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We characterize the vanishing viscosity limit for multi-dimensional conservation laws of the form

) is assumed locally Lipschitz continuous in the unknown u and piecewise constant in the space variable x; the discontinuities of f(•, u) are contained in the union of a locally finite number of sufficiently smooth hypersurfaces of R N . We define "G V V -entropy solutions" (this formulation is a particular case of the one of [3]); the definition readily implies the uniqueness and the L 1 contraction principle for the G V V -entropy solutions. Our formulation is compatible with the standard vanishing viscosity approximation

0, of the conservation law. We show that, provided u ε enjoys an ε-uniform L ∞ bound and the flux f(x, •) is non-degenerately nonlinear, vanishing viscosity approximations u ε converge as ε ↓ 0 to the unique G V V -entropy solution of the conservation law with discontinuous flux.

Introduction. The study of conservation laws and related degenerate parabolic problems with space-time discontinuous flux has been intense during the last fifteen years. It is stimulated by applications such as sedimentation, porous medium flows in discontinuous media, road traffic models. We refer to [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]- [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF], [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF][START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF], [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF]- [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF], [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux[END_REF]- [START_REF] Towers | A difference scheme for conservation laws with a discontinuous flux: the nonconvex case[END_REF] and references therein for some of the applications and known results. Notice that only very few studies treat the multidimensional case.

However, most of the interesting phenomena appear already in the model onedimensional case, with the discontinuity along Σ = {x = 0}:

u t + (f(x, u)) x = 0, f : (x, z) ∈ R×R → f l (z) x < 0, f r (z) x > 0. ( 1 
)
From the purely mathematical viewpoint, the problem is quite challenging because of the possibility to give various non-equivalent generalizations of Kruzhkov's notion of entropy solution; moreover, different entropy solutions to the same equation may one-sided traces of u at the discontinuity surface Σ (cf. Diehl [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF]); or, we postulate global entropy inequalities not with the Kruzhkov entropies z → |z -k|, k = const, but with "adapted entropies" z → |z -c(x)|, where piecewise constant functions c(x) are defined from the germ G V V . The latter approach follows the idea of Baiti and Jenssen [START_REF] Baiti | Well-posedness for a class of 2 × 2 conservation laws with L ∞ data[END_REF], of Audusse and Perthame [START_REF] Audusse | Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies[END_REF] (cf. the interesting re-interpretation of Panov [START_REF] Yu | On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux[END_REF]) and of Bürger, Karlsen and Towers [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF].

In our framework, the main restriction on the flux f is the one that ensures a uniform L ∞ bound on solutions u ε of equation [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF] below. We make a number of simplifying assumptions, including the Lipschitz continuity and the genuine nonlinearity of f(x, •) in the sense f (x, •) = 0 a.e., the smoothness of the discontinuity surfaces of f(•, u) and their independence of t. Most of these assumptions can be bypassed; see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]. For the sake of simplicity, we treat the case of a sole discontinuity of f(•, u) along a hypersurface

Σ = (x 1 , x ) ∈ R N x 1 = Φ(x )
of R N given by the graph of a smooth function Φ : R N -1 → R. The case with a locally finite number of smooth discontinuity hypersurfaces (possibly crossing, or piecing together) can be obtained similarly, using partition of unity techniques. Thus, our result applies, e.g., to conservation laws in stratified media, such as those that appear in geological studies.

Let us give the outline of the paper. In Section 1 we give the definitions (which take the form of two equivalent formulations) and state the main results. In Section 2, we motivate the definitions in the one-dimensional case [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]. Section 3 contains the proof of uniqueness and of the equivalence of the two main definitions. In Section 4, the existence is shown via convergence analysis of the vanishing viscosity approximations. An appendix summarizes the framework adopted in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], and contains one longer proof. We refer to [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] for the details and an extensive bibliography.

1. Vanishing viscosity germ, G V V -entropy solutions and well-posedness. Let Φ : R N -1 → R be a C2 function. Denote

Ω l := R + × (x 1 , x ) ∈ R N x 1 < Φ(x ) , Ω r := R + × (x 1 , x ) ∈ R N x 1 > Φ(x ) ,
and Σ := Ω l ∩ Ω r . For σ ∈ Σ, denote by ν(σ) the unit vector normal to Σ pointing from Ω l to Ω r . We consider fluxes of the form

f : (x, z) ∈ R N × R → f l (z) x ∈ Ω l f r (z) x ∈ Ω r , f l,r ∈ W 1,∞ loc (R), f lr = 0 a.e. ( 2 
)
For σ ∈ Σ, f l,r (σ; •) denotes the normal component f l,r (•) • ν(σ) on Σ of f l,r (•).
In order to simplify the presentation, we will make appeal to strong one-sided traces 2 of a solution u on Σ.

We say that a function g ∈ L ∞ (R + × R N ) admits a right-sided trace γ r g on Σ in the strong sense (that is, in the L 1 loc topology), if for all ξ ∈ D(R

+ × R N ), lim h↓0 1 h R + h 0 R N -1 |g (t, σ+(y 1 , 0)) -(γ r g) (t, σ)| ξ(σ) dtdy 1 dx = 0, (3) 
where σ = (Φ(x ), x ). The definition of the strong left-sided trace γ l g on Σ is analogous, with h ↓ 0 replaced by h ↑ 0 in the above formula. The strong trace γ 0 g of g on the set {t = 0} is defined similarly (see e.g., [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]). Note that if q : R N ×R -→ R is continuous and g admits one-sided traces γ l,r g on Σ, then q •g := q(•, g(•)) admits one-sided traces on Σ, and γ l,r (q • g) (σ) = q(σ, (γ l,r q)(σ)) H N a.e. for σ ∈ Σ. Now, let us introduce the key object that governs the admissibility of solutions.

Definition 1. For a given couple of functions f l,r ∈ C(R), we denote by

G V V the set of all couples (u l , u r ) ∈ R 2 satisfying                                        s := f l u l = f r (u r
) and either u l = u r , or u l < u r and there exists a

u o ∈ u l , u r such that      f l (z) ≥ s for all z ∈ u l , u o , and f r (z) ≥ s for all z ∈ [u o , u r ],
or u l > u r and there exists a

u o ∈ u r , u l such that      f l (z) ≤ s for all z ∈ u o , u l , and f r (z) ≤ s for all z ∈ [u r , u o ]. ( 4 
)
This set is called the vanishing viscosity germ associated with the couple (f l , f r ).

Remark 2. In [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF], Diehl reformulated the Γ-condition of [START_REF] Diehl | On scalar conservation laws with point source and discontinuous flux function[END_REF][START_REF] Diehl | Scalar conservation laws with discontinuous flux function. I. The viscous profile condition. II. On the stability of the viscous profiles[END_REF][START_REF] Diehl | A conservation law with point source and discontinuous flux function modelling continuous sedimentation[END_REF] under the following form: A couple (u l , u r ) satisfies the Γ-condition if

f l (u l ) = f r (u r ) and there exists u o ∈ ch(u l , u r ) such that (u r -u o ) (f r (z) -f r (u r )) ≥ 0 ∀z ∈ ch (u r , u o ) , u o -u l f l (z) -f l (u l ) ≥ 0 ∀z ∈ ch u l , u o , (5) 
where for a, b ∈ R, ch(a, b) denotes the convex hull [min{a, b}, max{a, b}]. Clearly, (4) coincides with [START_REF] Audusse | Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies[END_REF]. Conditions (4),( 5) are reminiscent of the Oleïnik admissibility condition (for the case of convex flux functions f l,r ) and of the "chord condition" (see e.g., [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] and the pioneering work [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF] of Gelfand), since the chord conditions (4) and ( 5) are derived from the travelling-wave approach [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF].

Using the previous notation, we call G V V (σ) the vanishing viscosity germ associated with f l,r (σ; •). Now we can define G V V -entropy solutions.

Definition 3. A function u ∈ L ∞ (R + × R N ) is called a G V V -entropy solution of u t + div f(x, u) = 0 ( 6 
)
u| t=0 = u 0 (7) 
with flux f given by (2), if (i ) the restriction of u on Ω l,r is a Kruzhkov entropy solution of equation ( 6);

(ii ) for H N -a.e. σ on Σ, the couple of strong traces (γ l u)(σ), (γ r u)(σ) of u on Σ belongs to the vanishing viscosity germ G V V (σ); (iii ) H N -a.e. on {0} × R N , the initial trace γ 0 u equals u 0 .

Note that this definition makes sense. Indeed, condition (i ) implies the existence of the initial trace γ 0 u (see Panov [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]) and of the boundary traces γ l,r u on Σ, because Σ is of class C 1 and f l,r are non-degenerate (see Panov [START_REF] Yu | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF]).

Let us give another formulation, which does not involve boundary traces of u.

For c ∈ R, q(x; •, c) := sign(• -c) f(x, •) -f(x, c)
is the entropy flux associated with the Kruzhkov entropy |• -c|. We write q l,r (σ; •, c) for q l,r (•, c)•ν(σ), with the obvious meaning of the superscripts l, r. We will also use q ± (x; •, c) and q l,r ± (σ; •, c) which correspond to the semi-Kruzhkov entropies ( 6), [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF] with flux f given by (2), if, firstly, it is a solution in the sense of distributions; and secondly, for all couples (c l , c r ) ∈ R 2 and c(x) given by ( 8), for all ξ ∈ D(R + × R N ), ξ ≥ 0, one has

• -c) ± . For (c l , c r ) ∈ R 2 , consider c(x) = c l 1 Ω l (x) + c r 1 Ω r (x). ( 8 
)
Definition 4. A function u ∈ L ∞ (R + × R N ) is called a G V V -entropy solution of problem (
R + R N |u(t, x) -c(x)| ξ t + q(x; u(t, x), c(x)) • ∇ξ dxdt - R N |u 0 (x) -c(x)| ξ(0, x) dx + Σ R V V σ; c l , c r ξ(σ) dσ ≥ 0, (9) 
with some "remainder function" R V V : Σ × R 2 -→ R + which is Carathéodory and fulfills

∀ c l , c r ∈ G V V (σ), lim r↓0 - Br(σ)∩Σ R V V (σ ; (c l , c r )) dσ = 0, (10) 
and

∀ (c l , c r ) ∈ R 2 and ∀ a l , a r ∈ G V V (σ) q r (σ; a r , c r ) -q l σ; a l , c l ≤ R V V σ; c l , c r . (11) 
In [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], the remainder function R V V is given explicitly; yet the definition does not depend on the choice of R V V , as soon as the properties [START_REF] Diehl | A conservation law with point source and discontinuous flux function modelling continuous sedimentation[END_REF], [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF] are fulfilled.

The equivalence of Definitions 3 and 4 will be shown in Section 3. Although Definition 4 is not used in the present work, this kind of global entropy formulation would be useful, e.g., for the numerical analysis of the problem (cf. [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]). Indeed, Definition 3 is convenient for the uniqueness proof, but it is not well suited for passage to the limit (cf. the proof of Theorem 5, where the justification of Definition 3(ii ) is indirect). On the contrary, it is clear that Definition 4 is stable under the L 1 loc convergence of bounded sequences of solutions. Under the assumptions on Σ and f stated above, we prove Theorem 5. (i) Assume u, û are G V V -entropy solutions of (6) with initial data u 0 , û0 ∈ L ∞ (R N ), respectively. Then the following Kato inequality holds: For all ξ ∈ D(R

+ × R N ), ξ ≥ 0, R + R N (u -û) + ξ t + q + (x; u, û) • ∇ξ dxdt + R N (u 0 -û0 ) + ξ(0, •) ≥ 0. ( 12 
)
(ii) Let {u ε } ε>0 be an L ∞ bounded sequence of solutions to

u ε t + div f (x, u ε ) = ε∆u ε (13) with u ε | t=0 = u ε 0 ; let u ε 0 → u 0 in L 1 loc (R N ).
Then u ε converges a.e. on R + ×R N to the unique G V V -entropy solution of problem (6), [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF] as ε ↓ 0. It is classical that for locally Lipschitz fluxes f l,r , the Kato inequality [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF] gives uniqueness, the L 1 contraction and comparison principles.

It is easy to see that in general, G V V -entropy solutions need not exist. For instance, if for some σ ∈ Σ, the ranges of f l,r • ν(σ) do not intersect, the Rankine-Hugoniot condition f l (u l ) = f r (u r ) cannot hold for any couple (u l , u r ). In this case, there is no uniform L ∞ bound on the sequence of viscous approximations u ε . The L ∞ bound can be enforced through different assumptions; e.g., it is enough to have f l,r (0) = 0 R N = f l,r (1) and 0 ≤ u 0 ≤ 1. This is the case for the road traffic and for some porous medium models where u has the meaning of relative density. Let us recapitulate our results for this important particular case. Corollary 6. Let f l,r be zero at the endpoints of the interval [0, 1]. Then for all measurable initial datum u 0 : R N → [0, 1] there exists a unique G V V -entropy solution u =: Su 0 of problem (6), [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF].

The restriction on L 1 (R N ; [0, 1]) of the map S defined above is an order-preserving semigroup of contractions. Moreover, S is the limit (in the L 1 loc topology) of the solution semigroups S ε : u 0 → u ε for the vanishing viscosity regularizations (13).

2. Motivations. In this section, we limit our attention to the model one-dimensional problem [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF]. We first perform a standing-wave analysis of the problem, and then relate the result to the description (4) of the vanishing viscosity germ G V V .

Proposition 7.

(i) If (u l , u r ) belongs to the set

G o V V of couples satisfying f l (u l ) = f r (u r ) =: s,                        either u l = u r ; or u l < u r      f l (z) > s for all z ∈ u l , u r , or f r (z) > s for all z ∈ u l , u r , or u l > u r      f l (z) < s for all z ∈ u r , u l , or f r (z) < s for all z ∈ u r , u l , (14) 
then there exists a function

W : R → R such that lim ξ→-∞ W (ξ) = u l , lim ξ→+∞ W (ξ) = u r , and u ε (t, x) = W (x/ε) solves (13) in D ((0, +∞) × R). (ii) The sets G = G o V V and G = G V V fulfill the "L 1 D property" ∀(c l , c r ), (b l , b r ) ∈ G, q l (c l , b l ) ≥ q r (c r , b r ). ( 15 
)
(iii) Assume that G ⊂ R 2 satisfy (15) and that for all (a l , a r ) ∈ G, f l (a l ) = f r (a r ).

Then the inclusion

G o V V ⊂ G implies the inclusion G ⊂ G V V . In particular, ∀ c l , c r ∈ G o V V , f l a l = f r (a r ) & q l a l , c l ≥ q r (a r , c r ) ⇓ a l , a r ∈ G V V . (16) 
Proof (sketched). (i ) In the case u l = u r , the standing-wave profile W can be chosen constant on R. The four other cases are symmetric. For instance, in the case u l < u r and f l (z) > s for all z ∈ (u l , u r ], the profile W is a continuous function constant (equal to u r ) on [0, +∞). On the interval (-∞, 0], W is constructed as the maximal solution of the autonomous ODE W = f l (W ) -f l (u l ) with the initial condition W (0) = u r . Indeed, because f l (w) -f l (u l ) = f l (w) -s > 0 for w ∈ (u l , u r ], the solution W is non-decreasing. Because f l is assumed Lipschitz continuous and u l is a stationary solution, W is defined on the whole interval (-∞, 0], and there exists

d := lim ξ→-∞ W (ξ) ∈ [u l , u r ]. In this case, f l (d) -s = 0, which yields d = u l .
The result is easy to prove also in the case of merely continuous functions f l,r (see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]).

(ii ) One can prove this claim by a tedious case study; see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]. Let us give an argument that uses the structure of the solutions of [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF]. Notice that [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] for

G = G o
V V can also be deduced from the Kato inequality for solutions of (13). More precisely, let

(c l , c r ), (b l , b r ) ∈ G o V V . According to (14), let u ε (t, x) := W (x/ε) with W (-∞) = c l , W (+∞) = c r ; similarly, let ûε (t, x) := Ŵ (x/ε) with Ŵ (-∞) = b l , Ŵ (+∞) = b r .
Then one shows the Kato inequality:

R + R (|u ε -ûε | ξ t + q (x; u ε , ûε ) ξ x + ε |u ε -ûε | ξ xx ) dxdt ≥ 0. ( 17 
)
for all ξ ∈ D((0, ∞) × R), ξ ≥ 0. Letting ε → 0, we have

u ε (t, x) → c l 1 x<0 + c r 1 x>0 and ûε (t, x) → b l 1 x<0 + b r 1 x>0 .
Therefore from [START_REF] Karlsen | Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient[END_REF], we readily get

q l c l , b l -q r (c r , b r ) R + ξ(t, 0) dt ≥ 0
by the Green-Gauss theorem. Therefore [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] follows for G = G o V V . Then the L 1 D property [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] for G = G V V is inferred; indeed, G V V turns out to be the closure of G o V V in the sense defined in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] (see also the appendix in Section 5), and the closure operation preserves the L 1 D property [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF].

(iii ) The proof (taken from [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]) is postponed to the appendix in Section 5.

Remark 8. For given f l,r there may exist many different subsets G of R 2 satisfying the L 1 D property [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] and the equalities ∀(c l , c r ) ∈ G f l (c l ) = f r (c r ) (these equalities encode the Rankine-Hugoniot condition on Σ). Such G is called a maximal L 1 D admissibility germ if it possesses no nontrivial extension satisfying the same properties. Any maximal germ leads to a notion of G-entropy solution (see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]). Proposition 7 (ii ) and (iii ) mean that the germ G V V is maximal. Proposition 7 (iii ) also states that G = G o V V admits a unique maximal extension. This implies, e.g., that in the constraints [START_REF] Diehl | A conservation law with point source and discontinuous flux function modelling continuous sedimentation[END_REF] and [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF] of Definition (3), G V V could be replaced with G o V V . In the model case (1), we can simplify Definition 4 by setting, regardless of σ ∈ Σ,

R V V σ; c l , c r := M dist c l , c r , G o V V , ( 18 
)
where dist is the Euclidean distance on R 2 and M is a sufficiently large positive constant.

Now let us explain the notion of a G V V -entropy solution. Both Definitions 3 and 4 state the Kruzhkov entropy inequalities locally, away from the flux discontinuity interface Σ. But they also contain a description of the coupling of u| Ω l and u| Ω r across Σ. The idea behind Definition 3 lies in the identification of the possible trace couples (γ l u, γ r u) of admissible solutions u. In turn, Definition 4 (with R V V given by ( 18)) explicitly allows for selected "elementary" weak solutions to (1):

c(x) = c l 1 {x<0} + c r 1 {x>0} ,
which play the role of the constants in the classical Kruzhkov formulation. The definitions are inspired by the idea of "adapted entropies" (cf. Baiti and Jenssen [START_REF] Baiti | Well-posedness for a class of 2 × 2 conservation laws with L ∞ data[END_REF], Audusse and Perthame [START_REF] Audusse | Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies[END_REF], Bürger, Karlsen and Towers [START_REF] Bürger | An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections[END_REF]).

The selection of the elementary solutions that should be admitted is based upon the vanishing viscosity approach. Proposition 7(i ) means that c(•) corresponding to (c l , c r ) ∈ G o V V should be admitted in Definition 4, and the trace couples (c l , c r ) ∈ G o V V should be admitted in Definition 3. Indeed, in this case c(•) is clearly obtained as the limit of the viscous standing-wave profiles u ε , moreover, we have γ l,r (c(•))(t, 0) = c l,r for all t > 0.

Proposition 7(ii ) implies the dissipativity property for the coupling of u| Ω l and u| Ω r across Σ. This property ensures the Kato inequality [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF] and yields the uniqueness of G V V -entropy solutions.

Reciprocally, property ( 16) of Proposition 7(iii ) constrains the traces (γ l u, γ r u) of an arbitrary function u obtained as limit of viscous approximations u ε , thus giving rise to Definition 3(ii ). Indeed, a Kato inequality holds for any pair u ε , ûε of solutions of (13); this inequality, "inherited" at the limit, yields the Kato inequality [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF] for any pair of viscous limits u, û; and the (elementary

) solutions û(t, x) = c(x) = c l 1 {x<0} + c r 1 {x>0} , (c l , c r ) ∈ G o V V
, have already been identified as viscous limits. From ( 12) and ( 16) we derive that (γ l u, γ r u)(t) ∈ G V V , for a.e. t.

3.

The uniqueness proof and equivalence of definitions. Throughout this section, we fix a non-negative non-increasing (truncation) function ξ * in D(R + ) satisfying

ξ * (s) = 1 s < 1, 0 s > 2,
and we set

ξ h (x) = ξ * |x 1 -Φ(x )| h .
Proposition 9. Definitions 3 and 4 are equivalent.

Proof . It is standard (see in particular Panov [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF]) that Definition 3(i),(iii) is equivalent to inequalities (9

) with ξ ∈ D(R + × (R N \ Σ)), ξ ≥ 0. For a general ξ ∈ D(R + × R N ), ξ ≥ 0, we have ξ(1 -ξ h ) ∈ D(R + × (R N \ Σ)
). Thus we can focus on the contribution of the truncated test function ξξ h into (9). We only have to show that Definition 3(ii ) is equivalent to the statement that, for all pairs (c l , c r ) ∈ R 2 , the inequality

lim inf h↓0 R + R N ξq(x; u, c(x)) • ∇ξ h dxdt + Σ R V V (σ; (c l , c r )) ξ(σ) dσ ≥ 0 (19)
holds. The existence of strong traces γ l,r u (which follows from [START_REF] Yu | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF] and assumption (2)) and the definition of ξ h allows us to reformulate [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] as

Σ q l γ l u, c l -q r (γ r u, c r ) + R V V (σ; (c l , c r )) ξ(σ) dσ ≥ 0, (20) 
for all pairs (c l , c r ). Now, assume Definition 3(ii ) holds. As soon as ( 11) is guaranteed, (20) follows from [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF] and Proposition 7(ii ). Therefore it is sufficient to construct a Carathéodory function R V V satisfying [START_REF] Diehl | A conservation law with point source and discontinuous flux function modelling continuous sedimentation[END_REF] and [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF]. In the case of a flat interface Σ, one can take the expression [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF]. A more subtle choice is

R V V σ; c l , c r = 2 inf (b l ,b r )∈G V V (σ) Osc f l (σ; •) ; c l , b l + Osc (f r (σ; •) ; c r , b r ) ,
where Osc(g; c, b) denotes the oscillation of the function g on the segment with endpoints b,c. We refer to [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] for the details concerning the choice of

R V V (•; (c l , c r )).
Reciprocally, assume [START_REF] Yu | On sequences of measure valued solutions for a first order quasilinear equation[END_REF] with R V V satisfying ( 10) and [START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF]. Letting ξ| Σ concentrate at a Lebesgue point σ of γ l,r u, with the help of ( 10) we find that for all (c l , c r ) ∈ G V V (σ) q l ((γ l u)(σ), c l ) -q r ((γ r u)(σ), c r ) ≥ 0.

By [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF] we conclude that ((γ l u)(σ), (γ r u)(σ)) ∈ G V V (σ).

Proof of Theorem 5(i).

We use Definition 3. From (i ) and (iii ), by the standard Kruzhkov doubling of variables technique we obtain the Kato inequality [START_REF] Gelfand | Some problems in the theory of quasilinear equations[END_REF] with ξ ∈ D(R + × (R N \ Σ)). As in the previous proof, using the truncation ξ h , we see that it is sufficient to prove that

lim inf h↓0 R + R N ξ q + (x; u, û) • ∇ξ h dxdt ≥ 0. ( 21 
)
The definition of ξ h and the existence of the strong traces γ l,r u and γ l,r û allow to rewrite [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF] as q l + (γ l u, γ l û) ≥ q r + (γ r u, γ r û), H N -a.e. on Σ. This inequality is easily checked from Definition 3(ii ) and the L 1 D property [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] of G V V (σ), σ ∈ Σ.

4.

Convergence of the vanishing viscosity method. In the model case (1), the outline of the proof is given at the end of Section 2. In the general case, we also exploit the Kato inequality for solutions u ε and ûε , but we have to deal with solutions to the nonhomogeneous equation [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF]. A blow-up technique yields the conclusion. Proof of Theorem 5(ii). First, the L ∞ bound assumed on u ε and the genuine nonlinearity assumption in (2) allow us to use the precompactness results of Lions, Perthame and Tadmor [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] or of Panov [START_REF] Yu | On sequences of measure valued solutions for a first order quasilinear equation[END_REF][START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux[END_REF] in the domains Ω l,r . Hence, up to extraction of a convergent sequence, u ε converges a.e. to some u ∈ L ∞ (R + × R N ). Moreover, u fulfills Definition 3(i ), (iii ); it is also a solution of ( 6) in the sense of distributions, so that the Rankine-Hugoniot condition on Σ holds. As soon as we prove that u satisfies Definition 3(ii ), by the uniqueness result of Theorem 5(i ) we get the convergence u ε → u as ε ↓ 0

As mentioned in the introduction, Definition 3(i) and the flux non-degeneracy in (2) ensure the existence of the strong traces γ l,r u on Σ. Let σ o = (t o , x o ) be a common Lebesgue point of γ l,r u. The Rankine-Hugoniot condition for u implies

f l γ l u (σ o ) • ν (σ o ) = f r o ((γ r u) (σ o )) • ν (σ o ) .
In order to conclude the proof, we only have to justify that

q l γ l u (σ o ) , c l • ν (σ o ) ≥ q r ((γ r u) (σ o ) , c r ) • ν (σ o ) , (22) 
for all pairs (c l , c r ) ∈ G o V V (σ o ). Indeed, [START_REF] Yu | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF] and property [START_REF] Karlsen | Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux[END_REF] would yield

γ l u (σ o ) , γ l u (σ o ) ∈ G V V (σ o ).
Recall that f l,r (σ; •) denotes f l,r (•) • ν(σ); we will also write f l,r o (•) for f l,r (σ o ; •). Translating and rotating the axes, we can (at least, locally) reduce the situation to

x o = 0, Φ(0) = 0 and ∇Φ(0) = 0, (23) 
so that {(t, x 1 , x ) | x 1 = 0} is the tangent plane to Σ at the point σ o = (t, 0). By Proposition 7, there exists a solution to the one-dimensional problem

(f o (x 1 , W )) x1 = W x1x1 , W (-∞) = c l , W (+∞) = c r (24) 
(W is the standing-wave profile corresponding to the model problem (1) with

f o (x 1 , •) = f l o (•)1 {x1<0} + f r o (•)1 {x1>0} ). The properties of W include W ∈ C(R)∩W 2,∞ (R\{0}), W ∈ L 1 (R)∩L ∞ (R), W | R\{0} ∈ L 1 (R\{0}), W (0 + ) -W (0 -) = f r o (W (0)) -f l o (W (0)). (25) 
Consider the approximate solutions w ε , ε > 0, to equation ( 13) and their limit w:

w ε (t, x) := W x 1 -Φ(x ) ε , w(t, x) := lim ε↓0 w ε (t, x) = c l 1 Ω l + c r 1 Ω r . (26) 
Straightforward calculation using the pointwise formulation of ( 24) and the jump condition in [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF] shows that the function w ε verifies the equation

w ε t + div f(x, w ε ) = r ε + ε∆w ε (27) 
(in the sense of distributions) with source term

r ε = r ε 1 + r ε 2 + r ε 3 + r ε 4 + r ε 5 ,
where

r ε 1 = - 1 ε W (ξ) f (x, W (ξ)) • ∇ (x1,x ) Φ(x ), r ε 2 = - 1 ε |∇Φ(x )| 2 W (ξ), r ε 3 = ∆Φ(x ) W (ξ)
, and the terms r ε 4 , r ε 5 are measures supported on Σ and acting on ϕ ∈ C(R N +1 ) by

r ε 4 , ϕ := -W 0 + -W 0 - R + R N -1 |∇Φ(x )| 2 ϕ (t, Φ(x ), x ) dtdx , r ε 5 , ϕ := R + R N -1 f r (W (0)) -f l (W (0)) • ∇ (x1,x ) Φ(x ) ϕ (t, Φ(x ), x ) dtdx .
In the expressions r ε 1 , . . . , r ε 3 , ξ = ξ(x 1 , x ) = (x 1 -Φ(x ))/ε. The functions W , W and W are evaluated pointwise, for ξ = 0; ∇ (x1,x ) Φ(x ) denotes the N -dimensional vector (0, ∇Φ(x )); and f is the a.e. defined derivative in z of f(x, z). Note that the product W (ξ)f (x, W (ξ)) makes sense.

Taking a smooth approximation H α (u ε -w ε ) of sign(u ε -w ε ) for the test function in the difference of equations ( 13) and (27), as α ↓ 0 we deduce the following Kato inequality: For all non-negative test functions

ϕ ∈ D(R N +1 ) supported in a neighbourhood of σ o , - R N +1 (|u ε -w ε | ϕ t + q (x; u ε , w ε ) • ∇ϕ + ε |u ε -w ε | ∆ϕ) dxdt ≤ R N +1 (|r ε 1 | + |r ε 2 | + M |∆Φ(x )|) ϕ dx 1 dx dt + M (t,x )∈R N |∇Φ(x )| 2 + |∇Φ(x )| ϕ(t, Φ(x ), x ) dtdx , (28) 
where

M = max W (0 + ) -W (0 -) , f r (W (0)) -f l (W (0)) , W ∞ .
In the sequel, M denotes a generic constant depending on the profile W and on sup |f | on the segment with endpoints c l,r . Because we have dx 1 dx = εdξdx in the sense of measures, the integrability properties in [START_REF] Towers | Convergence of a difference scheme for conservation laws with a discontinuous flux[END_REF] 

yield ∀ϕ ∈ D(R N +1 ), ϕ ≥ 0, R N +1 (|r ε 1 | + |r ε 2 |) ϕ(t, x 1 , x ) dx 1 dx dt ≤ R N +1 |W (ξ)| |∇Φ(x )| + |W (ξ)| |∇Φ(x )| 2 ϕ(t, ξ, x ) dtdξdx ≤ M (t,x )∈R N |∇Φ(x )| + |∇Φ(x )| 2 max ϕ(t, •, x ) dtdx . (29) 
Now we fix a test function of the form ϕ(t, x) := ψ(t, x )ξ h (x), where ξ h was introduced in Section 3. Keeping h and ψ fixed, we let ε ↓ 0 in (28). Using the uniform in ε bound (29) and the definitions of u and w, we infer that

- R N +1 (|u -w| (ψξ h ) t + q(x; u, w) • ∇ (ψξ h )) dxdt ≤ M R N |∇Φ| + |∇Φ| 2 + h |∆Φ| ψ dtdx .
Now replace ψ by a nonnegative test function ψ δ ∈ D(R N ) with integral equal to one, supported in a δ-neighbourhood of σ o (here, we mean that Σ is parametrized by (t, x ) ∈ R N ). As h ↓ 0 and then δ ↓ 0, the right-hand side of the above inequality vanishes, due to the normalization [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux[END_REF]. As to the left-hand side, it converges to

-lim δ↓0 Σ q l γ l u (σ) , c l -q r ((γ r u) (σ), c r ) • ν(σ) ψ δ (σ) dtdx = -q l γ l u (σ o ) , c l -q r ((γ r u) (σ o ) , c r ) • ν (σ o ) .
This establishes [START_REF] Yu | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF] and concludes the proof. Proof of Corollary 6 (sketched). Existence for [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF] with u 0 ∈ L 2 (R N ) can be obtained by the classical Galerkin method. Uniqueness and, more generally, the comparison principle and the L 1 contraction property for solutions u ε of ( 13) are also classical (cf. (28) in the above proof). Then the comparison principle allows to drop the restriction on u 0 for the existence of a solution u ε to [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF].

Finally, because we assume that f l,r (0) = 0 = f l,r (1) and 0 ≤ u 0 ≤ 1, the comparison principle yields 0 ≤ u ε ≤ 1. This justifies Corollary 6.

5.

Appendix: theory of germs and the maximality of G V V . Here we justify Proposition 7(iii ). To this end, let us first give a general definition of an L 1 D germ and of the closure operation on germs. In relation with the left-and right-side fluxes f l and f r in (1) and the associated Kruzhkov fluxes q l,r (z, k) = sign (zk) f l,r (z) -f l,r (k) , we introduce the following definitions: Definition 10. A right (respectively, left) contact shock is a couple of real values (u r , u + ) (resp., (u -, u l )) such that the function

u(x) = u r 1 x<0 + u + 1 x>0 (resp., u(x) = u -1 x<0 + u l 1 x>0 )
In particular, in a germ you cannot "jump decreasingly (in the sense that b l > b r ) through 1/2 more than once". Furthermore, this decreasing jump must occur at the maximal allowed value of the flux at the jump.

Hence, an example of a germ is the set

G = b l ∈ [0, 1/4], b r = h -b l ) ∪ b l ∈ [5/6, 1], b r = h + b l .
By adding all contact shocks to G we obtain its closure,

G = b l ∈ [0, 1/4], b r = h -b l ) ∪ b l ∈ [5/6, 1], b r = h + b l ∪ b l ∈ [0, 1/4], b r = h + b l .
Consider the Riemann problem with left state 3/8 and right state h -(3/8). This couple is not in G, and if we wish to find a self similar solution with traces in G, we must first jump by a shock with negative speed to a value c l ∈ [5/6, 1]. If the solution is to have traces in G then the trace from the right must be h + (c l ). It is however impossible to connect h + (c l ) with h -(3/8) by a Kruzhkov-admissible solution having waves of non-negative speeds. Thus G is not complete.

For κ ∈ [1/4, 1/2] we can define a family of maximal extensions to G by

G κ = b l , h -b l 0 ≤ b l ≤ κ ∪ b l , h + b l 0 ≤ b l ≤ κ ∪ 1 -κ, h -(1 -κ) ∪ b l , h + b l 1 -κ ≤ b l ≤ 1 .
Each of these extensions "jumps decreasingly through 1/2" once, and limits the maximal flux through x = 0 to f l (κ). Since G has several maximal extensions, it is not definite, see Proposition 14(iii ) below. Regarding the dual G * , by Proposition 13(v ), it will not be a germ. For each κ, G κ = G κ and we have added precisely the decreasing jump which makes it complete. Hence, by Proposition 15(ii ),

G * κ = G κ .
The dual of G (and also the dual of G) is formed by the addition of all points which satisfy the Rankine-Hugoniot condition and the L 1 D condition with respect to points in G (and in G). Hence the dual is given by

G * = G * = b l ∈ [0, 3/4], b r = h -b l ) ∪ b l ∈ [0, 1], b r = h + b l .
Observe that in accordance with Proposition 13(ii ) G * = ∪ κ∈[1/4,1/2] G κ . These sets are depicted in Figure 1. We refer to [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] for details, further examples and for the proofs of the below relations between different properties of G, G, G * . These propositions can be helpful in order to determine whether a given subset G of R 2 is a germ, and in order to describe the properties of a given germ G.

Proposition 13 (dual germ, maximality and definiteness). Let G be a subset of R 2 ; let G * be defined by (31). (i) Assume G is a complete germ. Then G is a maximal (and thus closed) germ. (ii) Assume G is a germ such that G is complete. Then G is definite, and G * = G.

Remark 16. Notice that in case (ii ) of Proposition 15, G is a definite germ, and G * is maximal and complete. Such germs are expected to lead to a well-posedness theory for G-entropy solutions. The germ G V V of Definition 1 is one example of a maximal germ; it is complete, e.g., under the assumptions of Corollary 6.

In terms of the above definitions, the statement of Proposition 7(iii ) exactly means that G o V V is a definite germ of which G V V is the dual; in particular, G V V is a maximal germ. The below proof is based on the property that G V V coincides with the closure G o V V of G o V V . Let us point out that the difference between a germ and its closure is responsible for the apparent distinction between the pioneering "minimal jump" admissibility condition of Gimse and Risebro [START_REF] Gimse | Riemann problems with a discontinuous flux function[END_REF][START_REF] Gimse | Solution of the Cauchy problem for a conservation law with a discontinuous flux function[END_REF] and the Γcondition given by Diehl in [START_REF] Diehl | On scalar conservation laws with point source and discontinuous flux function[END_REF][START_REF] Diehl | Scalar conservation laws with discontinuous flux function. I. The viscous profile condition. II. On the stability of the viscous profiles[END_REF][START_REF] Diehl | A conservation law with point source and discontinuous flux function modelling continuous sedimentation[END_REF][START_REF] Diehl | A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients[END_REF]. The set of trace values determined by the two conditions has the same closure; according to Proposition 15, this distinction does not change the germ-based notion of entropy solution.

Figure 1 .

 1 Figure 1. The Rankine-Hugoniot condition shown as broken curves, the other sets as solid curves in the (b l , b r ) plane. Top left: the germ G, top right: the closure G, bottom left: the extension G 3/8 , bottom right: the dual G * .

Let us stress that the existence of strong traces of a solution u relies on the genuine nonlinearity assumption on the fluxes f l,r ; nonetheless, our formulation can be adapted to the case of arbitrary fluxes. In the general case, one works with strong traces of the normal components f l,r (u) • ν of the flux, and the normal components q l,r (u) • ν of the corresponding Kruzhkov entropy fluxes for a solution u. See Panov[START_REF] Yu | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF] for the definition of the relevant trace notion, and[START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] for the corresponding formulation which bypasses the existence of the traces γ l,r u of the solution u itself.

The definition in[START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] of a complete germ is slightly different; it autorizes left-and right-contact shocks in the solutions of a Riemann problem. Contrarily to[START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], the definition of the present paper implies that a complete germ is closed; this is not always convenient.
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is a stationary Kruzhkov-admissible shock for the conservation law u t + (g(u)) x = 0 with the flux g = f r (resp., g = f l ). Definition 11 (Germs; closed, complete, maximal and definite germs).

• Any set G of couples (c l , c r ) ∈ R × R satisfying the Rankine-Hugoniot relation

and the L 1 -dissipativity relation [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] is called an L 1 D admissibility germ (a germ, for short) associated with the couple of fluxes (f l , f r ). • The closure of a germ G is the smallest set G containing G such that G is topologically closed, and moreover, for all couples (c l , c r ) ∈ G, G also contains all couples (c -, c

if all Riemann problem for (1) admits a selfsimilar solution u such that (γ l u, γ r u) ∈ G, where γ l u, resp.γ r u, is the limit of u as x → 0 -, resp.as x → 0 + . • We say that G is an extension of a germ G if G ⊂ G and G still satisfies the L 1 -dissipation property [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] and the Rankine-Hugoniot condition (30). • A germ G is called maximal, if it does not admit a nontrivial extension.

• A germ G is called definite, it it admits only one maximal extension.

In relation with definite and maximal germs, consider one more definition.

Definition 12 (dual of a germ). Let G be a germ. The dual of G is the set

We pause to give an example illustrating these definitions. Let f l (u) = 3u(1 -u) and f r (u) = 4u(1 -u). For u r and u l in [0, 1] the right and left contact shocks are given by

The Rankine-Hugoniot condition implies that any couple (c l , c r ) in a germ must satisfy

In addition, for every two couples (b l , b r ), (c l , c r ) in a germ, the

Proof of Proposition 7(iii). In the first step, we show that

is also a germ by Proposition 14(i ). Then in the second step, we show that G V V contains the dual of G o V V . According to Propositions 13 and 14, this yields the reciprocal inclusion G V V ⊃ G o V V and then the maximality of the germ G V V = G o V V . We will repeatedly use, without mentioning it, the continuity of f l,r .

The case where u l < r and f l s has a zero in [u o , u ).

Step 1:

The other cases are symmetric; let us treat the one where u l < u r Take s and u o as introduced in (4). If both f l > s on the interval (u l , u r ] or f r > s on the interval [u l , u r ), then (u l , u r ) ∈ G o V V . Hence we assume that both f l and f r take the value s somewhere in the interval (u l , u r ).

Consider the function f l (•) -s on the interval [u o , u r ]. If it has a zero, set

s, z r is well defined). See Figure 2.

By construction and by (4), we have u l ≤ z l , f l (u l ) = f l (z l ) = s, and f l ≥ s on [u l , z l ]; z l ≤ z r , f l (z l ) = f r (z r ) = s, and f r > s on the interval (z l , z r ); z r ≤ u r , f r (z r ) = f r (u r ) = s, and f r ≥ s on [z r , u r ]. This means that (u l , z l ) (resp., (z r , u r )) is a left-contact shock (resp., a rightcontact shock), and (z l , z r ) ∈ G o V V . Next consider the situation where f l (•) -s has no zero on the interval [u o , u r ), but f l (u r ) = s. In this case (u l , u r ) is a left-contact shock and (u l , u r ) ∈ G o V V . In all the cases, by the definition of the closure we conclude that (u

and thus (u l , u r ) / ∈ G o V V * . Set s := f l,r (u l,r ). As before, it suffices to consider the case u l < u r . Define

If we had z l ≥ z r , then (4) would hold with u o = z l , so that (u l , u r ) would lie in G V V . Thus z l < z r . Now, there are three cases to be investigated:

(a) f l and f r have a crossing point z o in the interval (z l , z r ) such that f l,r (z o ) < s; (b) f l and f r have a crossing point z o in the interval (z l , z r ) such that f l,r (z o ) ≥ s; (c) either f l < f r on the interval (z l , z r ), or f r < f l on the interval (z l , z r ). See Figure 3 u In the case (a), setting (c l , c r := (z o , z o ) leads to (33), because u l < c l = c r < u r , and f l,r (u l,r ) > f l,r (c l,r ). Note that (c l , c r ) = (z o , z o ) ∈ G o V V . In the case (b), by definition of z l,r , there exists ŝ < s such that ŝ ∈

We then have (33) for the same reasons as in the case (a). In addition, (c

The two situations covered by case (c) are similar. Consider the case where f l < f r on (z l , z r ). Choose c r as the point in [z l , z r ] where f r attains its minimum value over [z l , z r ] and which is the closest one to z l , i.e., c r = min minarg [z l ,z r ] f r (z) .

By definition of z r , ŝ := f r (c r ) < s. Because f r (z l ) ≥ f l (z l ) = s > ŝ, we have c r > z l . In turn, this yields f l (c r ) < f r (c r ) = ŝ. Since f l (z l ) = s > ŝ, there exists c l in the interval (z l , z r ) such that f l (c l ) = ŝ. The couple (c l , c r ) fulfills (4). In addition, by the definition of c r we have f r ≥ ŝ on [z l , z r ] ⊃ [c l , c r ]; thus (c l , c r ) ∈ G o V V . In all cases, we have constructed (c l , c r ) ∈ G o V V with property (33). The contradiction shows that (G o V V ) * ⊂ G V V and thus concludes the proof.