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. However, very few properties are known for the ρ(n)/n function. We show here by a simple argument that lim n →∞ ρ(n)/n exists and that this limit is never reached. We further study the asymptotic behavior of ρ p (n), the maximal number of runs with period at most p. Finally, we provide the first exact limits for some microruns. For example, we have lim n →∞ ρ 14 (n)/n = 15/17.

Introduction

The study of repetitions is an important field of research, both for word combinatorics theory and for practice, with applications in domains like computational biology or cryptanalysis. The notion of run (also called maximal repetition or m-repetition [START_REF] Kolpakov | Maximal repetitions in words or how to find all squares in linear time[END_REF]) allows a compact representation of the set of all tandem periodicities, even fractional, in a string. The proper counting of those runs is important for all algorithms dealing with repetitions.

Since the work of Kolpakov and Kucherov in [START_REF] Kolpakov | Maximal repetitions in words or how to find all squares in linear time[END_REF][START_REF] Kolpakov | On maximal repetitions in words[END_REF], it is known that ρ(n), the maximum number of runs in a string, is linear in the length n of the string. They gave the first algorithm computing all runs in a linear time, but without an actual constant. 1: Values of ρ(n) for binary strings, from [START_REF] Kolpakov | Maximal repetitions in words or how to find all squares in linear time[END_REF].

Upper bounds have been recently provided by Rytter (5n) [START_REF] Rytter | The number of runs in a string : improved analysis of the linear upper bound[END_REF] and Puglisi, Simpson, and Smyth (3.48n) [START_REF] Puglisi | How many runs can a string contain?[END_REF]. A 1.6n bound was obtained by Crochemore and Ilie [START_REF] Crochemore | Maximal repetitions in strings[END_REF]. They count separately the microruns, that is the runs with short periods, and the runs with larger ones. They show that the number of microruns with period at most 9 satisfies ρ 9 (n) ≤ n. For larger runs, they prove that

ρ ≥p (n) ≤ 2 p ∞ i=0 2 3 i n = 6 p • n.
Crochemore, Ilie, and Tinta extended those results with massive computations, bringing down the upper bound from 1.6n to 1.048n [START_REF] Crochemore | Towards a solution to the runs conjecture[END_REF].

A lower bound of αn, with α = 3/(1 + √ 5) = 0.927..., has been given by [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF] then [START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF]. In [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF], Franek, Simpson, and Smyth propose a sequence of strings (x n ) with increasing lengths such that lim n →∞ r(x n )/|x n | = α, where r(x) is the number of runs in the string x. In [START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF], Franek and Yang show that α is an asymptotic lower bound by showing that there exists a whole family of asymptotic lower bounds arbitrarily close to α. Recently, Matsubara et al. provided an 174719/184973 = 0.9445.. lower bound by repeating a large run-rich string [START_REF] Matsubara | New lower bounds for the maximum number of runs in a string[END_REF].

In fact, very few properties are known for the ρ(n)/n function [START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF][START_REF] Smyth | The maximum number of runs in a string[END_REF]. In this paper, after giving some definitions (Section 2), we show by a simple rewriting argument that ℓ = lim n →∞ ρ(n)/n exists and that this limit is never reached (Section 3.1), proving that

ρ(n) n ≤ ℓ - 1 4n .
Section 3.2 proves the convergence of ρ(n)/n even in the case of a fixed alphabet, for example for binary strings. In Section 4.1, we further study the asymptotic behavior of ρ p (n), the number of runs with short periods, showing that ℓ p = lim n →∞ ρ p (n)/n exists and that, for some constant z p ,

ℓ p - z p n ≤ ρ p (n) n ≤ ℓ p ≤ ℓ.
Moreover, we provide a simple way to exactly count some microruns (Section 4.2). We give in Table 3 the first exact limits ℓ p for microruns on binary strings with p ≤ 14. Section 5 gives some concluding remarks.

Definitions

Let x = x 1 x 2 . . . x n be a string over an alphabet. Let p ≥ 1 be an integer. We say that x has a period p if for any i with 1 ≤ i ≤ n -p, x i+p = x i . We denote by x[i . . j] the substring x i x i+1 . . . x j . A run is an interval [i . . j]:

• such that x[i . . j] has period p ≤ (j -i + 1)/2,
• that is maximal: if they exist, neither

x i-1 = x i-1+p , nor x j+1 = x j+1-p ,
• and such that x[i . . i + p -1] is primitive: it is not an integer power of another string.

We define by r p (x) the number of runs of period ≤ p in x, called microruns in [START_REF] Crochemore | Maximal repetitions in strings[END_REF], and by r(x) = r ⌊|x|/2⌋ (x) the total number of runs in x. For example, the four runs of x = atattatt are [4 . . 5] (tt), [7 . . 8] (tt), [1 . . 4] (atat) and [2 . . 8] (tattatt), and thus r 1 (x) = 2, r 2 (x) = 3, and r 3 (x) = r(x) = 4. Given an integer n ≥ 2, we now consider all strings of length n. We define as

ρ p (n) = max{r p (x) | |x| = n}
the maximum number of runs of period ≤ p in a string of length n. Then we define as

ρ(n) = max{r(x) | |x| = n} = ρ ⌊n/2⌋ (n)
the maximum number of runs in a string of length n. Kolpakov and Kucherov gave in [START_REF] Kolpakov | On maximal repetitions in words[END_REF] some values for ρ(n) (Table 1). Table 4, at the end of this paper, shows some values for ρ p (n). Note that r(x) = ρ(|x|) does not imply that r p (x) = ρ p (|x|) for all p: for example, r(aatat) = 2 = ρ(5) but r 1 (aatat) = 1 < ρ 1 (5) = 2. Finally, we can define values r ≥p (x) and ρ ≥p (n) for macroruns, that is runs with a period at least p. Again, r(x) = ρ(|x|) does not imply that r ≥p (x) = ρ ≥p (|x|). For example, r ≥2 (aatt) = 0 < ρ ≥2 (4) = 1 = r ≥2 (atat).

On the number of runs

Rewritings and asymptotic behavior of the number of runs

Franek et al. [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF][START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF] list some known properties for ρ(n):

• For any n, ρ(n + 2) ≥ ρ(n) + 1 • For any n, ρ(n + 1) ≤ ρ(n) + ⌊n/2⌋
• For some n, ρ(n + 1) = ρ(n)

• For some n, ρ(n + 1) = ρ(n) + 2

We add the following two simple properties.

Proposition 1. The function ρ is superadditive: for any m and n, we have

ρ(m + n) ≥ ρ(m) + ρ(n).
Proof. Take two strings x and y of respective lengths m and n such that r(x) = ρ(m) and r(y) = ρ(n). Let ȳ be a rewriting of y with characters not present in x. (See below for a discussion on the size of the alphabet.) Then xȳ is a string of length m + n containing exactly the runs of x and the rewritten runs of y. Thus ρ(m

+ n) ≥ r(xȳ) = r(x) + r(y) = ρ(m) + ρ(n).
For any t ≥ 1, we have in particular ρ(tn) ≥ tρ(n).

Proposition 2. For any n, ρ(4n) ≥ 4ρ(n) + 1

Proof. Take a string x of length n with r(x) = ρ(n). Let x be a rewriting of x with characters not present in x. Then r(xxxx) ≥ 4r(x) + 1.

We can now state our main result:

Theorem 1. ρ(n)/n converges to its upper limit ℓ. Moreover, the limit is never reached, as for any n we have

ρ(n) n ≤ ℓ - 1 4n .
Proof. Let ℓ be the upper limit of ρ(n)/n. This limit is finite because of [START_REF] Kolpakov | On maximal repetitions in words[END_REF]. Given ε, there is a n 0 such that ρ(n 0 )/n 0 ≥ ℓ -ε/2. For any n ≥ n 0 , let be t = ⌊n/n 0 ⌋. Then we have ρ(n)/n ≥ ρ(tn 0 )/n ≥ tρ(n 0 )/n by Proposition 1, thus ρ(n)/n ≥ t/(t + 1) • ρ(n 0 )/n 0 . Let be t 0 such that t 0 /(t 0 + 1)

• ρ(n 0 )/n 0 ≥ ρ(n 0 )/n 0 -ε/2. Then, for any n ≥ t 0 n 0 , we have ρ(n)/n ≥ ℓ -ε, thus ℓ = lim n →∞ ρ(n)/n. Finally, Proposition 2 gives ℓ ≥ ρ(4n)/4n ≥ ρ(n)/n + 1 4n .
The proof of convergence of f (n)/n when f is superadditive is known as Fekete's Lemma [START_REF] Fekete | Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten[END_REF][START_REF] Van Lint | A course in combinatorics[END_REF]. This convergence result was an open question of [START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF]. In fact, the motivation of [START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF] was the remark that "the sequence |x i | (of [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF]) is only "probing" the domain of the function ρ(n) and r(x i ) is "pushing" the value of ρ(n) above αn in these "probing" points". Then Franek and Yang [START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF] prove that every α -ε is an actual asymptotic lower bound by building specific sequences. With Propositions 1 and 2 and Theorem 1, it is now sufficient to study bounds on any (ρ(n i )/n i ) sequence (for a growing sequence (n i )) to give bounds on ρ(n)/n.

Note that this convergence does not imply monotonicity. In fact, if ℓ < 1, then ρ(n)/n is asymptotically non monotonic, as there will be in this case an infinity of n's such that ρ(n + 1) = ρ(n). Note also that, although Proposition 1 and 2 require to double the alphabet size, the alphabet remains finite: the proof of Theorem 1 only requires to double once this alphabet size. Moreover, it is possible to prove Proposition 1 without rewriting in a larger alphabet, thus proving the convergence of ρ(n)/n when considering only binary strings. This second proof, more elaborated, is given in the next section.

The bound ℓ -1 4n can be improved. For example, with a rewriting similar to the one used in Proposition 2, it can be shown that ρ(2n 2 ) ≥ (2n + 1)ρ(n), giving by successive iterations ρ(n)/n ≤ ℓ -1 2n . This has not been reported here to keep the proof simple.

Concerning microruns with period at most p, Proposition 1 still holds:

Proposition 3. For any p, m, and n, we have

ρ p (m + n) ≥ ρ p (m) + ρ p (n).
Thus for any p, ρ p (n)/n converges to its upper limit ℓ p .

The proof is the same as above. On the contrary, Proposition 2 may be not true for microruns. For example, for any n, ρ 1 (n) = ⌊n/2⌋, and thus for any even n, we have

ρ 1 (n)/n = ℓ 1 = 1/2.
Finally, Theorem 1 is fully valid for macroruns. Moreover, taking the following inequality to the limit, we have ℓ ≥p ≥ ℓ/p. Proposition 4. For any p and n, ρ ≥p (pn) ≥ ρ(n).

Proof. Take a string x = x 1 x 2 . . . x n of length n with r(x) = ρ(n). Let x be the string x p 1 x p 2 . . . x p n of length pn. Then r ≥p (x) ≥ r(x).

A proof of Proposition 1 for fixed alphabets

Here we prove Proposition 1 without rewriting in a larger alphabet, thus proving the convergence of ρ(n)/n when considering only binary strings. This proof is borrowed and simplified from one part of a proof of Franek et al. (Theorem 2 of [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF]). A key observation is that some runs of x and y are merged in xy only when a string z 2 is both a suffix of x and a prefix of y (case a 2 on Figure 1). We first have this property : Proposition 5. Let Σ be an alphabet with |Σ| ≥ 2, and let x and y be strings on Σ such that |y| ≥ 1. Then there exists strings x ′ and y ′ on Σ such that

|x ′ | + |y ′ | = |x| + |y|, |y ′ | < |y| and r(x ′ ) + r(y ′ ) ≥ r(x) + r(y).
Proof. Let w be the longest string, eventually empty, such that w is a suffix of x and a prefix of y. Thus x = uw and y = wv for some strings u and v. Let x ′ = uwv and y ′ = w. Clearly |x ′ | + |y ′ | = |x| + |y| and |y ′ | ≤ |y|. Without loss of generality, we assume that y is not a suffix of x. (If it is not the case, we rewrite y into ȳ using an isomorphism of Σ onto itself.) Thus |y ′ | < |y|. Now we consider the runs of period p that were counted in r(x) + r(y). The runs with 2p characters ("a square") completely included in w were counted once in r(x) and once in r(y). Such runs are counted again once in r(x ′ ) and once in r(y ′ ). By definition of w, all the others runs counted in r(x) and r(y) are counted exactly once in r(x ′ ), without being merged.

To prove Proposition 1, we take two strings x 0 and y 0 of respective lengths m and n such that r(x 0 ) = ρ(m) and r(y 0 ) = ρ(n). Applying recursively Proposition 5 gives a finite sequence of pairs of strings (x 0 , y 0 ), (x 1 , y 1 ), . . . (x t , y t ) with r(x i ) + r(y i ) ≥ r(x i-1 ) + r(y i-1 ) and |y 0 | > |y 1 | > . . . > |y t | = 0 for some t.

a 1 ) a 2 ) b) q q b) q q 2p -1 2p -1 x y
Figure 1: a 1 ) Run with at least two periods included in x. a 2 ) Run with at least two periods included in x, and at least two periods included in y. b) "New runs" between x and y. To bound the new runs with period q ≤ p, it is sufficient to consider strings of length 4p -2.

Note that 4p characters would be required to exactly count the new runs.

Finally |x t | = |x 0 | + |y 0 | = m + n, and thus ρ(m + n) ≥ r(x t ) ≥ r(x 0 ) + r(y 0 ) = ρ(m) + ρ(n), proving Proposition 1.
Note that the proof of Franek et al. in [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF] was in a different context, and that no result leading to our Proposition 1 was stated as such in their paper.

On the number of microruns

In the following sections, p is fixed and we study the asymptotic behavior of the number of microruns ρ p (n)/n beyond the result of Proposition 3. In section 4.1, the idea is to bound the new runs created by the concatenation of two strings. In section 4.2, the idea is to count exactly the new runs created by the concatenation of a string and a character. Both sections provide new bounds or exact limits on the number of some microruns.

New runs obtained by string concatenation

Let x and y be two strings, and s be a run of xy with period q ≤ p. Then s is exactly in one of the following two cases (Figure 1):

• a) s has at least two periods included in x, or at least two periods included in y;

• b) s has strictly less than two periods included in x, and strictly less than two periods included in y.

We call the runs in the case b) the new runs between x and y, and we denote by NR p (x, y) the number of such runs. Then r p (xy) ≤ r p (x) + r p (y) + NR p (x, y), the inequality coming from the fact that a run from x can be merged with a run from y (case a 2 on Figure 1). We can bound the number of new runs, and thus have an upper bound on r p (xy): Proposition 6. Let z p = max{NR p (x, y) | |x| = |y| = 2p -1} the maximum number of new runs with period q ≤ p between strings of length 2p -1. Then, for every strings x and y of any length, we have NR p (x, y) ≤ z p . Proof. Any new run with period q ≤ p has at most 2q -1 ≤ 2p -1 characters in x, and in y (Figure 1). 

p (m + n). Then ρ p (m + n) = r p (xy) ≤ r p (x) + r p (y) + NR p (x, y) ≤ ρ p (m) + ρ p (n) + z p .
Table 2 provides some values of z p for binary strings. An immediate bound on z p is z p ≤ z p-1 + 2. Knowing bounds on z p helps to characterize the asymptotic behavior of the number of microruns: Theorem 2. For any n, we have ℓ p ≤ ρ p (n)/n + z p /n, and thus

ℓ p - z p n ≤ ρ p (n) n ≤ ℓ p ≤ ℓ.
Proof. By Proposition 7, for any t ≥ 1, we have ρ p (tn) ≤ tρ p (n) + (t -1)z p . Thus ρ p (tn)/tn ≤ ρ p (n)/n + t-1 t z p /n. Taking this inequality to the limit, as t goes to infinity, gives the result.

Thus we know that the convergence of ρ p (n)/n to ℓ p is faster than z p /n. Note that we do not have a similar result for ρ(n), as we do not have a convenient way to bound ρ(m + n) like in Proposition 6.

As a side result of Theorem 2, we have new bounds of the number of some microruns. For example, brute-force computations give for binary strings z 9 = 7 and ρ 9 (34) = 26, thus ℓ 9 ≤ 33/34 = 0.970. For binary strings, this result is better than Lemma 2 of [START_REF] Crochemore | Maximal repetitions in strings[END_REF] which proved the n bound by the count of amortizing positions for centers of runs. The next section further improves this bound and finds exact values for some ℓ p 's.

The exact number of microruns

In this section, we propose to count exactly the number of microruns, by considering the concatenation of a string and a single character. Let x be a string, α ∈ Σ a character, and s be a run of xα with period q ≤ p. Then s is exactly in one of the following two cases (Figure 2) :

a 1 ) q q a 1 ) p p b) p p 2p x α
Figure 2: a 1 ) Runs of x, extended in α. b) "New runs" between x and α. Unlike in Fig. 1, there is no case a 2 ) where some runs are merged. To count the new runs with period q ≤ p, it is sufficient to consider the suffix of x of length 2p.

• a) s has at least two periods included in x;

• b) s has strictly less than two periods included in x.

As in the previous section, we call the runs in the case b) the new runs between x and α, and we denote by NR p (x, α) the number of such runs. As there is here no merging of runs, we have r p (xα) = r p (x) + NR p (x, α). In fact, the last 2p characters of x are sufficient to know NR p (x, α):

Proposition 8. Let x be a string with |x| = n ≥ 2p. Then we have NR p (x, α) = NR p (x[n -2p + 1 . . . n], α).
Proof. Any new run with period q ≤ p has at most 2q -1 ≤ 2p -1 characters in x. Any run of x with period q ≤ p extending in α has at a least 2 periods in the last 2p characters of x (Figure 2). Knowing the last 2p characters of x is thus sufficient to tell apart the two kinds of runs.

If v is a string of length 2p and n ≥ 2p, we define f n p (v) = max |x|+|v|=n r p (xv) as the maximum number of runs of all the strings ending with the suffix v. The function f n+1 p can be entirely determined from the functions f n p and NR p :

Proposition 9. If |w| = 2p -1, α ∈ Σ, and n ≥ 2p, then f n+1 p (wα) = max β∈Σ f n p (βw) + NR p (βw, α) .
Proof. To compute f n+1 p (wα) = max |x|+|wα|=n+1 r p (xwα), we suppose, without loss of generality, that the string x is of length at least one and we write x = yβ, where y is a string and β ∈ Σ. In particular, for every t ≥ 0, we have f n0+tk p = f n0 p + ts, that is ρ p (n 0 + tk) = ρ p (n 0 )+ts and finally lim t →∞ ρ p (n 0 +tk)/(n 0 +tk) = s/k. As ρ p (n)/n converges (Proposition 3), the Theorem is proved.

By computing f n p functions for successive n and by checking the additive periodicity condition of Theorem 3, one can have exact values of ℓ p for small p's. Table 3 lists results for p ≤ 14 on binary strings. Note that the periodicity on ρ p (n) can appear before the periodicity on f n p . For example, as soon as n ≥ 35, ρ 9 (n + 13) = ρ 9 (n) + 11, but the periodicity on f n 9 only starts at n 0 = 51.

Using the result of Crochemore and Ilie's Proposition 1 [START_REF] Crochemore | Maximal repetitions in strings[END_REF] for large runs, we get an upper bound on ρ(n)/n. For binary strings, the exact value ℓ 14 = 15/17 gives:

ℓ ≤ ℓ 14 + ℓ ≥15 ≤ 15 17 + 6 15 = 1.282...
Thus the number of runs in a binary string of length n is not more than 1.29n. This result was better than the 1.6n bound published in [START_REF] Crochemore | Maximal repetitions in strings[END_REF], but the better bound of 1.048n has now been published [START_REF] Crochemore | Towards a solution to the runs conjecture[END_REF]. Nevertheless, the values we give in the Table 3 are the first known exacts limits for such microruns.

Perspectives

The results on the asymptotic behavior of the functions ρ and ρ p of Theorems 1 and 2 simplify the research on lower and upper bounds. Moreover, the application of the Theorem 3 provides the first exact limits for the number of some microruns. We hope that these results will bring a better understanding of the number of runs and be a step towards proving the conjecture of [START_REF] Kolpakov | Maximal repetitions in words or how to find all squares in linear time[END_REF] (ℓ ≤ 1).

As Theorem 2 and 3 provide upper bounds or exact limits for some microruns, they can be used to bound the total number of runs. In both cases, this would require large evaluations of z p or f n p (w) values that could be improved by a more precise analysis, for example by taking inspiration from the methods of Crochemore and Ilie. Moreover, a better analysis could improve their 6/p bound on the number of macroruns ℓ ≥p . For the lower bound, it remains to be shown if one can find strings with more runs than those of [START_REF] Frantisek Franek | The maximum number of runs in a string[END_REF][START_REF] Franek | An asymptotic lower bound for the maximal-number-of-runs function[END_REF]. Although Theorem 1 also provides a way to have a lower bound on ρ(n)/n, all the computations we ran gave not better bounds than the 0.9445... bound of [START_REF] Matsubara | New lower bounds for the maximum number of runs in a string[END_REF].

Now an important question is if the actual value of ℓ can be found with such a separation between microruns and macroruns. The inequality ℓ ≤ ℓ p + ℓ ≥p+1 may be strict for some p. If this inequality is strict for several p's, the conjecture may be impossible to prove by this way if one choose a bad splitting period p.

Another open question is if one of the constants ℓ p = lim n →∞ ρ p (n)/n is equal to ℓ, or if, more probably, the limit ℓ is obtained by considering asymptotically runs with any period. Finally, it remains to be proven if strings on binary alphabets can always achieve the highest number of runs.

Proposition 7 .

 7 For any m and n, ρ p (m + n) ≤ ρ p (m) + ρ p (n) + z p . Proof. Let x and y be two strings such that |x| = m, |y| = n, and r p (xy) = ρ

Theorem 3 .

 3 = max |yβ|+|wα|=n+1 r p (yβwα) = max |yβ|+|wα|=n+1 (r p (yβw) + NR p (yβw, α)) = max |yβ|+|wα|=n+1 (r p (yβw) + NR p (βw, α)) (Proposition 8) = max β∈Σ max |y|+|βw|=n r p (yβw) + NR p (βw, α) = max β∈Σ f n p (βw) + NR p (βw, α) Once all the |Σ| 2p+1 values of NR p are computed, the above equation can be used to recursively determine any f n p function in O(n • |Σ| 2p+1 ) time. Then any number of microruns ρ p (n) = max |v|=2p f n p (v) follows. When n grows, an additive periodic behavior can emerge: If for some n 0 , k and s with 2p ≤ n 0 < n 0 + k, we have f n0+k p = f n0 p + s then, for any n ≥ n 0 , we have f n+k p = f n p + s, and ℓ p = s/k. Proof. If the property f n+k p = f n p + s is true for some n, then f n+1+k p (wα) = max β∈Σ f n+k p (βw) + NR p (βw, α) = max β∈Σ (f n p (βw) + s) + NR p (βw, α) = f n+1 p (wα) + s and the property is true for n + 1. By induction, it is true for every n ≥ n 0 .

Table

  

	n	5 6 7 8 9 10 11 12 13 14 15 16 17 18
	ρ(n) 2 3 4 5 5 6	7	8	8 10 10 11 12 13
	n	19 20 21 22 23 24 25 26 27 28 29 30 31
	ρ(n) 14 15 15 16 17 18 19 20 21 22 23 24 25
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Table 2 :

 2 Values for zp for binary strings with worst-case examples of length ≤ 4p -2.

Table 4 :

 4 Values of ρp(n) for binary strings. For each n, the value in bold shows the smallest period p such that ρp(n) = ρ(n).

	n	ρ(n)	1, 2	3	4	5	6	7	8	9	10	11	12	13	14
	5	2	2												
	6	3	3	3											
	7	4	3	4											
	8	5	4	4	5										
	9	5	4	5	5										
	10	6	5	6	6	6									
	11	7	5	6	7	7									
	12	8	6	7	8	8	8								
	13	8	6	8	8	8	8								
	14	10	7	9	9	9	9	10							
	15	10	7	9	9	10	10	10							
	16	11	8	10	10	11	11	11	11						
	17	12	8	11	11	11	11	12	12						
	18	13	9	12	12	12	12	13	13	13					
	19	14	9	12	13	13	13	14	14	14					
	20	15	10	13	13	14	14	14	15	15	15				
	21	15	10	14	14	14	14	15	15	15	15				
	22	16	11	15	15	15	15	15	16	16	16	16			
	23	17	11	15	16	16	16	16	17	17	17	17			
	24	18	12	16	16	17	17	18	18	18	18	18	18		
	25	19	12	17	17	18	18	18	18	18	18	19	19		
	26	20	13	18	18	18	18	19	19	19	19	19	19	20	
	27	21	13	18	18	19	19	20	20	20	20	21	21	21	
	28	22	14	19	19	20	20	21	21	21	21	21	21	22	22
	29	23	14	20	20	21	21	21	22	22	22	22	22	23	23
	30	24	15	21	21	21	21	22	23	23	23	23	23	24	24
	31	25	15	21	21	22	22	23	24	24	24	24	24	25	25
	32	26	16	22	22	23	23	24	25	25	25	25	25	26	26
	33	27	16	23	23	24	24	25	26	26	26	26	26	27	27
	34	27	17	24	24	25	25	26	26	26	26	26	26	27	27
	35	28	17	24	24	25	25	26	27	27	27	27	27	28	28

= f n p + s for some s and k > 0. The value ℓ 13 required three hours of computation on a standard 2 GHz workstation. This time is almost entirely spent in the initial computation of the 2 2p+1 values of the function NRp, obtained by aggregate calls to mreps [START_REF] Kolpakov | mreps: Efficient and flexible detection of tandem repeats in dna[END_REF]. The successive computations of f n p are done in a few seconds.