most part of the energy can be associated with large order Bessel

functions, rather than with the low order ones. This circumstance entails that, even if

the quantity of information is the same in the two cases, the molding of the spectrum

allows for a change in the quality of the retrievable information.

As far as the imaging process is concerned, it is worth to note that such a

circumstance is not necessarily leading to an improvement, due to the spatially

inhomogeneous behavior of the Bessel functions over the imaged domain Ω. As a matter

of fact, when the index of the Bessel function (and of the pertaining exponential) grows,

the corresponding singular function exhibits increasingly faster angular oscillations

confined on the border of Ω. This also means that the corresponding incident field

is almost vanishing in the center of the imaged domain. In the simple case in which the

Born approximation holds true, wherein the contrast source is linearly related to the

incident field as J(~r) = χ(~r)Einc(~r), this entails that when the target support occupies

only the center of the imaged region, a weaker, almost negligible, current will be induced

on it, thus making it more difficult or even impossible to retrieve. This circumstance

explains the finding based on numerical observations done in [14], where a similar kind of

target (i.e. concentrated in the center of the imaged area) is better reconstructed when

probing it under the unbounded configuration than when using the embedded system.

On the other hand, our analysis also suggests that, under the same conditions, a target

located on the border of the domain Ω will be more easily and accurately retrieved by

adopting the embedded configuration. Examples of such behavior can be found in [28].

In the general case in which the Born approximation does not hold true, the

reasoning cannot be as straightforward. However, it can be expected that similar results

are found, since the singular functions still provide a basis for the contrast source. Hence,

the circumstance under which the projection of the contrast source onto the leading

singular functions is almost negligible in some part of the domain can indeed affect the

result of the imaging process.

7. Conclusion

Owing to the growing interest towards embedded microwave imaging system, in this

paper we have studied a configuration in which the system is enclosed in a circular

metallic casing, with the goal of understanding the expected features of an imaging

process performed in such an environment.

By taking advantage of the analysis of the number of degrees of freedom of

the relevant radiation operator, we have shown that, with respect to the canonical

unbounded medium configuration, there is no change in the quantity of available

independent information that can be exploited in the inverse problem. Conversely, the

quality of this information is different, due to the fact that the geometrical parameters of

the set-up (i.e., the electric dimension of the embedding and the position of the probing
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line) may lead to an enhancement of some singular functions with respect to others.

Accordingly, we have recognized that by properly designing, by means of simple tools,

the resonances of the embedding, it is possible to modify to some extent the class of

retrievable contrast functions. Interestingly, our findings provide an explanation for the

numerical observations reported in [14, 28] and appear in agreement with the practical

criteria adopted in the actual realization of a system like the one considered in [5].

It is worth to remark that the similarities which have been pointed out between the

SVD of the radiation operator for the embedded system considered in this paper and

that of operator relevant to the canonical unbounded case allows us to easily extended

the achieved results to the inverse scattering problem under multiple incidences, taking

advantage of the results in [20]. Moreover, it is also interesting to notice that the

capability of molding the spectrum of the operator that we have observed is in agreement

with the considerations reported in the literature concerning the possible radiation

enhancement achieved by means of a suitably designed metamaterial’s substrate [24].

The present analysis does not deal with another parameter of importance in the

solution of the inverse scattering problem, that is the non-linearity of the relationship

between the data and the unknowns. As a matter of fact, it is known that the

scenario plays a major role on determining the degree of non-linearity [29, 30] of the

inverse scattering problem, so that further differences may arise between the embedded

configuration and the unbounded one. As such, future work will be concerned with the

evaluation of the non-linearity of the inverse scattering problem solved in an embedded

configuration, along the lines traced in [29, 30].

In addition, the study of systems embedded in non-circular and/or non-metallic

casing will be tackled, by exploiting suitable numerical procedures capable of achieving

the Green’s function that pertains to the considered geometries.

Appendix

When the Green’s function is the product of two functions of separate variables in terms

of ρ and θ, the singular values are always given by the inverse product of the weighting

coefficients cn and dn of the singular functions.

In order to show this result, let us assume that the Green’s function is of the

following form:

G(~r, ~r′) =
+∞
∑

n=−∞

An(ρ)einθBn(ρ′)e−inθ′ (26)

where the functions An and Bn are depending on the configuration at hand, ~r = (ρ, θ)

corresponds to the observation point and ~r′ = (ρ′, θ′) to the excitation point. The

observation equation (1) can be rewritten as

Es(~r) =
+∞
∑

n=−∞

An(ρ)einθ
∫

Ω
J(~r′)Bn(ρ′)e−inθ′d~r′ (27)
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=
+∞
∑

n=−∞

An(ρ)einθ 〈J(~r′) | [Bn(ρ′)]∗einθ′〉Ω (28)

where J(~r′) corresponds to the induced sources distribution inside the investigation

domain Ω. By direct identification with (6), and due to the orthogonality properties of

the exponential functions, we obtain

vn(~r′) = cn[Bn(ρ′)]∗einθ′ (29)

un(~r) = dnAn(ρ)einθ (30)

where cn and dn are normalization coefficients in order to obtain a set of orthonormal

singular functions. Thus, the coefficients cn and dn are given by

|cn|2 = 2π
∫ RΩ

0
|Bn(ρ′)|2ρ′dρ′ (31)

|dn|2 = 2πRΓ|An(RΓ)|2 (32)

By rewriting (28) using the singular vectors notation, we obtain

Es(~r) =
+∞
∑

n=−∞

un(~r)

dn
〈J | vn

cn
〉Ω (33)

By direct identification with (6), it follows that the singular values are given by

σn =
1

cndn
. (34)

In the free space case, the functions An and Bn are defined as

Bn(ρ′) = Jn(kbρ
′), An(ρ) = H(2)

n (kbρ). (35)

In the casing case, the functions An and Bn are defined as

Bn(ρ′) = Jn(kbρ
′), An(ρ) =

Yn(kbRΣ)Jn(kbρ) − Jn(kbRΣ)Yn(kbρ)

Jn(kbRΣ)
. (36)
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