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Abstract

We consider the so-called Gessel’s walk, that is the planar random walk that is
confined to the first quadrant and that can move in unit steps to the West, North-East,
East and South-West. For this walk we make explicit the generating function of the
number of paths starting at (0, 0) and ending at (i, j) in time k.
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0 Introduction and main results

The enumeration of lattice walks is a classical problem in combinatorics. The one of
Gessel’s walk seems to puzzle the mathematics community already for several years
[Ges86, PW08, KKZ09, Ayy09, Pin09, BK09]. This is a planar random walk that is
confined to the first quadrant and that can move in the interior in unit steps to the West,
North-East, East and South-West, see Figure 1. For (i, j) ∈ Z

2
+ and k ∈ Z+, set

q(i, j, k) = #
{
walks starting at (0, 0) and ending at (i, j) in time k

}
.

I. Gessel conjectured around 2001 that q(0, 0, 2k) = 16k
[
(5/6)k(1/2)k

]/[
(2)k(5/3)k

]
, where

(a)k = a(a+1) · · · (a+k−1). In 2008, M. Kauers, C. Koutschan and D. Zeilberger yielded
a remarkable although heavily computer-aided proof of this conjecture, see [KKZ09].

The articles [Ayy09, Pin09] give connections between Gessel’s walk and other
interesting models. Namely, S. Ping in [Pin09] establishes a probabilistic model for Gessel’s
walk concerned with vicious walkers, and A. Ayyer in [Ayy09] interprets such walks as
Dick words with two sets of letters and gives explicit formulas for a restricted class of
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such words. Both of these approaches are yet in some way of providing “human” proof of
Gessel conjecture but may certainly help for a better understanding of Gessel’s walk.

M. Petkovsek and H. Wilf in [PW08] state some similar conjectures for the number
of walks ending at other points. Two of them have been proved by S. Ping in [Pin09].
M. Petkovsek and H. Wilf in [PW08] obtain also an infinite lower-triangular system of
linear equations satisfied by the values of q(i, 0, k) and q(0, j, k)+ q(0, j−1, k) and express
these values as determinants of lower Hessenberg matrices with unit superdiagonals whose
non-zero entries are products of two binomial coefficients.

Finally, A. Bostan and M. Kauers in [BK09] show that the complete generating function
for Gessel’s walk

Q(x, y, z) =
∑

i,j,k≥0

q(i, j, k)xiyjzk

is algebraic and make explicit minimal polynomials for Q(x, 0, z) and Q(0, y, z). The
proof of A. Bostan and M. Kauers given in [BK09] involves, among other tools, computer
calculations using a powerful computer algebra system Magma, it required immense
computational effort.

Curiously, in spite of this vivid interest to Gessel’s walk, the complete generating
function Q(x, y, z) or even Q(0, y, z) or Q(x, 0, z) have not yet been analyzed without
computer help, up to our knowledge.

Furthermore, recently M. Bousquet-Mélou and M. Mishna in [BMM08] have under-
taken the systematic analysis of enumeration of the walks confined to the quarter plane
Z

2
+ starting from the origin and making steps at any point of Z

2
+ from a given subset of

{−1, 0, 1}2 \ {(0, 0)}. There are 28 such models. Moreover they show that, after eliminat-
ing trivial models and those that are equivalent to models of walks confined to a half-plane
and solved by known methods, it remains 79 inherently different problems to study. Fol-
lowing the idea of Book [FIM99], they associate to each model a group G of birational
transformations (for details on this group, see Subsection 1.1 below). This group is finite
in 23 cases and infinite in the 56 other cases. They are able to solve “mathematically”,
i.e. to make explicit the function Q(x, y, z) without computer help, 22 models associated
with a finite group. The only case with finite group that remained unsolved is the model
of Gessel’s walk.

Figure 1: Gessel’s walk
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The aim of this paper is to solve Gessel’s walk model, i.e. to represent in a closed form
the generating function Q(x, y, z) without computer help.

In addition of being not computer-aided, our method presents the advantage of being
generalizable up to the case of all 28 walks described above with unit steps in the quarter
plane and associated with a finite or infinite group.

Let us observe that for any i, j and k, q(i, j, k) ≤ 4k, so that Q(x, y, z) is holomorphic in
{|x| < 1, |y| < 1, |z| < 1/4} and continuous up to {|x| ≤ 1, |y| ≤ 1, |z| < 1/4}. Our starting
point is the functional equation already stated in [BMM08] and exploited in [PW08], valid
a priori on {|x| ≤ 1, |y| ≤ 1, |z| < 1/4} :

L(x, y, z)Q(x, y, z) = zQ(x, 0, z) + z(y + 1)Q(0, y, z) − zQ(0, 0, z) − xy, (1)

where L(x, y, z) = xyz
(
1/x+ 1/(xy) + x+ xy − 1/z

)
.

Our method heavily relies on the profound analytic approach developed in Book
[FIM99] by G. Fayolle, R. Iasnogorodski and V. Malyshev. There the authors compute
the generating functions of stationary probabilities for some ergodic random walks in the
quarter plane. These random walks have four domains of spatial homogeneity : the interior
{(i, j) : i > 0, j > 0}, the x-axis {(i, 0) : i > 0}, the y-axis {(0, j) : j > 0} and the origin
{0, 0} ; in the interior the only (at most eight) possible non-zero jump probabilities are at
distance one. They reduce the problem to the solution of the following functional equation
on {|x| ≤ 1, |y| ≤ 1},

K(x, y)Π(x, y) = k(x, y)π(x) + k̃(x, y)π̃(y) + k0(x, y)π00, (2)

with known polynomials K(x, y), k(x, y), k̃(x, y), k0(x, y) and with functions Π(x, y),
π(x), π̃(y) unknown but holomorphic in unit discs, continuous up to the boundary. First,
they continue π(x) and π̃(y) meromorphically (with poles that can be identified) to the
whole complex plane cut along some segment. This ingenious continuation procedure is
the crucial step of Book [FIM99]. After that, they show that π(x) and π̃(y) verify a
boundary value problem of Riemann-Carleman type and they solve it by converting it
into a boundary value problem of Riemann-Hilbert type.

Compared to (2), our equation (1) seems a bit more difficult to analyze, as it involves a
complementary parameter z. From the other point of view, the coefficients k(x, y), k̃(x, y)
and k0(x, y) in front of unknowns zQ(x, 0, z), z(y+1)Q(0, y, z) and zQ(0, 0, z) are absent.
This will allow us to continue zQ(x, 0, z) and z(y + 1)Q(0, y, z) as holomorphic and not
only meromorphic functions and, consequently, to simplify substantially the solutions.

In the sequel, we will suppose, for technical reasons, that z is fixed in ]0, 1/4[.

We are now going to state the main results of this paper. To begin with, let us have
a closer look to the kernel L(x, y, z) that appears in (1) and let us take some notations.

The polynomial L(x, y, z) can be written as L(x, y, z) = ã(y, z)x2 + b̃(y, z)x+ c̃(y, z) =
a(x, z)y2 + b(x, z)y + c(x, z), with ã(y, z) = zy(y + 1), b̃(y, z) = −y, c̃(y, z) = z(y + 1)
and a(x, z) = zx2, b(x, z) = zx2 − x + z, c(x, z) = z. Define also d̃(y, z) = b̃(y, z)2 −
4ã(y, z)c̃(y, z) and d(x, z) = b(x, z)2 − 4a(x, z)c(x, z).
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For any z ∈]0, 1/4[, d̃ has one root equal to zero and two real positive roots, that
we denote by y2(z) < 1 < y3(z). We have y2(z) = [1 − 8z2 − (1 − 16z2)1/2]/[8z2] and
y3(z) = [1 − 8z2 + (1 − 16z2)1/2]/[8z2] ; we will also note y1(z) = 0 and y4(z) = ∞.

Likewise, for all z ∈]0, 1/4[, d has four real positive roots, that we denote by x1(z) <
x2(z) < 1 < x3(z) < x4(z). Their explicit expression is x1(z) = [1 + 2z− (1 + 4z)1/2]/[2z],
x2(z) = [1 − 2z − (1 − 4z)1/2]/[2z], x3(z) = [1 − 2z + (1 − 4z)1/2]/[2z] and x4(z) =
[1 + 2z + (1 + 4z)1/2]/[2z].

With these notations we have L(x, y, z) = 0 if and only if (b̃(y, z)+2ã(y, z)x)2 = d̃(y, z)
or (b(x, z)+2a(x, z)y)2 = d(x, z). In particular, the algebraic functionsX(y, z) and Y (x, z)
defined by L(X(y, z), y, z) = 0 and L(x, Y (x, z), z) = 0 have two branches, meromorphic
on respectively C \

(
[y1(z), y2(z)] ∪ [y3(z), y4(z)]

)
and C \

(
[x1(z), x2(z)] ∪ [x3(z), x4(z)]

)
.

The following straightforward results give some properties of the two branches of the
algebraic functions X(y, z) and Y (x, z).

Lemma 1. Call X0(y, z) = [−b̃(y, z) + d̃(y, z)1/2]/[2ã(y, z)] and X1(y, z) = [−b̃(y, z) −
d̃(y, z)1/2]/[2ã(y, z)] the branches of X(y, z). For all y ∈ C, we have |X0(y, z)| ≤ |X1(y, z)|.

On C \
(
[y1(z), y2(z)] ∪ [y3(z), y4(z)]

)
, X0 has a simple zero at −1, no other zero and

no pole ; X1 has a simple pole at −1, no other pole and no zero. Finally, both X0 and X1

become infinite at y1(z) = 0 and zero at y4(z) = ∞.
Now we call Y0(x, z) = [−b(x, z) + d(x, z)1/2]/[2a(x, z)] and Y1(x, z) = [−b(x, z) −

d(x, z)1/2]/[2a(x, z)] the branches of Y (x, z). For all x ∈ C, we have |Y0(x, z)| ≤ |Y1(x, z)|.
On C \

(
[x1(z), x2(z)] ∪ [x3(z), x4(z)]

)
, Y0 has a double zero at ∞, no other zero and

no pole ; Y1 has a double pole at 0, no other pole and no zero.

Both Xi(y, z), i = 0, 1, are not defined for y in a branch cut, in other words for
y ∈ [y1(z), y2(z)] ∪ [y3(z), y4(z)]. However, the limits X±

i (y, z) defined by X+
i (y, z) =

limXi(ŷ, z) as ŷ → y from the upper side of the cut and X−
i (y, z) = limXi(ŷ, z) as ŷ → y

from the lower side of the cut are well defined. Since for y in a branch cut, d̃(y, z) < 0,
these two quantities are complex conjugate the one from the other.

A similar remark holds for Yi(x, z), i = 0, 1, and x ∈ [x1(z), x2(z)] ∪ [x3(z), x4(z)].
In fact for respectively y ∈ [y1(z), y2(z)] and x ∈ [x1(z), x2(z)] we have :

X±
0 (y, z) =

−b̃(y, z) ∓ ı
[
− d̃(y, z)

]1/2

2ã(y, z)
, Y ±

0 (x, z) =
−b(x, z) ∓ ı

[
− d(x, z)

]1/2

2a(x, z)
, (3)

X±
1 (y, z) = X∓

0 (y, z) and Y ±
1 (x, z) = Y ∓

0 (x, z) – note that for (3) to be true for respectively
y ∈ [y3(z), y4(z)] and x ∈ [x3(z), x4(z)], we have to exchange X±

0 (y, z) and Y ±
0 (x, z) in

X∓
0 (y, z) and Y ∓

0 (x, z).

Lemma 2. Consider X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z). (i) These two curves are
symmetrical w.r.t. the real axis and not included in the unit disc. (ii) X([y1(z), y2(z)], z)
contains ∞ and Y ([x1(z), x2(z)], z) is closed. (iii) Both of them split the plane into
two connected components, we call GX([y1(z), y2(z)], z) and GY ([x1(z), x2(z)], z) the
connected components of 0. They verify GX([y1(z), y2(z)], z) ⊂ C \ [x3(z), x4(z)] and
GY ([x1(z), x2(z)], z) ⊂ C \ [y3(z), y4(z)].
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Figure 2: The curves X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z)

Note that complete proofs of Lemmas 1 and 2 can be found in Part 5.3 of [FIM99].
These notations and results on the kernel L(x, y, z) are enough in order to state our results.

First of all, we would like to show that zQ(x, 0, z) and z(y + 1)Q(0, y, z) verify some
boundary value problems of Riemann-Carleman type. It turns out that the associated
boundary conditions verified by zQ(x, 0, z) and z(y+ 1)Q(0, y, z) hold respectively on the
curves X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z), which are not included in unit disc, see
Lemma 2, and where therefore the functions zQ(x, 0, z) and z(y+ 1)Q(0, y, z) are a priori
not defined. For this reason, we first need to continue the generating functions up to these
curves. In fact we will show the following – the proof of which being the central subject
of Section 2.

Theorem 3. The functions zQ(x, 0, z) and z(y + 1)Q(0, y, z) can be holomorphically
continued from their unit disc up to C \ [x3(z), x4(z)] and C \ [y3(z), y4(z)] respectively.
Furthermore for any y ∈ C \ [y1(z), y2(z)] ∪ [y3(z), y4(z)],

zQ(X0(y, z), 0, z) + z(y + 1)Q(0, y, z) − zQ(0, 0, z) −X0(y, z)y = 0, (4)

and for any x ∈ C \ [x1(z), x2(z)] ∪ [x3(z), x4(z)],

zQ(x, 0, z) + z(Y0(x, z) + 1)Q(0, Y0(x, z), z) − zQ(0, 0, z) − xY0(x, z) = 0. (5)

Remark 4. For y ∈ {|y| ≤ 1} such that |X0(y, z)| ≤ 1, (4) follows immediately from (1).
Likewise, for x ∈ {|x| ≤ 1} such that |Y0(x, z)| ≤ 1, (5) is a straightforward consequence
of (1). The fact that equations (4) and (5) are verified not only for these values of y
and x but actually on C \ [y1(z), y2(z)]∪ [y3(z), y4(z)] and C \ [y1(z), y2(z)]∪ [x3(z), x4(z)]
respectively will be shown in Section 2.

Remark 5. In the proof of Theorem 3, we will see that the function Q(0, y, z) can also be
holomorphically continued from the unit disc up to C \ [y3(z), y4(z)].
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Now we explain how to obtain the above mentioned boundary conditions verified by
the functions zQ(x, 0, z) and z(y + 1)Q(0, y, z).

Let y ∈ [y1(z), y2(z)], and let ŷ+ and ŷ− be close to y, such that ŷ+ is in the upper half-
plane and ŷ− in the lower half-plane. Then we have (4) for both ŷ+ and ŷ−. If now ŷ+ → y
and ŷ− → y, then we obtain X0(ŷ

+, z) → X+
0 (y, z) and X0(ŷ

−, z) → X−
0 (y, z) = X+

1 (y, z).
So we have proved that for any y ∈ [y1(z), y2(z)],

zQ(X+
0 (y, z), 0, z) + z(y + 1)Q(0, y, z) − zQ(0, 0, z)−X+

0 (y, z)y = 0, (6)

zQ(X+
1 (y, z), 0, z) + z(y + 1)Q(0, y, z) − zQ(0, 0, z)−X+

1 (y, z)y = 0. (7)

Subtracting (7) from (6) we obtain that for any y ∈ [y1(z), y2(z)],

z
[
Q(X+

0 (y, z), 0, z) −Q(X+
1 (y, z), 0, z)

]
= X+

0 (y, z)y −X+
1 (y, z)y. (8)

Then, using the fact that for i = 0, 1, y ∈ [y1(z), y2(z)] and z ∈]0, 1/4[, Y0(X
±
i (y, z), z) = y

– which can be proved by elementary considerations starting from Lemma 1, or by the use
of Lemma 17 –, we get the first part of (9) below :

∀t ∈ X([y1(z), y2(z)], z) : z
[
Q

(
t, 0, z

)
−Q

(
t, 0, z

)]
= tY0

(
t, z

)
−tY0

(
t, z

)
,

∀t ∈ Y ([x1(z), x2(z)], z) : z
[(
t+ 1

)
Q

(
0, t, z

)
−

(
t+ 1

)
Q

(
0, t, z

)]
= X0

(
t, z

)
t−X0

(
t, z

)
t.
(9)

Likewise, we could prove the second part of (9).
Note that as a consequence of (6) and (7), (4) is in some sense also verified for

y ∈ [y1(z), y2(z)] – the same is true for (5) and x ∈ [x1(z), x2(z)].

With Lemma 2, Theorem 3 and (9), we get that zQ(x, 0, z) and z(y+1)Q(0, y, z) can be
found among the functions holomorphic in GX([y1(z), y2(z)], z) and GY ([x1(z), x2(z)], z),
continuous up to the boundary and verifying the boundary conditions (9).

Such problems are called boundary value problems of Riemann-Carleman type. A
standard way to solve them consists in converting them into boundary value problems of
Riemann-Hilbert type by use of conformal gluing functions (CGF).

For any detail about boundary value problems and conformal gluing, we refer to [Lit00].

Definition 6. Let C ⊂ C \ {0} be a curve symmetrical w.r.t. the real axis and splitting
the complex plane into two connected components, and let GC be the connected component
of 0. A function u is said to be a CGF for the curve C if (i) u is meromorphic in GC
(ii) u establishes a conformal mapping of GC onto the complex plane cut along some arc
(iii) for all t ∈ C, u

(
t
)

= u
(
t
)
.

Let w(t, z) and w̃(t, z) be CGF for X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z) – the
existence (but no explicit expression) of w and w̃ is ensured by general results on conformal
gluing, see e.g. [Lit00].

Transforming the boundary value problems of Riemann-Carleman type into boundary
value problems of Riemann-Hilbert type thanks to w and w̃, solving them and working
out the solutions we will prove the following.
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Theorem 7. The function z
[
Q(x, 0, z) −Q(0, 0, z)

]
has the following explicit expression

for z ∈]0, 1/4[ and x ∈ C \ [x3(z), x4(z)] :

z
[
Q(x, 0, z) −Q(0, 0, z)

]
=

xY0(x, z) +
1

π

∫ x2(z)

x1(z)

t
[
− d(t, z)

]1/2

2a(t, z)

[
∂tw(t, z)

w(t, z) − w(x, z)
−

∂tw(t, z)

w(t, z) −w(0, z)

]
dt,

w being a CGF for the curve X([y1(z), y2(z)], z).

The function z
[
(y + 1)Q(0, y, z) − Q(0, 0, z)

]
has the following explicit expression for

z ∈]0, 1/4[ and y ∈ C \ [y3(z), y4(z)] :

z
[
(y + 1)Q(0, y, z) −Q(0, 0, z)

]
=

X0(y, z)y +
1

π

∫ y2(z)

y1(z)

t
[
− d̃(t, z)

]1/2

2ã(t, z)

[
∂tw̃(t, z)

w̃(t, z) − w̃(y, z)
−

∂tw̃(t, z)

w̃(t, z) − w̃(0, z)

]
dt,

w̃ being a CGF for the curve Y ([x1(z), x2(z)], z).

The function Q(0, 0, z) has the following explicit expression for z ∈]0, 1/4[ :

Q(0, 0, z) = −
1

π

∫ y2(z)

y1(z)

t
[
− d̃(t, z)

]1/2

2ã(t, z)

[
∂tw̃(t, z)

w̃(t, z) − w̃(−1, z)
−

∂tw̃(t, z)

w̃(t, z) − w̃(0, z)

]
dt,

w̃ being a CGF for the curve Y ([x1(z), x2(z)], z).

The function Q(x, y, z) has the explicit expression obtained by using the ones of
Q(x, 0, z), Q(0, y, z) and Q(0, 0, z) in (1).

All functions in the integrands above are explicit, except for the CGF w and w̃.
In [FIM99] suitable CGF are computed implicitly by means of the reciprocal of some
known function (see the formulas (23) and (24) below for the details). Starting from this
representation, we are able to make explicit these functions for Gessel’s walk.

In order to state the result we need to define G2(z) = (4/27)(1 + 224z2 + 256z4),
G3(z) = (8/729)(1+16z2)(1−24z+16z2)(1+24z+16z2), K(z) as the only positive root of
K4−G2(z)K

2/2−G3(z)K−G2(z)
2/48 = 0 – noting rk(z) = [G2(z)−exp(2kıπ/3)(G2(z)

3−
27G3(z)

2)1/3]/3 we have K(z) = [−r0(z)
1/2 + r1(z)

1/2 + r2(z)
1/2]/2 – and

F (t, z) =
1 − 24z + 16z2

3
−

4(1 − 4z)2

z

t2

(t− x2(z))(t − 1)2(t− x3(z))
,

F̃ (t, z) =
1 − 24z + 16z2

3
+

4(1 − 4z)2

z

t(t+ 1)2

[(t− x2(z))(t − x3(z))]2
.

(10)

Theorem 8. A suitable CGF for the curve X([y1(z), y2(z)], z) is the only function having
a pole at x2(z) and solution of

w3 − w2
[
F (t, z)+ 2K(z)

]
+ w

[
2K(z)F (t, z) +K(z)2/3 +G2(z)/2

]

−
[
K(z)2F (t, z) + 19G2(z)K(z)/18 +G3(z) − 46K(z)3/27

]
= 0.

(11)

Likewise, a suitable CGF for the curve Y ([x1(z), x2(z)], z) is the only function having a
pole at x3(z) and solution of the equation obtained from (11) by replacing F by F̃ , see (10).
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Let us now outline some facts around Theorems 3, 7 and 8.

Remark 9. Since (1) is valid at least on {|x| ≤ 1, |y| ≤ 1, |z| < 1/4}, then for any such
(x̂, ŷ, z) with L(x̂, ŷ, z) = 0, the right-hand side of (1) equals zero, so that

z
[
Q(x̂, 0, z) −Q(0, 0, z)

]
+ z

[
(ŷ + 1)Q(0, ŷ, z) −Q(0, 0, z)

]
+ zQ(0, 0, z) − x̂ŷ = 0. (12)

We deduce that

zQ(0, 0, z) = −z
[
Q(x̂, 0, z) −Q(0, 0, z)

]
− z

[
(ŷ + 1)Q(0, ŷ, z) −Q(0, 0, z)

]
+ x̂ŷ (13)

with the functions in the square brackets in right-hand side given by the first two formulas
in Theorem 7. For the explicit expression of zQ(0, 0, z) given in Theorem 7, we have
chosen to substitute (x̂, ŷ, z) = (0,−1, z) in (13), which is such that L(x̂, ŷ, z) = 0, since
with Lemma 1 we have X0(−1, z) = 0 . Moreover, we show in Theorem 3 that for any
z ∈]0, 1/4[, the equation (12) is valid not only on {(x, y) ∈ C

2 : L(x, y, z) = 0} ∩ {|x| ≤
1, |y| ≤ 1} but in a much larger domain of the algebraic curve {(x, y) ∈ C

2 : L(x, y, z) = 0}.
Namely, if (x̂, ŷ, z) is such that z ∈]0, 1/4[, x̂ 6∈ [x3(z), x4(z)] and ŷ = Y0(x̂, z) or
ŷ 6∈ [y3(z), y4(z)] and x̂ = X0(ŷ, z), then (12) is still valid. Substituting any (x̂, ŷ, z)
from this domain into (12) yields us zQ(0, 0, z) as in (13).

Remark 10. With the analytical approach proposed here, it would be possible, without
additional difficulty, to obtain explicitly the generating function of the number of walks
beginning at an arbitrary initial state (i0, j0) and ending at (i, j) in time k. Indeed, the
only significant difference is that the product xy in (1) would be then replaced by xi0+1yj0+1.

Remark 11. Making in Theorem 7 the changes of variable w = w(t, z) and w̃ = w̃(t, z),
we obtain that the generating functions zQ(x, 0, z) and z(y + 1)Q(0, y, z) are essentially
Cauchy-type integrals of algebraic functions.

In particular, it could be deduced from the work [PRY04] – which gives criteria for a
Cauchy-type integral of an algebraic function to be algebraic – that as functions of x and
y respectively, zQ(x, 0, z) and z(y + 1)Q(0, y, z) are algebraic functions, what would give
an other proof to some results contained in [BK09].

Remark 12. In Theorem 7, the functions z
[
Q(x, 0, z)−Q(0, 0, z)

]
and z

[
(y+1)Q(0, y, z)−

Q(0, 0, z)
]

are written as the sum of two functions not holomorphic but algebraic near
respectively [x1(z), x2(z)] and [y1(z), y2(z)]. The sum of these two algebraic functions is of
course holomorphic near these segments, since they are included in the unit disc. By an
application of the residue theorem as in Section 4 of [KR09], we could write both generating
functions as functions manifestly holomorphic near these segments and having in fact their
singularities near respectively [x3(z), x4(z)] and [y3(z), y4(z)].

The rest of the paper is organized as follows.
In Section 1 we prove Theorem 8. There the implicit representation of the CGF given

in [FIM99] (and recalled here in Subsections 1.1 and 1.2) in a general setting is developed
in Subsection 1.3 to the case of Gessel’s walk.
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The proof of Theorem 3 is postponed to the last Section 2. The main idea of the
holomorphic continuation procedure is borrowed again from [FIM99], we show how it
works with the parameter z ∈]0, 1/4[.

Finally, we give the proof of Theorem 7.

Proof of Theorem 7. The proof is composed of two steps : the first one, inspired
by [FIM99], will allow us to obtain integral representations of the functions zQ(x, 0, z) and
z(y+1)Q(0, y, z) on the curves X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z) ; the second one
will consist in transforming these formulations into the integrals on real segments written
in the statement of Theorem 7, which are more convenient, notably from a calculations
point of view.

Let us begin by solving the boundary value problems of Riemann-Carleman type with
boundary conditions (9). The use of CGF allows us, as in [FIM99] or [Lit00], to transform
them into boundary value problems of Riemann-Hilbert type. Following again [FIM99]
or [Lit00] we solve them and in this way we obtain representations of the unknown functions
zQ(x, 0, z) and z(y + 1)Q(0, y, z) as integrals along the curves X([y1(z), y2(z)], z) and
Y ([x1(z), x2(z)], z). For zQ(x, 0, z), we get that up to some additive function of z,

zQ(x, 0, z) =
1

2πı

∫

X([y1(z),y2(z)],z)
tY0(t, z)

∂tw(t, z)

w(t, z) − w(x, z)
dt, (14)

where w is the CGF used for X([y1(z), y2(z)], z). Similarly, we could write an integral
representation of z(y + 1)Q(0, y, z), up to some additive function of z

We are now going to transform the integral representation (14) of zQ(x, 0, z). To begin
with, let C(ǫ, z) be any contour such that

(i) C(ǫ, z) is connected and contains ∞,

(ii) C(ǫ, z) ⊂
(
GX([y1(z), y2(z)], z) ∪X([y1(z), y2(z)], z)

)
\ [x1(z), x2(z)],

(iii) limǫ→0C(ǫ, z) = X([y1(z), y2(z)], z) ∪ S(z), where we have denoted by S(z) the real
segment [x1(z),X(y2(z), z)] traversed from X(y2(z), z) to x1(z) along the lower edge
of the slit and then back to X(y2(z), z) along the upper edge,

and let GC(ǫ, z) be the connected component of 0 of C \ C(ǫ, z).
Now we apply the residue theorem to the integrand of (14) on the contour C(ǫ, z).

Thanks to Lemma 1 and the property (ii) of the contour C(ǫ, z), tY0(t, z) is, as a function
of t, holomorphic in GC(ǫ, z). Likewise, by using Definition 6 and the property (ii), we
get that ∂tw(t, z)/(w(t, z) − w(t, x)) is meromorphic on GC(ǫ, z), with a unique pole at
t = x. Therefore we have :

1

2πı

∫

C(ǫ,z)
tY0(t, z)

∂tw(t, z)

w(t, z) − w(x, z)
dt = xY0(x, z). (15)

Then, making ǫ go to 0, using (14), (15) and the property (iii) of the contour, we obtain
that up to an additive function of z,

zQ(x, 0, z) = xY0(x, z) −
1

2πı

∫

S(z)
tY0(t, z)

∂tw(t, z)

w(t, z) − w(x, z)
dt. (16)
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Figure 3: The curve X([y1(z), y2(z)], z) and the new contour of integration C(ǫ, z)

Since for any x ∈ GX([y1(z), y2(z)], z), the integrand in (16) is, as a function of t,
holomorphic at any point of ]x2(z),X(y2(z), z)[, we have

∫

S(z)
tY0(t, z)

∂tw(t, z)

w(t, z) − w(x, z)
dt =

∫ x2(z)

x1(z)

[
tY +

0 (t, z) − tY −
0 (t, z)

] ∂tw(t, z)

w(t, z) − w(x, z)
dt,

(17)
so that with (3) we immediately obtain, for x ∈ GX([y1(z), y2(z)], z), the expression of
z[Q(x, 0, z) −Q(0, 0, z)] stated in Theorem 7.

Likewise, we could obtain for y ∈ GY ([x1(z), x2(z)], z) the expression of z[(y +
1)Q(0, y, z) −Q(0, 0, z)] written in Theorem 7.

The formula for Q(0, 0, z) has been already proved in Remark 9.
In fact, the integral representations of z[Q(x, 0, z)−Q(0, 0, z)] and z[(y+1)Q(0, y, z)−

Q(0, 0, z)] hold not only on GX([y1(z), y2(z)], z) and GY ([x1(z), x2(z)], z) but on C \
[x3(z), x4(z)] and C \ [y3(z), y4(z)] ; we will show this fact in Proposition 18, since the
necessary tools will be naturally introduced in Subsections 1.1 and 1.2. �

Note. After the first version of this paper appeared on arXiv, we received an e-mail
from M. van Hoeij who said us that he has, very recently, found explicitly Q(x, y, z) by
computing an explicit solution to the minimal polynomials for Q(x, 0, z) and Q(0, y, z)
given in [BK09] and by using (1). As already said, the results of A. Bostan and M. Kauers
in [BK09], and consequently also the ones of M. van Hoeij, required the use of a powerful
computer algebra system. However this computer-aided approach leads to another closed
form of Q(x, y, z) and gives a complementary interesting insight into Gessel’s walk.

Acknowledgments. We thank Philippe Bougerol for putting our attention to the recent
combinatorial problems and results. We thank Amaury Lambert for suggesting us to study
Mireille Bousquet-Mélou papers.
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1 Study of the conformal gluing functions

Notation. For the sake of shortness we will, from now on, drop the dependence of the
different quantities w.r.t. z ∈]0, 1/4[.

The main subject of Section 1 is to prove Theorem 8. For this we will define two
functions, namely w and w̃, which thanks to Part 5.5 of [FIM99] are known to be suitable
CGF for the curves X([y1, y2]) and Y ([x1, x2]), and we will show that these functions verify
the conclusions of Theorem 8.

These definitions of the CGF given in [FIM99] are recalled here in Subsection 1.2, see
particularly (23) and (24). They require to define some functions on a uniformization of
the algebraic curve {(x, y) ∈ C

2 : L(x, y, z) = 0}, so that we begin Section 1 by studying
a suitable uniformization of this curve – note that this Subsection 1.1 is also necessary in
Section 2, where we will prove Theorem 3.

1.1 Uniformization

We will note L the algebraic curve {(x, y) ∈ C
2 : L(x, y, z) = 0}, L being defined in (1).

Proposition 13. For any z ∈]0, 1/4[, L is a Riemann surface of genus one.

Proof. We have shown in Section 0 that L(x, y, z) = 0 if and only if (b(x)+2a(x)y)2 = d(x).
But the Riemann surface of the square root of a polynomial which has four distinct roots
of order one has genus one, see e.g. [JS87], therefore the genus of L is also one.

With Proposition 13 it is immediate that L is isomorphic to some torus ; in other
words there exists a two-dimensional lattice Ω such that L is isomorphic to C/Ω. Such a
suitable lattice Ω (in fact the only possible lattice, up to a homothetic transformation) is
made explicit in Parts 3.1 and 3.3 of [FIM99], namely ω1Z + ω2Z, where

ω1 = ı

∫ x2

x1

dx

[−d(x)]1/2
, ω2 =

∫ x3

x2

dx

[d(x)]1/2
. (18)

We are now going to give a uniformization of the surface L , in other words we are
going to make explicit two functions x(ω), y(ω) elliptic w.r.t. the lattice Ω such that
L = {(x(ω), y(ω)), ω ∈ C} = ({(x(ω), y(ω)), ω ∈ C/Ω}). By using the same arguments as
in Part 3.3 of [FIM99], we immediately obtain that we can take

x(ω) = x4 +
d′(x4)

℘(ω) − d′′(x4)/6
, y(ω) =

1

2a(x(ω))

[
−b(x(ω)) +

d′(x4)℘
′(ω)

2(℘(ω) − d′′(x4)/6)2

]
,

(19)
℘ being the Weierstrass elliptic function with periods ω1, ω2.

By convenience, we will consider, from now on, that the coordinates of the uniformiza-
tion x and y are defined on C/Ω rather than on C.

It is well-known that ℘ is characterized by its invariants g2, g3 through

℘′(ω)2 = 4℘(ω)3 − g2℘(ω) − g3. (20)
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Lemma 14. The invariants g2, g3 of ℘ are equal to :

g2 = (4/3)
(
1 − 16z2 + 16z4

)
, g3 = −(8/27)

(
1 − 8z2

)(
1 − 16z2 − 8z4

)
.

Proof. It is well-known that 4℘(ω)3 − g2℘(ω) − g3 = 4
(
℘(ω) − ℘(ω1/2)

)(
℘(ω) − ℘((ω1 +

ω2)/2)
)(
℘(ω) − ℘(ω2/2)

)
; in particular the invariants can be calculated in terms of the

values of ℘ at the half-periods. But it is clear (and proved in Part 3.3 of [FIM99]) that
setting f(t) = d′(x4)/(t−x4)+d

′′(x4)/6 we have ℘(ω1/2) = f(x3), ℘((ω1 +ω2)/2) = f(x2)
and ℘(ω2/2) = f(x1), so that Lemma 14 follows from a direct calculation.

Now that the uniformization (19) is completely and explicitly defined, it is natural
to be interested in the reciprocal images through it of the important cycles that are the
branch cuts [x1, x2], [x3, x4], [y1, y2] and [y3, y4]. For this we need to define a new period,
namely

ω3 =

∫ x1

−∞

dx

[d(x)]1/2
. (21)

We will importantly use the fact that ω3 ∈]0, ω2[ – this is proved in Part 3.3 of [FIM99].

Proposition 15. We have x−1([x1, x2]) = [0, ω1[+ω2/2 and x−1([x3, x4]) = [0, ω1[,
y−1([y1, y2]) = [0, ω1[+(ω2 + ω3)/2 and y−1([y3, y4]) = [0, ω1[+ω3/2.

Proposition 15 follows from repeating the arguments of Part 5.5 of [FIM99], and is
illustrated on Figure 4 below.

Now we define S(x, y) = 1/x + 1/(xy) + x + xy, the generating function of the jump
probabilities of Gessel’s walk, and we consider the following birational transformations :

Ψ(x, y) =
(
x, 1/(x2y)

)
, Φ(x, y) =

(
1/(xy), y

)
.

They are such that Ψ2 = Φ2 = id and S ◦ Ψ = S ◦ Φ = S. Then, as in [FIM99], we define
the group of the random walk as the group G generated by Ψ and Φ. This is well known,
see e.g. [BMM08], that G is of order eight for the process considered here : in other words
inf{n ∈ N : (Φ ◦ Ψ)n = id} = 4.

If (x, y) ∈ C
2 is such that L(x, y, z) = 0 and if θ is any element of G, then obviously

L(θ(x, y), z) = 0. In other words the group G can also be understood as a group of
automorphisms of the algebraic curve L .

It is also shown in Part 3.1 of [FIM99] that these automorphisms Ψ and Φ defined on
L become on C/Ω the automorphisms ψ and φ with the following expressions :

ψ(ω) = −ω, φ(ω) = −ω + ω3. (22)

They are such that ψ2 = φ2 = id, x ◦ψ = x, y ◦ψ = 1/(x2y), x ◦φ = 1/(xy) and y ◦φ = y.
A crucial fact is the following.

Proposition 16. For all z ∈]0, 1/4[, we have ω3 = 3ω2/4.
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Proof. Since the group generated by Ψ and Φ is of order eight, so is the group generated
by ψ and φ, in other words inf{n ∈ N : (φ ◦ ψ)n = id} = 4. With (22) this immediately
implies that 4ω3 is some point of the lattice Ω, contrary to ω3, 2ω3 and 3ω3. But we already
know that ω3 ∈]0, ω2[ so that two possibilities remain : either ω3 = ω2/4 or ω3 = 3ω2/4.

In addition, essentially because the covariance of Gessel’s walk is positive, we can use
the same arguments as in Section 4 of [KR09] (see page 14) and in this way we obtain
that ω3 is necessary larger than ω2/2, which entails Proposition 16.

1.2 Implicit expression and global properties of the CGF

As said in Section 0, the existence of CGF for the curves X([y1, y2]) and Y ([x1, x2])
follows from general results on conformal gluing, see e.g. [Lit00] ; actually finding explicit
expressions for CGF is more problematic.

But by using the same analysis as in Part 5.5 of [FIM99], we obtain explicitly suitable
CGF for these curves. Before writing the expression of these CGF, let us recall that ℘,
and therefore also x, take each value of C∪{∞} twice on [0, ω2[×[0, ω1/ı[, but are one-to-
one on [0, ω2/2[×[0, ω1/ı[. In particular, on this half-parallelogram x admits a reciprocal
function, that we denote by x−1.

Then with [FIM99] we state :

w(t) = ℘1,3

(
x−1(t) − (ω1 + ω2)/2

)
, (23)

℘1,3 being the Weierstrass elliptic function with periods ω1, ω3 and x−1 the reciprocal
function of the first coordinate of the uniformization (19) ; the periods ω1, ω2, ω3 are
defined in (18) and (21).

In Section 4 of [KR09], we have studied some properties of the function defined by (23),
and we have shown that if ω3 > ω2/2 (which is actually the case here, see Proposition 16),
then the function (23) is meromorphic on C \ [x3, x4] and has there a unique pole, at x2.

In order to find explicitly a CGF for the curve Y ([x1, x2]), we remark that

w̃(t) = w(X0(t)) (24)

is suitable – this is a consequence of the facts that w is a CGF for X([y1, y2]) and that
X0 : GY ([x1, x2]) \ [y1, y2] → GX([y1, y2]) \ [x1, x2] is conformal, as stated in Lemma 17.

More globally, w̃ defined by (24) is meromorphic on C \ [y3, y4] and has there a unique
pole, of order two and at Y (x2) = x3 – this is a consequence of some properties of w
already mentioned and of the fact that X0(C) ⊂ C \ [x3, x4], see also Lemma 17 (for the
proof, we refer to Part 5.3 of [FIM99]).

Lemma 17. X0 : GY ([x1, x2]) \ [y1, y2] → GX([y1, y2]) \ [x1, x2] and Y0 : GX([y1, y2]) \
[x1, x2] → GY ([x1, x2]) \ [y1, y2] are conformal and reciprocal the one from the other. In
addition, X0(C) ⊂ C \ [x3, x4] and Y0(C) ⊂ C \ [y3, y4]

Let us now complete the proof of Theorem 7, by showing the following.
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Proposition 18. The integral representations of z[Q(x, 0, z) − Q(0, 0, z)] and z[(y +
1)Q(0, y, z)−Q(0, 0, z)] given in Theorem 7 hold not only on GX([y1, y2]) and GX([x1, x2])
but on C \ [x3, x4] and C \ [y3, y4].

Proof. It is clear from their explicit expression that these integral representations can be
continued from GX([y1, y2]) and GX([x1, x2]) up to C\

(
[x3, x4]∪(w−1([x1, x2])\ [x1, x2])

)

and C \
(
[y3, y4] ∪ (w̃−1([y1, y2]) \ [y1, y2])

)
respectively. In other words, in order to

prove Proposition 18 it is enough to show that w−1([x1, x2]) \ [x1, x2] = ∅ and that
w̃−1([y1, y2]) \ [y1, y2] = ∅.

To begin with, we explain why w−1([x1, x2]) \ [x1, x2] = ∅. By using the fact ℘ is
one-to-one on [0, ω2/2[×[0, ω1/ı[, we easily obtain that x−1(C) = [0, ω2/2] × [0, ω1/ı[. In
particular, with Proposition 16, we have x−1(C) ⊂]−ω3 +ω2/2, ω2/2]× [0, ω1/ı[. But ℘1,3

takes each value of C ∪ {∞} twice on the parallelogram ] − ω3 + ω2/2, ω2/2] × [0, ω1/ı[,
and with Lemma 14, ℘1,3([−ω1/2, 0]) = ℘1,3([0, ω1/2]) = w([x1, x2]), so that we obtain
w−1([x1, x2]) \ [x1, x2] = ∅

By using the same kind of arguments as above, as well as (24), we obtain that
w̃−1([y1, y2]) \ [y1, y2] = ∅.

1.3 Proof of Theorem 8

Proof of Theorem 8. We are going here to note ω4 = ω2/4 and ℘1,4 the Weierstrass elliptic
function with periods ω1, ω4. Moreover, we recall that ℘ and ℘1,3 are the Weierstrass
elliptic functions with respective periods ω1, ω2 and ω1, ω3 = 3ω2/4.

To begin with, let us mention the following fact. Let ℘̆ be the Weierstrass elliptic
function with periods noted ω̂, ω̌ and let n be some positive integer. Then the Weierstrass
elliptic function with periods ω̂, ω̌/n can be written in terms of ℘̆ as follows (see e.g.
http://functions.wolfram.com/EllipticFunctions/WeierstrassP/16/06/03/) :

℘̆(ω) +

n−1∑

k=1

[
℘̆(ω + kω̌/n) − ℘̆(kω̌/n)

]
. (25)

Then, e.g. by using the addition theorem (26) for the Weierstrass elliptic function ℘̆ in (25)
and next the identity (20), we obtain that the Weierstrass elliptic function with periods
ω̂, ω̌/n is a rational function of the Weierstrass elliptic function with periods ω̂, ω̌.

The proof of Theorem 8 will follow from applying this fact twice : (i) first, since
ω4 = ω2/4, we will express ℘1,4 as a rational function of ℘, (ii) then, since ω4 = ω3/3, we
will express ℘1,4 as a rational function of ℘1,3.

Before making explicit the rational transformations that appear with (i) and (ii), we
explain how to conclude the proof of Theorem 8. An immediate consequence of (i)
and (ii) is the possibility of writing ℘1,3 as an algebraic function of ℘. In particular,
it is clear from that and from the addition theorem (26) for ℘ that the formula w(t) =
℘1,3

(
℘−1(f(t))− (ω1 +ω2)/2

)
, with f(t) = d′(x4)/(t− x4) + d′′(x4)/6 – which is the CGF

under consideration, see (19) and (23) – defines an algebraic function of t.
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Explicit expression of the rational function for (i). With (25) we can write

℘1,4(ω) = ℘(ω)+℘(ω+ω2/2)+℘(ω+ω2/4)+℘(ω+3ω2/4)−℘(ω2/2)−℘(ω2/4)−℘(3ω2/4).

Then, by using the addition theorem for ℘, namely the following formula, valid for all ω, ω̃
– which can be found e.g. in [Law89] –,

℘
(
ω + ω̃

)
= −℘

(
ω) − ℘

(
ω̃
)

+
1

4

[
℘′

(
ω
)
− ℘′

(
ω̃
)

℘
(
ω
)
− ℘

(
ω̃
)

]2

, (26)

as well as the equalities ℘(ω2/4) = ℘(3ω2/4), ℘
′(ω2/4) = −℘′(3ω2/4) and ℘′(ω2/2) = 0

– obtained from the facts that ℘(ω2/2 + ω) is even and ℘′(ω2/2 + ω) is odd –, we get

℘1,4(ω) = −2℘(ω)+
℘′(ω)2 + ℘′(ω2/4)

2

2
[
℘(ω) − ℘(ω2/4)

]2 +
℘′(ω)2

4
[
℘(ω) − ℘(ω2/2)

]2−℘(ω2/2)−2℘(ω2/4). (27)

Now we recall from the proof of Lemma 14 that ℘(ω2/2) = f(x1). In other words, for
the right-hand side of (27) to be completely explicit, it remains to find the expressions of
℘(ω2/4) and ℘′(ω2/4) in terms of z.

But starting from the known value of ℘(ω2/2), it is easy to obtain the expression of
℘(ω2/4), by using e.g. the formula below (a proof of which being given in [Law89]) :

℘ (ω2/4) = ℘ (ω2/2) +
[
(℘ (ω2/2) − ℘ (ω1/2)) (℘ (ω2/2) − ℘ ((ω1 + ω2)/2))

]1/2
. (28)

Then we use that ℘(ω1/2) = f(x3), ℘((ω1 + ω2)/2) = f(x2), ℘(ω2/2) = f(x1) and
after simplification we get ℘(ω2/4) = (1 + 4z2)/3. As a consequence and with (20) and
Lemma 14, we obtain ℘′(ω2/4)

2 = 64z4. Since ℘ is decreasing on ]0, ω2/2[, see [Law89],
we have ℘′(ω2/4) < 0 and therefore ℘′(ω2/4) = −8z2. In conclusion, the right-hand side
of (27) is completely and explicitly known.

In particular, evaluating (27) at ω = ℘−1(f(t)) − (ω1 + ω2)/2 and using again the
addition formula (26) for ℘, we obtain that the right-hand side of (27) is a rational function
of t that can be explicitly obtained in terms of t and z ; after a substantial but elementary
calculation we get ℘1,4

(
℘−1(f(t)) − (ω1 + ω2)/2

)
= F (t), F being defined in (10).

Explicit expression of the rational function for (ii). Using the same arguments that have
allowed us to obtain (27) from (25), we obtain that ℘1,4 is the following rational function
of ℘1,3 :

℘1,4(ω) = −℘1,3(ω) +
℘′

1,3(ω)2 + ℘′
1,3(ω3/3)

2

2
[
℘1,3(ω) − ℘1,3(ω3/3)

]2 − 4℘1,3(ω3/3). (29)

By using (29) and the equality ℘′
1,3(ω)2 = 4℘1,3(ω)3−g2,1,3℘1,3(ω)−g3,1,3, where g2,1,3, g3,1,3

are the invariants associated with ℘1,3, we get that ℘1,4 is a rational function of ℘1,3 ;
moreover, with Lemma 19, the equality ℘′

1,3(ω3/3)
2 = 4℘1,3(ω3/3)

3−g2,1,3℘1,3(ω3/3)−g3,1,3

and Lemma 20, the coefficients of this rational function in terms of z are explicitly known.
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Proof of (11). Now we remark that Lemmas 19 and 20 allow us to write (29) as

℘1,3(ω)3 − ℘1,3(ω)2
[
℘1,4(ω) + 2K

]
+ ℘1,3(ω)

[
2K℘1,4(ω) +K2/3 +G2/2

]

−
[
K2℘1,4(ω) + 19G2K/18 +G3 − 46K3/27

]
= 0.

In particular, evaluating this equality at ω = ℘−1(f(t)) − (ω1 + ω2)/2, using the fact
already proved that ℘1,4

(
℘−1(f(t))− (ω1 + ω2)/2

)
= F (t) as well as the definition (23) of

w, we obtain (11).

End of the proof of Theorem 8. If F is infinite at some point, then the equality (11)
becomes (w−K)2 = 0. In particular, at a such point at least two roots of (11) take finite
values. In addition, by using the root-coefficient relationships, it is clear that at a point
where F is infinite, at least one root of (11) is infinite. This proves that at any point
where F is infinite, there is one and only one root of (11) which is infinite.

In particular, since F is infinite at x2, see (10), and since w has a pole at x2, see
Subsection 1.2, w can be characterized as the only solution of (11) with a pole at x2.

Likewise, we could prove the corresponding fact for w̃. Theorem 8 is proved. �

The two following results have been used in the proof of Theorem 8. Let G2, G3,K be
the quantities defined in Section 0 (above the statement of Theorem 8).

Lemma 19. ℘1,3(ω3/3) = K.

Lemma 20. g2,1,3, g3,1,3, the invariants of ℘1,3, have the following explicit expressions :

g2,1,3 = 40K2/3 −G2, g3,1,3 = −280K3/27 + 14KG2/9 +G3.

Proof of Lemmas 19 and 20. Start by expanding ℘1,4 at 0 in two different ways. Firstly,
by using (27) and by simplifying we obtain :

℘1,4(ω) = ω−2 +
[
9G2/20

]
ω2 −

[
27G3/28

]
ω4 +O(ω6). (30)

Secondly we can also use (29) in order to expand ℘1,4 at 0 ; after some calculation we get :

℘1,4(ω) = ω−2+
[
6K2−9g2,1,3/20

]
ω2+

[
10K3−3Kg2,1,3/2−27g3,1,3/28

]
ω4+O(ω6). (31)

Lemma 20 follows then immediately, by identifying the expansions (30) and (31).
As for Lemma 19, it will be a consequence of Lemma 20 and of the following result,

proved e.g. in [Law89] : the quantity K = ℘1,3(ω3/3) is the only positive solution of the
following equation : K4 − g2,1,3K

2/2 − g3,1,3K − g2
2,1,3/48 = 0. But thanks to Lemma 20,

we can replace g2,1,3 and g3,1,3 by their expression in terms of G2, G3,K ; in this way we
obtain that K verifies the equation K4 −G2K

2/2 −G3K −G2
2/48 = 0. �

2 Holomorphic continuation of zQ(x, 0, z) and z(y+1)Q(0, y, z)

In this part we are going to prove Theorem 3, in other words we are going to show that
zQ(x, 0, z) and z(y + 1)Q(0, y, z) can be holomorphically continued from their unit disc
up to C \ [x3, x4] and C \ [y3, y4] respectively.
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In fact, we are going to show that Q(x, 0, z) and Q(0, y, z) can be holomorphically
continued up to C \ [x3, x4] and C \ [y3, y4] respectively, which is an equivalent assertion,
as shown at the end of the proof of Theorem 21.

For this we will use the following procedure :

(i) First, we will lift the functions Q(x, 0, z) and Q(0, y, z) up to C/Ω by setting
qx(ω) = Q(x(ω), 0, z) and qy(ω) = Q(0, y(ω), z). The functions qx and qy are a
priori well defined on x−1({|x| ≤ 1}) and y−1({|y| ≤ 1}) respectively.

(ii) Then, we will prove the following.

Theorem 21. qx and qy, initially well defined on x−1({|x| ≤ 1}) and y−1({|y| ≤ 1})
respectively, can be holomorphically continued up to the whole parallelogram C/Ω cut along
respectively [0, ω1[ and [0, ω1[+ω3/2. Moreover, these continuations verify

∀ω ∈ C/Ω \ [0, ω1[ : qx(ω) = qx(ψ(ω)), ∀ω ∈ C/Ω \
(
[0, ω1[+ω3/2

)
: qy(ω) = qy(φ(ω)),

(32)
and

∀ω ∈]3ω2/8, ω2[×[0, ω1/ı[ : zqx(ω) + z(y(ω) + 1)qy(ω)− zQ(0, 0, z)−x(ω)y(ω) = 0. (33)

Remark 22. Moreover, both (4) and (5) are immediate consequences of (33).

(iii) Finally, we will set Q(x, 0, z) = qx(ω) if x(ω) = x and Q(0, y, z) = qy(ω) if y(ω) = y.
Thanks to (32) and Proposition 15, these equalities define Q(x, 0, z) and Q(0, y, z)
on respectively C\[x3, x4] and C\[y3, y4] not ambiguously, as holomorphic functions.

Items (i) and (iii) are straightforward. For the proof of (ii), it will be useful first to find
the location of the cycles x−1({|x| = 1}) and y−1({|y| = 1}) on C/Ω, this is the subject
of the following result, illustrated on Figure 4 below.

2

|x|<1{ }_

{ }|y|<1_

4

3 2x

x1x

x y

y

y

y4

3

1

Figure 4: Location of the important cycles on the surface [0, ω2[×[0, ω1/ı[

Proposition 23. We have x−1({|x| = 1}) =
(
[0, ω1[+ω2/4

)
∪

(
[0, ω1[+3ω2/4

)
and

y−1({|y| = 1}) =
(
[0, ω1[+ω2/8

)
∪

(
[0, ω1[+5ω2/8

)
.
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Proof. The details are of course essentially the same for x and y, so that we are going to
prove only the assertion concerning x. The proof will be composed of three steps.

But first of all we note that because of the equality x ◦ ψ = x, it is sufficient to prove
that x−1({|x| = 1}) ∩

(
[0, ω2/2[×[0, ω1/ı[

)
= [0, ω1[+ω2/4 – the advantage of this being

that ℘, and therefore also x, are one-to-one in the half-parallelogram [0, ω2/2[×[0, ω1/ı[.
Firstly, we prove that x(ω2/4+ω1/2) = 1. For this we recall that ℘(ω2/4) = (1+4z2)/3,

℘′(ω2/4) = −8z2, ℘(ω1/2) = f(x3) and ℘′(ω2/2) = 0, see the proofs of Theorem 8 and
Lemma 14. Then with the addition theorem (26) we immediately obtain the explicit
value of ℘(ω2/4 + ω1/2). Finally, after a simple calculation and by using (19), we get
x(ω2/4 + ω1/2) = 1.

Secondly, we show that x−1({|x| = 1}) ∩
(
[0, ω2/2[×[0, ω1/ı[

)
⊂ [0, ω1[+ω2/4. For this

let θ ∈ [0, 2π[. With (19) we have x(ω) = exp(ıθ) if and only if ℘(ω) = f(exp(ıθ)). Since
ω ∈ [0, ω2/2] × [0, ω1/ı[, we can use the well-known explicit expression of the reciprocal
function of ℘ and with the first step we obtain :

ω = ω2/4+ω1/2+

∫ f(exp(ıθ))

f(1)

dt

[4t3 − g2t− g3]1/2
= ω2/4+ω1/2+

1

2

∫ 1

exp(ıθ)

dx

[d(x)]1/2
, (34)

d being defined in Section 0 and g2, g3 in Lemma 14. Note that the second equality above
is got with the same calculations as in Part 3.3 of [FIM99].

Now we remark that d(x) = x4d(1/x). In particular, the change of variable x 7→ 1/x in
the integral

∫ 1
exp(ıθ) dx/[d(x)]1/2 yields

∫ 1
exp(ıθ) dx/[d(x)]1/2 = −

∫ 1
exp(−ıθ) dx/[d(x)]1/2. As

a consequence, this integral belongs to ıR.
In conclusion, with (34) we have actually shown that x−1({|x| = 1}) ∩

(
[0, ω2/2[×

[0, ω1/ı[
)
⊂ [0, ω1[+ω2/4.

Thirdly, we prove that the inclusion above has to be an equality. Indeed, if it was
not the case the curve x−1({|x| = 1}) ∩

(
[0, ω2/2[×[0, ω1/ı[

)
would be curve not closed,

which is a manifest contradiction with the facts that {|x| = 1} is closed and that x is
meromorphic and one-to-one in the half-parallelogram [0, ω2/2[×[0, ω1/ı[.

Proof of Theorem 21. The proof is composed of two steps. We will first define the
continuations of qx and qy on the whole parallelogram C/Ω appropriately cut, and then we
will verify that the functions so constructed actually verify the conclusions of Theorem 21.

• We define qx(ω) on x−1({|x| ≤ 1}) by Q(x(ω), 0, z) and qy(ω) on y−1({|y| ≤ 1})
by Q(0, y(ω), z) – note that as a consequence of Proposition 23 we have x−1({|x| ≤
1}) = [ω2/4, 3ω2/4] × [0, ω1/ı[ and y−1({|y| ≤ 1}) = [5ω2/8, 9ω2/8] × [0, ω1/ı[.

• Motivated by (1), on [3ω2/4, ω2[×[0, ω1/ı[⊂ y−1({|y| ≤ 1}) we set qx(ω) = −(y(ω) +
1)qy(ω) +Q(0, 0, z) + x(ω)y(ω)/z and on ]3ω2/8, 5ω2/8] × [0, ω1/ı[⊂ x−1({|x| ≤ 1})
we set (y(ω) + 1)qy(ω) = −qx(ω) +Q(0, 0, z) + x(ω)y(ω)/z.

• On ]0, ω2/4] × [0, ω1/ı[ we define qx(ω) by qx(φ(ω)) – note that with (22) we
have φ(]0, ω2/4] × [0, ω1/ı[) = [3ω2/4, ω2[×[0, ω1/ı[. On [ω2/8, 3ω2/8[×[0, ω1/ı[ we
define qy(ω) by qy(ψ(ω)) – by using (22) we have ψ([ω2/8, 3ω2/8[×[0, ω1/ı[) =
]3ω2/8, 5ω2/8] × [0, ω1/ı[.
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The functions qx and qy are now well defined on the whole parallelogram C/Ω cut
along [0, ω1[ and [0, ω1[+ω3/2 respectively.

Note that the definition given in the first item above is quite natural. The one
stated in the second item is also natural since on x−1({|x| ≤ 1}) ∩ y−1({|y| ≤ 1}) =
[5ω2/8, 3ω2/4]× [0, ω1/ı[, the equality qx(ω)+(y(ω)+1)qy(ω)−Q(0, 0, z)−x(ω)y(ω)/z = 0
holds, see (1). The definition set in the third item is to ensure that (32) is valid.

Let us now prove that the functions qx and qy so continued verify the different assertions
of Theorem 21.

Note first that (33) is immediately true, by construction of the continuations.
We are now going to verify (32) for qx. By using the first item above as well as the

equality x◦ψ = x, (32) is obviously verified on [ω2/4, 3ω2/4]× [0, ω1/ı[= ψ([ω2/4, 3ω2/4]×
[0, ω1/ı[). Moreover, with the third item, (32) is verified for qx on ]0, ω2/4]× [0, ω1/ı[, and
since ψ2 = id, (32) is also true for qx on [3ω2/4, ω2[×[0, ω1/ı[, and finally on the whole
C/Ω \ [0, ω1[.

Likewise, we verify easily that (32) is valid for qy on C/Ω \
(
[0, ω1[+3ω2/8

)
.

It remains to prove that the continuations of qx and qy are holomorphic on C/Ω cut
along [0, ω1[ and [0, ω1[+3ω2/8 respectively.

We show first that they are meromorphic on their respective cut parallelogram. For
qx the following cycles are a priori problematic : [0, ω1[, [0, ω1[+ω2/4 and [0, ω1[+3ω2/4.

In an open neighborhood of [0, ω1[+3ω2/4, we have qx(ω) = −(y(ω) + 1)qy(ω) +
Q(0, 0, z) + x(ω)y(ω)/z, so that qx is in fact meromorphic in the neighborhood of the
cycle [0, ω1[+3ω2/4. Since (32) holds, qx is also meromorphic near [0, ω1[+ω2/4 =
ψ([0, ω1[+3ω2/4), so that only [0, ω1[ remains a priori (and actually is) a singular cycle.

Similarly, we could show that qy is meromorphic on C/Ω \
(
[0, ω1[+3ω2/8

)
.

Let us now prove that these continuations are actually holomorphic on their respective
cut parallelogram.

qx is obviously holomorphic on ]ω2/4, 3ω2/4]×[0, ω1/ı[, since it is there defined through
the power series Q(x, 0, z).

On ]5ω2/8, ω2[×[0, ω1/ı[, we have qx(ω) = −(y(ω) + 1)qy(ω) +Q(0, 0, z) + x(ω)y(ω)/z,
and all terms of the right-hand side of this equality are holomorphic on this domain – at
7ω2/8, x has a pole of order one and y has a zero of order two, see Lemma 24 below, so
that the product xy is holomorphic near 7ω2/8.

On ]0, 3ω2/8[×[0, ω1/ı[, we have qx = qx ◦ψ, so that qx is holomorphic on this domain
since it is on ψ(]0, 3ω2/8[×[0, ω1/ı[) =]5ω2/8, ω2[×[0, ω1/ı[.

Likewise, we could show that (y + 1)qy is holomorphic on C/Ω \
(
[0, ω1[+ω3/2

)
. This

implies that qy is holomorphic on the same set except at the points where y + 1 = 0.
There are two possibilities in order to show that qy is also holomorphic at the points
where y + 1 = 0, namely ω2/8 and 5ω2/8, in accordance with Lemma 24.

First, we can use the fact that the generating function Q(0, y, z) is bounded at −1, see
Section 0, so that qy(ω) = Q(0, y(ω), z), being meromorphic and bounded near ω2/8 and
5ω2/8, is actually holomorphic at these points.
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We can also remark that with (33), (y(5ω2/8)+1)qy(5ω2/8) = 0, since with Lemma 24,
x(5ω2/8) = 0. Moreover, since φ(5ω2/8) = ω2/8, (y(ω2/8) + 1)qy(ω2/8) = 0. In other
words, at ω = ω2/8 and ω = 5ω2/8, both holomorphic functions (y+1)qy and (y+1) have
a zero, the first one of order equal or larger than one, the second one of order exactly one ;
it follows immediately that qy is holomorphic at ω. �

The following result, which has been used in the proof of Theorem 21, follows easily
from Lemma 1 and from the fact that the Weiertrass elliptic function ℘ takes on the
parallelogram [0, ω2[×[0, ω1/ı[ each value of C ∪ {∞} twice.

Lemma 24. The only poles of x are at ω2/8, 7ω2/8 and its only zeros are at 3ω2/8, 5ω2/8.
The only pole of y (of order two) is at 3ω2/8 and its only zero (of order two) is at 7ω2/8.
The only zeros of y + 1 are at ω2/8, 5ω2/8.
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