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A major problem in dynamical systems consists in studying the Hamiltonian systems on
T

n × R
n of the form

H(q, p) = h(p) − ǫ2G(t, q, p), (t, q, p) ∈ T × T
n × R

n. (H)

Here ǫ should be considered as a small perturbation parameter, we put a square because the
sign of the perturbation will play a role in our discussion. In the unperturbed system (ǫ = 0)
the momentum variable p is constant.

We want to study the dynamics of the perturbed system in the neighborhood of a torus
{p = p0}, corresponding to a resonant frequency. There is no loss of generality in assuming that
the frequency is of the form

∂h(p0) = (ω, 0) ∈ R
m × R

r.

If the restricted frequency ω is non-resonant in R
m, then it is expected that the averaged system

Ha(q, p) = Ha(q1, q2, p1, p2) = h(p) − ǫ2V (q2) (Ha)

should locally approximate the dynamics of (H) near p = p0, where q = (q1, q2) ∈ T
r × T

m and
p = (p1, p2) ∈ R

r × R
m, and where

V (q2) =

∫

G(t, q1, q2, p0)dtdq1.

We make the following hypothesis on the averaged system:

Hypotheses 1. The funtion h is convex with positive definite Hessian and the averaged potential
V has a non-degenerate local maximum at q2 = 0.
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Under Hypothesis 1, the averaged system has an invariant manifold of equations

(∂p2
h = 0, q2 = 0) ∈ T

n × R
n.

Because h has positive definite Hessian, the equation ∂p2
h(p1, p2) = 0 is equivalent to p2 = P2(p1)

for some function P2 : R
m −→ R

r. Therefore, the invariant manifold can be written in a
parametric form as

(q1, 0, p1, P2(q1)); (q1, p1) ∈ T
m × R

m

so it is a cylinder. Moreover, this manifold is Normally hyperbolic in the sense of [8]. It is
then pretty well understood that some small pieces of this manifold persist in the initial system,
meaning that some normally hyperbolic invariant manifold close to that cylinder exist. It can
be seen as the center manifolds of a ”Whiskered” (or partially hyperbolic) torus. The existence
of such a torus was proved in [13], and it is well understood, see for example [3] that such a
torus must be contained in an invariant cylinder which is normally hyperbolic. However, the
approaches used so far to study the Whiskered torus rely on a rescaling of the momentum p,
and produce an invariant annulus of size O(ǫ), although a cylinder of size O(1) in fact exists.
This is what we will prove in the present paper:

Theorem 1. Assume that H is smooth (or at least Cr for a sufficiently large r) and satisfies
Hypothesis 1. Assume that ω is Diophantine, and fix κ > 0. Then there exists an open ball
B ⊂ R

m containing p0, a neighborhood U of 0 in T
r, a positive number ǫ0 and, for ǫ < ǫ0 two

C1 functions

Qǫ
2 : T × T

m ×B −→ U ⊂ T
r and P ǫ

2 : T × T
m ×B −→ R

r

such that the annulus
Aǫ = (t, q1, Q

ǫ
2(t, q1, p1), p1, P

ǫ
2 (t, q1, p1))

is invariant for (H) (in the sense that the Hamiltonian vectorfield is tangent to it) and normally
hyperbolic. We have P ǫ

2 −→ P 0
2 uniformly as ǫ −→ 0, where P 0

2 is the function (t, q1, p1) 7−→
P2(q1, p1). Moreover, we have ‖P ǫ

2 − P 0
2 ‖C1 6 κ, and ‖Qǫ

2‖C1 6 κ/ǫ. Each invariant set of (H)
(in the sense that it contains the full orbit of each of its points) contained in the domain

Dǫ := T × T
m × U ×B × {p2 ∈ R

r : ‖p2‖ 6 ǫ}

is contained in Aǫ for ǫ < ǫ0.

The novelty here is that the ball B does not depend on ǫ. Easy examples show that we can’t
expect a control of the asymptotic behaviour of Qǫ

2 in terms of the averaged system only except
if we restrict to smaller domains depending on ǫ. This asymptotic behaviour will also depend
on the averaged systems at other frequencies.

Combining this result in the case m = 1 (but for any dimension n) with existing techniques on
the a priori unstable situation (see e. g. [2, 5, 6, 13]), one can hope to obtain, under additional
non-degeneracy assumptions, the existence of restricted Arnold diffusion in the following sense :
There exists δ > 0 and ǫ0 such that, for each ǫ ∈]0, ǫ0[ there exists an orbit (qǫ(t), pǫ(t)) such that
the image pǫ(R) is not contained in any ball of radius δ in R

n. Once again, the key point here
is that δ can be chosen independant of ǫ. Specifying the needed ”non-degeneracy assumptions”
will require some further work. The lack of control on the normally hyperbolic invariant cylinder
may create substantial difficulties.

Of course, finding ”global” Arnold diffusion, as announced in [11], that is orbits wondering
in the whole phase space along different resonant lines (or far away along a given resonant
line) requires a specific study of double resonances, where the existence of normally hyperbolic
invariant cylinders can’t be obtained by the method used in the present paper.
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1 Averaging

In order to apply averaging methods, it is easier to consider the extended phase space

(t, e, q, p) ∈ T × R × T
n × R

n

where the Hamiltonian flow can be seen as the Hamiltonian flow of the autonomous Hamiltonian
function

H̃(t, e, q, p) = h(p) + e− ǫ2G(t, q, p)

on one of its energy surfaces, for example H̃ = 0. Then, we consider a smooth solution f(t, q)
of the Homological equation

∂tf + ∂qf · (ω, 0) = G(t, q, p0) − V (q2).

Such a solution exists because ω is Diophantine, as can be checked easily by power series expan-
sion. It is unique up to an additive constant. We consider the smooth symplectic diffeomorphism

ψǫ : (t, e, q, p) 7−→ (t, e+ ǫ2∂tf(t, q), q, p + ǫ2∂qf(t, q))

and use the same notation for the diffeomorphism (t, q, p) 7−→ (t, q, p + ǫ2∂qf(t, q)). We have

H̃ ◦ ψǫ = h(p) + e− ǫ2V (q2) − ǫ2R(t, q, p) +O(ǫ4).

In other words, by the time-dependant symplectic change of coordinates ψǫ, we have reduced
the study of H to the study of the time-dependant Hamiltonian

H1(t, q, p) = h(p) − ǫ2V (q2) − ǫ2R(t, q, p) +O(ǫ4)

where R = O(p). As a consequence, Theorem 1 holds for H if it holds for H1. More precisely,
assume that there exists an invariant cylinder

Ãǫ = (t, q1, Q̃
ǫ
2(t, q1, p1), p1, P̃

ǫ
2 (t, q1, p1))

for H1, with ‖Q̃ǫ
2‖C1 6 κ/2ǫ and ‖P ǫ

2−P 0
2 ‖C1 6 κ/2. Then the annulus Aǫ := ψǫ(Ãǫ) is invariant

for H. Since ψǫ is ǫ2-close to the identity, while ‖Qǫ
2‖C1 6 κ/2ǫ, the annulus Aǫ has the form

Aǫ = (t, q1, Q
ǫ
2(t, q1, p1), p1, P

ǫ
2 (t, q1, p1))

for C1 functions Qǫ
2, P

ǫ
2 which satisfy ‖Qǫ

2‖C1 6 κ/ǫ and ‖P ǫ
2 − P 0

2 ‖C1 6 κ. We will prove that
Theorem 1 holds for H1 in section 4. We first expose some useful tools.

2 Normally hyperbolic manifolds

We shall now present a version of the classical theory of Normally hyperbolic manifolds adapted
for our purpose. On R

nz × R
nx × R

ny , let us consider the time dependant vectorfield

ż = Z(t, z, x, y)

ẋ = A(z)x

ẏ = −B(z)y.

We assume that the function

Z : R × R
nz × R

nx × R
ny −→ R

nz
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is bounded in C1, and that the matrices A and B are C1-bounded functions of z. Moreover, we
assume that there exists constants a > b > 0 such that

A(z)x · x > a‖x‖2 , B(z)y · y > a‖y‖2

for each x, y, z, and such that
‖∂(t,z)Z(t, z, x, y)‖ 6 b

for all (t, z, x, y). We consider the perturbed vectorfield

ż = Z(t, z, x, y)+Rz(t, z, x, y)

ẋ = A(z)x +Rx(t, z, x, y)

ẏ = −B(z)y +Rx(t, z, x, y).

where R = (Rz, Rx, Ry) is seen as a small perturbation.

Theorem 2. There exists ǫ > 0 such that, when ‖R‖C1 < ǫ, the maximal invariant set of the
perturbed vectorfield contained in the domain

R
nz × {x ∈ R

nx : ‖x‖ 6 1} × {y ∈ R
ny : ‖y‖ 6 1}

is a graph of the form
(t, z,X(t, z), Y (t, z))

where X and Y are C1 maps. This graph is normally hyperbolic. We have

‖(X,Y )‖C0 6 (2/a)‖R‖C0 .

where C is a constant independant of R. If the data are Cr, r ∈ {1, 2, . . . ,∞} and if rb < a,
then the functions X and Y are Cr.

Proof. The invariant space R
nz is Normally hyperbolic in the sense of [7, 8]. As a consequence,

the standard theory applies and implies the existence of functions X and Y such that the
graph (t, z,X(t, z), Y (t, z)) is invariant, normally hyperbolic, and contained in the prescribed
domain. Note that we are slightly outside of the hypotheses of the statements in [8] because
our unperturbed manifold is not compact. However, it is easy to see that the results actually
depend on uniform estimates rather than on compactness (see [9], Appendix B, for example, see
also [4]), and we assumed such uniform estimates.

Let us now prove the estimate on (X,Y ). We have the inequality

ẋ · x > a‖x‖2 + x ·Rx > a‖x‖(‖x‖ − ‖Rx‖C0/a)

which implies that
ẋ · x > ‖x‖‖Rx‖C0

if
2‖Rx‖C0/a 6 ‖x‖ 6 1,

hence this domain can’t intersect the invariant graph. Similar considerations show that the
domain 2‖Ry‖C0/a 6 ‖y‖ 6 1 can’t intersect the graph.
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3 Hyperbolic Linear System

Let us consider the linear Hamiltonian system on R
n × R

n generated by the Hamiltonian

H(q, p) =
1

2
〈Bp, p〉 − 1

2
〈Aq, q〉,

where both A and B are positive definite symmetric matrices. We recall that this system can
be reduced to

G(x, y) = 〈Dx, y〉,
where D is a positive definite symmetric matrix by a linear symplectic change of variables
(q, p) −→ (x, y). In order to do so, we consider the symmetric positive definite matrix

L :=
(

A−1/2(A1/2BA1/2)1/2A−1/2
)1/2

,

which is the only symmetric and positive definite solution of the equation L2AL2 = B. Consid-
ering the change of variables

x =
1√
2
(Lp + L−1q) ; y =

1√
2
(Lp− L−1q)

or equivalentely

q =
1√
2
L(x− y) ; p =

1√
2
L−1(x+ y),

an elementary calculation shows that we obtain the desired form for the Hamiltonian in coodi-
nates (x, y), with

D = LAL.

As a consequence, the equations of motions in the new variables take the block-diagonal form

ẋ = Dx ; ẏ = −Dy.

In the original coordinates (q, p) the stable space (which is the space x = 0) is the space
{(q,−L2q), q ∈ R

n} while the unstable space is {(q, L2q), q ∈ R
n}.

4 Proof of Theorem 1

We now prove Theorem 1 for the Hamiltonian

H1(t, q, p) = h(p) − ǫ2V (q2) − ǫ2R(t, q, p) +O(ǫ2+γ),

where R = O(p − p0) and γ > 0 (γ = 2 in our situation). We assume that Hypothesis 1 holds.
We lift all the angular variable to the universal covering, and see H1 as a Hamiltonian of the
variables

(t, q, p) = (t, q1, q2, p1, p2) ∈ R × R
m × R

r × R
m × R

r

which is one-periodic in t, q. We assume that p0 = 0. It is useful to introduce two new positive
parameters α and δ. We always assume that

0 < ǫ < δ < α < 1.

In the sequel, we shall chose α small, then δ small with respect to α, and work with ǫ small
enough with respect to α and δ. Since we are only interested in the dynamics near p = 0, q2 = 0,
we define

Rδ(t, q, p) = ρ(‖p‖/δ)R(t, q, p)
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where ρ : [0,∞) −→ [0, 1] is a smooth function which is equal to 1 on [0, 1] and to 0 on [2,∞).
We set A = ∂2V (0), it is a positive definite symmetric matrix. We now define

Fδ(q2) = ρ(‖q2‖/
√
δ)(∂q2

V (q2) −Aq2),

so that the equality
∂2V (q2) = Aq2 + Fδ(q2)

holds when q2 6
√
δ. Finally, we define

B(p1) := ∂2
p2
h(P2(p1)).

Recall that P2(p1) is the local solution of ∂2h(p1, .) = 0. We will then truncate once more the
higher order terms by setting

Yǫ(p) = ρ(‖p2 − P2(p1)‖/ǫ)
(

∂p2
h(p) −B(p1)(p2 − P2(p1)

)

.

The following vectorfield is equal to the Hamiltonian vectorfield of H1 on the domain {‖p1‖ 6

δ, ‖p2 − P2(p1)‖ 6 ǫ, ‖q2‖ 6
√
δ}:

q̇1 = ∂p1
h(p) −ǫ2∂p1

R(t, q, p) +O(ǫ2+γ)

ṗ1 = ǫ2∂q1
Rδ(t, q, p) +O(ǫ2+γ)

q̇2 = B(p1)(p2 − P2(p1))+Yǫ(p) − ǫ2∂p2
R(t, q, p) +O(ǫ2+γ)

ṗ2 = ǫ2Aq2 +ǫ2Fδ(q2) + ǫ2∂q2
Rδ(t, q, p)+O(ǫ2+γ)

We write this vectorfield in the form

q̇1 = ∂p1
h(p) +ǫ2χ(t, q, p)

ṗ1 = 0 +ǫ2δχ(t, q, p/δ) + ǫ2+γχ(t, q, p)

q̇2 = B(p1)(p2 − P2(p1))+ǫ
2χ(p1, (p2 − P2(p1))/ǫ) + ǫ2χ(t, q, p)

ṗ2 = ǫ2Aq2 +ǫ2δχ(q2/
√
δ) + ǫ2δχ(t, q1, q2, p/δ) + ǫ2+γχ(t, q, p)

with the convention that χ(.) always denotes a C1 function of its arguments, depending on ǫ
and δ, but bounded in C1 independantly of δ and ǫ. Motivated by section 2, we set

L(p1) =
(

A−1/2(A1/2B(p1)A
1/2)1/2A−1/2

)1/2
,

and perform the change of variables (t, q1, p1, q2, p2) −→ (τ, θ, r, x, y) given by:

τ = ǫt, θ = ǫαq1, r = p1,

x = L(p1)(p2 − P2(p1)) + ǫL−1(p1)q2, y = L(p1)(p2 − P2(p1)) − ǫL−1(p1)q2,

recalling that α is a fixed positive parameter. Equivalently, this can be written

t = τ/ǫ, q1 = θ/ǫα, p1 = r, q2 = L(r)(x− y)/2ǫ, p2 = P2(r) + L−1(r)(x+ y)/2.

In the new coordinates, the principal part of the vectorfield takes the form

θ̇ = αΩ(r, x, y), ṙ = 0, ẋ = D(r)x, ẏ = −D(r)y,

with
Ω(r, x, y) := ∂p1

h
(

r, P2(r) + L−1(r)(x+ y)/2
)
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and
D(r) := L(r)AL(r) = L−1(r)B(r)L−1(r).

Recall that the equality above holds because L(r) solves the equation L2(r)AL2(r) = B(r).
Let us detail the calculations leading to the expressions of x́ := dx/dτ (the calculation for ý is
similar):

x́ = ǫẋ =L(p1)
(

ṗ2 − ∂p1
P2 · ṗ1

)

+ ǫL−1(p1)q̇2 +
(

∂p1
L · ṗ1

)(

p2 − P2(p1)
)

+ ǫ
(

∂p1
(L−1) · ṗ1

)

q2

=ǫ2L(p1)Aq2 + ǫL−1(p1)B(p1)(p2 − P2(p1))

+ǫ2δχ(t, q, p/δ, x, y) + ǫ3χ(p1, (x+ y)/ǫ) + ǫ2δχ(q2/
√
δ) + ǫ2+γχ(t, q, p, x, y)

=ǫL(r)AL(r)(x− y)/2 + ǫL−1(r)B(r)L−1(r)(x+ y)/2

+ǫ2δχ(τ/ǫ, θ/ǫ, r/δ, x/δ, y/δ, x/ǫ, y/ǫ) + ǫ2δχ(r/
√
δ, x/

√
δǫ, y/

√
δǫ)

=ǫD(r)x+ ǫ2δχ(τ/ǫ, θ/ǫ, r/δ, x/δ, y/δ, x/ǫ, y/ǫ) + ǫ2δχ(r/
√
δ, x/

√
δǫ, y/

√
δǫ).

We are only interested in the dynamics inside the domain {‖p1‖ 6 δ, ‖p2 − P2(p1)‖ 6 ǫ, ‖q2‖ 6√
δ} which in the new coordinates is contained in {‖r‖ 6 δ, ‖(x, y)‖ 6 ǫ}, so that we can modify

the functions Ω and D outside of a fixed domain and assume that they are bounded in C1. Then
we can choose α < 1 once and for all in order that the principal part of the vectorfield satisfies
the hypotheses of Theorem 2. The full vectorfield can be written in the new coordinates, where
f́ := df/dτ :

θ́ = αΩ(r, x, y)+ǫ2χ(τ/ǫ, θ/ǫ, r, x/ǫ, y/ǫ)

ŕ = 0 +ǫδχ(τ/ǫ, θ/ǫ, r/δ, x/δ, y/δ, x/ǫ, y/ǫ)

x́ = D(r)x +ǫδχ(τ/ǫ, θ/ǫ, r/δ, x/δ, y/δ, x/ǫ, y/ǫ) + ǫδχ(r/
√
δ, x/

√
δǫ, y/

√
δǫ)

ý = −D(r)y +ǫδχ(τ/ǫ, θ/ǫ, r/δ, x/δ, y/δ, x/ǫ, y/ǫ) + ǫδχ(r/
√
δ, x/

√
δǫ, y/

√
δǫ).

In this expression, we observe that the uniform norm of the perturbation is O(ǫδ) while the C1

norm is O(
√
δ) (recall that 0 < ǫ < δ < 1). We can apply Theorem 2 and find a unique bounded

normally hyperbolic invariant graph

(τ, θ,X(τ, θ, r), r, Y (τ, θ, r)).

Moreover, we have that
‖(X,Y )‖C0 6 Cǫδ.

In the initial coordinates, we have an invariant graph

(t, q1, Q
ǫ
2(t, q1, p1), p1, P

ǫ
2 (t, q1, p1))

with
Qǫ

2(t, q1, p1) = L(p1)
(

X(ǫt, ǫq1, p1) − Y (ǫt, ǫq1, p1)
)

/2ǫ

and
P ǫ

2 (t, q1, p1) = P2(p1) + L−1(p1)
(

X(ǫt, ǫq1, r1) + Y (ǫt, ǫq1, p1)
)

/2.

Because this graph is the unique bounded invariant graph, the functions Qǫ
2 and P ǫ

2 are periodic
in (t, q1). Observe that

‖Qǫ
2‖C0 6 Cδ, ‖P ǫ

2‖C0 6 Cǫδ.

We conclude that that the annulus

{

(t, q1, Q2(t, q1, p1), p1, P2(t, q1, p1)) : t ∈ T, q1 ∈ T
m, p1 ∈ R

m, ‖p1‖ 6 δ
}

⊂ T × T
n × R

n
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is contained in the domain
{‖q2‖ 6

√
δ, ‖p1‖ 6 δ, ‖p2‖ 6 ǫ}

where our vectorfield coincides with the Hamiltonian vectorfield of H1. It is thus an invariant
annulus for H1. We have proved Theorem 1 for H1, we conclude from Section 1 that Theorem
1 holds for H.
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