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Abstract

The notion of run (also called maximal repetition) allows a compact representa-
tion of the set of all tandem periodicities, even fractional, in a string. Since the
work of Kolpakov and Kucherov in [8, 9], it is known that ρ(n), the maximum
number of runs in a string, is linear in the length n of the string. Lower bounds
haven been provided by Franek et al. and Matsubara et al. (0.9445...) [5, 6, 10],
and upper bounds have been provided by Rytter, Puglisi et al., and Crochemore
and Ilie (1.048n) [12, 11, 1, 2]. However, very few properties are known for the
ρ(n)/n function. We show here by a simple argument that limn 7→∞ ρ(n)/n
exists and that this limit is never reached. We further study the asymptotic
behavior of ρp(n), the maximal number of runs with period at most p. Finally,
we provide the first exact limits for some microruns. For example, we have
limn 7→∞ ρ14(n)/n = 15/17.

Key words: word combinatorics, maximal repetitions, runs, asymptotic
behavior, maximum number of runs

1. Introduction

The study of repetitions is an important field of research, both for word
combinatorics theory and for practice, with applications in domains like com-
putational biology or cryptanalysis. The notion of run (also called maximal
repetition or m-repetition [8]) allows a compact representation of the set of all
tandem periodicities, even fractional, in a string. The proper counting of those
runs is important for all algorithms dealing with repetitions.

Since the work of Kolpakov and Kucherov in [8, 9], it is known that ρ(n),
the maximum number of runs in a string, is linear in the length n of the string.
They gave the first algorithm computing all runs in a linear time, but without
an actual constant.

✩A preliminary version of this paper appeared in [3]. All the results in Section 4.2, with
the exact limits given in Table 3, are new for this extended article.
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n 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ρ(n) 2 3 4 5 5 6 7 8 8 10 10 11 12 13

n 19 20 21 22 23 24 25 26 27 28 29 30 31
ρ(n) 14 15 15 16 17 18 19 20 21 22 23 24 25

Table 1: Values of ρ(n) for binary strings, from [8].

Upper bounds have been recently provided by Rytter (5n) [12] and Puglisi,
Simpson, and Smyth (3.48n) [11]. A 1.6n bound was obtained by Crochemore
and Ilie [1]. They count separately the microruns, that is the runs with short
periods, and the runs with larger ones. They show that the number of microruns
with period at most 9 satisfies ρ9(n) ≤ n. For larger runs, they prove that

ρ≥p(n) ≤ 2

p

(

∞
∑

i=0

(

2

3

)i
)

n =
6

p
· n.

Crochemore, Ilie, and Tinta extended those results with massive computa-
tions, bringing down the upper bound from 1.6n to 1.048n [2].

A lower bound of αn, with α = 3/(1 +
√

5) = 0.927..., has been given
by [5] then [6]. In [5], Franek, Simpson, and Smyth propose a sequence of
strings (xn) with increasing lengths such that limn 7→∞ r(xn)/|xn| = α, where
r(x) is the number of runs in the string x. In [6], Franek and Yang show that
α is an asymptotic lower bound by showing that there exists a whole family
of asymptotic lower bounds arbitrarily close to α. Recently, Matsubara et al.
provided an 174719/184973 = 0.9445.. lower bound by repeating a large run-rich
string [10].

In fact, very few properties are known for the ρ(n)/n function [6, 13]. In this
paper, after giving some definitions (Section 2), we show by a simple rewriting
argument that ℓ = limn 7→∞ ρ(n)/n exists and that this limit is never reached
(Section 3.1), proving that

ρ(n)

n
≤ ℓ − 1

4n
.

Section 3.2 proves the convergence of ρ(n)/n even in the case of a fixed
alphabet, for example for binary strings. In Section 4.1, we further study the
asymptotic behavior of ρp(n), the number of runs with short periods, showing
that ℓp = limn 7→∞ ρp(n)/n exists and that, for some constant zp,

ℓp − zp

n
≤ ρp(n)

n
≤ ℓp ≤ ℓ.

Moreover, we provide a simple way to exactly count some microruns (Sec-
tion 4.2). We give in Table 3 the first exact limits ℓp for microruns on binary
strings with p ≤ 14. Section 5 gives some concluding remarks.
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2. Definitions

Let x = x1x2 . . . xn be a string over an alphabet. Let p ≥ 1 be an integer.
We say that x has a period p if for any i with 1 ≤ i ≤ n − p, xi+p = xi. We
denote by x[i . . j] the substring xixi+1 . . . xj . A run is an interval [i . . j]:

• such that x[i . . j] has period p ≤ (j − i + 1)/2,

• that is maximal: if they exist, neither xi−1 = xi−1+p, nor xj+1 = xj+1−p,

• and such that x[i . . i + p − 1] is primitive: it is not an integer power of
another string.

We define by rp(x) the number of runs of period ≤ p in x, called microruns in
[1], and by r(x) = r⌊|x|/2⌋(x) the total number of runs in x. For example, the four
runs of x = atattatt are [4 . . 5] (tt), [7 . . 8] (tt), [1 . . 4] (atat) and [2 . . 8] (tattatt),
and thus r1(x) = 2, r2(x) = 3, and r3(x) = r(x) = 4. Given an integer n ≥ 2,
we now consider all strings of length n. We define as

ρp(n) = max{rp(x) | |x| = n}

the maximum number of runs of period ≤ p in a string of length n. Then we
define as

ρ(n) = max{r(x) | |x| = n} = ρ⌊n/2⌋(n)

the maximum number of runs in a string of length n. Kolpakov and Kucherov
gave in [9] some values for ρ(n) (Table 1). Table 4, at the end of this paper,
shows some values for ρp(n). Note that r(x) = ρ(|x|) does not imply that
rp(x) = ρp(|x|) for all p: for example, r(aatat) = 2 = ρ(5) but r1(aatat) = 1 <
ρ1(5) = 2.

Finally, we can define values r≥p(x) and ρ≥p(n) for macroruns, that is runs
with a period at least p. Again, r(x) = ρ(|x|) does not imply that r≥p(x) =
ρ≥p(|x|). For example, r≥2(aatt) = 0 < ρ≥2(4) = 1 = r≥2(atat).

3. On the number of runs

3.1. Rewritings and asymptotic behavior of the number of runs

Franek et al. [5, 6] list some known properties for ρ(n):

• For any n, ρ(n + 2) ≥ ρ(n) + 1

• For any n, ρ(n + 1) ≤ ρ(n) + ⌊n/2⌋

• For some n, ρ(n + 1) = ρ(n)

• For some n, ρ(n + 1) = ρ(n) + 2

We add the following two simple properties.
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Proposition 1. The function ρ is superadditive: for any m and n, we have
ρ(m + n) ≥ ρ(m) + ρ(n).

Proof. Take two strings x and y of respective lengths m and n such that
r(x) = ρ(m) and r(y) = ρ(n). Let ȳ be a rewriting of y with characters not
present in x. (See below for a discussion on the size of the alphabet.) Then xȳ
is a string of length m + n containing exactly the runs of x and the rewritten
runs of y. Thus ρ(m + n) ≥ r(xȳ) = r(x) + r(y) = ρ(m) + ρ(n).

For any t ≥ 1, we have in particular ρ(tn) ≥ tρ(n).

Proposition 2. For any n, ρ(4n) ≥ 4ρ(n) + 1

Proof. Take a string x of length n with r(x) = ρ(n). Let x̄ be a rewriting of
x with characters not present in x. Then r(xx̄xx̄) ≥ 4r(x) + 1.

We can now state our main result:

Theorem 1. ρ(n)/n converges to its upper limit ℓ. Moreover, the limit is never
reached, as for any n we have

ρ(n)

n
≤ ℓ − 1

4n
.

Proof. Let ℓ be the upper limit of ρ(n)/n. This limit is finite because of [9].
Given ε, there is a n0 such that ρ(n0)/n0 ≥ ℓ − ε/2. For any n ≥ n0, let be
t = ⌊n/n0⌋. Then we have ρ(n)/n ≥ ρ(tn0)/n ≥ tρ(n0)/n by Proposition 1,
thus ρ(n)/n ≥ t/(t + 1) · ρ(n0)/n0. Let be t0 such that t0/(t0 + 1) · ρ(n0)/n0 ≥
ρ(n0)/n0 − ε/2. Then, for any n ≥ t0n0, we have ρ(n)/n ≥ ℓ − ε, thus ℓ =
limn 7→∞ ρ(n)/n. Finally, Proposition 2 gives ℓ ≥ ρ(4n)/4n ≥ ρ(n)/n + 1

4n .

The proof of convergence of f(n)/n when f is superadditive is known as
Fekete’s Lemma [4, 14]. This convergence result was an open question of [6].
In fact, the motivation of [6] was the remark that “the sequence |xi| (of [5])
is only “probing” the domain of the function ρ(n) and r(xi) is “pushing” the
value of ρ(n) above αn in these “probing” points”. Then Franek and Yang [6]
prove that every α− ε is an actual asymptotic lower bound by building specific
sequences. With Propositions 1 and 2 and Theorem 1, it is now sufficient to
study bounds on any (ρ(ni)/ni) sequence (for a growing sequence (ni)) to give
bounds on ρ(n)/n.

Note that this convergence does not imply monotonicity. In fact, if ℓ < 1,
then ρ(n)/n is asymptotically non monotonic, as there will be in this case an
infinity of n’s such that ρ(n+1) = ρ(n). Note also that, although Proposition 1
and 2 require to double the alphabet size, the alphabet remains finite: the proof
of Theorem 1 only requires to double once this alphabet size. Moreover, it is
possible to prove Proposition 1 without rewriting in a larger alphabet, thus
proving the convergence of ρ(n)/n when considering only binary strings. This
second proof, more elaborated, is given in the next section.
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The bound ℓ − 1
4n can be improved. For example, with a rewriting similar

to the one used in Proposition 2, it can be shown that ρ(2n2) ≥ (2n + 1)ρ(n),
giving by successive iterations ρ(n)/n ≤ ℓ − 1

2n . This has not been reported
here to keep the proof simple.

Concerning microruns with period at most p, Proposition 1 still holds:

Proposition 3. For any p, m, and n, we have ρp(m + n) ≥ ρp(m) + ρp(n).
Thus for any p, ρp(n)/n converges to its upper limit ℓp.

The proof is the same as above. On the contrary, Proposition 2 may be not
true for microruns. For example, for any n, ρ1(n) = ⌊n/2⌋, and thus for any
even n, we have ρ1(n)/n = ℓ1 = 1/2.

Finally, Theorem 1 is fully valid for macroruns. Moreover, taking the fol-
lowing inequality to the limit, we have ℓ≥p ≥ ℓ/p.

Proposition 4. For any p and n, ρ≥p(pn) ≥ ρ(n).

Proof. Take a string x = x1x2 . . . xn of length n with r(x) = ρ(n). Let x̄ be
the string xp

1x
p
2 . . . xp

n of length pn. Then r≥p(x̄) ≥ r(x).

3.2. A proof of Proposition 1 for fixed alphabets

Here we prove Proposition 1 without rewriting in a larger alphabet, thus
proving the convergence of ρ(n)/n when considering only binary strings. This
proof is borrowed and simplified from one part of a proof of Franek et al. (The-
orem 2 of [5]). A key observation is that some runs of x and y are merged in xy
only when a string z2 is both a suffix of x and a prefix of y (case a2 on Figure 1).
We first have this property :

Proposition 5. Let Σ be an alphabet with |Σ| ≥ 2, and let x and y be strings
on Σ such that |y| ≥ 1. Then there exists strings x′ and y′ on Σ such that
|x′| + |y′| = |x| + |y|, |y′| < |y| and r(x′) + r(y′) ≥ r(x) + r(y).

Proof. Let w be the longest string, eventually empty, such that w is a suffix
of x and a prefix of y. Thus x = uw and y = wv for some strings u and v. Let
x′ = uwv and y′ = w. Clearly |x′| + |y′| = |x| + |y| and |y′| ≤ |y|. Without
loss of generality, we assume that y is not a suffix of x. (If it is not the case, we
rewrite y into ȳ using an isomorphism of Σ onto itself.) Thus |y′| < |y|. Now we
consider the runs of period p that were counted in r(x)+r(y). The runs with 2p
characters (“a square”) completely included in w were counted once in r(x) and
once in r(y). Such runs are counted again once in r(x′) and once in r(y′). By
definition of w, all the others runs counted in r(x) and r(y) are counted exactly
once in r(x′), without being merged.

To prove Proposition 1, we take two strings x0 and y0 of respective lengths m
and n such that r(x0) = ρ(m) and r(y0) = ρ(n). Applying recursively Proposi-
tion 5 gives a finite sequence of pairs of strings (x0, y0), (x1, y1), . . . (xt, yt) with
r(xi) + r(yi) ≥ r(xi−1) + r(yi−1) and |y0| > |y1| > . . . > |yt| = 0 for some t.
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a1)

a2)

b) q q
b) q q

2p − 1 2p − 1

x y

Figure 1: a1) Run with at least two periods included in x. a2) Run with at least two periods
included in x, and at least two periods included in y. b) “New runs” between x and y. To
bound the new runs with period q ≤ p, it is sufficient to consider strings of length 4p − 2.
Note that 4p characters would be required to exactly count the new runs.

Finally |xt| = |x0|+ |y0| = m + n, and thus ρ(m + n) ≥ r(xt) ≥ r(x0) + r(y0) =
ρ(m) + ρ(n), proving Proposition 1.

Note that the proof of Franek et al. in [5] was in a different context, and
that no result leading to our Proposition 1 was stated as such in their paper.

4. On the number of microruns

In the following sections, p is fixed and we study the asymptotic behavior of
the number of microruns ρp(n)/n beyond the result of Proposition 3. In section
4.1, the idea is to bound the new runs created by the concatenation of two
strings. In section 4.2, the idea is to count exactly the new runs created by the
concatenation of a string and a character. Both sections provide new bounds or
exact limits on the number of some microruns.

4.1. New runs obtained by string concatenation

Let x and y be two strings, and s be a run of xy with period q ≤ p. Then s
is exactly in one of the following two cases (Figure 1):

• a) s has at least two periods included in x, or at least two periods included
in y;

• b) s has strictly less than two periods included in x, and strictly less than
two periods included in y.

We call the runs in the case b) the new runs between x and y, and we denote
by NRp(x, y) the number of such runs. Then rp(xy) ≤ rp(x)+rp(y)+NRp(x, y),
the inequality coming from the fact that a run from x can be merged with a
run from y (case a2 on Figure 1). We can bound the number of new runs, and
thus have an upper bound on rp(xy):

Proposition 6. Let zp = max{NRp(x, y) | |x| = |y| = 2p − 1} the maximum
number of new runs with period q ≤ p between strings of length 2p − 1. Then,
for every strings x and y of any length, we have NRp(x, y) ≤ zp.
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p zp example
1, 2 1 t t

3 2 ttat ta

4 4 ataaata attaat

5, 6, 7 5 ttatatta taatataa

8 6 ttttattattttat taattattaa

9, 10 7 ttatatatattatata taatatatataa

Table 2: Values for zp for binary strings with worst-case examples of length ≤ 4p − 2.

Proof. Any new run with period q ≤ p has at most 2q− 1 ≤ 2p− 1 characters
in x, and in y (Figure 1).

Proposition 7. For any m and n, ρp(m + n) ≤ ρp(m) + ρp(n) + zp.

Proof. Let x and y be two strings such that |x| = m, |y| = n, and rp(xy) =
ρp(m + n). Then ρp(m + n) = rp(xy) ≤ rp(x) + rp(y) + NRp(x, y) ≤ ρp(m) +
ρp(n) + zp.

Table 2 provides some values of zp for binary strings. An immediate bound
on zp is zp ≤ zp−1 + 2. Knowing bounds on zp helps to characterize the asymp-
totic behavior of the number of microruns:

Theorem 2. For any n, we have ℓp ≤ ρp(n)/n + zp/n, and thus

ℓp − zp

n
≤ ρp(n)

n
≤ ℓp ≤ ℓ.

Proof. By Proposition 7, for any t ≥ 1, we have ρp(tn) ≤ tρp(n) + (t − 1)zp.
Thus ρp(tn)/tn ≤ ρp(n)/n + t−1

t zp/n. Taking this inequality to the limit, as t
goes to infinity, gives the result.

Thus we know that the convergence of ρp(n)/n to ℓp is faster than zp/n. Note
that we do not have a similar result for ρ(n), as we do not have a convenient
way to bound ρ(m + n) like in Proposition 6.

As a side result of Theorem 2, we have new bounds of the number of some
microruns. For example, brute-force computations give for binary strings z9 = 7
and ρ9(34) = 26, thus ℓ9 ≤ 33/34 = 0.970. For binary strings, this result is
better than Lemma 2 of [1] which proved the n bound by the count of amortizing
positions for centers of runs. The next section further improves this bound and
finds exact values for some ℓp’s.

4.2. The exact number of microruns

In this section, we propose to count exactly the number of microruns, by
considering the concatenation of a string and a single character. Let x be a
string, α ∈ Σ a character, and s be a run of xα with period q ≤ p. Then s is
exactly in one of the following two cases (Figure 2) :

7



a1) q q

a1) p p

b) p p

2p

x α

Figure 2: a1) Runs of x, extended in α. b) “New runs” between x and α. Unlike in Fig. 1,
there is no case a2) where some runs are merged. To count the new runs with period q ≤ p,
it is sufficient to consider the suffix of x of length 2p.

• a) s has at least two periods included in x;

• b) s has strictly less than two periods included in x.

As in the previous section, we call the runs in the case b) the new runs
between x and α, and we denote by NRp(x, α) the number of such runs. As
there is here no merging of runs, we have rp(xα) = rp(x) + NRp(x, α). In fact,
the last 2p characters of x are sufficient to know NRp(x, α):

Proposition 8. Let x be a string with |x| = n ≥ 2p. Then we have NRp(x, α) =
NRp(x[n − 2p + 1 . . . n], α).

Proof. Any new run with period q ≤ p has at most 2q− 1 ≤ 2p− 1 characters
in x. Any run of x with period q ≤ p extending in α has at a least 2 periods
in the last 2p characters of x (Figure 2). Knowing the last 2p characters of x is
thus sufficient to tell apart the two kinds of runs.

If v is a string of length 2p and n ≥ 2p, we define fn
p (v) = max|x|+|v|=n rp(xv)

as the maximum number of runs of all the strings ending with the suffix v. The
function fn+1

p can be entirely determined from the functions fn
p and NRp:

Proposition 9. If |w| = 2p − 1, α ∈ Σ, and n ≥ 2p, then

fn+1
p (wα) = max

β∈Σ

(

fn
p (βw) + NRp(βw, α)

)

.

Proof. To compute fn+1
p (wα) = max|x|+|wα|=n+1 rp(xwα), we suppose, with-

out loss of generality, that the string x is of length at least one and we write
x = yβ, where y is a string and β ∈ Σ.

fn+1
p (wα) = max|yβ|+|wα|=n+1 rp(yβwα)

= max|yβ|+|wα|=n+1 (rp(yβw) + NRp(yβw, α))
= max|yβ|+|wα|=n+1 (rp(yβw) + NRp(βw, α)) (Proposition 8)
= maxβ∈Σ

(

max|y|+|βw|=n rp(yβw) + NRp(βw, α)
)

= maxβ∈Σ

(

fn
p (βw) + NRp(βw, α)

)
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Once all the |Σ|2p+1 values of NRp are computed, the above equation can
be used to recursively determine any fn

p function in O(n · |Σ|2p+1) time. Then
any number of microruns ρp(n) = max|v|=2p fn

p (v) follows. When n grows, an
additive periodic behavior can emerge:

Theorem 3. If for some n0, k and s with 2p ≤ n0 < n0 + k, we have fn0+k
p =

fn0

p + s then, for any n ≥ n0, we have fn+k
p = fn

p + s, and ℓp = s/k.

Proof. If the property fn+k
p = fn

p + s is true for some n, then

fn+1+k
p (wα) = maxβ∈Σ

(

fn+k
p (βw) + NRp(βw, α)

)

= maxβ∈Σ

(

(fn
p (βw) + s) + NRp(βw, α)

)

= fn+1
p (wα) + s

and the property is true for n + 1. By induction, it is true for every n ≥ n0.
In particular, for every t ≥ 0, we have fn0+tk

p = fn0

p + ts, that is ρp(n0 + tk) =
ρp(n0)+ts and finally limt7→∞ ρp(n0+tk)/(n0+tk) = s/k. As ρp(n)/n converges
(Proposition 3), the Theorem is proved.

By computing fn
p functions for successive n and by checking the additive

periodicity condition of Theorem 3, one can have exact values of ℓp for small
p’s. Table 3 lists results for p ≤ 14 on binary strings. Note that the periodicity
on ρp(n) can appear before the periodicity on fn

p . For example, as soon as
n ≥ 35, ρ9(n + 13) = ρ9(n) + 11, but the periodicity on fn

9 only starts at
n0 = 51.

Using the result of Crochemore and Ilie’s Proposition 1 [1] for large runs, we
get an upper bound on ρ(n)/n. For binary strings, the exact value ℓ14 = 15/17
gives:

ℓ ≤ ℓ14 + ℓ≥15 ≤ 15

17
+

6

15
= 1.282...

Thus the number of runs in a binary string of length n is not more than
1.29n. This result was better than the 1.6n bound published in [1], but the
better bound of 1.048n has now been published [2]. Nevertheless, the values we
give in the Table 3 are the first known exacts limits for such microruns.

5. Perspectives

The results on the asymptotic behavior of the functions ρ and ρp of Theo-
rems 1 and 2 simplify the research on lower and upper bounds. Moreover, the
application of the Theorem 3 provides the first exact limits for the number of
some microruns. We hope that these results will bring a better understanding of
the number of runs and be a step towards proving the conjecture of [8] (ℓ ≤ 1).

As Theorem 2 and 3 provide upper bounds or exact limits for some mi-
croruns, they can be used to bound the total number of runs. In both cases,
this would require large evaluations of zp or fn

p (w) values that could be improved
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ℓ1 = ℓ2 =
1

2
= 0.5

f4
1 = f2

1 + 1

f7
2 = f5

2 + 1

ℓ3 = ℓ4 =
3

4
= 0.75

f16
3 = f12

3 + 3

f45
4 = f41

4 + 3

ℓ5 = ℓ6 =
7

9
= 0.777...

f36
5 = f27

5 + 7

f47
6 = f38

6 + 7

ℓ7 =
4

5
= 0.8 f62

7 = f57
7 + 4

ℓ8 = ℓ9 = ℓ10 = ℓ11 = ℓ12 =
11

13
= 0.846...

f62
8 = f49

8 + 11

f64
9 = f51

9 + 11

f69
10 = f56

10 + 11

f120
11 = f107

11 + 11

f145
12 = f132

12 + 11

ℓ13 = ℓ14 =
15

17
= 0.882...

f113
13 = f96

13 + 15

f104
14 = f87

14 + 15

Table 3: Exact limits of ρp(n)/n for binary strings, obtained by successive applications of the
equation in Proposition 9 until the additive periodicity condition of Theorem 3 is true. Each
assertion on the right gives the smallest n ≥ 2p such that fn+k

p = fn
p +s for some s and k > 0.

The value ℓ13 required three hours of computation on a standard 2 GHz workstation. This
time is almost entirely spent in the initial computation of the 22p+1 values of the function
NRp, obtained by aggregate calls to mreps [7]. The successive computations of fn

p are done in
a few seconds.
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n ρ(n) 1, 2 3 4 5 6 7 8 9 10 11 12 13 14
5 2 2

6 3 3 3
7 4 3 4

8 5 4 4 5

9 5 4 5 5
10 6 5 6 6 6
11 7 5 6 7 7
12 8 6 7 8 8 8
13 8 6 8 8 8 8
14 10 7 9 9 9 9 10

15 10 7 9 9 10 10 10
16 11 8 10 10 11 11 11 11
17 12 8 11 11 11 11 12 12
18 13 9 12 12 12 12 13 13 13
19 14 9 12 13 13 13 14 14 14
20 15 10 13 13 14 14 14 15 15 15
21 15 10 14 14 14 14 15 15 15 15
22 16 11 15 15 15 15 15 16 16 16 16
23 17 11 15 16 16 16 16 17 17 17 17
24 18 12 16 16 17 17 18 18 18 18 18 18
25 19 12 17 17 18 18 18 18 18 18 19 19
26 20 13 18 18 18 18 19 19 19 19 19 19 20

27 21 13 18 18 19 19 20 20 20 20 21 21 21
28 22 14 19 19 20 20 21 21 21 21 21 21 22 22
29 23 14 20 20 21 21 21 22 22 22 22 22 23 23
30 24 15 21 21 21 21 22 23 23 23 23 23 24 24
31 25 15 21 21 22 22 23 24 24 24 24 24 25 25
32 26 16 22 22 23 23 24 25 25 25 25 25 26 26
33 27 16 23 23 24 24 25 26 26 26 26 26 27 27
34 27 17 24 24 25 25 26 26 26 26 26 26 27 27
35 28 17 24 24 25 25 26 27 27 27 27 27 28 28

Table 4: Values of ρp(n) for binary strings. For each n, the value in bold shows the smallest
period p such that ρp(n) = ρ(n).

by a more precise analysis, for example by taking inspiration from the methods
of Crochemore and Ilie. Moreover, a better analysis could improve their 6/p
bound on the number of macroruns ℓ≥p.

For the lower bound, it remains to be shown if one can find strings with
more runs than those of [5, 6]. Although Theorem 1 also provides a way to have
a lower bound on ρ(n)/n, all the computations we ran gave not better bounds
than the 0.9445... bound of [10].

Now an important question is if the actual value of ℓ can be found with such
a separation between microruns and macroruns. The inequality ℓ ≤ ℓp + ℓ≥p+1

may be strict for some p. If this inequality is strict for several p’s, the conjecture
may be impossible to prove by this way if one choose a bad splitting period p.

Another open question is if one of the constants ℓp = limn 7→∞ ρp(n)/n is
equal to ℓ, or if, more probably, the limit ℓ is obtained by considering asymptot-
ically runs with any period. Finally, it remains to be proven if strings on binary
alphabets can always achieve the highest number of runs.
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