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e, F-13397 Marseille Cedex, Fran
eThe aim of this paper is to dis
uss the 
hara
terization of two-dimensional targets using inverse pro�ling approa
hes with phase-less data. Data 
orrespond to the total �elds intensity, whi
h arethe a
tual obje
ts of the measurements devi
es in many appli
a-tions. Two di�erent inversion s
hemes are presented, dis
ussed,
ompared and validated by using experimental data. In the �rstone, the intensity-only data are exploited in a minimization s
heme,thanks to a proper de�nition of the 
ost fun
tional and the evalu-ation of the asso
iated gradients. The 
onvergen
e of the iterative



2pro
ess takes de�nite advantage of a suitable normalization andof an useful starting guess whi
h allows us to 
ir
umvent the useof a global optimization s
hemes, whi
h are time 
onsuming. Inthe se
ond s
heme, suggested in [1℄, one exploits the properties ofthe s
attered �elds and the theoreti
al results on the inversion ofquadrati
 operators to derive a two-steps solution strategy, whereinthe (
omplex) s
attered �elds embedded in the available data areretrieved �rst and then a traditional inverse s
attering problem issolved. In both 
ases, the analyti
al properties and representationsof the involved �elds allow to properly �x the measurement set-upand to identify the more 
onvenient solution strategy to adopt. In-di
ations on the number and type of primary sour
es and re
eiversto be used are also given. Results from experimental data show thee�
ien
y of the above approa
hes and of the introdu
ed tools.
© 2007 Opti
al So
iety of Ameri
aOCIS 
odes: 290.3200, 110.69601. Introdu
tionIn inverse s
attering problems, one looks for a quantitatively a

urate des
ription of theele
tri
al and geometri
al properties of an investigated region given a set of in
ident �eldsand measures (both in amplitude and phase) of the 
orresponding s
attered �elds on ageneri
 surfa
e lying outside the region under test [2℄. Due to their wide range of potentialappli
ations, the development of a

urate and reliable te
hniques for solving this kind ofproblems is nowadays a still important 
hallenge [3�5℄.By leaving aside pe
uliar 
hara
teristi
s of the di�erent approa
hes proposed in theliterature, one of the main 
ommon drawba
ks resides in the need of measuring bothamplitude and phase of the s
attered �elds. As a matter of fa
t, in several areas of applieds
ien
e, the phase distribution of the s
attered �elds is often too 
orrupted by noise to beuseful, or even there is no phase measurement at all, e.g., opti
al measurement setup. Evenif there is some e�ort nowadays to provide experimental setups 
apable of measuring all the
omponents of the s
attered �elds [6, 7℄, it is of great importan
e to develop approa
hes



3that image samples from only amplitude data, as these latter would open the way to moresimple and 
ost e�e
tive experimental set-ups. In addition, it is also important to remarkthat, in most appli
ations, the a
tual measured quantity is the total �eld. In fa
t, unlessthe in
ident �eld is provided by a dire
tive antenna, the measured �eld in presen
e of thetarget 
ontains both the in
ident and the s
attered �eld, so that the total �eld has to bepro
essed instead of the s
attered �eld as usually done.In order to over
ome the above limitations, several approa
hes for solving inverse s
atteringproblems from intensity-only data have been proposed in the literature [1, 8�13℄. Amongthem, an approa
h based on only amplitude measurements of the total �elds has beenre
ently proposed, �rst with referen
e to the 
ase of measures taken on a 
losed 
urvesurrounding the domain under test [1℄ and then to that of transmitters and re
eiverspla
ed over two trun
ated lines somehow en
losing the investigating domain [13℄. In both
ases, the proposed pro
edures splits the imaging problem into two di�erent steps. Inthe �rst one, the s
attered �eld is estimated from the measures of the square amplitudedistributions of the total �eld, while the se
ond step is aimed at estimating the unknowndiele
tri
 properties from the estimated s
attered �elds (modulus and phase). In summary,the �rst step allows us to estimate the input data for the se
ond one, whi
h is a traditionalinverse s
attering problem. Notably, as re
alled throughout this paper and in previous
ontributions [1, 13℄, the separation of the problem into two di�erent steps allows a better
ontrol of the overall non-linearity of the inverse problem with respe
t to single steppro
edures. In fa
t, the exploitation of theoreti
al results on the inversion of quadrati
operators [14℄ and �eld properties representations [15, 16℄, leading to design 
onstraints onthe measurement set-up, allows to su

essfully solve the �rst step, while all the availableknowledge about traditional inverse s
attering problems is exploited in the se
ond one.More re
ently, su
h an imaging te
hnique has been extended to a three-steps pro
edure,where a Phase Retrieval (PR) problem is preliminary solved to estimate the phase of thein
ident �eld from its measured amplitude [17℄. By doing so, the resulting imaging strategy
ompletely relies on only amplitude data.However, the above mentioned inversion approa
hes [1, 13, 17℄ 
an be a
tually appliedprovided that some 
onditions on the measurement set-up are satis�ed. As a matter offa
t, when these 
onditions do not hold true, the estimation of the s
attered �eld from themeasured total �eld amplitude is not reliable. In these 
ases, it is therefore of interest to



4develop new, a

urate and e�e
tive inverse pro�ling approa
hes based on only amplitudeinformation of the total �eld, on
e known or estimated the in
ident �eld in the s
atteringdomain and on the measurement 
urve. In su
h approa
hes, the aim is to solve the imagingproblem in a single step, without previously estimating the s
attered �eld embedded inthe measures. This would require to reformulate the inverse s
attering problem in order totake into a

ount that the available data are intensity only. On the other hand, at leastin prin
iple, parti
ular 
onstraints on the measurement set-up are not required. Therefore,these approa
hes are expe
ted to be useful in all those 
ases wherein the two-steps strategy[1, 13℄ or its generalization [17℄ 
annot be used.The aim of this paper is therefore to introdu
e a novel one-step imaging strategy based ononly-amplitude total �eld data and 
ompare and dis
uss, by using experimental data, itsperforman
es with that of the two-steps strategy.It is worth noting that the idea of dire
tly in
orporating the square amplitude distributionsof the total �eld in the inversion s
heme is not new in the literature [10�12℄. With respe
tto these 
ontributions, the approa
hes proposed and dis
ussed in this paper have interestingand 
omplementary 
hara
teristi
s with respe
t to the above ones. First, unlike [10℄, we donot make use of a priori information in the inversion pro
ess, but we rather take advantageof a suitable starting guess a
hieved by means of a simple modi�
ation of the widely usedba
kpropagation solution [18℄. Moreover, unlike [12℄, the adopted minimization s
hemeexploits a lo
al optimization pro
edure based on an e�
ient CG-FFT s
heme and thusavoids the use of time 
onsuming global optimization algorithms. In this respe
t, it isalso worth noti
ing that the use of a proper weighting of the 
ost fun
tional to minimize,derived from the properties of the intensity only data pattern, as well as from the availableknowledge in Phase Retrieval pro
edures [14℄, allows us to improve the data �tting and of
ourse the �nal re
onstru
tions in terms of permittivity and 
ondu
tivity of the unknownstargets. As a last but not least point, let us remark that our approa
hes are based onthe Contrast Sour
e-Extended Born (CS-EB) inversion s
heme, whi
h allows to redu
ethe degree of non-linearity [19℄ of the inverse s
attering problem and a
hieves improvedpermittivity and 
ondu
tivity maps re
onstru
tions in many 
ases [20℄.The paper is organized as follows. In Se
tion 2, the adopted geometry 
on�guration ispresented and the mathemati
al model is given. The sampling properties and representa-tions of the involved ele
tromagneti
 �elds are also re
alled. In Se
tion 3, the single-step



5inversion s
heme is thoroughly des
ribed, together with the weighting strategy and theadopted modi�ed ba
kpropagation as initial solution. The features and limitations of thetwo-steps approa
h are brie�y sket
hed in Se
tion 4. Se
tion 5 is devoted to assess and
ompare the performan
es of the two approa
hes by means of experimental data 
on
erningmetalli
 and diele
tri
 inhomogeneous targets, 
olle
ted at the Institute Fresnel of Marseille.Con
lusions follow.2. Mathemati
al model and �eld propertiesThe geometry of the problem studied in this paper is shown in Fig. 1 where one or moretwo-dimensional obje
ts of arbitrary 
ross-se
tion Ω are 
on�ned in a bounded domain D.The embedding medium Ωb is assumed to be in�nite and homogeneous, with permittivity
εb = ε0εbr, and permeability µ = µ0 (ε0 and µ0 being the permittivity and permeability ofthe va
uum, respe
tively). The s
atterers are assumed to be inhomogeneous 
ylinders witha permittivity distribution ε(r) = ε0εr(r); the entire 
on�guration is non-magneti
 (µ = µ0).A right-handed Cartesian 
oordinate frame (O,ux,uy,uz) is de�ned. The origin O 
an beeither inside or outside the s
atterer and the z-axis is parallel to the invarian
e axis of thes
atterer. The position ve
tor OM 
an then be written as OM = r+ z uz. The line sour
esthat generate the ele
tromagneti
 ex
itation (denoted as T

x
in Fig. 1) and the elementaryprobes 
olle
ting the data (R

x
in Fig. 1) are lo
ated at (rl)1≤l≤L on a 
ir
le Γ of radius

RΓ. Taking into a

ount a time fa
tor exp(iωt), in the Transverse Magneti
 (TM) 
ase, thetime-harmoni
 in
ident ele
tri
 �eld 
reated by the lth sour
es is
E

i
l(r) = Ei

l(r)uz = A
ωµ0

4
H

(2)
0 (kb |r − rl|)uz, (1)where A is the strength of the ele
tri
 sour
e, ω the angular frequen
y, H (2)

0 the Hankelfun
tion of zero-order and se
ond kind and kb the wavenumber in the surrounding medium.Under these hypotheses and omitting the exp(iωt) time dependen
e term, for ea
h illumina-tion 
ondition, the s
attering equations des
ribing the total �eld 
an be formulated as two
oupled 
ontrast-sour
e integral relations [18℄: the observation or data equation Eq.( 2) and



6the 
oupling or state equation Eq.( 3), whi
h are
El(r ∈ Γ) = Ei

l(r ∈ Γ) + Es
l (r ∈ Γ) = Ei

l(r ∈ Γ) +

∫∫

D

G(r, r′) Jl(r
′), dr′, (2)

Jl(r ∈ D) = χ(r ∈ D)Ei
l(r ∈ D) + χ(r ∈ D)

∫∫

D

G(r, r′) Jl(r
′) dr′, (3)where χ(r) = εr(r) − εbr denotes the permittivity 
ontrast whi
h vanishes outside D,

G(r, r′) is the two-dimensional free-spa
e Green fun
tion, and J(r) = χ(r)E(r) 
orrespondsto the 
ontrast sour
e.The overall aim of the problem is to determine the two dimensional 
ontrast fun
tion χ(r)in D starting from the knowledge of the in
ident �elds Ei
l(r ∈ Γ) on the probing 
urve Γ,and from an in
omplete (be
ause only a �nite number of measurements 
an be performed)and ina

urate (be
ause the measurements are error-a�e
ted) knowledge of the intensity ofthe total �elds |El(r ∈ Γ)|2, l ∈ (1, . . . , L).To this end, as |E|2 = |Ei|2+ |Es|2+2ℜe(EsEi∗), it proves fruitful to brie�y re
all propertiesand possible representations of both s
attered and in
ident �elds, and then of |Ei|2, |Es|2 aswell as of the interferen
e term ℜe(EsEi∗). As dis
ussed in the following, these propertieswill allow to quantify the amount of independent data at our disposal for solving theimaging problem at hand, to sample the intensity data in an a

urate and non-redundantfashion and to determine the maximum amount of information about the targets one 
anextra
t from the available data. Moreover, as in [1, 13, 17℄, exploitation of these propertiesprovides the guidelines to design an e�e
tive measurement set-up.With referen
e to the geometry depi
ted in Fig. 1, it is known that the s
attered �eld
orresponding to a given sour
e 
an be a

urately represented with a �nite number ofFourier harmoni
s given by 2kbRD, RD being the radius of the minimum 
ir
le en
losingthe targets [16℄. As a Fourier series 
an be turned into a Diri
hlet sampling series, 2kbRDsamples uniformly spa
ed in angle a

urately represent ea
h s
attered �eld as well. Fromre
ipro
ity [16℄, the number of non-superdire
tive independent in
ident �elds impingingon the domain under test is 2kbRD as well. Hen
e, by ex
luding superdire
tive sour
es,

2kbRD plane waves uniformly spa
ed in angle form a 
omplete family of independentin
ident �elds. Therefore, as a fun
tion of the in
ident angle ϑl and of the re
eiving angle
ϑr, the s
attered �eld 
an be a

urately represented by a number of samples given by
(2kbRD)× (2kbRD) = (2kbRD)2, where, as dis
ussed in [1℄, only one half of these samples isa
tually independent.



7As far as the in
ident �elds measured on Γ are 
on
erned, a di�erent result holds true. Infa
t, by paralleling the above reasoning to the representation of the in
ident �eld in D, one
an prove that ea
h in
ident �eld on Γ 
an be a

urately represented by 2kbRΓ Diri
hletsamples, and that 2kbRΓ (non-superdire
tive) independent in
ident �elds (
onstitutedby plane waves uniformly spa
ed in angle) exist therein. Therefore, as dis
ussed for thes
attered �eld, the in
ident �eld on Γ as a fun
tion of both angles ϑl and ϑr 
an bea

urately represented by a number of samples given by (2kbRΓ) × (2kbRΓ) = (2kbRΓ)2.Note that, also in this 
ase, only one half of these samples is a
tually independent [1℄.When 
onsidering the square amplitude patterns of the above �elds, the number of samplesrequired for a faithful representation be
omes four times larger (with respe
t to amplitudeand phase measurements) as the sampling step has to be halved along ea
h of the two
oordinates. Therefore, |Es(r ∈ Γ)|2 requires (4kbRD) × (4kbRD) = (4kbRD)2 samples and
|Ei(r ∈ Γ)|2 requires (4kbRΓ) × (4kbRΓ) = (4kbRΓ)2 samples.In order to a

urately represent |E|2 on Γ, being |E|2 = |Ei|2 + |Es|2 + 2ℜe(EsEi∗), oneneeds a number of samples equal to the maximum between (4kbRΓ)2 and (2kb(RD + RΓ))2,the latter being the number of samples required to represent the term 2ℜe(EsEi∗) on Γ[13℄. Of 
ourse, only a half of these samples is independent [1℄.3. A single-step approa
h for intensity only inverse pro�lingTraditionally, in standard inverse s
attering problems, one assumes the knowledge of thetotal �elds in both amplitude and phase. Herein, the problem we want to solve 
onsists inretrieving the diele
tri
 
hara
teristi
s within a region under test from measurements of thesquare amplitude distribution of the total �eld, on
e known (or estimated as in [17℄) thein
ident �eld. The approa
h des
ribed in this se
tion 
orresponds to a single-step pro
edure,based on the minimization of a dis
repan
y 
riterion between the amplitude of the simulatedand measured total �elds. This minimization problem is re
ast into a Contrast-Sour
e-Extended-Born (CS-EB) formalism as in [20℄. A brief re
all of derivation and main featuresof the CS-EB s
attering model is reported in the Appendix A.



8A. Unknowns representationIn the Contrast-Sour
e inversion method [18℄, both the 
ontrast χ and the indu
ed 
urrent
J = χE inside the targets are assumed as unknowns. In order to lower the degree of non-linearity [19℄ and therefore the di�
ulty of the inverse problems with respe
t to parametersembedding diele
tri
 
hara
teristi
s, the traditional s
attering equation Eq.(3) is repla
edby a new 
oupling equation, the Contrast Sour
e - Extended Born (CS-EB) equation [20℄,given by

Jl(r) − ξ(r)Ei
l(r) = ξ(r)

∫∫

D

G(r, r′)[Jl(r
′) − Jl(r)]dr

′ = ξ(r)Gmod(Jl), (4)where
ξ(r) =

χ(r)

1 − χ(r)fD(r)
, fD(r) =

∫∫

D

G(r, r′)dr′.

Gmod(Jl) =

∫∫

D

G(r, r′)[Jl(r
′) − Jl(r)]dr

′ =

∫∫

D

G(r, r′)Jl(r
′)dr′ − Jl(r)fD(r).

(5)For the sake of simpli
ity, equations Eq.(2) and Eq.(4) 
an be rewritten using symboli
notations as
Es

l = KJl; Jl = ξEi
l + ξGmod(Jl), (6)where Gmod(Jl) is the new s
attering operator relating the indu
ed 
urrent inside the s
at-tering domain to the s
attered �eld outside. It is worth noti
ing that, despite the fa
t thatthe CS-EB model de�ned in Eq.(4) is just a simple rewriting of the traditional 
ontrastsour
e model, it has proved to be a more e�e
tive tool to formulate and solve both forwardand inverse s
attering problems [20℄. Notably, while its derivation was inspired by somemathemati
al and physi
al 
onsiderations related to presen
e of losses in the host mediumand/or in the targets [20℄, pro
essing of experimental data (both amplitude and phase) hasshown that a

urate and reliable results 
an be a
hieved also for lossless inhomogeneoustargets in free spa
e [21℄.The ill-posedness of the inverse s
attering problem is also dealt with by looking for �nite-dimensional representations of both the unknowns [22℄. We thus 
onsider

ξ(r) =
P

∑

p=1

apψp(r) (7)
Jl(r) =

Q
∑

q=1

clqφq(r) ∀l = 1, . . . , L (8)



9wherein {ψp}P

p=1 and {φq}Q

q=1 are two orthonormal basis fun
tions taken here as spatialFourier harmoni
s owing to the la
k of a priori information on the unknown s
atterers. Of
ourse, a

ording to the above results on the �eld properties, the number of the unknowns
oe�
ients {ap}P

p=1 and {cq}Q

q=1 has to be lower than the number of independent data onehas at disposal for the inversion as dis
ussed in the previous se
tion (see also [22℄). Inparti
ular, note that, as far as the 
hoi
e of P is 
on
erned, the properties of the s
attered�elds re
alled in Se
tion 2 allow to state that, for any given RD, one 
an determine themaximum amount of information whi
h 
an be extra
ted in the inverse s
attering step, thusallowing to �x the maximum number of unknowns 
oe�
ients for the 
ontrast fun
tion inEq.( 7) whi
h 
an be reliably retrieved.B. Dis
repan
y 
riteriaThe dis
repan
y 
riteria between the measured �elds and the simulated ones 
onsidered inthe following is given by
J (ξ) =

L
∑

l=1

αl ‖ Iobs
l − |Ei

l + KJl(ξ)|2 ‖2
WΓ
, (9)where Iobs represents the available intensity measurements of the total �eld, and αl is aweighting 
oe�
ient set in su
h a way that the total �eld intensities 
orresponding to thedi�erent s
attering experiments have an equal weight and WΓ denotes a weighted L2 normon Γ. In parti
ular, α−1

l =‖ Iobs
l ‖2

WΓ
and a weighted L2 norm, rather than the more usualun-weighted one, is used be
ause of the fa
t that the adopted 
ost fun
tional Eq.(9) embedsthe solution of a phase retrieval problem for the total �eld. In these problems, the zeros(or nearly zeros) of the data pattern (in our 
ase Iobs

l , for ea
h illumination) play a key rolein the faithful estimation of the unknown [14℄, and suggest that a di�erent weight 
an beherein usefully exploited. A

ordingly, we 
hoose a weighting fun
tion whi
h emphasizes the
ontributions to 
ost fun
tional 
orresponding to small amplitude data [14℄. In parti
ular,the weighing fun
tion wl(r ∈ Γ) is given by
wl(r ∈ Γ) =

1

Iobs
l (r ∈ Γ) + ε

(10)wherein the positive regularization parameter ε allows to manage the exa
t zeros in the data[14℄.



10The minimization of J under the 
onstraints of Eq.(6) 
an be 
ast as the global minimizationof the following 
ost fun
tional
L(ξ, J) =

L
∑

l=1

{

αl ‖ Iobs
l − |Ei

l + KJl(ξ)|2 ‖2
WΓ

+βl ‖ Jl − ξEi
l − ξGmod(Jl) ‖2

D

} (11)where βl are appropriate weighting 
oe�
ients, taken here as β−1
l =‖ Ei

l ‖2
D, || · ||2D beingthe un-weighted L2 norm over D. The gradients of the 
ost fun
tional, whi
h are deriveda

ording to the general strategy outlined in [22℄, are given by

∇ξL = −2

L
∑

l=1

βl [E
i
l + Gmod(Jl)]

∗
[Jl − ξEi

l − ξGmod(Jl)] (12)
∇Jl

L = 4αlK
†[(Ei

l + KJl)(I
obs − |Ei

l + KJl|2)wl] + (13)
+ 2 βl [I− ξGmod]

†[Jl − ξEi
l − ξGmod(Jl)]where † stands for the transpose 
onjugate operation, ∗ for the 
onjugate operation.A standard minimization gradient-based s
heme 
an now be employed to obtain an estima-tion of the diele
tri
 properties of the s
atterer. Of 
ourse, additional a priori information(e.g. positiveness, lossless nature of the targets, ...) 
an be also 
onsidered during theiterative pro
ess.C. Choi
e of the starting guessAn important point in the minimization of Eq.(11) is the 
hoi
e of the starting guess, i.e. theinitial distribution of the auxiliary fun
tion and of the 
ontrast sour
e inside the s
atteringdomain. Di�erent solutions 
an be found in the literature.A very popular one is the ba
kground solution, whi
h 
onsists in 
hoosing an initial 
ontrastfun
tion in D slightly di�erent from zero. Then, the 
orresponding auxiliary fun
tion ξ isdetermined a

ording to Eq.(5), while the 
ontrast sour
e is evaluated by solving Eq.(4). Of
ourse, su
h a 
hoi
e, by negle
ting the presen
e of the target in the initial step, does not
ontain any a priori information.A se
ond possible 
hoi
e, more useful and widely used in the framework of the sour
e typeintegral equation based inversion methods, is the ba
kpropagation solution [18℄. In its originalformulation, the initial 
ontrast sour
e is �rst retrieved from the s
attered �eld, whi
h isassumed to be known in both amplitude and phase. Then the 
ontrast fun
tion, and thusthe auxiliary fun
tion in the framework of the CS-EB inversion method, are determined



11by solving Eq.(4) in terms of the 
ontrast fun
tion, using the 
ontrast sour
e distributionpreviously determined.Of 
ourse, this kind of strategy 
annot be applied in the present framework, due to thela
k of information on the phase distribution. Therefore, a modi�ed version of the aboveba
kpropagation solution has been derived. The key idea is to assume an initial distributionof the 
ontrast sour
e in D given by the in
ident �eld (whi
h is known or estimated [17℄)times a 
onstant given, for instan
e, by the average value of the auxiliary fun
tion in D(or of the 
ontrast fun
tion in the framework of the CS inversion method [18℄). Then, inorder to derive a suitable distribution of the initial auxiliary fun
tion and thus of the 
ontrastfun
tion, Eq.(4) is solved in terms of the auxiliary fun
tion, a

ording to the original strategy.The a
hieved result is denoted in the following as the modi�ed ba
kpropagation solution.In parti
ular, on
e the 
ontrast sour
e distribution has been initialized as follows
Jl,0(r) = γEi

l(r) (14)wherein γ is a real 
onstant to determine a

ording to the availability of some informationon the nature of the targets (lossless nature, approximate mean value of the permittivitydistribution,...), the initial distribution of the auxiliary fun
tion is obtained by minimizingthe following 
ost fun
tional
ξ0(r) = min

ap

‖ Jl,0 − ξEi
l − ξGmod(Jl,0) ‖2

D . (15)wherein {ap}P
p=1 are the auxiliary fun
tion 
oe�
ients as de�ned in Eq.(7). As shown inthe following, this simple modi�
ation of the original ba
kpropagation solution allows toimprove the �nal re
onstru
tions. Note that, in that 
ase, no a priori information on thenature of the target has been 
onsidered, ex
ept for an approximate knowledge of the
ontrast average over D. Of 
ourse, if more information on the obje
ts are available, su
has their lossless nature or some positivity 
onstraints on the real part of the permittivitydistribution, one 
an improve the quality of the starting guess and therefore the �nal results.4. Features and limitations of the two-steps approa
h: a brief overviewAs re
alled in the introdu
tion, the problem of re
onstru
ting the unknown 
ontrast fromamplitude-only measurements of the total �eld has been previously approa
hed from a dif-ferent perspe
tive. The devised method, 
on
eptually alternative to dire
t ones, su
h as the



12one presented in Se
tion 3, envisages a solution pro
edure whi
h splits the imaging probleminto two steps.In the �rst step, a preliminary estimation of the amplitude and phase patterns of the s
at-tered �elds (i.e., the usual input of an inverse s
attering approa
h) is performed solving aquadrati
 nonlinear inverse problem [1, 13, 17℄. To this aim, one uses the fa
t that theoverall 
omplex s
attered �elds pattern 
an be represented by means of a set of P Fourierharmoni
s 
oe�
ients on the measurement 
ir
le, say f = {f1, . . . , fP}. Then, one has tominimize the following quantity
F(f) =

L
∑

l=1

‖ Iobs
l − |Ei

l |2 − |Es
l |2 − 2ℜe(Ei

lE
s
l
∗) ‖2

WΓ
. (16)For this 
lass of inverse problems, it is known that o

urren
e of false solutions 
an beavoided, provided that the ratio among the number of independent data (here the samplesof Iobs) and the number of real unknowns (here given by the real and imaginary parts of

f) is larger than 3 [14℄. By addressing the reader to [1℄ for a more detailed dis
ussion, it isworth re
alling here that the interferen
e term in the available data between the in
ident ands
attered �elds 
an be 
onveniently exploited in this framework to ful�l the above mentioned
ondition and therefore a
hieve a robust estimate of the (
omplex) s
attered �eld pattern.In parti
ular, it turns out that, given the size of the minimum 
ir
le RD whi
h en
loses thetargets, a proper setting of the measurement set-up parameters (i.e. the radius RΓ of the
ir
umferen
e wherein the probes are lo
ated) is su�
ient to mat
h the desired ratio. Forthe geometry at hand (see Fig. 1), the �eld properties and representations re
alled in Se
tion2 simply leads to RΓ > Rcr = (−1+
√

6)RD, whi
h thus rules the proper 
hoi
e of RΓ [1℄. Of
ourse, when this 
ondition 
annot be realized (for instan
e due to some physi
al 
onstraintson the set-up dimensions) the solution of the quadrati
 inverse problem may result in anunreliable estimate of the sought pattern [1, 17℄. It is worth noti
ing that similar rules 
anbe derived also in the 
ase of aspe
t limited data [13℄, by properly taking into a

ount thedi�erent geometry.The se
ond part of the two-steps approa
h 
onsists in the solution of a traditional inverses
attering problem and 
an be therefore pursued by taking advantage of any of the manymethods developed in the literature so far. For the sake of 
omparison, we will 
onsiderthe same CS-EB s
attering model as in Se
tion 3. By denoting with Eest
l the estimateds
attered �eld (amplitude and phase), the 
ost fun
tional to be minimized is now given by



13[20℄:
L(ξ, J) =

L
∑

l=1

{

α̂l ‖ KJl − Eest
l ‖2

Γ +βl ‖ Jl − ξEi
l − ξGmod(Jl) ‖2

D

}

, (17)where, di�erent from the one-step approa
h and a

ording to its usual de�nition [18, 20℄,
α̂l

−1 = ‖Eest
l ‖2

Γ and βl is the same as in Eq.(11).By 
omparing the �rst term of 17 to the 
orresponding one in the single-step 
ost fun
tionalof Eq.(11), one 
an immediately noti
e that the two-steps approa
h is 
hara
terized by alower degree of non-linearity [19℄ with respe
t to the parameters embedding the unknownsof the inverse problem. In parti
ular, while the �rst term in Eq.(17) depends on theunknown 
ontrast sour
e Jl in a linear way, the 
orresponding term in Eq.(11) is related toits square amplitude, thus passing from a linear dependen
e to a non-linear one. Due tothe lo
al nature of the adopted optimization method, su
h a 
ir
umstan
e has a key role inobtaining a

urate re
onstru
tions of the unknown permittivity maps [22℄. In parti
ular,the single-step approa
h results to be more sensitive to the starting guess. A

ordingly,when the 
onditions on the measurement set-up makes it appli
able, the two step phaselessimaging method has to be preferred.5. Experimental resultsThe performan
es of the two phaseless imaging approa
hes des
ribed in Se
tion 3 andSe
tion 4 have been tested using the experimental data provided by the Institute Fresnel ofMarseille [23�25℄. In these experiments, measurements are 
olle
ted under an aspe
t limited
on�guration in whi
h, for ea
h position of the primary sour
e ϑl ∈ [0, 3600], measurementsare gathered over an open ar
 ϑr ∈ [ϑl + 600, ϑl + 3000]. For all the 
onsidered examples,the working frequen
y is 4GHz. The domain under test is taken as a square region of 2.8λside, λ being the wavelenght in free spa
e, subdivided in 46 × 46 pixels for the �rst twoexamples and in 80 × 80 in the last one, a

ording to the metalli
 nature of the target.As the overall number of s
attering experiments (L-number of sour
es and M-number ofre
eivers) are being dependent from the 
onsidered experiments, they will be given for ea
h
ase. The iterative pro
edure is stopped when the di�eren
e between the previous value ofthe adopted 
ost fun
tional and the a
tual one is less than 1.0 × 10−4. Moreover, note thatwhen the modi�ed ba
kpropagation solution is used as suitable stating guess, the parameter
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γ in Eq.(14) has been �xed equal to 1.0 in all the numeri
al experiments.As the database provides measurements of amplitude and phase of the total and in
ident�elds, we 
an 
onveniently exploit the measured phase of the total �eld to 
he
k thea

ura
y of both phaseless imaging approa
hes herein presented.A. TwinDielTM datasetAs �rst example, we have 
onsidered the TwinDielTM dataset [23℄ 
onsisting of twodiele
tri
 homogeneous 
ylinders of radius 1.5 
m and permittivity 3 ± 0.3, approximatelypositioned at (−4.5, 0) 
m and (4.5, 0) 
m, respe
tively. This dataset is known in theliterature as a ben
hmark for non-linear inverse s
attering methods, as linearized approa
hesare understood to fail when applied to it. In this experiment, L = 36 sour
e positionsand M = 72 re
eiver positions have been 
olle
ted. A

ording to the above results on the�eld properties, both the intensity of the total �eld and of the in
ident �eld are properlysampled in this example.Let us start to apply the two-step pro
edure of Se
tion 4. In parti
ular, by using theknowledge of the in
ident �eld and of the measured square amplitude distribution of thetotal �eld on the 240◦ ar
, the Fourier harmoni
s 
oe�
ients of the s
attered �eld areevaluated by minimizing Eq.( 16). The number of 
oe�
ients (here 11 × 11) is related tothe ele
tri
al dimension of the investigated domain and a random distribution has beenused as a starting guess in the quadrati
 minimization pro
edure. By 
omparing the a
tuals
attered �eld (see Fig. 2 and Fig. 3) and the retrieved one (see Fig. 4 and Fig. 5), it 
an beobserved that a good re
onstru
tion is a
hieved, both in amplitude and in phase, althougha slightly worse re
onstru
tion is obtained at the end of the observation ar
, due to thetrun
ation of the measurement domain. It is also interesting to note that sin
e the radius of
ir
le wherein the re
eivers are lo
ated is RΓ = 1.765 m and Rcr = 0.2113 m, the 
ondition
RΓ > Rcr holds true and then prevents lo
al minima o

uren
e [1℄.The se
ond and �nal step of the two-step based pro
edure deals with a standard inverses
attering problem, addressed here using the CS-EB method. The ba
kground solutionhas been used as a starting guess in the minimization of Eq.( 17). After representing theunknown auxiliary fun
tion ξ and then the 
ontrast fun
tion J in terms of 11 × 11 Fourierharmoni
s in the minimization pro
edure, the very a

urate re
onstru
tion of the real part



15of the 
ontrast is a
hieved and shown in Fig. 6. Note that no a priori information has beenused at all. The 
orresponding imaginary part, in agreement with the lossless nature ofthe targets, is negligible with respe
t to the real one (0.10 is the maximum value of theestimated imaginary part). The maximum value of the estimated 
ontrast fun
tion is 2.1,whi
h is within the measurement a

ura
y. The overall 
omputational time is about fewminutes on a standard Desktop PC.It is worth noti
ing that a 
omparable re
onstru
tion is a
tually obtained when using themeasured (amplitude and phase) s
attered �elds dire
tly inside Eq.( 17), thus 
on�rmingthe possibility of performing a faithful phaseless quantitative imaging without any loss ofa

ura
y.Let us now 
ompare the above result with the one obtained by the one-step approa
hof Se
tion 3, where the intensity data is dire
tly in
orporated into the minimizationpro
ess. The auxiliary fun
tion ξ and the 
ontrast fun
tion are still represented in termsof 11 × 11 Fourier harmoni
s. The ba
kground solution is �rst used as a starting guessand the obtained results are represented in Fig. 7. Due to the dis
ussed higher degree ofnonlinearity of the one-step inversion problem, the minimization pro
edure is more sensitiveto the starting guess and get stu
k into a lo
al minimum. Indeed, even if the shape of thetwo targets is 
learly de�ned, their permittivity value is mu
h lower than the a
tual one.In order to improve the results, the modi�ed ba
kpropagation solution is now used asa starting guess. As shown in Fig. 8, the use of this di�erent initialization leads to animproved re
onstru
tion for the real part of the 
ontrast. Again, the 
orresponding imag-inary part is negligible with respe
t to the real one, being 0.12 its maximum estimated value.B. FoamDielExtTM datasetAs se
ond example, we have 
onsidered the FoamDielExtTM dataset [24, 25℄ whi
h
orresponds to an inhomogeneous target embedded in free spa
e. The target is made of twopurely diele
tri
 
ylinders, tangent to ea
h other. The larger one is 
entered and presentsa relative permittivity of 1.45 ± 0.1 and a radius of 0.04 m, the smaller one has a relativepermittivity of 3± 0.3 and a radius of 0.015 m. In this 
ase, a 
ombination of L = 8 sour
epositions and M = 241 re
eiver positions are 
olle
ted. Due to the very limited numberof sour
e positions in this example, both the intensity of the total �eld and of the in
ident



16�eld are not properly sampled (see Se
tion 2). Therefore, worse results are expe
ted withrespe
t to previous example, both in terms of re
onstru
tion of the s
attered �eld and ofthe permittivity pro�le.Let us 
onsider �rst the two-step based pro
edure. After modeling the unknown 
omplexs
attered �eld as a superposition of 11× 11 Fourier harmoni
s, we have solved the problemof Eq.( 16); then the unknown auxiliary fun
tion and the 
ontrast fun
tion have beenrepresented in terms of 11 × 11 Fourier harmoni
s and the 
ost fun
tional in Eq.( 17) hasbeen minimized starting from the ba
kground solution as a suitable starting guess. The realpart of the re
onstru
ted 
ontrast is shown in Fig. 9, while the imaginary one, a

ording tothe lossless nature of the targets, is again negligible.It is interesting to note that, as expe
ted, the quality of the re
onstru
tion is worse thanthe previous example, even if the presen
e of two targets is 
learly retrieved, together withtheir size and shape. In parti
ular, the redu
ed number of independent data at our disposalfor the inversion of the quadrati
 operator in the �rst step (we passed from the 36 sour
esof the �rst example to the 8 of this one) makes it more di�
ult to extra
t the s
attered�eld from the intensity only of the total �eld, thus negatively a�e
ting the a

ura
y of the�nal re
onstru
tion of the 
ontrast fun
tion in the se
ond step.Let us now 
onsider the one-step pro
edure. The unknown auxiliary fun
tion and the
ontrast fun
tion are represented in terms of 11 × 11 Fourier harmoni
s. By using themodi�ed ba
kpropagation solution as starting guess, the real part of the 
ontrast fun
tionreported in Fig. 10 is a
hieved, whose 
orresponding imaginary part is negligible (0.07 isnow its maximum value).As it 
an be seen, by using an a

urate starting guess, the �nal quality of the re
onstru
tionis a

urate, both in terms of size of the targets and their shapes, even if the 
ontrast valuesare slightly underestimated with respe
t to the a
tual ones, in agreement with the redu
tionof independent information. It is also interesting to note that the a
hieved results arebetter than the ones obtained by using the two-steps approa
h of Se
tion 4, thus 
on�rmingthe expe
ted 
omplementarity and 
apabilities of the inverse pro�ling approa
hes hereindis
ussed. In parti
ular, this example shows that, when the 
onditions for applying thetwo-steps pro
edure do not hold, the one-step approa
h is a valuable alternative.



17C. FoamMetExtTM datasetTo show the 
apability of the one-step pro
edure to su

essfully retrieve the imaginary partof the unknown 
ontrast, whi
h is present in the 
ase of lossy or metalli
 targets, we have
onsidered the FoamMetExtTM dataset [24, 25℄ whi
h 
onsists of an inhomogeneoustarget made of two 
ir
ular 
ylinders. The smaller one, lo
ated outside the diele
tri
 one, ismetalli
, while the diele
tri
 
ylinder is 
hara
terized by a relative permittivity of 1.45±0.1and a radius of 0.04 m. The radius of the metalli
 
ylinder is 0.015 m. In this 
ase, L = 18and M = 241 measures are 
olle
ted.By still 
onsidering 11 × 11 unknowns Fourier harmoni
s for the auxiliary fun
tion and the
ontrast fun
tion and by using the modi�ed ba
kpropagation solution as starting guess, theresults reported in Fig. 11 and Fig. 12 have been a
hieved. As it 
an be seen, the metalli
nature of the smaller 
ylinder has been 
learly estimated, as well as its size and shape.We 
an thus 
on
lude that the pro
edure 
an indeed re
onstru
t the imaginary part of the
ontrast fun
tion. It is also worth noting that the 
hara
teristi
s of the diele
tri
 
ylinderhave been estimated as well, even if the strong re�e
tion from the metalli
 target does notallow to a
hieve an a

urate estimation of its shape and size.Note that the 
apability to image lossy or metalli
 targets by means of the two-steps approa
hhas been already investigated and proved, under proper 
onditions, in [1, 13℄.6. Con
lusionIn this paper two di�erent strategies for the 
hara
terization of two-dimensional targets us-ing phaseless measurements of the total �elds have been 
ompared by using experimentaldata measured at the Institute Fresnel of Marseille, 
on
erning homogeneous and inhomo-geneous targets, with a 
ombination of purely diele
tri
 and metalli
 materials.In the �rst inversion method, the intensity-only measures of the total �eld have been di-re
tly in
orporated in the minimization s
heme, while the a

ura
y and the quality of the�nal results have been improved by means of a proper de�nition of the starting guess and asuitable weighting of the 
onsidered 
ost fun
tional.In the se
ond s
heme, originally proposed in [1℄, one exploits the properties of the s
attered�elds and the theoreti
al results on the inversion of quadrati
 operators to derive a two-stepssolution strategy, wherein the (
omplex) s
attered �elds embedded in the available data are



18retrieved �rst and then a traditional inverse s
attering problem is solved.In both 
ases, the analyti
al properties and representations of the involved �elds allow toproperly �x the measurement set-up and to identify the more 
onvenient solution strategyto adopt. In parti
ular, as dis
ussed by means of theoreti
al 
onsiderations and supportedby experiments, the two-step strategy a
hieves better results as 
ompared to the one-stepapproa
h, due to its better 
ontrol of the overall non-linearity of the inverse problem. Onthe other hand, when the measurement setup does not provide enough independent data toa

urately pursue the �eld retrieval, the one-step approa
h has to be preferred.It is interesting to remark that, while the Marseille data are usually elaborated by usingmulti-frequen
y (i.e., broad-band) data, the a

urate results a
hieved herein with both ap-proa
hes only rely on mono
hromati
 data. Of 
ourse, use of multi-frequen
y information
an further improve the �nal results in terms of size, shape estimation and permittivityvalue.As further 
omment, note that in order to have a 
ompletely phaseless imaging method theknowledge of the in
ident �eld, both in amplitude and in phase, 
an also be avoided. Inparti
ular an additional step would be required in order to estimate the phase of the in
ident�eld on the measurement domain before using one of the imaging pro
edures dis
ussed inthis paper. For more details, the reader is addressed to [17℄.As future work, note that the development of new and e�e
tive inversion approa
hes startingfrom only intensity data of the s
attered �eld instead of the total one 
an be pursued. Asa matter of fa
t, this situation is of interest in opti
al appli
ations where the 
apability ofimaging diele
tri
 and metalli
 targets and developing inversion strategies based on phase-less measures 
an open the way to very interesting appli
ations. On the other side, su
h aproblem sets new 
hallenging di�
ulties. As a matter of fa
t, the amount of independentdata whi
h 
an be exploited is 
onsiderably redu
ed both be
ause one 
annot exploit inter-feren
e amongst the in
ident and the s
attered �elds (see Se
t.4), and be
ause of the fa
tthat the a
tual measurement set-ups produ
e aspe
t limited data [3, 4℄. As a 
onsequen
e,in order to 
ompensate for the la
k of information, both multi-frequen
y approa
h to theproblem and/or the development of innovative measurement 
on�gurations (as well as newinversion pro
edures) are needed.
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e.Appendix AAim of this Appendix is to brie�y derive the CS-EB s
attering equation [20℄, adopted inthe optimization problems 
onsidered in this paper. The starting point is the traditionalContrast - Sour
e integral equation (3); by adding and subtra
ting the 
ontrast sour
efun
tion J(r) in the integral term in this latter, one gets
J(r) − χ(r)Ei(r) = χ(r)

∫∫

D

G(r, r′) [J(r′) − J(r)] dr′ + χ(r)J(r)

∫∫

D

G(r, r′) dr′. (A.1)Then, by grouping with respe
t to J(r), one a
hieves
J(r) − χ(r)J(r)fD(r) = χ(r)Ei(r) + χ(r)

∫∫

D

G(r, r′)[J(r′) − J(r)] dr′ (A.2)where
fD(r) =

∫∫

D

G(r, r′)dr′. (A.3)Now, by introdu
ing
ξ(r) =

χ(r)

1 − χ(r)fD(r)

Gmod(J) =

∫∫

D

G(r, r′)[J(r′) − J(r)]dr′ =

∫∫

D

G(r, r′)J(r′)dr′ − J(r)fD(r).

(A.4)and repla
ing them into Eq.(A.2), the CS-EB s
attering equation (4) is a
hieved [20℄.Some 
omments are now in order. First, note that the CS-EB equation has been de-rived without any approximation from the CS one, being thus 
ompletely equivalentto it. Moreover, sin
e the two equations have the same stru
ture, one 
an exploit allnumeri
al algorithms and tools already developed for the CS equation for the solution ofthe CS-EB one. On the other hand, a new radiation operator and a di�erent auxiliaryfun
tion, see Eq.(A.4), are involved in the CS-EB equation. Therefore, as detailedin [20℄, Eq.(3) and Eq.(4) have the same information 
ontent, but the CS-EB equa-tion exhibits a di�erent, a
tually lower, degree of non linearity [19℄ of the relationshipamongst parameters embedding diele
tri
 
hara
teristi
s and the s
attered �elds. As su
h, itde�nes a new and 
onvenient model for solving forward and inverse s
attering problems [20℄.
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22Figure Captions
• Fig. 1 - Geometry of the problem. A two-dimensional target with 
ross-se
tion Ω. Γ(with radius b) is the 
ir
le where the sour
es (Tx) and probes (Rx) are lo
ated. a isthe radius of the minimum 
ir
le en
losing the unknown targets.
• Fig. 2 - Measured intensity of the s
attered �elds for the TwinDielTM dataset.
• Fig. 3 - Measured phase of the s
attered �elds for the TwinDielTM dataset.
• Fig. 4 - Re
onstru
ted intensity of the s
attered �elds for the TwinDielTM datasetobtained by solving Eq.(16) of the two-steps pro
edure in Se
tion 4.
• Fig. 5 - Re
onstru
ted phase of the s
attered �elds for the TwinDielTM datasetobtained by solving Eq.(16) of the two-steps pro
edure in Se
tion 4.
• Fig. 6 - Real part of the re
onstru
ted 
ontrast fun
tion for the TwinDielTMdataset when using Eq.(17) of the two-steps pro
edure in Se
tion 4. The maximumvalue of the estimated 
ontrast fun
tion is 2.10.
• Fig. 7 - Real part of the re
onstru
ted 
ontrast fun
tion for the TwinDielTMdataset with the one-step approa
h of Se
tion 3. The ba
kground solution has beenused as strating guess. The maximum value of the estimated 
ontrast fun
tion is 0.67.
• Fig. 8 - Real part of the re
onstru
ted 
ontrast fun
tion for the TwinDielTM datasetobtained with the one-step pro
edure of Se
tion 3. The modi�ed ba
kpropagationsolution has been used as starting guess in the inversion pro
edure. The maximumvalue of the estimated 
ontrast fun
tion is 1.85.
• Fig. 9 - Real part of the re
onstru
ted 
ontrast fun
tion for the FoamDielExtTMdataset obtained when following the two-steps approa
h of Se
tion 4. The ba
kgroundsolution has been used as starting guess. The maximum value of the estimated 
ontrastfun
tion is 1.34.
• Fig. 10 - Real part of the re
onstru
ted 
ontrast fun
tion for the FoamDielExtTMdataset by using the one-step approa
h of Se
tion 3. The modi�ed ba
kpropagationsolution has been used as starting guess. The maximum value of the estimated 
ontrastfun
tion is 1.75.
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• Fig. 11 - Real part of the re
onstru
ted 
ontrast fun
tion for the FoamMetExtTMdataset by using the one-step approa
h of Se
tion 3. The modi�ed ba
kpropagationsolution has been used as starting guess.
• Fig. 12 - Imaginary part of the re
onstru
ted 
ontrast fun
tion for the FoamMe-tExtTM dataset by using the one-step approa
h of Se
tion 3. The modi�ed ba
k-propagation solution has been used as starting guess.
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Fig. 1. Geometry of the problem. A two-dimensional target with 
ross-se
tion Ω. Γ (withradius b) is the 
ir
le where the sour
es (Tx) and probes (Rx) are lo
ated. a is the radius ofthe minimum 
ir
le en
losing the unknown targets.
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Fig. 2. Measured intensity of the s
attered �elds for the TwinDielTM dataset.
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Fig. 3. Measured phase of the s
attered �elds for the TwinDielTM dataset.
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Fig. 4. Re
onstru
ted intensity of the s
attered �elds for the TwinDielTM dataset obtainedby solving Eq.(16) of the two-steps pro
edure in Se
tion 4.
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Fig. 5. Re
onstru
ted phase of the s
attered �elds for the TwinDielTM dataset obtainedby solving Eq.(16) of the two-steps pro
edure in Se
tion 4.
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Fig. 6. Real part of the re
onstru
ted 
ontrast fun
tion for the TwinDielTM dataset whenusing Eq.(17) of the two-steps pro
edure in Se
tion 4. The maximum value of the estimated
ontrast fun
tion is 2.10.
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Fig. 7. Real part of the re
onstru
ted 
ontrast fun
tion for the TwinDielTM dataset withthe one-step approa
h of Se
tion 3. The ba
kground solution has been used as strating guess.The maximum value of the estimated 
ontrast fun
tion is 0.67.
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Fig. 8. Real part of the re
onstru
ted 
ontrast fun
tion for the TwinDielTM datasetobtained with the one-step pro
edure of Se
tion 3. The modi�ed ba
kpropagation solutionhas been used as starting guess in the inversion pro
edure. The maximum value of theestimated 
ontrast fun
tion is 1.85.
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Fig. 9. Real part of the re
onstru
ted 
ontrast fun
tion for the FoamDielExtTM datasetobtained when following the two-steps approa
h of Se
tion 4. The ba
kground solution hasbeen used as starting guess. The maximum value of the estimated 
ontrast fun
tion is 1.34.
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Fig. 10. Real part of the re
onstru
ted 
ontrast fun
tion for the FoamDielExtTM datasetby using the one-step approa
h of Se
tion 3. The modi�ed ba
kpropagation solution has beenused as starting guess. The maximum value of the estimated 
ontrast fun
tion is 1.75.
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Fig. 11. Real part of the re
onstru
ted 
ontrast fun
tion for the FoamMetExtTM datasetby using the one-step approa
h of Se
tion 3. The modi�ed ba
kpropagation solution has beenused as starting guess.
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Fig. 12. Imaginary part of the re
onstru
ted 
ontrast fun
tion for the FoamMetExtTMdataset by using the one-step approa
h of Se
tion 3. The modi�ed ba
kpropagation solutionhas been used as starting guess.


