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The aim of this paper is to discuss the characterization of two-
dimensional targets using inverse profiling approaches with phase-
less data. Data correspond to the total fields intensity, which are
the actual objects of the measurements devices in many applica-
tions. Two different inversion schemes are presented, discussed,
compared and validated by using experimental data. In the first
one, the intensity-only data are exploited in a minimization scheme,
thanks to a proper definition of the cost functional and the evalu-

ation of the associated gradients. The convergence of the iterative



process takes definite advantage of a suitable normalization and
of an useful starting guess which allows us to circumvent the use
of a global optimization schemes, which are time consuming. In
the second scheme, suggested in |1], one exploits the properties of
the scattered fields and the theoretical results on the inversion of
quadratic operators to derive a two-steps solution strategy, wherein
the (complex) scattered fields embedded in the available data are
retrieved first and then a traditional inverse scattering problem is
solved. In both cases, the analytical properties and representations
of the involved fields allow to properly fix the measurement set-up
and to identify the more convenient solution strategy to adopt. In-
dications on the number and type of primary sources and receivers
to be used are also given. Results from experimental data show the

efficiency of the above approaches and of the introduced tools.
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1. Introduction

In inverse scattering problems, one looks for a quantitatively accurate description of the
electrical and geometrical properties of an investigated region given a set of incident fields
and measures (both in amplitude and phase) of the corresponding scattered fields on a
generic surface lying outside the region under test |2|. Due to their wide range of potential
applications, the development of accurate and reliable techniques for solving this kind of
problems is nowadays a still important challenge 3 5].

By leaving aside peculiar characteristics of the different approaches proposed in the
literature, one of the main common drawbacks resides in the need of measuring both
amplitude and phase of the scattered fields. As a matter of fact, in several areas of applied
science, the phase distribution of the scattered fields is often too corrupted by noise to be
useful, or even there is no phase measurement at all, e.g., optical measurement setup. Even
if there is some effort nowadays to provide experimental setups capable of measuring all the

components of the scattered fields [6, 7|, it is of great importance to develop approaches



that image samples from only amplitude data, as these latter would open the way to more
simple and cost effective experimental set-ups. In addition, it is also important to remark
that, in most applications, the actual measured quantity is the total field. In fact, unless
the incident field is provided by a directive antenna, the measured field in presence of the
target contains both the incident and the scattered field, so that the total field has to be
processed instead of the scattered field as usually done.

In order to overcome the above limitations, several approaches for solving inverse scattering
problems from intensity-only data have been proposed in the literature [1, 8 13]. Among
them, an approach based on only amplitude measurements of the total fields has been
recently proposed, first with reference to the case of measures taken on a closed curve
surrounding the domain under test |1| and then to that of transmitters and receivers
placed over two truncated lines somehow enclosing the investigating domain [13]. In both
cases, the proposed procedures splits the imaging problem into two different steps. In
the first one, the scattered field is estimated from the measures of the square amplitude
distributions of the total field, while the second step is aimed at estimating the unknown
dielectric properties from the estimated scattered fields (modulus and phase). In summary,
the first step allows us to estimate the input data for the second one, which is a traditional
inverse scattering problem. Notably, as recalled throughout this paper and in previous
contributions [1, 13|, the separation of the problem into two different steps allows a better
control of the overall non-linearity of the inverse problem with respect to single step
procedures. In fact, the exploitation of theoretical results on the inversion of quadratic
operators |14| and field properties representations |15, 16/, leading to design constraints on
the measurement set-up, allows to successfully solve the first step, while all the available
knowledge about traditional inverse scattering problems is exploited in the second one.
More recently, such an imaging technique has been extended to a three-steps procedure,
where a Phase Retrieval (PR) problem is preliminary solved to estimate the phase of the
incident field from its measured amplitude [17]. By doing so, the resulting imaging strategy
completely relies on only amplitude data.

However, the above mentioned inversion approaches [1, 13, 17] can be actually applied
provided that some conditions on the measurement set-up are satisfied. As a matter of
fact, when these conditions do not hold true, the estimation of the scattered field from the

measured total field amplitude is not reliable. In these cases, it is therefore of interest to



develop new, accurate and effective inverse profiling approaches based on only amplitude
information of the total field, once known or estimated the incident field in the scattering
domain and on the measurement curve. In such approaches, the aim is to solve the imaging
problem in a single step, without previously estimating the scattered field embedded in
the measures. This would require to reformulate the inverse scattering problem in order to
take into account that the available data are intensity only. On the other hand, at least
in principle, particular constraints on the measurement set-up are not required. Therefore,
these approaches are expected to be useful in all those cases wherein the two-steps strategy
|1, 13| or its generalization |17| cannot be used.

The aim of this paper is therefore to introduce a novel one-step imaging strategy based on
only-amplitude total field data and compare and discuss, by using experimental data, its
performances with that of the two-steps strategy.

It is worth noting that the idea of directly incorporating the square amplitude distributions
of the total field in the inversion scheme is not new in the literature [10-12]. With respect
to these contributions, the approaches proposed and discussed in this paper have interesting
and complementary characteristics with respect to the above ones. First, unlike |10], we do
not make use of a prior: information in the inversion process, but we rather take advantage
of a suitable starting guess achieved by means of a simple modification of the widely used
backpropagation solution [18|. Moreover, unlike [12], the adopted minimization scheme
exploits a local optimization procedure based on an efficient CG-FFT scheme and thus
avoids the use of time consuming global optimization algorithms. In this respect, it is
also worth noticing that the use of a proper weighting of the cost functional to minimize,
derived from the properties of the intensity only data pattern, as well as from the available
knowledge in Phase Retrieval procedures [14], allows us to improve the data fitting and of
course the final reconstructions in terms of permittivity and conductivity of the unknowns
targets. As a last but not least point, let us remark that our approaches are based on
the Contrast Source-Extended Born (CS-EB) inversion scheme, which allows to reduce
the degree of non-linearity [19| of the inverse scattering problem and achieves improved
permittivity and conductivity maps reconstructions in many cases [20)].

The paper is organized as follows. In Section 2, the adopted geometry configuration is
presented and the mathematical model is given. The sampling properties and representa-

tions of the involved electromagnetic fields are also recalled. In Section 3, the single-step



inversion scheme is thoroughly described, together with the weighting strategy and the
adopted modified backpropagation as initial solution. The features and limitations of the
two-steps approach are briefly sketched in Section 4. Section 5 is devoted to assess and
compare the performances of the two approaches by means of experimental data concerning
metallic and dielectric inhomogeneous targets, collected at the Institute Fresnel of Marseille.

Conclusions follow.

2. Mathematical model and field properties

The geometry of the problem studied in this paper is shown in Fig. 1 where one or more
two-dimensional objects of arbitrary cross-section 2 are confined in a bounded domain D.
The embedding medium €2, is assumed to be infinite and homogeneous, with permittivity
€p = E0Epr, and permeability g = po (g9 and po being the permittivity and permeability of
the vacuum, respectively). The scatterers are assumed to be inhomogeneous cylinders with
a permittivity distribution e(r) = g¢e,(r); the entire configuration is non-magnetic (1 = po).
A right-handed Cartesian coordinate frame (O, ux, uy, u,) is defined. The origin O can be
either inside or outside the scatterer and the z-axis is parallel to the invariance axis of the
scatterer. The position vector OM can then be written as OM = r + z u,. The line sources
that generate the electromagnetic excitation (denoted as 7, in Fig. 1) and the elementary
probes collecting the data (R, in Fig. 1) are located at (r;);<;<z on a circle I' of radius
Rr. Taking into account a time factor exp(iwt), in the Transverse Magnetic (TM) case, the

time-harmonic incident electric field created by the [** sources is

. : w
Bu(r) = Bj(r)u, = A H (ke = xi) us, (1

where A is the strength of the electric source, w the angular frequency, Héz) the Hankel
function of zero-order and second kind and k;, the wavenumber in the surrounding medium.
Under these hypotheses and omitting the exp(iwt) time dependence term, for each illumina-
tion condition, the scattering equations describing the total field can be formulated as two

coupled contrast-source integral relations [18]: the observation or data equation Eq.( 2) and



the coupling or state equation Eq.( 3), which are

E(rel) = Ej(rel)+E(rel)=E(rel)+ // G(r,r') Jy(r'),dr', (2)
D
Ji(r € D) = x(r € D)Ej(r € D)+ x(r € D) // G(r,r’) Jy(r') dr’, (3)
D
where x(r) = ¢,(r) — & denotes the permittivity contrast which vanishes outside D,

G(r,r’) is the two-dimensional free-space Green function, and J(r) = x(r)E(r) corresponds
to the contrast source.

The overall aim of the problem is to determine the two dimensional contrast function x(r)
in D starting from the knowledge of the incident fields Ei(r € T') on the probing curve T,
and from an incomplete (because only a finite number of measurements can be performed)
and inaccurate (because the measurements are error-affected) knowledge of the intensity of
the total fields |Ej(r € )%l € (1,...,L).

To this end, as |E|? = |E'|> 4| E®|? +2Re(ESE'), it proves fruitful to briefly recall properties
and possible representations of both scattered and incident fields, and then of |E'|?, |E®|? as
well as of the interference term Re(E*E'). As discussed in the following, these properties
will allow to quantify the amount of independent data at our disposal for solving the
imaging problem at hand, to sample the intensity data in an accurate and non-redundant
fashion and to determine the maximum amount of information about the targets one can
extract from the available data. Moreover, as in [1, 13, 17|, exploitation of these properties
provides the guidelines to design an effective measurement set-up.

With reference to the geometry depicted in Fig. 1, it is known that the scattered field
corresponding to a given source can be accurately represented with a finite number of
Fourier harmonics given by 2k, Rp, Rp being the radius of the minimum circle enclosing
the targets |16]. As a Fourier series can be turned into a Dirichlet sampling series, 2k, Rp
samples uniformly spaced in angle accurately represent each scattered field as well. From
reciprocity [16], the number of non-superdirective independent incident fields impinging
on the domain under test is 2k,Rp as well. Hence, by excluding superdirective sources,
2kyRp plane waves uniformly spaced in angle form a complete family of independent
incident fields. Therefore, as a function of the incident angle ¥; and of the receiving angle
¥, the scattered field can be accurately represented by a number of samples given by
(2kyRp) x (2kyRp) = (2kyRp)?, where, as discussed in [1], only one half of these samples is

actually independent.



As far as the incident fields measured on I' are concerned, a different result holds true. In
fact, by paralleling the above reasoning to the representation of the incident field in D, one
can prove that each incident field on I' can be accurately represented by 2k, Rr Dirichlet
samples, and that 2k,Rr (non-superdirective) independent incident fields (constituted
by plane waves uniformly spaced in angle) exist therein. Therefore, as discussed for the
scattered field, the incident field on I' as a function of both angles ¥J; and ¥, can be
accurately represented by a number of samples given by (2k,Rr) x (2kyRr) = (2kyRr)>.
Note that, also in this case, only one half of these samples is actually independent [1].
When considering the square amplitude patterns of the above fields, the number of samples
required for a faithful representation becomes four times larger (with respect to amplitude
and phase measurements) as the sampling step has to be halved along each of the two
coordinates. Therefore, |E5(r € T')|? requires (4ky,Rp) x (4kyRp) = (4kyRp)? samples and
|Ei(r € T')|? requires (4kyRr) x (4kyRr) = (4kyRr)? samples.

In order to accurately represent |E|? on I, being |E|? = |E'|? + |E%|? + 2Re(E*E"), one
needs a number of samples equal to the maximum between (4k,Rr)? and (2ky(Rp + Rr))?,
the latter being the number of samples required to represent the term 2%6(ESE1*) on I
[13]. Of course, only a half of these samples is independent [1].

3. A single-step approach for intensity only inverse profiling

Traditionally, in standard inverse scattering problems, one assumes the knowledge of the
total fields in both amplitude and phase. Herein, the problem we want to solve consists in
retrieving the dielectric characteristics within a region under test from measurements of the
square amplitude distribution of the total field, once known (or estimated as in |17]) the
incident field. The approach described in this section corresponds to a single-step procedure,
based on the minimization of a discrepancy criterion between the amplitude of the simulated
and measured total fields. This minimization problem is recast into a Contrast-Source-
Extended-Born (CS-EB) formalism as in [20]. A brief recall of derivation and main features

of the CS-EB scattering model is reported in the Appendix A.



A.  Unknowns representation

In the Contrast-Source inversion method [18|, both the contrast y and the induced current
J = xFE inside the targets are assumed as unknowns. In order to lower the degree of non-
linearity [19] and therefore the difficulty of the inverse problems with respect to parameters
embedding dielectric characteristics, the traditional scattering equation Eq.(3) is replaced
by a new coupling equation, the Contrast Source - Extended Born (CS-EB) equation |20,
given by

Jir) = &(r) By(r) = &(x) / . G(r, ) [ (x") = Ji(r)]dr" = £(r)Grmoa (1), (4)

£(r) = %D() fote) = [ Gtryar
God(J1) // (r, ") [ (") — Jy(r)]dr’! —// r,r')Jy(x")dr’ — Ji(r) fp(r).

For the sake of simplicity, equations Eq.(2) and Eq.(4) can be rewritten using symbolic

where

(5)

notations as
= KJl; Jl = éEll + gGmod(Jl)v (6)

where Gpoq(J;) is the new scattering operator relating the induced current inside the scat-
tering domain to the scattered field outside. It is worth noticing that, despite the fact that
the CS-EB model defined in Eq.(4) is just a simple rewriting of the traditional contrast
source model, it has proved to be a more effective tool to formulate and solve both forward
and inverse scattering problems [20]. Notably, while its derivation was inspired by some
mathematical and physical considerations related to presence of losses in the host medium
and/or in the targets [20], processing of experimental data (both amplitude and phase) has
shown that accurate and reliable results can be achieved also for lossless inhomogeneous
targets in free space [21].

The ill-posedness of the inverse scattering problem is also dealt with by looking for finite-

dimensional representations of both the unknowns [22]. We thus consider

r) =) a,i(r) (7)

Q
=Y doyx) Vi=1,...,L (8)
q=1



wherein {@Z)p}le and {¢q}§:1 are two orthonormal basis functions taken here as spatial
Fourier harmonics owing to the lack of a priori information on the unknown scatterers. Of
course, according to the above results on the field properties, the number of the unknowns
coefficients {ap};;l and {cq}gzl has to be lower than the number of independent data one
has at disposal for the inversion as discussed in the previous section (see also [22]). In
particular, note that, as far as the choice of P is concerned, the properties of the scattered
fields recalled in Section 2 allow to state that, for any given Rp, one can determine the
maximum amount of information which can be extracted in the inverse scattering step, thus
allowing to fix the maximum number of unknowns coefficients for the contrast function in

Eq.( 7) which can be reliably retrieved.
B.  Discrepancy criteria

The discrepancy criteria between the measured fields and the simulated ones considered in

the following is given by

L
JE) = |l I” = |E + KO i (9)
1=1
where I°P* represents the available intensity measurements of the total field, and «; is a

weighting coefficient set in such a way that the total field intensities corresponding to the
different scattering experiments have an equal weight and W denotes a weighted L? norm
on I'. In particular, o' =|| I?> ||}, and a weighted L? norm, rather than the more usual
un-weighted one, is used because of the fact that the adopted cost functional Eq.(9) embeds
the solution of a phase retrieval problem for the total field. In these problems, the zeros
(or nearly zeros) of the data pattern (in our case I?®, for each illumination) play a key role
in the faithful estimation of the unknown [14], and suggest that a different weight can be
herein usefully exploited. Accordingly, we choose a weighting function which emphasizes the
contributions to cost functional corresponding to small amplitude data [14]. In particular,
the weighing function w;(r € T') is given by
1

I(rel)+e

wl(r c F) = (10)

wherein the positive regularization parameter € allows to manage the exact zeros in the data

I14].
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The minimization of 7 under the constraints of Eq.(6) can be cast as the global minimization

of the following cost functional

L
L&)=Y {au | ™ = 1B + KA iy, +6i | i =€ = EGuoa(h) I} (11)

=1
where (3, are appropriate weighting coefficients, taken here as 8! =|| E! ||%, || - || being

the un-weighted L? norm over D. The gradients of the cost functional, which are derived

according to the general strategy outlined in [22|, are given by

L

Vel = =23 BB + Guoa(I)] [J) — £E] — £Grnoa (1)) (12)
=1

VL = 4aK[(E + KJ)(I" — |E + KJ) w)] + (13)

+ 261 — €Gmod] [Ji — EE} — EGinoa(J)]

where T stands for the transpose conjugate operation, * for the conjugate operation.

A standard minimization gradient-based scheme can now be employed to obtain an estima-
tion of the dielectric properties of the scatterer. Of course, additional a prior: information
(e.g. positiveness, lossless nature of the targets, ...) can be also considered during the

iterative process.
C. Choice of the starting guess

An important point in the minimization of Eq.(11) is the choice of the starting guess, i.e. the
initial distribution of the auxiliary function and of the contrast source inside the scattering
domain. Different solutions can be found in the literature.

A very popular one is the background solution, which consists in choosing an initial contrast
function in D slightly different from zero. Then, the corresponding auxiliary function & is
determined according to Eq.(5), while the contrast source is evaluated by solving Eq.(4). Of
course, such a choice, by neglecting the presence of the target in the initial step, does not
contain any a priori information.

A second possible choice, more useful and widely used in the framework of the source type
integral equation based inversion methods, is the backpropagation solution |18|. In its original
formulation, the initial contrast source is first retrieved from the scattered field, which is
assumed to be known in both amplitude and phase. Then the contrast function, and thus

the auxiliary function in the framework of the CS-EB inversion method, are determined
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by solving Eq.(4) in terms of the contrast function, using the contrast source distribution
previously determined.

Of course, this kind of strategy cannot be applied in the present framework, due to the
lack of information on the phase distribution. Therefore, a modified version of the above
backpropagation solution has been derived. The key idea is to assume an initial distribution
of the contrast source in D given by the incident field (which is known or estimated [17])
times a constant given, for instance, by the average value of the auxiliary function in D
(or of the contrast function in the framework of the CS inversion method [18]). Then, in
order to derive a suitable distribution of the initial auxiliary function and thus of the contrast
function, Eq.(4) is solved in terms of the auxiliary function, according to the original strategy.
The achieved result is denoted in the following as the modified backpropagation solution.

In particular, once the contrast source distribution has been initialized as follows
Jio(r) = vE|(r) (14)

wherein 7 is a real constant to determine according to the availability of some information
on the nature of the targets (lossless nature, approximate mean value of the permittivity
distribution,...), the initial distribution of the auxiliary function is obtained by minimizing

the following cost functional
So(r) = min || Jip = €5 = EGumoa(J10) 11 - (15)

wherein {a,}}", are the auxiliary function coefficients as defined in Eq.(7). As shown in
the following, this simple modification of the original backpropagation solution allows to
improve the final reconstructions. Note that, in that case, no a priori information on the
nature of the target has been considered, except for an approximate knowledge of the
contrast average over D). Of course, if more information on the objects are available, such
as their lossless nature or some positivity constraints on the real part of the permittivity

distribution, one can improve the quality of the starting guess and therefore the final results.

4. Features and limitations of the two-steps approach: a brief overview

As recalled in the introduction, the problem of reconstructing the unknown contrast from
amplitude-only measurements of the total field has been previously approached from a dif-

ferent perspective. The devised method, conceptually alternative to direct ones, such as the
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one presented in Section 3, envisages a solution procedure which splits the imaging problem
into two steps.

In the first step, a preliminary estimation of the amplitude and phase patterns of the scat-
tered fields (i.e., the usual input of an inverse scattering approach) is performed solving a
quadratic nonlinear inverse problem [1, 13, 17|. To this aim, one uses the fact that the
overall complex scattered fields pattern can be represented by means of a set of P Fourier
harmonics coefficients on the measurement circle, say f = {f1,..., fp}. Then, one has to

minimize the following quantity
L
F(E) =Y I 1 = B = B = 2Re(BE") |[3, (16)
1=1

For this class of inverse problems, it is known that occurrence of false solutions can be
avoided, provided that the ratio among the number of independent data (here the samples
of I°*) and the number of real unknowns (here given by the real and imaginary parts of
f) is larger than 3 [14|. By addressing the reader to [1] for a more detailed discussion, it is
worth recalling here that the interference term in the available data between the incident and
scattered fields can be conveniently exploited in this framework to fulfil the above mentioned
condition and therefore achieve a robust estimate of the (complex) scattered field pattern.
In particular, it turns out that, given the size of the minimum circle Rp which encloses the
targets, a proper setting of the measurement set-up parameters (i.e. the radius Rr of the
circumference wherein the probes are located) is sufficient to match the desired ratio. For
the geometry at hand (see Fig. 1), the field properties and representations recalled in Section
2 simply leads to Rp > R, = (—1+4+/6)Rp, which thus rules the proper choice of Ry [1|. Of
course, when this condition cannot be realized (for instance due to some physical constraints
on the set-up dimensions) the solution of the quadratic inverse problem may result in an
unreliable estimate of the sought pattern [1, 17|. It is worth noticing that similar rules can
be derived also in the case of aspect limited data [13|, by properly taking into account the
different geometry.

The second part of the two-steps approach consists in the solution of a traditional inverse
scattering problem and can be therefore pursued by taking advantage of any of the many
methods developed in the literature so far. For the sake of comparison, we will consider
the same CS-EB scattering model as in Section 3. By denoting with Ef*" the estimated

scattered field (amplitude and phase), the cost functional to be minimized is now given by
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[20]:

L
L&) = {a| K= EP E 46| Jr = €E] = EGmoa( D) B} (17)
=1

where, different from the one-step approach and according to its usual definition [18, 20],
a; ' = ||Eft||? and 3 is the same as in Eq.(11).

By comparing the first term of 17 to the corresponding one in the single-step cost functional
of Eq.(11), one can immediately notice that the two-steps approach is characterized by a
lower degree of non-linearity [19| with respect to the parameters embedding the unknowns
of the inverse problem. In particular, while the first term in Eq.(17) depends on the
unknown contrast source J; in a linear way, the corresponding term in Eq.(11) is related to
its square amplitude, thus passing from a linear dependence to a non-linear one. Due to
the local nature of the adopted optimization method, such a circumstance has a key role in
obtaining accurate reconstructions of the unknown permittivity maps [22]. In particular,
the single-step approach results to be more sensitive to the starting guess. Accordingly,
when the conditions on the measurement set-up makes it applicable, the two step phaseless

imaging method has to be preferred.

5. Experimental results

The performances of the two phaseless imaging approaches described in Section 3 and
Section 4 have been tested using the experimental data provided by the Institute Fresnel of
Marseille |23-25|. In these experiments, measurements are collected under an aspect limited
configuration in which, for each position of the primary source 9; € [0, 360°], measurements
are gathered over an open arc ¥, € [¢; + 60°,9; + 300°]. For all the considered examples,
the working frequency is 4GHz. The domain under test is taken as a square region of 2.8\
side, A being the wavelenght in free space, subdivided in 46 x 46 pixels for the first two
examples and in 80 x 80 in the last one, according to the metallic nature of the target.
As the overall number of scattering experiments (L-number of sources and M-number of
receivers) are being dependent from the considered experiments, they will be given for each
case. The iterative procedure is stopped when the difference between the previous value of
the adopted cost functional and the actual one is less than 1.0 x 10~*. Moreover, note that

when the modified backpropagation solution is used as suitable stating guess, the parameter
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7 in Eq.(14) has been fixed equal to 1.0 in all the numerical experiments.
As the database provides measurements of amplitude and phase of the total and incident
fields, we can conveniently exploit the measured phase of the total field to check the

accuracy of both phaseless imaging approaches herein presented.

A. TwINDIELTM dataset

As first example, we have considered the TWINDIELTM dataset |23| consisting of two
dielectric homogeneous cylinders of radius 1.5 ¢cm and permittivity 3 4= 0.3, approximately
positioned at (—4.5,0) cm and (4.5,0) cm, respectively. This dataset is known in the
literature as a benchmark for non-linear inverse scattering methods, as linearized approaches
are understood to fail when applied to it. In this experiment, L = 36 source positions
and M = 72 receiver positions have been collected. According to the above results on the
field properties, both the intensity of the total field and of the incident field are properly
sampled in this example.

Let us start to apply the two-step procedure of Section 4. In particular, by using the
knowledge of the incident field and of the measured square amplitude distribution of the
total field on the 240° arc, the Fourier harmonics coefficients of the scattered field are
evaluated by minimizing Eq.( 16). The number of coefficients (here 11 x 11) is related to
the electrical dimension of the investigated domain and a random distribution has been
used as a starting guess in the quadratic minimization procedure. By comparing the actual
scattered field (see Fig. 2 and Fig. 3) and the retrieved one (see Fig. 4 and Fig. 5), it can be
observed that a good reconstruction is achieved, both in amplitude and in phase, although
a slightly worse reconstruction is obtained at the end of the observation arc, due to the
truncation of the measurement domain. It is also interesting to note that since the radius of
circle wherein the receivers are located is Rr = 1.765 m and R.. = 0.2113 m, the condition
Rr > R, holds true and then prevents local minima occurence [1].

The second and final step of the two-step based procedure deals with a standard inverse
scattering problem, addressed here using the CS-EB method. The background solution
has been used as a starting guess in the minimization of Eq.( 17). After representing the
unknown auxiliary function ¢ and then the contrast function J in terms of 11 x 11 Fourier

harmonics in the minimization procedure, the very accurate reconstruction of the real part
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of the contrast is achieved and shown in Fig. 6. Note that no a prior: information has been
used at all. The corresponding imaginary part, in agreement with the lossless nature of
the targets, is negligible with respect to the real one (0.10 is the maximum value of the
estimated imaginary part). The maximum value of the estimated contrast function is 2.1,
which is within the measurement accuracy. The overall computational time is about few
minutes on a standard Desktop PC.

It is worth noticing that a comparable reconstruction is actually obtained when using the
measured (amplitude and phase) scattered fields directly inside Eq.( 17), thus confirming
the possibility of performing a faithful phaseless quantitative imaging without any loss of
accuracy.

Let us now compare the above result with the one obtained by the one-step approach
of Section 3, where the intensity data is directly incorporated into the minimization
process. The auxiliary function ¢ and the contrast function are still represented in terms
of 11 x 11 Fourier harmonics. The background solution is first used as a starting guess
and the obtained results are represented in Fig. 7. Due to the discussed higher degree of
nonlinearity of the one-step inversion problem, the minimization procedure is more sensitive
to the starting guess and get stuck into a local minimum. Indeed, even if the shape of the
two targets is clearly defined, their permittivity value is much lower than the actual one.
In order to improve the results, the modified backpropagation solution is now used as
a starting guess. As shown in Fig. 8, the use of this different initialization leads to an
improved reconstruction for the real part of the contrast. Again, the corresponding imag-

inary part is negligible with respect to the real one, being 0.12 its maximum estimated value.

B. FoAMDIELEXTTM dataset

As second example, we have considered the FOAMDIELEXTTM dataset [24, 25| which
corresponds to an inhomogeneous target embedded in free space. The target is made of two
purely dielectric cylinders, tangent to each other. The larger one is centered and presents
a relative permittivity of 1.45 + 0.1 and a radius of 0.04 m, the smaller one has a relative
permittivity of 3 + 0.3 and a radius of 0.015 m. In this case, a combination of L = 8 source
positions and M = 241 receiver positions are collected. Due to the very limited number

of source positions in this example, both the intensity of the total field and of the incident
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field are not properly sampled (see Section 2). Therefore, worse results are expected with
respect to previous example, both in terms of reconstruction of the scattered field and of
the permittivity profile.

Let us consider first the two-step based procedure. After modeling the unknown complex
scattered field as a superposition of 11 x 11 Fourier harmonics, we have solved the problem
of Eq.( 16); then the unknown auxiliary function and the contrast function have been
represented in terms of 11 x 11 Fourier harmonics and the cost functional in Eq.( 17) has
been minimized starting from the background solution as a suitable starting guess. The real
part of the reconstructed contrast is shown in Fig. 9, while the imaginary one, according to
the lossless nature of the targets, is again negligible.

It is interesting to note that, as expected, the quality of the reconstruction is worse than
the previous example, even if the presence of two targets is clearly retrieved, together with
their size and shape. In particular, the reduced number of independent data at our disposal
for the inversion of the quadratic operator in the first step (we passed from the 36 sources
of the first example to the 8 of this one) makes it more difficult to extract the scattered
field from the intensity only of the total field, thus negatively affecting the accuracy of the
final reconstruction of the contrast function in the second step.

Let us now consider the one-step procedure. The unknown auxiliary function and the
contrast function are represented in terms of 11 x 11 Fourier harmonics. By using the
modified backpropagation solution as starting guess, the real part of the contrast function
reported in Fig. 10 is achieved, whose corresponding imaginary part is negligible (0.07 is
now its maximum value).

As it can be seen, by using an accurate starting guess, the final quality of the reconstruction
is accurate, both in terms of size of the targets and their shapes, even if the contrast values
are slightly underestimated with respect to the actual ones, in agreement with the reduction
of independent information. It is also interesting to note that the achieved results are
better than the ones obtained by using the two-steps approach of Section 4, thus confirming
the expected complementarity and capabilities of the inverse profiling approaches herein
discussed. In particular, this example shows that, when the conditions for applying the

two-steps procedure do not hold, the one-step approach is a valuable alternative.
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C. FOAMMETEXTTM dataset

To show the capability of the one-step procedure to successfully retrieve the imaginary part
of the unknown contrast, which is present in the case of lossy or metallic targets, we have
considered the FOAMMETEXTTM dataset [24, 25| which consists of an inhomogeneous
target made of two circular cylinders. The smaller one, located outside the dielectric one, is
metallic, while the dielectric cylinder is characterized by a relative permittivity of 1.45+0.1
and a radius of 0.04 m. The radius of the metallic cylinder is 0.015 m. In this case, L = 18
and M = 241 measures are collected.

By still considering 11 x 11 unknowns Fourier harmonics for the auxiliary function and the
contrast function and by using the modified backpropagation solution as starting guess, the
results reported in Fig. 11 and Fig. 12 have been achieved. As it can be seen, the metallic
nature of the smaller cylinder has been clearly estimated, as well as its size and shape.
We can thus conclude that the procedure can indeed reconstruct the imaginary part of the
contrast function. It is also worth noting that the characteristics of the dielectric cylinder
have been estimated as well, even if the strong reflection from the metallic target does not
allow to achieve an accurate estimation of its shape and size.

Note that the capability to image lossy or metallic targets by means of the two-steps approach

has been already investigated and proved, under proper conditions, in |1, 13].
6. Conclusion

In this paper two different strategies for the characterization of two-dimensional targets us-
ing phaseless measurements of the total fields have been compared by using experimental
data measured at the Institute Fresnel of Marseille, concerning homogeneous and inhomo-
geneous targets, with a combination of purely dielectric and metallic materials.

In the first inversion method, the intensity-only measures of the total field have been di-
rectly incorporated in the minimization scheme, while the accuracy and the quality of the
final results have been improved by means of a proper definition of the starting guess and a
suitable weighting of the considered cost functional.

In the second scheme, originally proposed in [1], one exploits the properties of the scattered
fields and the theoretical results on the inversion of quadratic operators to derive a two-steps

solution strategy, wherein the (complex) scattered fields embedded in the available data are
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retrieved first and then a traditional inverse scattering problem is solved.

In both cases, the analytical properties and representations of the involved fields allow to
properly fix the measurement set-up and to identify the more convenient solution strategy
to adopt. In particular, as discussed by means of theoretical considerations and supported
by experiments, the two-step strategy achieves better results as compared to the one-step
approach, due to its better control of the overall non-linearity of the inverse problem. On
the other hand, when the measurement setup does not provide enough independent data to
accurately pursue the field retrieval, the one-step approach has to be preferred.

It is interesting to remark that, while the Marseille data are usually elaborated by using
multi-frequency (i.e., broad-band) data, the accurate results achieved herein with both ap-
proaches only rely on monochromatic data. Of course, use of multi-frequency information
can further improve the final results in terms of size, shape estimation and permittivity
value.

As further comment, note that in order to have a completely phaseless imaging method the
knowledge of the incident field, both in amplitude and in phase, can also be avoided. In
particular an additional step would be required in order to estimate the phase of the incident
field on the measurement domain before using one of the imaging procedures discussed in
this paper. For more details, the reader is addressed to [17].

As future work, note that the development of new and effective inversion approaches starting
from only intensity data of the scattered field instead of the total one can be pursued. As
a matter of fact, this situation is of interest in optical applications where the capability of
imaging dielectric and metallic targets and developing inversion strategies based on phase-
less measures can open the way to very interesting applications. On the other side, such a
problem sets new challenging difficulties. As a matter of fact, the amount of independent
data which can be exploited is considerably reduced both because one cannot exploit inter-
ference amongst the incident and the scattered fields (see Sect.4), and because of the fact
that the actual measurement set-ups produce aspect limited data |3, 4|. As a consequence,
in order to compensate for the lack of information, both multi-frequency approach to the
problem and/or the development of innovative measurement configurations (as well as new

inversion procedures) are needed.
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Appendix A

Aim of this Appendix is to briefly derive the CS-EB scattering equation |20|, adopted in
the optimization problems considered in this paper. The starting point is the traditional
Contrast - Source integral equation (3); by adding and subtracting the contrast source

function J(r) in the integral term in this latter, one gets

J(r) — x(r)E'(r) = X(r)/DG(r,r’) [J(r") — J(r)]dr’ + x(r / G(r,r') (A1)

Then, by grouping with respect to J(r), one achieves

J(r) = x(r)J(r) fp(r) = x(r) E'(r) + x(r) /D G(r,r)[J(x') = J(r)]dr"  (A2)
where
= /DG(r,r’)dr’. (A.3)

Now, by introducing

(r)
£(r) = X
)fD( ) (A.4)

Gnod ( / G(r,1") )]dr’ —/ G(r,x")J(x")dr’ — J(r) fp(r).

and replacing them into Eq.(A.2), the CS-EB scattering equation (4) is achieved [20].

Some comments are now in order. First, note that the CS-EB equation has been de-
rived without any approzimation from the CS one, being thus completely equivalent
to it. Moreover, since the two equations have the same structure, one can exploit all
numerical algorithms and tools already developed for the CS equation for the solution of
the CS-EB one. On the other hand, a new radiation operator and a different auxiliary
function, see Eq.(A.4), are involved in the CS-EB equation. Therefore, as detailed
in |20], Eq.(3) and Eq.(4) have the same information content, but the CS-EB equa-
tion exhibits a different, actually lower, degree of non linearity [19] of the relationship
amongst parameters embedding dielectric characteristics and the scattered fields. As such, it

defines a new and convenient model for solving forward and inverse scattering problems [20].
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Figure Captions

e Fig. 1 - Geometry of the problem. A two-dimensional target with cross-section 2. I’
(with radius b) is the circle where the sources (T},) and probes (R,) are located. a is

the radius of the minimum circle enclosing the unknown targets.
e Fig. 2 - Measured intensity of the scattered fields for the TWINDIELTM dataset.
e Fig. 3 - Measured phase of the scattered fields for the TWINDIELTM dataset.

e Fig. 4 - Reconstructed intensity of the scattered fields for the TWINDIELTM dataset

obtained by solving Eq.(16) of the two-steps procedure in Section 4.

e Fig. 5 - Reconstructed phase of the scattered fields for the TWINDIELTM dataset

obtained by solving Eq.(16) of the two-steps procedure in Section 4.

e Fig. 6 - Real part of the reconstructed contrast function for the TWINDIELTM
dataset when using Eq.(17) of the two-steps procedure in Section 4. The maximum

value of the estimated contrast function is 2.10.

e Fig. 7 - Real part of the reconstructed contrast function for the TWINDIELTM
dataset with the one-step approach of Section 3. The background solution has been

used as strating guess. The maximum value of the estimated contrast function is 0.67.

e Fig. 8- Real part of the reconstructed contrast function for the TWINDIELTM dataset
obtained with the one-step procedure of Section 3. The modified backpropagation
solution has been used as starting guess in the inversion procedure. The maximum

value of the estimated contrast function is 1.85.

e Fig. 9 - Real part of the reconstructed contrast function for the FOAMDIELEXTTM
dataset obtained when following the two-steps approach of Section 4. The background
solution has been used as starting guess. The maximum value of the estimated contrast

function is 1.34.

e Fig. 10 - Real part of the reconstructed contrast function for the FOAMDIELEXTTM
dataset by using the one-step approach of Section 3. The modified backpropagation
solution has been used as starting guess. The maximum value of the estimated contrast

function is 1.75.
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e Fig. 11 - Real part of the reconstructed contrast function for the FOAMMETEXTTM
dataset by using the one-step approach of Section 3. The modified backpropagation

solution has been used as starting guess.

e Fig. 12 - Imaginary part of the reconstructed contrast function for the FOAMME-
TEXTTM dataset by using the one-step approach of Section 3. The modified back-

propagation solution has been used as starting guess.
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2b

Fig. 1. Geometry of the problem. A two-dimensional target with cross-section 2. I' (with
radius b) is the circle where the sources (7,) and probes (R,) are located. a is the radius of

the minimum circle enclosing the unknown targets.
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Fig. 2. Measured intensity of the scattered fields for the TWINDIELTM dataset.
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Fig. 3. Measured phase of the scattered fields for the TWINDIELTM dataset.
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Fig. 4. Reconstructed intensity of the scattered fields for the TWINDIELTM dataset obtained

by solving Eq.(16) of the two-steps procedure in Section 4.
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Fig. 5. Reconstructed phase of the scattered fields for the TWINDIELTM dataset obtained

by solving Eq.(16) of the two-steps procedure in Section 4.
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Fig. 6. Real part of the reconstructed contrast function for the TWINDIELTM dataset when

using Eq.(17) of the two-steps procedure in Section 4. The maximum value of the estimated
contrast function is 2.10.
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Fig. 7. Real part of the reconstructed contrast function for the TWINDIELTM dataset with

the one-step approach of Section 3. The background solution has been used as strating guess.

The maximum value of the estimated contrast function is 0.67.



31

[em]

0
[em]

Fig. 8. Real part of the reconstructed contrast function for the TWINDIELTM dataset

obtained with the one-step procedure of Section 3. The modified backpropagation solution

has been used as starting guess in the inversion procedure. The maximum value of the

estimated contrast function is 1.85.
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Fig. 9. Real part of the reconstructed contrast function for the FOAMDIELEXTTM dataset
obtained when following the two-steps approach of Section 4. The background solution has

been used as starting guess. The maximum value of the estimated contrast function is 1.34.
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Fig. 10. Real part of the reconstructed contrast function for the FOAMDIELEXTTM dataset
by using the one-step approach of Section 3. The modified backpropagation solution has been

used as starting guess. The maximum value of the estimated contrast function is 1.75.
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Fig. 11. Real part of the reconstructed contrast function for the FOAMMETEXTTM dataset
by using the one-step approach of Section 3. The modified backpropagation solution has been

used as starting guess.
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Fig. 12. Imaginary part of the reconstructed contrast function for the FOAMMETEXTTM
dataset by using the one-step approach of Section 3. The modified backpropagation solution

has been used as starting guess.



