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Toric varieties and spherical embeddings over an arbitrary

field

Mathieu Huruguen

Abstract

We are interested in two classes of varieties with group action, namely toric varieties and
spherical embeddings. They are classified by combinatorial objects, called fans in the toric
setting, and colored fans in the spherical setting. We characterize those combinatorial objects
corresponding to varieties defined over an arbitrary field k. Then we provide some situations
where toric varieties over k are classified by Galois-stable fans, and spherical embeddings over
k by Galois-stable colored fans. Moreover, we construct an example of a smooth toric variety
under a 3-dimensional nonsplit torus over k whose fan is Galois-stable but which admits no
k-form. In the spherical setting, we offer an example of a spherical homogeneous space X0

over R of rank 2 under the action of SU(2, 1) and a smooth embedding of X0 whose fan is
Galois-stable but which admits no R-form.

Introduction

In the early 70’s, Demazure ([Dem70]) gave a full classification of smooth toric varieties under
a split torus in terms of combinatorial objects which he named fans. This classification was
then extended to all toric varieties under a split torus during the next decade (see for example
[Dan78]).

In the first part of this paper, we address the classification problem for a nonsplit torus T over
a field k. Let K be a Galois extension of k which splits T . Then the Galois group Gal(K|k) acts
on fans corresponding to toric varieties under TK = T ×k K, and one can speak of Galois-stable
fans. The classification Theorem 1.22 says, roughly speaking, that toric varieties under a nonsplit
torus T are classified by Galois-stable fans satisfying an additional condition, named (ii). For a
quasi-projective fan (see Proposition 1.9) condition (ii) holds. If the torus T is of dimension 2 then
every fan is quasi-projective, and then condition (ii) holds. If T is split by a quadratic extension,
condition (ii) is also automatically satisfied, by a result of Wlodarczyk ([W lo93]) which asserts
that any two points in a toric variety (under a split torus) lie on a common affine open subset. In
these situations, toric varieties under T are thus classified by Galois-stable fans (Theorem 1.25).
Condition (ii) is nonetheless necessary, as we construct an example of a three dimensional torus T
over a field k, split by an extension K of k of degree 3, and a smooth toric variety under the split
torus TK with Galois-stable fan but which is not defined over k (Theorem 1.31). This provides
an example of a toric variety (under a split torus) containing three points which do not lie on a
common affine open subset.

Recently, Elizondo, Lima-Filho, Sottile and Teitler also studied toric varieties under nonsplit
tori ([ELST10]). They also obtain the statement of Theorem 1.25, but do not address the problem
of descent in general. Using Galois cohomology, they are able to classify toric k-forms of Pn

K if
the extension K of k is cyclic and, toric smooth surfaces in general.

In the second part of this paper, we address the classification problem for embeddings of
spherical homogeneous spaces. A homogeneous space (X0, x0) under a connected reductive group
G over k is called spherical if there is a Borel subgroup B of Gk̄ with Bx0 open in X0(k̄). An
embedding of X0 is a normal G-variety over k containing X0 as an open orbit. The main difference
with the toric case is the base point, introduced in order to kill automorphisms.

The classification of spherical embeddings was obtained by Luna and Vust ([LV83]) when k
is algebraically closed of characteristic 0, and extended by Knop ([Kno91]) to all characteristics.
The classifying objects, called colored fans, are also of combinatorial nature.
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In Section 2.2, we show that the Galois group Gal(k̄|k) acts on those colored fans, so that we
can speak of Galois-stable colored fans. The main classification theorem is Theorem 2.26; like
Theorem 1.22 it asserts that the embeddings of X0 are classified by Galois-stable fans satisfying
an additional assumption, named (ii). We provide some situations where this condition (ii) is
automatically satisfied (including the split case, which is not a part of the Luna-Vust theory), and
an example of a homogeneous space X0 over R, under the action of SU(2, 1), and an embedding
X of X0,C with Galois-stable colored fan but which is not defined over R. This gives an example
of a smooth spherical variety containing two points which do not lie on a common affine subset.

A motivation for studying embeddings of spherical homogeneous spaces is to construct equiv-
ariant smooth compactifications of them. In the toric case, this construction is due to Colliot-
Thélène, Harari and Skorobogatov ([CTHS05]).

I’d like to thank M.Brion for his precious advice about that work and his careful reading. I’d
also like to thank E.J.Elizondo, P.Lima-Filho, F.Sottile and Z.Teitler for communicating their
work to me.

1 Classification of toric varieties over an arbitrary field

Let k be a field and k̄ a fixed algebraic closure. We denote by T a torus defined over k. By a
variety over k we mean a separated geometrically integral scheme of finite type over k. We define
toric varieties under the action of T in the following way :

Definition 1.1. A toric variety over k under the action of T is a normal T -variety X such that
the group T (k̄) has an open orbit in X(k̄) in which it acts with trivial isotropy subgroup scheme.
A morphism between toric varieties under the action of T is a T -equivariant morphism defined
over k.

It follows from the definition that a toric variety X under the action of T contains a principal
homogeneous space under T as a T -stable open subset. We will denote it by X0.

Definition 1.2. We will say that X is split if X0 is isomorphic to T , that is to say, if X0 has a
k-point.

Remark 1.3. If X is a split toric variety, then the automorphism group of X is the group T (k).

In the rest of this section, we classify the toric varieties under the action of T (up to isomor-
phism). Assuming first that the torus T is split, we recall how the classification works in terms
of combinatorial data named fans (Section 1.1). In Section 1.2, we derive the general case from
the split case. We show (Theorem 1.22) that toric varieties under the action of T are, roughly
speaking, classified by Galois-stable fans satisfying an additional assumption. In Section 1.3, we
provide some situations where this additional assumption is always satisfied, and an example
where it is not.

1.1 The split case

In this section, we assume that the torus T is split, and give the classification of toric varieties
under the action of T . This classification was obtained by Demazure in the case of smooth toric
varieties, and by many other people in the general case. See [Dan78] for more details and proofs.

Proposition 1.4. Every toric variety under the action of T is split.

Proof. By Hilbert’s 90 theorem, every principal homogeneous space under T has a k-point.

In order to state the main theorem of this section, we need more notations and definitions.

Notation 1.5. We denote by M the character lattice of T , and by N the lattice of one parameter
subgroups, which is dual to M . We call V the Q-vector space N ⊗Z Q, and V ∗ = M ⊗Z Q its
dual.

By a cone in V , we mean the Q+-linear span of finitely many elements of V . We say that a
cone is strictly convex if it contains no line.
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Notation 1.6. If C is a cone in V , we denote by C∨ ⊆ V ∗ its dual cone, and by Int(C) its relative
interior.

Recall the classical :

Definition 1.7. A fan in V is a finite collection E of strictly convex cones in V satisfying :

• Every face of C ∈ E belongs to E.

• The intersection of two cones in E is a face of each.

Let us now recall how a fan can be associated to a toric variety under the action of T . Fix a
toric variety X under T . If x ∈ X(k̄), the orbit of x under T (k̄) is actually defined over k. For
simplicity, we will denote by Tx this orbit. If ω is a T -orbit, the open subset

Xω := {x ∈ X(k̄), ω ⊆ Tx}

is affine and defined over k. Fix x ∈ X0(k). One can show that the subset

{λ ∈ N, limt→0 λ(t)x exists in X and belongs toXω}

of N is a finitely generated monoid whose Q+-linear span Cω is a strictly convex cone in V .
Observe that the cone Cω does not depend on the point x ∈ X0(k).

Theorem 1.8. By mapping a toric variety X to the collection

{Cω, ω ⊆ X is a T -orbit},

one gets a bijection between (isomorphism classes of) toric varieties under T and fans in V . We
will denote by EX the fan associated to the toric variety X, and by XE the toric variety associated
to the fan E.

To construct a toric variety under T out of a fan E in V , one proceeds as follows. If E contains
only one maximal cone C, then the variety XE is

XE = Spec(k[C∨ ∩M ]).

Observe that XE is affine. In the general case, one glues the toric varieties (XC)C∈E along their
intersections : XC ∩XC′ = XC∩C′ .

The following proposition enables us to detect the quasi-projectivity of a toric variety by
looking at its fan :

Proposition 1.9. Let E be a fan in V . The variety XE is quasi-projective if and only if there
exists a family of linear forms (lC)C∈E on V satisfying the following conditions :

• ∀ C, C′ ∈ E , lC = lC′ over C ∩ C′.

• ∀ C, C′ ∈ E , ∀x ∈ Int(C), lC(x) > lC′(x).

In this situation, we say that the fan E is quasi-projective.

Remark 1.10. Every two-dimensional fan is quasi-projective.

Remark 1.11. If the fan E has one maximal cone, then it is quasi-projective because XE is affine.
If E has two maximal cones, then it is also quasi-projective. Indeed, let l ∈ V ∗ be positive on the
first maximal cone C1, and negative on the second C2. Putting lC1

= l and lC2
= 0 one gets the

result.
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1.2 Forms of a split toric variety

In this section, we go back to the general setting (T is not necessarily split). We fix a finite Galois
extension K of k with Galois group Γ such that the torus TK is split. The notations M,N, ... will
refer to the corresponding objects associated to TK in Section 1.1. These objects are equipped
with an action of the group Γ.

Fix a toric variety X under TK . We address the following problem :

Question 1.12. Does X admit a k-form?

By a k-form of X , we mean a toric variety Y under the action of T , such that YK ≃ X as
TK-varieties. Let FX be the set of isomorphism classes of k-forms of X . We denote by Ω the open
orbit of TK in X , and define FΩ similarly. By definition, FΩ is the set of principal homogeneous
spaces under T which become trivial under TK . By mapping a k-form of X to the principal
homogeneous space that it contains, one obtains a natural map

δX : FX → FΩ

Question 1.13. What can be said about the map δX ?

Theorem 1.22 will give an answer to Questions 1.12 and 1.13. We will obtain a criterion
involving the fan EX for the set FX to be nonempty, and show that if this criterion is satisfied,
the map δX is a bijection. As usual in Galois descent issues, semi-linear actions on X respecting
the ambient structure turn out to be very helpful.

Definition 1.14. An action of Γ on X is called toric semi-linear if for every σ ∈ Γ the diagrams

X
σ

−−−−→ X




y





y

Spec(K)
σ

−−−−→ Spec(K)

,

TK ×X −−−−→ X




y
(σ,σ)





y

σ

TK ×X −−−−→ X

are commutative. The group AutK(X) = T (K) acts by conjugacy on the whole set of toric semi-
linear actions of Γ on X. We denote by EX the set of conjugacy classes of toric semi-linear
actions of Γ on X.

If Y is a k-form of X and if one fixes a TK-equivariant isomorphism X → YK , then one can
let the group Γ act on X . Replacing the isomorphism X → YK by another one, one obtains a
T (K)-conjugated toric semi-linear action. This proves that there is a natural map

αX : FX → EX

The following proposition is part of the folklore and can be found for example in [ELST10].

Proposition 1.15. The map αX is injective. A toric semi-linear action on X is in the image
of αX if and only if the quotient X/Γ exists, or, in other words, if and only if one can cover X
by Γ-stable quasi-projective subsets.

Remark 1.16. If the variety X itself is quasi-projective, the map αX is thus bijective.

Proposition 1.17. The map αΩ is bijective. Otherwise stated, a principal homogeneous space
under T which becomes trivial under TK is characterized by the toric semi-linear action it induces
on Ω.

Proof. Use Proposition 1.15 and observe that Ω is affine.

Remark 1.18. The set FΩ is naturally the Galois cohomology set H1(Γ, T (K)).

The following proposition (also obtained in [ELST10]) enables us to see very easily whether
the set EX is empty or not, by looking at the fan EX .
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Proposition 1.19. The set EX is nonempty if and only if the fan EX is Γ-stable in the sense
that, for every cone C ∈ EX , and for every σ ∈ Γ, the cone σ(C) still belongs to EX . In this case,
the restriction map EX → EΩ is a bijection.

Remark 1.20. The open orbit Ω is easily seen to be Γ-stable for any toric semi-linear action of
Γ on X . By mapping such an action to its restriction to Ω one gets what we call the restriction
map EX → EΩ.

Proof. Assume first that the set EX is non empty. The variety X is thus endowed with a toric
semi-linear action of Γ. Let ω be an orbit of TK on X , and σ be an element of Γ. Let x be a
K-point in Ω (it exists because TK is split). One has

σ(Cω) ∩N = {σ(λ), λ ∈ N, limt→0 λ(t)x exists in X and belongs to Xω}.

Thus,
σ(Cω) ∩N = {λ ∈ N, limt→0 λ(t)σ(x) exists in X and belongs to Xσ(ω)}.

But the K-point σ(x) belongs to Ω, showing that σ(Cω) = Cσ(ω). This proves that EX is stable
under the action of Γ.

Assume now that EX is Γ-stable. Let C be a cone in E and σ an element of Γ. The linear map
σ on M gives a morphism of monoids

σ(C)∨ ∩M → C∨ ∩M

and then a semi-linear morphism of K-algebras

K[σ(C)∨ ∩M ] → K[C∨ ∩M ],

inducing a morphism of varieties
UC → Uσ(C)

which respects the toric structures on both sides. These morphisms patch together, and enable
us to construct the desired toric semi-linear action on X . This completes the proof of the first
point.

Suppose from now on that the set EX is non empty, and fix a toric semi-linear action of Γ on
X . Denote by ∗ a toric semi-linear action of Γ on Ω. Then, for all σ ∈ Γ, the morphism

Ω → Ω

x 7→ σ−1 ∗ (σ(x))

is a toric automorphism of Ω, that is, the multiplication by an element of T (K). But such a
multiplication extends to X , proving that the semi-linear action ∗ of Γ extends to X . In other
words, the restriction map is surjective. But it is also injective because Ω is open in X . This
completes the proof of the proposition.

Remark 1.21. By the previous arguments, one sees that if E is Γ-stable, if ω is an orbit of TK

in X , and σ an element of Γ, the notation σ(ω) makes sense, and does not depend of the chosen
toric semi-linear action of Γ on X . Moreover, one sees that for every toric semi-linear action of Γ
on X , and for every cone C ∈ E , σ(XC) = Xσ(C).

We are now able to answer Questions 1.12 and 1.13 :

Theorem 1.22. The set FX is non empty if and only if the two following conditions are satisfied
:

(i) The fan EX is Γ-stable.

(ii) For every cone C ∈ EX , the fan consisting of the cones (σ(C))σ∈Γ and their faces is quasi-
projective.

In that case, the map δX is bijective. Otherwise stated, for every principal homogeneous space X0

under T , there is a unique k-form of X containing X0, up to isomorphism.
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Proof. Assume first that conditions (i) and (ii) are fulfilled. By Proposition 1.19, the set EX is
nonempty. Fix a toric semi-linear action of Γ on X . By condition (ii) and Proposition 1.9, for
every cone C ∈ E , the open subset

⋃

σ∈Γ Xσ(C) is quasi-projective. But these open subsets are
Γ-stable (by Remark 1.21) and cover X . By Proposition 1.15 the quotient X/Γ exists. Performing
this argument for every toric semi-linear action of Γ on X , one proves that the map δX is bijective.
In particular, the set FX is nonempty.

Assume now that the set FX is nonempty. We want to prove that conditions (i) and (ii)
are fulfilled. By Proposition 1.15, the set EX is nonempty, so that condition (i) holds. Fix a
T -orbit ω on X . By Remark 1.21, the open subset U =

⋃

σ∈Γ Xσ(ω) is Γ-stable. Moreover,
closed T -orbits in U form a unique orbit under Γ. There exists therefore an affine open subset
V in U intersecting every closed T -orbit. By Proposition 1.23 below, one concludes that U is
quasi-projective, or, using Proposition 1.9, that the fan consisting of the cones (σ(Cω))σ∈Γ and
their faces is quasi-projective. This being true for every T -orbit ω, we are done.

Let G be a linear algebraic group over k. Sumihiro proved in [Sum74] that a normal G-variety
containing only one closed orbit is quasi-projective. By the same arguments one gets the next
proposition, whose proof we give for the convenience of the reader.

Proposition 1.23. Let X be a normal G-variety over k. Assume that there is an affine subset
of X which meets every closed orbit of G on X. Then X is quasi-projective.

Proof. Quasi-projectivity is of geometric nature, so one can assume that k is algebraically closed
in what follows. We will use the following quasi-projectivity criterion given in [Sum74] (Lemma
7.) :

Lemma 1.24. If there exists a line bundle L on X and global sections s1, ..., sn generating L at
every point and such that Xs1 , ..., Xsn are affine, then X is quasi-projective.

Let U be an affine subset of X meeting every closed orbit of G and D = X \ U . Then D is
a Weil divisor. Denote by L the coherent sheaf OX(D), and by i : X0 → X the inclusion of the
regular locus of X in X . The natural morphism ϕ : L → i∗(L|X0) is an isomorphism, because X
is normal. Moreover, the sheaf L|X0 is invertible on the smooth G-variety X0, so that one can
let a finite covering G′ of G act on L|X0 , and thus on L, using the isomorphism ϕ. This enables
us to see that the set

A = X \ {x ∈ X, L is invertible in a neighborhood of x}

is a G-stable closed subset of X . Moreover, L|U is trivial, so that A is contained in D, proving
that A is empty, or, otherwise stated, the sheaf L is invertible : the divisor D is Cartier. Let
now s be the canonical global section of the sheaf L. The common zero locus of the translates
(g′.s)g′∈G′ is also a G-closed subset of D, and is therefore empty. We can thus find a finite number
of elements g′1, ..., g

′
n of G′ such that the global sections g′1.s, ..., g

′
n.s generate L at every point.

Moreover, the open subsets Xg′

i
.s are G-translates of U and are therefore affine. This completes

the proof.

1.3 Applications

In this section we give first some conditions on T for every toric variety under TK to have a
k-form. Then we construct an example of a 3-dimensional torus T split by a degree 3 extension
K of k and a toric variety X under T with FX empty.

Theorem 1.25. Assume that dimk(T ) = 2, or that the torus T is split by a quadratic extension.
Then, for every toric variety X under the action of TK whose associated fan is Γ-stable, the map
δX is bijective.

Proof. If dimk(T ) = 2, then dimK TK = 2, and Remark 1.10 shows that the variety X is quasi-
projective. By Remark 1.16, the map δX is bijective in that case. Assume now that the torus T
is split by a quadratic extension K of k. Then the Galois group Γ has two elements, and thus
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for every cone C ∈ Σ, the fan consisting of the cones (σ(C))σ∈Γ and their faces has only one or
two maximal cones. By Remark 1.11, this fan is automatically quasi-projective, so that Theorem
1.22 applies.

Remark 1.26. The tori T split by a fixed quadratic extension K of k are exactly the products of
the following three tori : Gm, RK|k(Gm), R1

K|k(Gm). Here RK|k(Gm) is the Weil restriction of

the torus Gm, and R1
K|k(Gm) is the kernel of the norm map

NK|k : RK|k(Gm) → Gm.

We now provide an example of a split toric variety over K which admits no k-form. We
assume that the Galois extension K over k is cyclic of degree 3. Let σ be a generator of Γ. Fix
a basis (u, v, w) of the lattice N = Z3, and let σ acts on N by the following matrix in the basis
(u, v, w)





0 −1 0
1 −1 0
0 0 1



 .

One defines in this way an action of Γ on N . Let T be the torus over k corresponding to this
action. This is a three-dimensional torus split by K.

Lemma 1.27. Let C = Cone(5u + v − 5w,−5u− 5v + 14w, 4u− v). Then C ∩ σ(C) = {0}.

Proof. One has σ(C) = Cone(−u + 4v − 5w, 5u + 14w, u + 5v). Let x ∈ C ∩ σ(C). There exist
a, b, c, d, e, f > 0 such that

x = (5a− 5b + 4c)u + (a− 5b− c)v + (−5a + 14b)w

= (−d + 5e + f)u + (4d + 5f)v + (−5d + 14e)w.

Consequently






5a− 5b + 4c = −d + 5e + f
a− 5b− c = 4d + 5f
−5a + 14b = −5d + 14e,

and then 14(second line)+5(third line) gives

−11a− 14c = 31d + 70e + 70f.

The left hand-side is nonpositive, and the right hand-side is nonnegative, so that d = e = f = 0,
and then x = 0.

Definition 1.28. Let E be the fan consisting of C, σ(C), σ2(C) and their faces.

Lemma 1.29. The fan E is smooth.

Proof. It is enough to check that C is a smooth cone, and this holds :

∣

∣

∣

∣

∣

∣

5 −5 4
1 −5 −1
−5 14 0

∣

∣

∣

∣

∣

∣

= 1.

Proposition 1.30. The fan E is not quasi-projective.

Proof. Observe first that −w ∈ C − σ(C). Indeed, 45u− 25w = 5((5u + v − 5w) + (4u− v)) ∈ C
and 45u+ 126w = 9(5u+ 14w) ∈ σ(C), so that −151w = (45u− 25w)− (45u+ 126w) ∈ C − σ(C),
and finally, −w ∈ C − σ(C). Applying σ and σ2, one obtains

−w ∈ (C − σ(C)) ∩ (σ(C) − σ2(C)) ∩ (σ2(C) − C).
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Now suppose that the fan E is quasi-projective, and use the notations of Definition 1.9. The
linear form lC − lσ(C) is strictly positive on (C − σ(C)) \ {0}, and then : (lC − lσ(C))(−w) > 0. But
similarly, lσ(C) − lσ2(C) is strictly positive on (σ(C) − σ2(C)) \ {0} (resp. (σ2(C) − C) \ {0}) and
thus (lσ(C) − lσ2(C))(−w) > 0 (resp. (lσ2(C) − lC)(−w) > 0). This gives a contradiction, proving
that the fan E is not quasi-projective.

In view of Theorem 1.22, one has the following :

Theorem 1.31. The toric variety XE under TK is smooth and does not admit any k-form.

In this example, T is of minimal dimension and Γ of minimal order, in view of Theorem 1.25.

Remark 1.32. The variety XE gives an example of a toric variety containing three points which
do not lie on an open affine subset. In [W lo93], it is shown that any two points in a toric variety
lie on a common affine subset.

Remark 1.33. Using techniques from [CTHS05], one can ”compactify” the fan E in a Γ-equivariant
way, and thus produce an example of a smooth complete toric variety under the action of TK

which has no k-form. We first produce a complete simplicial fan Γ-stable fan E0 containing E .
For simplicity, we note

r1 = −5u− 5v + 14w, s1 = 4u− v, t1 = 5u + v − 5w,

r2 = σ(r1), s2 = σ(s1), t2 = σ(t1), r3 = σ2(r1), s3 = σ2(s1), t3 = σ2(t1).

The fan E0 has maximal cones

Cone(r1, t3, s1), Cone(t3, s1, t1), C = Cone(r1, s1, t1)

Cone(r1, r2, t1), Cone(r1, r2, r3), Cone(t1, t2, t3)

and their images under Γ. Because the fan E0 is complete, it gives a triangulation of the unit
sphere in R3. By projecting this triangulation from the South Pole to the tangent plane of the
North Pole, one gets Figure 1.33. The maximal cone Cone(t1, t2, t3) of E0 is missing in this
picture because it is sent to infinity by the projection. In order to smoothen the fan E0 in a
Γ-equivariant way, we use the method described in [CTHS05]. We first subdivide E0 using the
vectors r = −5v + 28w, w, t = u − 4v − 10w and −w. We thus obtain a complete, simplicial
Γ-stable fan E ′

0 satisfying Property (∗) defined in Proposition 2. of [CTHS05]. This fan E ′
0 has

maximal cones

Cone(r1, r, t1), Cone(r, r2, t1), Cone(r1, r, w), Cone(r, r2, w), C = Cone(r1, s1, t1)

Cone(r1, s1, t3) Cone(t3, s1, t) Cone(t, t1, s1) Cone(t3, t,−w) Cone(t, t1,−w)

and their images under Γ. We now can apply to E ′
0 the algorithm explained in the proof of

Proposition 3. of [CTHS05] because it satisfies Property (∗). We thus get a complete, smooth
Γ-stable fan containing E .

2 Spherical embeddings over an arbitrary field

Let k be a field, and k̄ a fixed algebraic closure. Throughout this section, we denote by Γ the
absolute Galois group of k. Let G be a connected reductive algebraic group over k. We note
Gk̄ = G×k k̄.

Definition 2.1. A spherical homogeneous space under G over k is a pointed G-variety (X0, x0)
over k such that :

• The group G(k̄) acts transitively on X0(k̄).

• x0 ∈ X0(k).
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Figure 1: The fans E (grey) and E0.

• There exists a Borel subgroup B of Gk̄ such that the orbit of x0 under B(k̄) is open in
X0(k̄).

We say that X0 is split over k if there exists a split Borel subgroup B of G such that Bx0 is open
in X0,k̄. In this case, the group G itself is split.

Remark 2.2. For simplicity, we will often denote by X0 a spherical homogeneous space, omitting
the base point.

Definition 2.3. Let X0 be a spherical homogeneous space under G. An embedding of X0 is a
pointed normal G-variety (X, x) together with a G-equivariant immersion i : X0 → X preserving
base points. A morphism between two embeddings is defined to be a G-equivariant morphism
defined over k preserving base points.

Remark 2.4. For simplicity again, when speaking about an embedding of X0, we will often omit
the base point and the immersion.

Remark 2.5. If there exists a morphism between two embeddings, then it is unique.

In this section, we classify the embeddings of a fixed spherical homogeneous space X0 under G
up to isomorphism. We first recall in Section 2.1 the Luna-Vust classification theory of spherical
embeddings, assuming that the field k is algebraically closed. Fundamental objects named colored
fans are the cornerstone of that theory. In Section 2.2 we let the Galois group Γ act on these
colored fans, and prove in Section 2.3 that the embeddings of X0 are classified by Γ-stable colored
fans satisfying an additional condition. In Section 2.4 we provide several situations where this
condition is fulfilled (including the split case), and an example where it is not.

2.1 Recollections on spherical embeddings

We assume that k is algebraically closed. Fix a spherical homogeneous space X0 under G, and a
Borel subgroup B such that Bx0 is open in X0. We now list some facts about X0 and give the
full classification of its embeddings (see [Kno91] for proofs and more details). We will introduce
along the way notations that will be systematically used later on.

Notation 2.6. We will denote by :

• K = k(X0) the function field of X0. The group G acts on K.
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• V the set of k-valuations on K with values in Q. The group G acts on V . We will denote
by VG the set of G-invariant valuations, and by VB the set of B-invariant valuations.

• Ω the orbit of x0 under the action of B. This is an affine variety.

• D the set of prime divisors in X0 \ Ω. These are finitely many B-stable divisors.

• X the set of weights of B-eigenfunctions in K. This is a sublattice of the character lattice
of B. The rank of X is called the rank of X0 and denoted by rk(X0).

• V = HomZ(X ,Q). This is a Q-vector space of dimension rk(X0).

• ρ the map V → V, ν 7→ (χ 7→ ν(fχ)), fχ ∈ K being a B-eigenfunction of weight χ (such
an fχ is uniquely determined up to a scalar). The restriction of ρ to VG is injective, and
the image ρ(VG) is a finitely generated cone in V whose interior is nonempty.

The Luna-Vust theory of spherical embeddings gives a full classification of embeddings of X0

in terms of combinatorial data living in the ones we have just defined.

Definition 2.7. A colored cone inside V with colors in D is a couple (C,F) with F ⊆ D, and
satisfying :

• C is a cone generated by ρ(F) and finitely many elements in ρ(VG).

• The relative interior of C in V meets ρ(VG).

• The cone C is strictly convex and 0 /∈ ρ(F).

A colored cone (C′,F ′) is called a face of (C,F) if C′ is a face of C and F ′ = F ∩ ρ−1(C′). A
colored fan is a finite set E of colored cones satisfying :

• (0, ∅) ∈ E.

• Every face of (C,F) ∈ E belongs to E.

• There exists at most one colored cone (C,F) ∈ E containing a given ν ∈ ρ(VG) in its relative
interior.

Let us now recall how a colored fan can be associated to an embedding X of X0. The open
subset Ω being affine, its complement X \ Ω is pure of codimension one, and thus a union of
B-stable prime divisors. Let ω be a G-orbit on X . We denote by Dω the set of prime divisors
D ⊆ X \ Ω with ω ⊆ D, and by Fω the subset of D ∈ D with ω ⊆ D. The elements of Fω are
called the colors associated to the orbit ω. Let Cω be the cone in V generated by the elements

ρ(νD), D ∈ Dω

where νD is the normalized valuation of K associated to the divisor D. We are now able to state
the main theorem of this section :

Theorem 2.8. By mapping X to

{(Cω,Fω), ω ⊆ X is a G-orbit}

one gets a bijection between embeddings of X0 and colored fans in V , with colors in the set D. We
will denote by EX the colored fan associated to the embedding X of X0, and by XE the embedding
of X0 associated to the colored fan E.

Remark 2.9. We will say that the embedding X has no colors if, for every orbit ω of G on X , the
set Fω is empty.

We are not going to explain how an embedding of X0 can be construct out of a colored fan.
The curious reader can find the recipe in [Kno91].

In the rest of the section, we list some properties of spherical embeddings that will be used
later. Firstly, as in the toric case, one is able to say whether an embedding of X0 is quasi-projective
by using the associated colored fan (see [Bri89]).
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Proposition 2.10. Let E be a colored fan. The embedding XE is quasi-projective if and only if
there exists a collection (lC,F)(C,F)∈E of linear forms on V satisfying :

• ∀(C,F) ∈ E , ∀(C′,F ′) ∈ E , lC,F = lC′,F ′ over C ∩ C′.

• ∀(C,F) ∈ E , ∀x ∈ Int(C) ∩ ρ(VG), ∀(C′,F ′) ∈ E \ {(C,F)}, lC,F(x) > lC′,F ′(x).

In this situation, we say that the fan E is quasi-projective.

We now give some results of local nature on spherical embeddings. Knowing the local structure
of toric varieties (as explained in Section 1.1) was a crucial point in order to prove Theorem 1.22.
A toric variety X under T is covered by open affine T -stable subset. This fact is not true on a
spherical embedding X of X0, but we still have a nice atlas of affine charts at our disposal. If ω
is a G-orbit on X , we denote by

Xω,G := {y ∈ X, ω ⊆ Gy}.

This is a G-stable open subset of X containing ω as its unique closed orbit. It is quasi-projective
by a result of Sumihiro [Sum74]. We define

Xω,B := Xω,G \
⋃

D∈D\Fω

D.

This is a B-stable affine open subset of X . Moreover, the G-translates of Xω,B cover Xω,G. One
has

k[Xω,B] = {f ∈ k[Ω], ∀D ∈ Dω νD(f) > 0}.

Let
P :=

⋂

D∈D\Fω

Stab(D).

This is a parabolic subgroup of G containing B, and the open subset Xω,B is P -stable. The
following theorem describes the action of P in Xω,B. See [BLV86] for a proof.

Theorem 2.11. There exists a Levi subgroup L of P and a closed L-stable subvariety S of Xω,B

containing x0, such that the natural map

Ru(P ) × S → Xω,B, (g, x) 7→ gx

is a P -equivariant isomorphism.

Finally, let us introduce the class of horospherical homogeneous spaces :

Definition 2.12. A homogeneous space X0 is said to be horospherical if the isotropy group of x0

contains a maximal unipotent subgroup of G.

Any horospherical homogeneous space is spherical. Moreover, thanks to the following propo-
sition, we are able to recognize horospherical homogeneous spaces among spherical ones in a very
simple way (see [Kno91]).

Proposition 2.13. A spherical homogeneous space X0 is horospherical if and only if ρ(VG) = V .

2.2 Galois actions

We return to an arbitrary field k with algebraic closure k̄. Recall that Γ is the absolute Galois
group of k, and G is a connected reductive algebraic group over k. Fix a spherical homogeneous
space X0 under the action of G, and a Borel subgroup B of Gk̄ such that Bx0 is open in X0(k̄).
In the previous section, we introduced some data attached to X0,k̄. In this section, we let the
group Γ act on these data.
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2.2.1 Action on K

The group Γ acts on K by the following formula

∀σ ∈ Γ, ∀f ∈ K, ∀x ∈ X0(k̄), σ(f)(x) = σ(f(σ−1(x))).

Proposition 2.14. One has

∀σ ∈ Γ, ∀g ∈ G(k̄), ∀f ∈ K, σ(gf) = σ(g)σ(f).

Proof. Straightforward computation.

2.2.2 Action on VB

If σ ∈ Γ, then the group σ(B) is a Borel subgroup of G, so that (see [Bor91] Chap.IV, Theorem
11.1) there exists gσ ∈ G(k̄) satisfying

σ(B) = gσBg−1
σ .

Moreover, gσ is unique up to right multiplication by an element of B. We let the group Γ act on
V by

∀σ ∈ Γ, ∀ν ∈ V , ∀f ∈ K, σ(ν)(f) = ν(σ−1(gσf)).

Proposition 2.15. We define in this way an action of Γ on VB which does not depend on the
particular choice of the (gσ)σ∈Γ.

Proof. Fix ν ∈ VB, σ ∈ Γ and f ∈ K. Let b ∈ B, and b′ ∈ B such that : gσb
−1 = σ(b′)gσ. Then

one has
(bσ(ν))(f) = ν(σ−1(gσb

−1f)) = ν(b′σ−1(gσf)) = σ(ν)(f)

because ν ∈ VB. Thus we have proved that for all σ ∈ Γ and ν ∈ VB, σ(ν) ∈ VB. Now let us
check that one defines an action of Γ on VB. For this we will need the following lemma :

Lemma 2.16.

∀(σ, τ) ∈ Γ2, ∃bσ,τ ∈ B with σ(gτ )gσ = gστbσ,τ .

Proof. Express σ(τ(B)) in two different ways.

Fix (σ, τ) ∈ Γ2, ν ∈ VB and f ∈ K. Then

(στ)(ν)(f) = ν(τ−1(σ−1(gστf))) = ν(τ−1(σ−1(σ(gτ )gσb
−1
σ,τ )f))) = ν(τ−1(gτσ

−1(gσb
−1
σ,τf))).

This shows that
(στ)(ν) = bσ,τ (σ(τ(ν))) = σ(τ(ν))

because σ(τ(ν)) ∈ VB. The fact that this action does not depend on the choice of the gσ readily
follows from the fact that we are working with B-invariant valuations.

2.2.3 Action on X

Let us denote by X (B) the character lattice of the group B. For σ ∈ Γ and χ ∈ X (B) we define

σ(χ) : B → Gm,k̄, b 7→ σ(χ(g−1
σ−1σ

−1(b)gσ−1)).

As in the proof of Proposition 2.15, one checks that this defines an action of Γ on X (B) which
does not depend on the choice of the (gσ)σ∈Γ. The following proposition shows that this action
restricts to an action on X :

Proposition 2.17. Let χ ∈ X and fχ ∈ K a B-eigenfunction of weight χ. Fix σ ∈ Γ. Then
σ(gσ−1f) is a B-eigenfunction of weight σ(χ).

Proof. Straightforward computation.
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2.2.4 Action on V

Being dual to X , the vector space V = HomZ(X ,Q) inherits a linear action of Γ defined by

∀ϕ ∈ V, ∀σ ∈ Γ, ∀χ ∈ X , σ(ϕ)(χ) = ϕ(σ−1(χ)).

Proposition 2.18. The map
ρ : VB → V

is Γ-equivariant.

Proof. Let ν ∈ VB, σ ∈ Γ and χ ∈ X . Denote by fχ ∈ K a B-eigenfunction of weight χ. By
Proposition 2.17, σ−1(gσf) is a B-eigenfunction of weight σ−1(χ). Then

ρ(σ(ν))(χ) = σ(ν)(fχ) = ν(σ−1(gσf)) = ρ(ν)(σ−1(χ)),

completing the proof.

2.2.5 Action on D

Let σ ∈ Γ. Observe that g−1
σ σ(Ω) is an open B-orbit in X0,k̄. Thus g−1

σ σ(Ω) = Ω, and the map

D → D, D 7→ σ ·D = g−1
σ σ(D)

is a bijection. The elements of D being B-invariant divisors, this map does not depend on the
choice of gσ. As in the proof of Proposition 2.15, one checks that this defines an action of Γ on
D. Moreover, one has the following :

Proposition 2.19. The natural map

D → VB, D 7→ νD

is Γ-equivariant.

Proof. Indeed, if a valuation ν on K has a center Y on X0,k̄ and if ϕ is an automorphism of X0,k̄,
then the valuation

ϕ(ν) : K → Q, f 7→ ν(ϕ−1(f))

is centered on ϕ(Y ).

2.3 k-forms of embeddings

We assume in this section that k is a perfect field. We keep the notations from Section 2.2. If
X is an embedding of X0,k̄, we call a k-form of X an embedding of X0 isomorphic to X after

extending scalars to k̄. We obtain in this section a criterion for an embedding X of X0,k̄ to admit
a k-form, in terms of its associated colored fan.

Proposition 2.20. If a k-form of X exists, then it is unique up to isomorphism.

Proof. Take Y and Z two k-forms of X . There exists an isomorphism of embeddings

f : Yk̄ → Zk̄

because they are both isomorphic to X . But a morphism between two embeddings, if exists, is
unique. This shows that f is unchanged under twisting by Γ. In other words, f is defined over
k.

The following proposition gives a characterization of embeddings of X0,k̄ admitting a k-form :

Proposition 2.21. The embedding X admits a k-form if and only if it satisfies the following two
conditions :
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(i) The semi-linear action of Γ on X0,k̄ extends to X.

(ii) X is covered by Γ-stable affine open sets.

Remark 2.22. Condition (ii) is automatically satisfied if X is quasi-projective or covered by Γ-
stable quasi-projective subsets. By a result of Sumihiro ([Sum74]), this is the case if there is only
one closed orbit of Gk̄ on X , or, in other words, if the embedding is simple.

Proof. These two conditions are satisfied exactly when X admits a k-form as a variety. Because
the semi-linear action of Γ on X0,k̄ is Gk̄-semi-linear in the sense that

∀σ ∈ Γ, ∀g ∈ G(k̄), ∀x ∈ X0(k̄), σ(gx) = σ(g)σ(x),

the k-form is naturally an embedding of X0.

Condition (i) in this proposition can be made very explicit in terms of the colored fan associ-
ated to X .

Theorem 2.23. The Gk̄-semi-linear action of Γ on X0,k̄ extends to X if and only if the colored
fan of X is Γ-stable. In that case, for every Gk̄-orbit ω on X and every σ ∈ Γ one has

σ(Cω) = Cσ(ω) and σ(Fω) = Fσ(ω).

Remark 2.24. We say that a colored fan E is Γ-stable if for every colored cone (C,F) ∈ E , the
colored cone (σ(C), σ(F)) still belongs to E .

Proof. Assume (i) and let ω be a Gk̄-orbit on X . Fix σ ∈ Γ. Observe that σ(ω) is also a Gk̄-orbit
on X . By mapping a divisor D to σ ·D, one gets bijections

Dω → Dσ(ω) and Fω → Fσ(ω).

Thus,
(σ(Cω), σ(Fω)) = (Cσ(ω),Fσ(ω))

because the map ρ is Γ-equivariant (Proposition 2.18).
Assume now that the colored fan of X is Γ-stable. Let ω be a Gk̄-orbit on X . Fix σ ∈ Γ, and

denote by ω′ the Gk̄-orbit on X satisfying

(σ(Cω), σ(Fω)) = (Cω′ ,Fω′).

Lemma 2.25. The automorphism σ of VB sends the set {νD, D ∈ Dω} onto the set {νD, D ∈
Dω′}.

Proof. Let D ∈ Dω. If D is not Gk̄-stable, then D ∈ Fω. In this case σ · D ∈ Fω′ , and thus
Proposition 2.19 shows that

σ(νD) ∈ {νD′ , D′ ∈ Dω′}.

Assume now that D is Gk̄-stable. We know from Lemma 2.4 [Kno91] that Q+ρ(νD) is an extremal
ray of Cω which contains no element of ρ(Fω). The map ρ being equivariant, this proves that
Q+ρ(σ(νD)) is an extremal ray of Cω′ which contains no element of ρ(Fω′). Using Lemma 2.4
[Kno91] again and the injectivity of ρ on VG, we get that σ(νD) = νD′ , for some Gk̄-stable divisor
D′ in Dω′ . So far we have proved that σ sends the set {νD, D ∈ Dω} into the set {νD, D ∈ Dω′}.
Using this result for σ−1 and ω′ instead of ω, one obtains the lemma.

Using the description of k̄[Xω,B] and k̄[Xω′,B] given in Section 2.1 and the previous lemma,
we get that the morphism

Ω → Ω, x 7→ g−1
σ σ(x)

extends to a morphism
Xω,B → Xω′,B.

Let U be the largest open subset of X on which this morphism extends. The action of Γ on X0,k̄

being Gk̄-semi-linear, U is Gk̄-stable. But X is covered by the Gk̄-translates of Xω,B, ω being a
Gk̄-orbit on X . We conclude that U = X , completing the proof of the theorem.
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Assuming that the condition (i) of Proposition 2.21 holds, we now make (ii) explicit.

Theorem 2.26. Let X be an embedding of X0,k̄ with Γ-stable colored fan EX . Then X admits a
k-form if and only if for every colored cone (C,F) ∈ EX , the colored fan consisting of the cones
(σ(C), σ(F))σ∈Γ and their faces is quasi-projective.

Proof. The condition given in the proposition is equivalent to the following : for every Gk̄-orbit
ω on X , the open subset

⋃

σ∈Γ

Xσ(ω),G
k̄

is quasi-projective. This set being Γ-stable, if this condition is fulfilled then X admits a k-form
(see Remark 2.22). To prove the converse statement, one can clearly replace X by

⋃

σ∈Γ

Xσ(ω),G
k̄
,

and thus suppose that maximal cones in EX form a single orbit under the action of Γ. But
maximal cones correspond to closed orbits, so using Theorem 2.23, one deduces that closed orbits
are permuted by Γ. Because X admits a k-form, there exists an affine open subset U of X meeting
every closed Gk̄-orbit on X . We conclude by Proposition 1.23.

2.4 Applications

2.4.1 Some situations where (i) ⇒ (ii)

We keep notations from Section 2.2, and denote by X an embedding of X0,k̄. In Proposition 2.21
we introduced two conditions called (i) and (ii) on X which were reformulated in terms of the
colored fan EX in Theorems 2.23 and 2.26. In this section, we prove that (i) ⇒ (ii) under some
additional assumptions on G, X0 or X ..

Proposition 2.27. In each of the following situations, one has (i) ⇒ (ii) :

1. X0 is split.

2. X0 is of rank 1.

3. X0 is horospherical and of rank 2.

4. X0 is horospherical, and G is split by a quadratic extension K of k.

5. X has no colors, and X0 is of rank 2.

6. X has no colors, and G is split by a quadratic extension K of k.

Proof. We suppose that condition (i) is satified, and prove that (ii) holds. Let us first consider
situation 1. We fix a split Borel subgroup B of G with Bx0 open in X0,k̄. One can choose gσ = 1
for every σ ∈ Γ. Looking at the very definition of the action of Γ on X and using the fact that B
is split, one deduces that Γ acts trivially on X . Let ω be a Gk̄-orbit on X . For every σ ∈ Γ one
has

(σ(Cω), σ(Fω)) = (Cω,Fω).

But the colored fan consisting of (Cω,Fω) and its faces is quasi-projective, so condition (ii) is
satisfied.

We now turn to situation 2. One can check using Proposition 2.10 and the fact that V is of
dimension 1 that X is automatically quasi-projective. Condition (ii) is thus fulfilled.

In the remaining situations, observe that for every closed orbit ω of Gk̄ on X the cone Cω
is contained in ρ(VG) (this is obvious if X has no colors; if X0 is horospherical use Proposition
2.13), so that the collection of cones

{Cω, ω is an orbit of Gk̄ on X}
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is a fan. Moreover, this fan is quasi-projective if and only if the colored fan EX is.
Every 2-dimensional fan is quasi-projective, so condition (ii) is satisfied in situations 3 and 5.
If G is split by a quadratic extension K of k, then the Galois group Γ acts through a quotient

of order 2 on V , and thus for every orbit ω of Gk̄ on X , the fan consisting of the cones (σ(Cω))σ∈Γ

and their faces has only one or two maximal cones. By Remark 1.11, this fan is automatically
quasi-projective. We thus see that condition (ii) is also satisfied in situations 4 and 6.

Remark 2.28. Situations 1, 2, 3 and 4 don’t depend on X . This means that in these situations,
the embeddings of X0 are classified by Γ-stable colored fans. In the split case, the colored fan EX
is Γ-stable if and only if for every Gk̄-orbit ω on X , the set of colors Fω is Γ-stable.

2.4.2 A spherical embedding with no k-form

In this section k = R. Thus k̄ = C and Γ = Z/2Z. We let σ be the non trivial element of Γ. We
construct here a connected reductive group G over R, a spherical homogeneous space X0 of rank
2 under the action of G and an embedding X of X0,C whose colored fan is Γ-stable, but which
admits no R-form.

2.4.3 The group G

We denote by E a 3-dimensional C-vector space with an R-structure ER. Let ε be a bilinear form
on E defined over R and of signature (1, 2). We denote by q its associated quadratic form. If g
is an element of GL(E), we denote by g∗ the inverse of its adjoint. We consider the semi-linear
action of Γ on SL(E) given by

∀g ∈ SL(E), σ(g) = g∗.

Here the conjugation is relative to the R-form SL(ER) of SL(E). One checks that Γ acts by
automorphisms of the group SL(E), so that this action corresponds to a R-form G of SL(E),
which is isomorphic to SU(2, 1). Fix an isotropic line l in E defined over R, and denote by B the
stabilizer of the complete flag

l ⊂ l⊥

in E. Then B is a Γ-stable Borel subgroup of SL(E). Thus G is quasi-split, and we can choose
gσ = 1 in what follows. The character lattice of B is given by

X (B) = (Zχ1 ⊕ Zχ2 ⊕ Zχ3)/Z(χ1 + χ2 + χ3),

where the group B acts through the character χ1 on l, χ2 on l⊥/l and χ3 on E/l⊥.
We denote by V the dual HomZ(X (B),Q). We thus have

V = {r1µ1 + r2µ2 + r3µ3, (r1, r2, r3) ∈ Q3 and r1 + r2 + r3 = 0}

where Zµ1 ⊕ Zµ2 ⊕ Zµ3 is the dual lattice of Zχ1 ⊕ Zχ2 ⊕ Zχ3.

2.4.4 The homogeneous space X0

Consider the following affine variety over C :

Y = {(p,P), p ∈ E, P ⊂ E of dimension 2, p /∈ P}.

The group SL(E) acts naturally and transitively on Y . Fix a point p0 ∈ ER \ {l} with q(p0) = 1.
We note P0 = p⊥0 and x0 = (p0,P0).

Remark 2.29. The stabilizer of x0 in SL(E) is

{g ∈ G(C), g(p0) = p0 and g(P0) = P0},

and is therefore isomorphic to SL2. The homogeneous space Y is thus isomorphic to SL3/SL2.
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We let the group Γ act semi-linearly on Y by

σ(p,P) = (p′, p⊥)

where p′ ∈ P
⊥

satisfies ε(p, p′) = 1. We call X0 the R-form of this variety corresponding to this
semi-linear action. There is no problem to perform the quotient because Y is an affine variety.
Observe that x0 ∈ X0(R).

Proposition 2.30. The homogeneous space X0 is spherical. More precisely, Bx0 is open in
X0(C).

Proof. As one can check, the subset

Ω := {(p,P) ∈ X0(C), p /∈ l⊥ and l * P}

of X0(C) is an orbit of B, and is open in X0(C). Moreover x0 ∈ Ω.

2.4.5 Data attached to X0

We define

D1 := {(p,P) ∈ X0(C), p ∈ l⊥} and D2 := {(p,P) ∈ X0(C), l ⊆ P}.

These are two B-stable divisors on X0(C) and :

Proposition 2.31. The set D equals {D1, D2}, and σ exchanges D1 and D2.

Proof. This is a direct consequence of the description of Ω given in the proof of Proposition 2.30
and of the definition of the action of Γ on D.

Before we continue, we need to specify a particular basis of ER.

Notation 2.32. We denote by e1 the unique vector in l satisfying ε(e1, p0) = 1, by e2 the unique
vector in l⊥ ∩ P0 with q(e2) = 1 and by e3 the vector p0 − e1. The vectors e1, e2, e3 give a basis
of E defined on R and we denote by e∗1, e

∗
2, e

∗
3 the dual basis.

With these notations, we have

x0 = (e1 + e3, 〈e2, e3〉) and l⊥ = 〈e1, e2〉.

We define the following two functions on X0(C)

f1 : (p,P) 7→ e∗3(p) and f2 : (p,P) 7→
ϕP(e1)

ϕP(p)

where ϕP is an equation of the 2-plane P . They are respectively the equations of D1 and D2,
and B-eigenfunctions of weight −χ3 and χ1. We are now able to prove :

Proposition 2.33. The lattice X is X (B) itself. We have

ρ(νD1
) = µ2 − µ3, ρ(νD2

) = µ1 − µ2.

The automorphism σ of V is the reflection exchanging µ2 − µ3 and µ1 − µ2.

Proof. The first point follows from the fact that −χ3 and χ1 generate X (B). Moreover,

ρ(νD1
)(−χ3) = νD1

(f1) = 1 and ρ(νD1
)(χ1) = νD1

(f2) = 0,

proving that ρ(νD1
) = µ2 − µ3. We compute ρ(νD2

) in the same way. For the remaining point,
recall that the automorphism σ of D exchanges D1 and D2, and the map ρ is equivariant.
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Proposition 2.34. We have

ρ(VG) = {r1µ1 + r2µ2 + r3µ3 ∈ V, r3 > r1}.

Proof. Denote by τ the permutation (1, 2, 3) and also by τ ∈ SL(E) the automorphism sending
ei to eτ(i). Then one checks that

τ(f1)f2 + τ2(f1)τ2(f2) + f1τ(f2) = 1

in the field K. This proves that if ν ∈ V is G-invariant, then

〈ρ(ν), χ1 − χ3〉 6 0.

So far we have proved ” ⊆ ”. For the reverse inclusion, we use the following fact (see [Kno91]) :
the dimension of the linear part of the cone ρ(VG) is equal to the codimension of Stab(x0) in its
normalizer. Using Remark 2.29 one sees that this normalizer is given by

{g ∈ G(C), g(p0) ∈ 〈p0〉 and g(P0) = P0}.

Thus the linear part of ρ(VG) is of dimension 1, completing the proof of the proposition.

Figure 2: The combinatorial data attached to X0

2.4.6 The embedding X

We denote by C the cone in V spanned by µ2 −µ3 and µ1− 2µ2 +µ3. Let E be the colored fan in
V with colors in D whose maximal cones are (C, {D1}) and (σ(C), {D2}). The fan E is Γ-stable.
It is depicted in Figure 3.

Figure 3: The colored fan E .

Theorem 2.35. The embedding X = XE of X0,C admits no R-form. Moreover, X is smooth.
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Proof. The colored fan E has two maximal cones that are permuted by Γ. Moreover, these
maximal cones meet, so the colored fan E cannot be quasi-projective. By Theorem 2.26 this
proves the first point. Let us denote by ω the closed orbit of G(C) on X corresponding to the
colored cone (C, {D1}). Translating the open subset Xω,B by elements of Γ and G(C) one covers
X , so in order to prove the second point, one only has to see that Xω,B is smooth. Denote by P
the stabilizer of D2, or, in other words, the stabilizer of l in E. By Theorem 2.11, there exists
a Levi subgroup L of P and a closed L-stable subvariety S of Xω,B containing x0 and such that
the natural map

Ru(P ) × S → Xω,B

is a P -equivariant isomorphism. By the following lemma, S is isomorphic to C3, and thus smooth.
Let f3 be the following function on X0(C) :

f3 : (p,P) 7→ e∗2(p).

Lemma 2.36. The functions f2, f1f2 and f3f2 are algebraically independent in C[S], and

C[S] = C[f2, f1f2, f3f2]

Proof. Observe that :
C[S] = C[Xω,B]Ru(P )

so that the algebra C[S] is the sub-L-module of C[Lx0] generated by the B ∩L-eigenfunctions in
C(Lx0) of weight χ satisfying

〈µ2 − µ3, χ〉 > 0, 〈µ1 − 2µ2 + µ3, χ〉 > 0.

In other words, χ belongs to the monoid generated by χ1 and χ1−χ3. The functions f2 and f1f2
are B ∩ L-eigenfunctions of respective weights χ1 and χ1 − χ3. Moreover, the L-module C[Lx0]
is multiplicity-free, because the homogeneous space Lx0 is spherical. One deduces that

C[S] =
⊕

(m,n)∈N2

〈Lfm+n
2 fn

1 〉

Using the fact that f2 is a L-eigenfunction, the following lemma enables us to conclude.

Lemma 2.37. Let n ∈ N. A basis of the linear span of L-translates of fn
1 in C[Lx0] is given by

fn
1 , f

n−1
1 f3, ..., f1f

n−1
3 , fn

3 .

Proof. We first prove the case n = 1. Observe that l⊥ ⊆ V ∗ is generated by e∗2 and e∗3. Then one
easily checks that e∗2, e

∗
3 is a basis of 〈Le∗3〉. Moreover, if there exist λ1, λ3 ∈ C2 such that

λ1f1 + λ3f3 = 0

in C[S], then the same is true in C[Xω,B]. The linear forms e∗2 and e∗3 are thus linearly dependent
in V ∗, which is a contradiction. Thus f1 and f3 are linearly independent in C[S], completing the
proof in the case n = 1. The same argument proves that fn

1 , f
n−1
1 f3, ..., f1f

n−1
3 , fn

3 are linearly
independent in C[S]. By the case n = 1, they also generate 〈Lfn

1 〉.

Remark 2.38. The embedding X gives an example of a spherical variety containing two points
which do not lie on a common affine open subset. Indeed, there are two closed orbits of Gk̄ on X .
If the point y belongs to the first orbit and z to the second, then y and z cannot lie on a common
affine open subset, because of Proposition 1.23. Moreover, in view of Theorem 2.27, this example
has minimal rank.

Remark 2.39. With a little more work, one can compactify the previous example, and thus obtains
a complete smooth embedding X of X0 with Γ-stable fan, and with no R-form.

19



References

[BLV86] M. Brion, D. Luna, and Th. Vust. Espaces homogènes sphériques. Invent. Math.,
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