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TORIC GEOMETRY AND THE SEMPLE-NASH MODIFICATION

PEDRO D. GONZALEZ PEREZ AND BERNARD TEISSIER

To Heisuke Hironaka on the occasion of his 80th birthday

ABSTRACT. This paper proposes some material towards a theory of general toric varieties
without the assumption of normality. Their combinatorial description involves a fan to which
is attached a set of semigroups subjected to gluing-up conditions. In particular it contains
a combinatorial construction of the blowing up of a sheaf of monomial ideals on a toric
variety. In the second part this is used to show that iterating the Semple-Nash modification
or its characteristic-free avatar provides a local uniformization of any monomial valuation of
maximal rank dominating a point of a toric variety.

INTRODUCTION

In the first part of this paper we study abstract toric varieties without the assumption of
normality. Since Sumihiro’s Theorem on the existence of a covering of a toric variety by invariant
affine varieties fails without the assumption of normality, we have to set the existence of such
a covering as part of the definition of a toric variety. Then an abstract toric variety has a
combinatorial description: it corresponds to certain semigroups in the convex duals of the cones
of a fan, which satisfy a natural gluing-up condition. This generalizes the definition of [12]
which concerns toric varieties equivariantly embedded in projective space. In spirit it is also a
continuation of our previous work [13] on embedded normalization and embedded toric resolution
of singularities of affine toric varieties. We can then define blowing-ups of sheaves of monomial
ideals as toric varieties, and describe the corresponding operations on semigroups. We also
provide the combinatorial description of torus-invariant Cartier divisors on a toric variety and
the general versions of the classical criteria for ampleness and very-ampleness.

In the second part of the paper we use the description of blowing-ups given in the first part
to show that one can obtain a local uniformization of a monomial valuation of maximal rank
dominating a toric variety, by a finite number of iterations of the blowing-up of the logarithmic
jacobian ideal introduced in [14]. If the field is of characteristic zero, this blowing-up is isomor-
phic to the Semple-Nash modification. Recall that this is a canonical modification of a reduced
equidimensional space which replaces each point by the set of limit positions of tangent spaces
at nearby non-singular points. See the second part for details.

Our result is related in the special case of toric varieties to an interesting question apparently
first asked by Semple in [27], that is, if the iteration of the Semple-Nash modification eventually
resolves the singularities of an algebraic variety defined over a field of characteristic zero. One can
present the relation of this conjectural resolution process with classical resolution of singularities
as follows: two types of proper birational correspondences naturally associate a singular variety
to a non-singular one: proper birational projections of an embedded non-singular algebraic
variety to a smaller dimensional ambient space, and the taking of the envelope of a family
of linear subspaces (of an affine or projective space) whose parameter space is a non singular
algebraic variety. For example, a family of lines in the real plane parametrized by a circle,
such as the Simson-Wallace lines of a triangle, parametrized by its circumscribed circle, have an
envelope with singularities, generically with an odd number of cusps (see [35]). In the Simson-
Wallace lines case, it is a quartic with three cusps (see [30]). The natural map from the circle
to the envelope is a homeomorphism and a local isomorphism outside of the cusps. Another
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example is given by the discriminant hypersurface of a versal deformation of an isolated complex
hypersurface singularity: it is the envelope of a family of complex hyperplanes parametrized by
the critical locus, which is non-singular and is the normalization of the discriminant (see [33])
and therefore a resolution of singularities.

Hironaka’s resolution shows that in characteristic zero all singularities may be created by the
first process, and Semple-Nash resolution in general would show that at least all singularities of
projective varieties in characteristic zero may be created by iterating a natural generalization of
the second process, if we allow singular spaces as parameter spaces. Moreover it would produce
a canonical process for local uniformization of valuations in characteristic zero, as our results
here do for maximal rank monomial valuations on toric varieties in a characteristic-free manner.
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reference [27], to Ezra Miller for bringing to our attention the work of H.M. Thompson, to
Michael Thaddeus for detecting errors in previous versions of this work.
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We also thank Patrice Philippon for his help, David Cox for his remarks and the Institut
Mathématique de Jussieu and the Dpto. Algebm, Universidad Complutense de Madrid for their
hospitality.

Part I: Toric varieties

The purpose of this part is to develop the combinatorial theory of toric varieties without the
assumption of normality. We refer to [6], [11], [21], [25], and [26] for background on normal toric
varieties, and to the books of Oda-Miyake ([25]), Gel’fand, Kapranov, and Zelevinsky ([12]) and
Sturmfels ([31]) for certain classes of non necessarily normal toric varieties. We also point to
previous work by H.M. Thompson towards the development of a general theory of toric varieties,
see [36], [37] and, from the perspective of Log Schemes, [38]. This part is also connected with
the more general theory of monoid schemes recently developped by Cortinas et al. in [4]. We
recommend [9] as a particularly accessible introduction to (normal) toric varieties, and also the
recent book [5] of D. Cox, J. Little and H. Schenk on the subject.

1. SEMIGROUPS AND SEMIGROUP ALGEBRAS

The theory of affine toric varieties over a field k is the geometric version of the theory
of semigroup algebras over k. For part of the theory, one can omit the assumption that
the semigroup is finitely generated, and replace the field k£ by a commutative ring.

Definition 1.1. A (commutative) semigroup I' is a set equipped with an operation
+:I'x I' = I" such that €; + e = €5 + €1, which satisfies the associativity property and
is cancellative (€1 + €3 = €1 + €3 implies €2 = €3). We shall assume that I' contains a zero
element 0 such that e +0 = e. We denote by ZI" the group generated by I' (defined in a
similar way as the field of fractions of an integral domain). To say that I is cancellative
means that the natural map of semigroups I' — ZI' is injective. We say that I is torsion
free if the abelian group ZI" is, which means that the only solution in IN of an equation
my = my with v,v € T,y # v/, is m = 0. Since I is cancellative, it implies that the
only solution in I" of an equation my = ny with m,n € N, m # n, is v = 0.

A system of generators of a semigroup is a subset (7;) of I' such that each element of
I' is a (finite) linear combination of the ~; with non negative integral coefficients. The
elements of ZI" are finite linear combinations of the +; with integral coefficients. If the
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semigroup I' is cancellative, torsion free and finitely generated, the group ZI is a lattice
so that T is isomorphic to a finitely generated subsemigroup of a lattice Z?.

Examples of semigroups:
e Given finitely many coprime integers the set of all combinations of these integers with
non negative integral coefficients is a subsemigroup I' of the semigroup N of integers,
and N\ ' is finite. In fact any semigroup of integers is finitely generated.
e Let (s;);>1 be a sequence of integers such that s; > 2 for i > 2. Define a sequence of
rational numbers v; inductively by:

1

M= Vikl = SiYit -

S1 S1..-8i4+1
The set of integral linear combinations of the v; is a subsemigroup of Qx>¢, which is not
finitely generated. In fact the ~; form a minimal set of generators.
e Let d be an integer and let & (the reason for the dual notation will appear below) be
a convex cone of dimension d in R%. Denote by M the integral lattice of R%. Then the
intersection ¢ N M is a subsemigroup of the group M, which generates M as a group.
By a Theorem of Gordan, if the convex cone & is rational in the sense that it is the inter-
section of finitely many half spaces determined by hyperplanes with integral coefficients,
then the semigroup & N M is finitely generated.

Definition 1.2. If A is a subsemigroup of A the saturation of A in A is the semigroup
O consisting of those elements of A which have a multiple in A. The semigroup A is

saturated in A if A = ©.

Lemma 1.3. Let 7 be a rational convex cone in R% for the lattice M. The semigroup
TN M is saturated in M and the saturation of a subsemigroup I' of M is & N M where
o = Rl is the closed convex cone generated by I'.

Proof. The first statement is clear. If R>ol' = &, any element of 6 N M is a combi-
nation with rational coefficients of elements of I'. Chasing denominators shows that an
integral multiple of this element is in I'. The converse is clear. [

Definition 1.4. Let I' be a finitely generated commutative semigroup and A a commu-
tative ring. The semigroup algebra A[t"] of I' with coefficients in A is the ring consisting
of finite sums Z'y a~,t" with a, € A, endowed with the multiplication law

(Zavtv)(zbﬁé) = Z( Z avbé)tc-
2 0

¢ y+o=(¢

Proposition 1.5. If T is a finitely generated subsemigroup of the lattice M C R® such
that ZI' = M and ¢ = Rx>ol' is the rational convex cone generated by I', the integral
closure of k[t'] in its field of fractions is k[t°"M].

This follows directly from Lemma 1.3.

Remark 1.6. Quite generally, if k is a field the Krull dimension of k[t'] is equal to the
rational rank of the semigroup I', which is the integer dimql’ ®z Q (see [34], Proposition
3.1).

Remark 1.7. If T is a semigroup the ideal of A[t!] generated by the (t")yer\{oy is non
trivial if and only if the cone Rl is strictly convex. If k is a field, it is then a maximal
ideal. We shall mostly be interested in the local study of the spectrum of semigroup
algebras in the vicinity of the origin of coordinates, which corresponds precisely to that

ideal.
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The semigroup algebra has the following universal property: any semigroup map from
I" to the multiplicative semigroup of an A-algebra B extends uniquely to an homomor-
phism A[t'] — B of A-algebras.

An additive map of semigroups ¢: I' — I induces a graded map of A-algebras
Alp]: A[t'] — A[t"] which is injective (resp. surjective) if ¢ is. If the semigroup I
is torsion-free, the semigroup algebra A[t!] injects into A[tzd] = Al ... ,tdﬂ] and
therefore is an integral domain if A is.

Proposition 1.8. Let I',T be two semigroups. The map of A-algebras
At 5 A @4 AP 0 5w @407
is an isomorphism.

Proof. This follows immediately from the universal property. O

2. ALGEBRAIC TORI

Let k be a field. The multiplicative group £* of non-zero elements of k is equipped
with the structure of algebraic group over k, usually denoted by G, := Speck[tT!]. A
d-dimensional algebraic torus over k is an algebraic group isomorphic to a (k*)7.

If M is a rank d lattice then T™ := Speck[t}] is an algebraic torus over k. If we fix
a basis mq,...,my of the lattice M we get a group isomorphism

74— M, a=(ay,...,aq) — Z a;m;
i=1,..d

and isomorphism of k-algebras k[tfl, . ,téﬂ] — k[tM] which induces an isomorphism
TM (k) — (k)4

Remark 2.1. More generally one can consider the scheme SpecA[tM], which is an alge-
braic torus over SpecA for any commutative ring A.

A character of the torus T'(k) is a group homomorphism 7'(k) — k*. The set of
characters Hom alg groups(T™, k*) of TM (k) is a multiplicative group isomorphic to the
lattice M by the homomorphism given by m + t™ for m € M. We identify the
monomials t™ of the semigroup algebra k[t"] with the characters of the torus.

By the universal property of the semigroup algebras applied to k[t"] we have a
representation of k-rational points of 7™ as group homomorphisms:

TM (k) = Homgoups(M, k*) = N @z k*,

where N := Hom (M, Z) is the dual lattice of M. We denote by (, ): N x M — Z the
duality pairing between the lattices N and M.

A one parameter subgroup of 7™ (k) is group homomorphism k* — TM (k). Any
vector v € N gives rise to a one parameter subgroup A\, which maps z € k* to the
closed point of TM (k) given by the homomorphism of semigroups M — k*, m Zvm) |
The set of one parameter subgroups Hom a1g groups (K*, TM) forms a multiplicative group,
which is isomorphic to N by the homomorphism given by v +— A,.

3. AFFINE TORIC VARIETIES

In this section we consider a finitely generated subsemigroup I' of a free abelian group
M of rank d. We assume in addition that the group ZI" generated by I' is equal to M.
We denote by N the dual lattice of M. We introduce some useful notations.
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Notation 3.1. We denote by MR the d-dimensional real vector space M ®z R. The
semigroup I', viewed in MR, spans the cone R>oI' C Mg which we denote also by &.
The dual cone of ¢ is the cone 0 := {v € Ng | (v,7) >0, Vy € 6}. We use the notation
7 < o to indicate that 7 is a face of o. Any face of & is of the form & N7+ for a unique
face 7 of o, where 7 is the linear subspace {y € Mg | (v,7) =0, Vv € 7}.

Let ~1,...,7 be generators of I'. Then the semigroup I' is the image of N C Z" by
the surjective linear map b: Z" — M determined by b(e;) = 7; where the ¢;, 1 <i <r
form the canonical basis of N”. The kernel £ of b is isomorphic to Z" 9.

Let us consider the map of semigroup algebras associated to the map b|N": N™ — Z<,
whose image is I'. It is a map of A-algebras A[Uq,...,U,| — A[tlﬂ, e ,tfl]. Its image
is the subalgebra A[t"] of A[tE!, ... ,til].

An element m € Z" can be written uniquely m = my —m_ where m4 and m_ have
non negative entries and disjoint support.

By construction, the kernel of the surjection A[Uy,...,U,] — A[t'] is the ideal gen-
erated by the binomials (U™+ — U™~) where b(my) = b(m_). It is the toric ideal
associated to the map b. Note that it is not in general generated by the binomials
associated to a basis of £. Since the algebra A[t'] is an integral domain if A is, the
toric ideal is a prime ideal in that case.

Conversely, assuming now that A is an algebraically closed field k, an ideal generated

by binomials in k[Ui,...,U,| is called a binomial ideal. Those ideals are studied in
[8], where it is shown that a prime binomial ideal I C k[Uy,...,U,] gives rise to a
semigroup algebra k[U,...,U,]/I ~ k[t'], where T' = N"/., and ~ is an equivalence

relation associated to the binomial relations. The affine toric variety T' := Spec k[t']
is the subvariety of the affine space A" (k) defined by the binomial equations generating
the toric ideal. By the universal property of the semigroup algebra, there is a bijection

{Closed points of Spec k[t']} <+ {semigroup homomorphisms I" — k},

where k is considered as a semigroup with respect to multiplication (in particular 0 € I’
goes to 1 € k).

In particular, the torus 7™ (k) = Homgoups(M, k*) is embedded in TT, as the prin-
cipal open set where 7 -- -7 £ 0.

From the description of closed points of T in terms of homomorphisms of semigroups
we have an action of the torus 7™ (k) on T" (k). Another way to describe this action,
which shows that it is algebraic, is to say that thanks to the universal property of
semigroup algebras it corresponds to the composed map of k-algebras

E[tY] — E[t'] @ k[tY] — E[tM] @4 k[tY]

where the first map is determined by t7 +— t7 ®, t7 and the second by the inclusion
I' € M. The corresponding map T™ x TV — TT is the action.
Let us now seek the invariant subsets of T' under the torus action.

Definition 3.2. Given a semigroup I', a subsemigroup F' C I' is a face of I" if whenever
x,y € I" satisfy x +y € F, then x and y are in F.

Let us remark that this condition is equivalent to the fact that the vector space of
finite sums 5 g ast® is in fact a prime ideal I of k[t']. It also implies that I\ F is

a subsemigroup of I" (which in general is not finitely generated) and that the Minkowski
sum I' + (T'\ F) is contained in I"\ F.

Lemma 3.3. The faces of the semigroup T are of the form T N7+, for 7 < o.

Proof. Let F be a face of the semigroup I'. Then there is a face & N 7+ of & which
contains F and is of minimal dimension. Then F is also a face of the semigroup I' N7+
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and there is an element vy € F which belongs to the relative interior of the cone & N7+,
Under these conditions is enough to prove that if 7 =0 then F =T

Notice that if v € T and if (y +T') N Z>0y0 # 0 then v € F since F is a face and
Y € F. By Theorem 1.9 [20] there is dyp € I'Nint(F) such that o + 5 N M C T'. We
deduce that the intersection (v +do+ N M)NZ>p7yo is non-empty, for any v € I', since
Y € int(d) NT. O

Notation 3.4. If 7 < ¢ the set I' N7+ is a subsemigroup of finite type of I'. If 7 < o
the lattice M (7,T) spanned by ['N 7 is a sublattice of finite index of M (7) := M N71+.

Remark 3.5. The torus of the affine toric variety T Nt is TM(TD) | If A is a commutative
ring, the homomorphism of A-algebras A[l'] — A[l' N 74] =2 A[l]/Ipn,t, is surjective
and defines a closed embedding

i T s T

over SpecA. If k = A the image by the embedding i, of a closed point u € T (k)
(or u € TMTT)(k)) is the semigroup homomorphism 4, (u) : T' — k given by

u(y) ifye T,
Ve { 0 otherwise.

Proposition 3.6. The map
7 orb(r,T) o= i (TM D) (resp. 75 i (T777))

defines a bijection (resp. inclusion-reversing bijection) between the faces of o and the
orbits (resp. the closures of the orbits) of the torus action on T'.

Proof. Let u : I' — k be a semigroup homomorphism. Then u~!(k*) is a face of T,
hence of the form I' N7+ for some face 7 of o. Any such u extends in a unique manner
to a group homomorphism M (7,T) — k* defining an element of the torus 7™ (m) of the

affine toric variety T Conversely, given a group homomorphism u: M(7,T') — k*
we define a semigroup homomorphism i, (u) : I' — k as indicated above.

It follows that the orbit of the point defined by u by the action of T™ coincides with
the image by i, of the orbit 7M™ of the point Urqre: IO 7+ — k* on the toric

variety T N™" . The rest of the assertion follows from Remark 3.5. O
The partition induced by the orbits of the torus action on 7' is of the form:

(1) 1" = | | orb(r, ).

<o

Proposition 3.7. If X is an affine toric variety with torus TM then X is TM -equivariantly
isomorphic to T', where T C M a semigroup of finite type such that ZT' = M.

Proof. This is well-known (see Proposition 2.4, Chapter 5 of [12]). O
We characterize the affine T™-invariant open subsets of TT.

Definition 3.8. For any face 7 of o the set

(2) T, =T+ M(r,T)

is a semigroup of finite type generating the lattice M.

)

Notice that the cone R>oI'; is equal to 7 and if 7 < o the set int(¢ N7-) N T is non

empty (int denotes relative interior).

Lemma 3.9.
i. The minimal face of the semigroup T is a sublattice of M equal to T'N o™,
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ii. For any m €T in the relative interior of (5 N71) we have that
I',=T+ Zzo(—m).
ili. If 7 <6 <o we have that M(7,Tg) = M(7,I';) and T'y =Ty + M(1,Ty).

Proof. i. By Lemma 3.3 the correspondence 7 — I' N 7 is a bijection between the
faces of the cone ¢ and the faces of the semigroup I'. By duality the minimal face of I’
is equal to I' N o’. It is enough to prove that if I' is a semigroup such that ZI' = M
and R>ol' = MR then I' = M. Since M is the saturation of I' the assertion reduces to
the case of rank one semigroups, for which it is elementary by Bezout identity.

ii. If m € int(6 N7+) NT then the semigroup I' + Z>o(—m) C M spans the cone 7 =
+7+ C Mg. By i. the minimal face of this semigroup is the lattice (I'+Zx>o(—m))N7+
which coincides by definition with the lattice M (7,T).

iii. The lattices M(7,T'9) and M(7,T) are both generated by I' N7+ hence are equal.
We have that T'; = T'y + M(7,Ty) since 8+ C 7+. O

Lemma 3.10. If7 < o the inclusion of semigroups I' C T'» determines a T™ -equivariant
embedding T'™ C T as an affine open set. Conversely, if X C T" is a TM -equivariant
embedding of an affine open set then there is a unique T < o such that X is TM-
equivariantly isomorphic to T'7.

Proof. By Lemma 3.9 we have that I'; = I' + Z>¢(—m). More generally if v € " and
f =17, the localization T]F = Spec  k[I']f is equal to TTH+(=M220 and it is embedded in
T" as a principal open set.

Conversely, an affine TM-invariant open subset of 7' is an affine toric variety for the
torus T™ hence it is of the form T, for A € M a subsemigroup of finite type, such that
ZA = M (see Proposition 3.7). We denote the cone R>oA by 6. Since the embedding
TN ¢ TV is TM equivariant it is defined by the inclusion of algebras k[t'] — E[t"]
corresponding to the inclusion of semigroups I' € A. We deduce that & C 6 and hence
that 6 C o by duality. We prove that if 7 is the smallest face of ¢ which contains 6 then
A =T,. It is enough to prove that if int(f) Nint(c) # O then A =T.

Notice that the lattice F' = o~ N M is the minimal face of I and the prime ideal Ir
of k[t'] defines the orbit orb(c,T'), which is embedded as a closed subset of T'. Let us
consider a vector v such that v € int(#)Nint(c). Then we get that - NM = cNv+nNM
is contained in fNv-NM = 6N M hence T'\ (- N M) is contained in A\ (N M) and
therefore 1 ¢ Ipk[t"]. Since TA C T' is an open immersion orb(c,T") is contained in
T™. By (1) and Proposition 3.6 the closure of any orbit contained T contains orb(c, I")
thus 70 C T, O

Remark 3.11. The immersion of T™-invariant affine open subsets is compatible with
normalization. By Lemma 3.10 any T™-invariant affine open set of 7' is of the form
TJF for f =17, v € I'. Then the following diagram commutes:

T(TﬂM SN TF
-
N
17 = Ty,
since I' + (—v)Z>¢ is saturated in & N M + (—7v)Z>p. The vertical arrows are embed-

dings as principal open sets while the horizontal arrows are normalization maps (see
Proposition 1.5).

4. TORIC VARIETIES

Given a finite dimensional lattice N, recall that a fan is a finite set X of strictly
convex polyhedral cones of the real vector space Ng which are rational for the lattice
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N, such that if 0 € ¥ any face 7 of o belongs to X and if 0,0’ € X the cone 7 = o N o’
isin 3. If j > 0 is an integer the subset of ¥(j) of j-dimensional cones of ¥ is called
the j-skeleton of the fan. The support of the fan X is the set |X| = Ugexno C NR.

We give first a combinatorial definition of toric varieties.

Definition 4.1. A toric variety is given by the datum of a triple (N, 3, I") consisting of
lattice N, a fan ¥ in Ng and a family of finitely generated subsemigroups I' = {T', C
& N M}sex of alattice M = Hom(N, Z) such that:

i. ZI'y = M and R>ol'; =7, for o € X.

ii. 'y =Ty + M(7,T'y), for a each o € ¥ and any face 7 of o.
The corresponding toric variety Tg is the union of the affine varieties 7' for ¢ € &
where for any pair o, ¢’ in ¥ we glue up 7' and T+ along their common open affine
variety T ono’ .

Remark 4.2. The lattice N in the triple (N, X,T") is determined by I'. We recall it by
convenience. We omit the reference to the lattice /N in the notation Tg .

Remark 4.3. This definition is consistent with the case of affine toric varieties. Let
T" be an affine toric variety in the sense of Section 3. If ¢/ := {r | 7 < o} and
I'":= {I; | 7 < o}, where I'; is the semigroup defined by (2) for 7 < o then the
conditions i. and ii. are satisfied by Lemma 3.9. Then T is T™-equivariantly isomorphic
to TE,,.

Remark 4.4. A triple (N, X, T") determines similarly a toric scheme over SpecA, for any
commutative ring A.

Lemma 4.5. Let (X,T") as in Definition 4.1 define a toric variety TZF. Then we have:
i Ifo,0eX andiftr=0N0 then ', =1, 4+ I'y.
ii. The variety Tg s separated.

Proof. The intersection 7 = o N 0 is a face of both ¢ and #. By Lemma 3.9 we
have that M(7,T';) = M(7,T';) = M(7,T'y). By axiom i. in the Definition 4.1 we get
Iy, I'y C I'; and I'y + ', C I';. Conversely, by the separation lemma for polyhedral
cones, for any u € int(6 N (—0)) we have that 7 = ¢ Nu" = § Nut. Notice that we
can assume that u € T', N (=) Nint(& N (—0)) # @. Then by Lemma 3.9 we obtain
I'y =Ty + Z>¢(—u). Hence I'; is contained in I', + I'y since —u € I'y.

The homomorphism k[t"¢] @ k[t"7] — k[t'"] which sends t* @t — 77 is surjective
since I'y + 'y = I';. In geometric terms this implies that the diagonal map 7' —
T"0 x T' is a closed embedding for any 0,0 € ¥ with 7 = 6 N 7, hence the variety TZF
is separated (see Chapter 2 of [18]). O

Remark 4.6. The morphisms corresponding to the inclusions k[t'e] — k[t'o*1o'] are
open embeddings compatible with the normalization maps. The normalization of the
toric variety Tg is the toric variety Tx corresponding to the fan ¥ and the normalization
map is obtained by gluing-up normalizations T, := T°"™ of the charts T'7, for ', € I’
and o € X.

Lemma 4.7. Let \, be a one-parameter subgroup of the torus T™ for some v € N.
Then lim,_,o A\, (z) exists in the toric variety Tg if and only if v belongs to |[S| N N.

Proof. The statement is well-known in the normal case (see Proposition 1.6 [26]).
The normalization map n: Ty, — Tg is an isomorphism over the torus 7M. If \,: k* —
™ Tg is a one-parameter subgroup defined by v € N it lifts to the normalization,
i.e., there is a morphism \,: k* — T™ C T¥ in such a way that n o A\, = \,. Since the
normalization is a proper morphism we get by the valuative criterion of properness that
lim, o A\y(2) exists in the toric variety Tg if and only if lim,_,o A,(2) exists in 7. [
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Lemma 4.8. Let TZF be a toric variety. Then the map
7 = orb(7,T;) := i (TM(TI7)
defines a bijection between the faces of ¥ and the orbits of the torus action on Tg.
Proof. This is consequence of the definitions and Lemma 3.6. U

In order to illustrate the combinatorial definition of a toric variety we describe the
orbit closures as toric varieties.

Notation 4.9. If 7 € ¥ we denote by N the sublattice of N spanned by 7 NN and by
N(7) the quotient N/N,. The lattice N(7) is the dual lattice of M(7) = M N7*. Since
M(1,T';) is a sublattice of finite index i(7,I';) of M (1) then the dual lattice N(7,T';)
of M(7,T;) contains N(7) as a sublattice of finite index equal to i(7,T';).

If o € ¥ and 7 < o the image o(7) of ¢ in N(7)r = Nr/(N;)r is a polyhedral
cone, rational for the lattice N(7,T';). The set (1) := {o(7) | 0 € ¥,7 < o} is a
fan in N(7)r. If o(7) € B(7) we set [y :=T'; N 7+, The set o(r) C N(7)Rr is the
dual cone of the cone spanned by I'; N7+ in M(7)r. Let us denote by I'(1) the set
{To(ry [ o(1) € B(7)}-

Lemma 4.10. Let TL be a toric variety. If T € ¥ the triple (N(7,T;),%(7),T(7))

defines a toric variety T;((TT)) We have a closed embedding i, : Tg((:)) — Tg. The map
. I'(r
7 i (Ty(T)

defines a bijection between the faces of ¥ and orbit closures of the action of TM on Tg.

Proof. If 7 is not a face of o, for o € ¥ then orb(7,T';) is does not intersect the affine
invariant open set T'¢; if 7 < o, for 0 € ¥ the closure of the orbit orb(7,T,) in the
affine open set T is equal to 757 (see Lemma 3.6).

If 7 <6 <o then 0(7) < o(r) and 6+ C 7+ hence M(,T,) = M(0(),T, N7+) is
the sublattice spanned by I'; N 6.

If 7 <o,0" and if 8 = 0 N o’ then we deduce from condition ii. in Definition 4.1 that:

LyN7h =To N7H + M(0(7),Tor)) = Tor N7+ M(O(7), T (r))-

We obtain that the triple (N(7,I';),%(7),I'(7)) satisfies the axioms in Definition 4.1

with respect to the torus 7M(mI'r)

We have also described an embedding TEF ((:))

of this variety with any affine chart containing orb(7,T") is the closure of the orbit
orb(7,I") in the chart. The conclusion follows from Lemma 4.8. u

— Tg in such a way that the intersection

Remark 4.11. The non-singular locus of the toric variety Tg is the union of the orbits
orb(7,T") corresponding to regular cones 7 € 3 such their index i(7,T';) is equal to 1.

5. BLOWING UPS

The theory of normal toric varieties deals with normalized equivariant blowing ups,
i.e., blowing ups of equivariant ideals followed by normalization. In this section we build
blowing ups of equivariant ideals in toric varieties.

Let o be a strictly convex rational cone in Ng and I' a subsemigroup of finite type
of the lattice M such that ZI' = M and the saturation of I' in M is equal to d N M.
For simplicity we assume that the cone o is of dimension d hence & is strictly convex.

Let us consider a graded ideal Z in A[t"], which is necessarily generated by monomials
t™ ..., t"™. We build the corresponding Newton polyhedron N,(Z), by definition the
convex hull in Mg of the m; + &, which is also the convex hull of the set |Z| of exponents
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of monomials belonging to the ideal T of A[t']. It is quite convenient to denote with
the same letter Z the set {mq,...my}.

The set Z determines the order function:
(3) ordz: 0 - R, v+ min(v,m).

mel

The order function ordz coincides with the support function a la Minkowski of the poly-
hedron N' = N, (Z) defined as the function H: Ng — R given by H(v) = min,epn (v, m).
It is a gauge (ordz(Au) = Aordz(u) for A > 0) which is piecewise linear. The maximal
cones of linearity of the function ordz form the d-skeleton of the fan ¥(Z) subdividing
o. Each such cone o; in the d-skeleton of 3(Z) is the convex dual of the convex rational
cone generated by the vectors (m — m;)men;, (), Where m; is a vertex of Ny (Z). The
correspondence m; — o; is a bijection between the set of vertices {m1,...,ms} C Z of
the polyhedron N, (Z) and the d-skeleton of ¥(Z7), such that

m; — o; if and only if ordz(v) = (v, m;) for all v € o;.
Note that ' Co N M C ;N M. In each of the cones &; we consider the semigroup
(4) Li=T+4(my—mj,...,mj—1 —mj,mijp1 — mj,...,mp —m;) C ;N M.
By Lemma 1.3, the saturation in M of this semigroup is equal to &; N M. We denote

by I'(Z) the set consisting of the semigroups I';, together with I'; ; (defined by equation
(2)) for <oy, i=1,...,s.

Proposition 5.1. The triple (N,X(Z),T(Z)) defines a toric scheme B over Spec A.
The inclusions ' C I';, i = 1,...,s, determine a map of schemes

7: B — Spec A[t']
over Spec A, which is the blowing up of the ideal T.

Proof. We prove first that the triple (N, X(Z),T'(Z)) satisfies the compatibility con-
ditions stated in Definition 4.1. By Lemma 3.9 it is enough to check them for the affine
open sets corresponding to two vertices, say my and mg, of N,(Z). Then, if 7 = o1 N0
the condition we have to prove is that I'y ; = I'p ;.

Notice that the vector m := mo — my € I'y belongs to the interior of ;1 N . By
Lemma 3.9 and the definitions we get I'y ; = I'1 + Z>o(—m) and similarly I'y ; =
I'y + Z>om. Then the assertion follows since I'y -, which is equal to

I+ Z(mg — ml) + Z Zzo(mj — ml) =T+ Z(m1 — mg) + Z Zzo(mj — mg),
=2,k §=2,....k
is the same semigroup as I's ;.

It follows that the scheme B is covered by the affine sets Spec A[t'#] fori =1,...,s.
Since each T; contains T, there is a natural map 7: Spec A[t'i] — Spec A[t']. The
sheaf of ideals on B determined by the compositions with 7 of the generators of Z is
generated by ¢™ o 7 in the chart SpecA[t!].

It is not difficult to prove that any semigroup I'; defined by (4), for i > s, that is
when m; is not a vertex of N,(Z), is of the form I, for some 1 < j <sand 7 < o0j.
This means that the corresponding affine chart Spec A[t'7] of the blowing up of Z is in
fact an affine open subset of Spec A[t'7], where m; is a vertex of N (Z). O

Remark 5.2. With the above notations let us consider the Rees algebra of T, defined
as R[I] = @;>,I's!. Since each power ! is a monomial ideal, the term Z's' is of
the form Z's' = EB,YEW‘tVsl. Consider also the semigroup I'z of M x Z generated by
(I'x {0})U (JZ] x {1}). By using the map of semigroups I — I'z, defined by v — (7, 0),
the semigroup algebra A[t!Z] has the structure of A[t']-algebra. There is a unique
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isomorphism of semigroups algebras R[Z] — A[t'Z] over A, such that t7s' — ¢t(!). This
is also an isomorphism of A[t']- graded algebras, when the grading of a monomial t(rh)
is defined to be equal to . The canonical map Proj(R[Z]) — SpecA[t'] is the blowing
up of the ideal Z. We have given in Proposition 5.1 the combinatorial description of
this map as a toric morphism as defined in Section 6. See also Section 11.3 [5].

Corollary 5.3. The blowing-up of an equivariant sheaf of ideals on a toric variety TZF
s a toric variety. Its description above each equivariant open affine chart of Tg 18 given
by Proposition 5.1.

6. TORIC MORPHISMS

Recall that a morphism ¢: ™' 5 M of algebraic tori gives rise to two group

homomorphisms
¢ M — M and ¢ : N - N
between the corresponding lattices of characters and between the corresponding lat-
tices of one-parameter subgroups. The homomorphisms ¢* and ¢, are mutually dual
and determine the morphism ¢: TM" — TM of algebraic tori. Note that ¢ is defined
algebraically by
kM) — k[, ¢t ;e M.

Now suppose that we have two toric varieties Tg and Tg with respective tori 7™ and
TM" defined by the combinatorial data given by the triples (N,%,T) and (N’,%/,T")
(see Definition 4.1).

Definition 6.1. The homomorphism ¢, is a map of fans with attached semigroups
(N,3,T) — (N',¥',T") if for any o’ € ¥’ there exists o € ¥ such that ¢*(I';) C T',.

Note then that ¢, is a map of fans, that is, for any o’ € ¥/ there is a cone o € ¥ such
that image by ¢’ by the R-linear extension of ¢, is contained in o. See Section 1.5 [26].

Proposition 6.2. Let ¢: ™' s TM pe g morphism of algebraic tori. If ¢, defines
a map of fans with attached semigroups (N, X, T) — (N',X/,T") then it gives rise to a
morphism: ¢: TS — Tg which extends ¢: T™ " TM gnd s equivariant with respect
to ¢. Conversely, if f: Tg,/ — Tg s an equivariant morphism with respect to ¢ then ¢,
defines a map of fans with attached semigroups (N', ¥ T") — (N, X,T) and f = ¢. In
addition we have a commutative diagram

sz — Iy

3 \

Ty, — T
where the vertical arrows are normalizations and the horizontal ones are the toric mor-
phisms which extend ¢ : TM' — TM.

Proof. For any o’ € Y there exists a cone o € ¥ such that the restriction of ¢*
determines a semigroup homomorphism I'; — I ,. The corresponding homomorphism
of k-algebras k[I';] — k[I"/,] defines a morphism:

Gor ot T+ — T given on closed points by Gt o(x) =20 ¢TF07

where z € TF;’; x: I, — k is a homomorphism of semigroups. The morphism gz_b(,/J is
equivariant through ¢ since for any y € TM', y: M’ — k* group homomorphism and
any x € T s we get:

Poro(y @) = (y-2) 0 ¢, = (yod") - (zodfp,) = d(y) - Pov o (2).
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By gluing-up the affine pieces together we get a morphism ¢: TS — Tg which is
equivariant with respect to ¢.

For the converse, since f is assumed to be equivariant through ¢ the image by f of
cach orbit of the action of TM" on TFE,, is contained in one orbit of the action of T™
on TL. If 7/ < ¢’ and ¢’ € ¥/ then the orbit orb(¢’,I",) is contained in the closure of
orb(7/,I",) by Proposition 3.6. Then there exist 0,7 € ¥ such that

f(orb(a’,T%,)) C orb(o,T,) and f(orb(7',T,)) C orb(r,T,).
Since f is continuous orb(o, I',) must be contained in the closure of orb(7,I';), hence 7

is a face of o by Proposition 3.6 and Lemma 3.5. By (1) it follows that f(TF;/) CTh.
The restriction f‘TF,’: T e — TTe is equivariant with respect to ¢ : TM — TM,

Hence f\TF// : T — TTe is defined algebraically by the homomorphism of k-algebras

k[the] — k[t ;/], which is obtained by restriction from the homomorphism of k-algebras
E[tM] — k[tM'] which maps t™ ~ t¢"(™) for m € M. This implies that ¢*(T'y) C T,
and also that f = ¢.

Since ¢, is a map of fans it defines a toric morphism between the normalizations of
Tg and Tg. Finally, it is easy to check that the diagram above is commutative. O

It is sometimes useful to consider morphisms of toric varieties which send the torus
of the source into a non dense orbit of the target: Let (N, X, T') and (N/, X', T”) be two
triples defining toric varieties Tg and 7. EF,, . Let 7 be a cone of X. Suppose that we have
a morphism of algebraic tori ¢ : TM' — TM(™I7) guch that ¢, : N/ — N (1,T;) defines
a map of fans with attached semigroups (N, ¥, I") — (N(7,T';),2(7),I'(7)). Then by
Proposition 6.2 and Lemma 3.5 we have a toric morphism

6T — Tyl

Let us denote by n: Ty, — Tg the normalization map and by i : Ty 7y — Tx the closed
embedding of the closure of orb(7) in Tx. The following Proposition is consequence of
Proposition 6.2 and Lemma 3.5.

Proposition 6.3. The composite of ¢ with the closed embedding i, : T;((TT)) — TZF lifts

to the normalization of Tg, i.e., there exists a toric morphism 1 : Tg — Tx(7) such
that iy o ¢ = noi, o if and only if there is a lattice homomorphism ¢* : M (7) — M’
such that ‘pI*M(T,FT) = ¢* and then ¥ = @.

Example 6.4. By Proposition 6.3 the map u + (u,0,0), which parametrizes the sin-
gular locus of the Whitney umbrella {2z — 2% = 0} does not lift to the normalization
while u — (u?,0,0) does.

7. ABSTRACT TORIC VARIETIES
We recall the usual definition of toric variety.

Definition 7.1. A toric variety X is an irreducible (separated) algebraic variety equi-
pped with an action of an algebraic torus 7' embedded in X as a Zariski open set such
that the action of 7" on X is morphism which extends the action of T' over itself by
multiplication.

As stated in Proposition 3.7 any affine toric variety is the spectrum of certain semi-
group algebra. Gel'fand, Kapranov, and Zelevinsky have defined and studied those pro-
jective toric varieties which are equivariantly embedded in the projective space, which
is viewed as a toric variety, see [12], Chapter 5.
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The following Theorem, which is consequence of a more general result of Sumihiro,
provides the key to establish a combinatorial description of normal toric varieties.

Theorem 7.2. (see [32]) Any normal toric variety X has a finite covering by T-
mwvariant affine normal toric varieties.

The statement of Theorem 7.2 does not hold if the normality assumption is dropped.

Example 7.3. Let C C P% be the projective nodal cubic with equation y?z —22(x+ z).
It is a rational curve with a node singularity at P = (0 : 0 : 1) and only one point
Q = (0 :1:0) at the line of infinity = = 0. The curve C is rational and has a
parametrization 7 : P — C such that 7(0) = m(c0) = P and 7(1) = Q. Then we
have that mc-: C* — C'\ {P} is an isomorphism. The multiplicative action of C* on
PlC corresponds by 7 to the group law action on the cubic hence it is algebraic. It
follows that C' is a toric variety with respect to Definition 7.1. Notice that C' is the
only open set containing P which is invariant by the action of C*. This example is
also a projective toric curve which does not admit any equivariant embedding in the
projective space (see [25] page 4 and [12] Chapter 5, Remark 1.6).

Definition 7.4. An action of a group on an algebraic variety X is good if X is covered
by a finite number of affine open subsets which are invariant by the action.

We modify the abstract definition of toric varieties as follows:

Definition 7.5. A toric variety X is an irreducible separated algebraic variety equipped
with a good action of an algebraic torus 7" embedded in X as a Zariski open set such
that the action of T on X extends the action of T" on itself by multiplication.

Theorem 7.6. If X is a toric variety in the sense of Definition 7.5 with torus T, then
there exists a triple (N, %, T') as in Definition 4.1 and an isomorphism ¢: T — T such
that the pair (T, X) is equivariantly isomorphic to (TM ,Tg ) with respect to .

Proof. We denote by M the lattice of characters of the torus T hence T'= T™ and
N is the dual lattice of M.

By Proposition 3.7 an affine 7™ -invariant open subset is of the form 77 where T,
is a subsemigroup of finite type of M such that ZI', = M, and 0 C N is the dual cone
of & = R>ol'; C Mr. By Lemma 3.10 the open affine TM_invariant subsets of T are
TV, for 7 < o, where I'; =Ty + M(7,T,).

By definition X is covered by a finite number of T™-invariant affine open subsets of
the form {T%7},cx. We can assume that if ¢ € ¥ and if 7 < o then 7 € ¥. We are
going to show that ¥ is a fan in Ng, hence TV #£ T+ if o # o'.

We have that for any o, ¢’ € ¥ the intersection 7' NT"’ is an affine open subset of
the separated variety X (see Chapter 2 of [18]). It is also a T™-invariant affine subset
of both TV and T%+’, hence it is of the form T'7. By Lemma 3.10 we obtain two
inclusion of semigroups I'y, — I'; and I';y — ', Since X is separated the diagonal map
TV — TV x TV is a closed embedding (see Chapter 2 of [18]). Algebraically, this
implies the surjectivity of the homomorphism

E[tTe] @p k[tTo'] — k[t'] , determined by ¢ @ 7 — 7+

It follows that the homomorphism of semigroups I'y X I'ys — T'z, (7,7') — v+7/ is
surjective. This proves that I'; =T', + I'ys thus

RZOF’T =7 = RZQ(FJ + PJ/) =0+ o’
By duality we deduce that 7 = o N ¢’. By Proposition 3.10 we obtain
I, =T, +M(1,I'y) =Ty + M(7,T).
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In conclusion, ¥ is a fan in Ng and if I := {I', | 0 € £} the triple (IV, X, T") satisfies
the compatibility properties of Definition 4.1 and the variety T{: is TM_equivariantly
isomorphic to X. O

The following corollary is consequence of Proposition 6.2 and Theorem 7.6.

Corollary 7.7. The category whose objects are the triples (N,%,T) of Definition 4.1
and whose morphisms are the maps of fans with attached semigroups of Definition 6.1
s equivalent to the category whose objects are the toric varieties of Definition 7.5 and
whose morphisms are those equivariant morphism which extend morphisms of the cor-
responding algebraic tori; see Proposition 6.2.

8. INVERTIBLE SHEAVES ON TORIC VARIETIES

In this section we describe how some of the classical results in the study of equivariant
invertible sheaves on a normal toric variety extend to the general case.

Let Tg denote a toric variety defined by the triple (N, 3,T"). Recall that if o € 3 we
denote by T, = T°"M the normalization of the chart 777 and by T% the normalization
of Tg .

A support function h : |X| — R is a continuous function such that for each o € %
the restriction hj,: 0 — R is linear. We say that h is integral with respect to N if
h(|2] N N) C Z. We denote by SF(V,X) the set of support functions integral with
respect to NV. If h is a support function integral with respect to IV then for any o € 3
there exists m, € M such that

h(v) = (v,m,), forallveo.
Notice that by continuity we have that
(5) My = Mgy mOdM(T):MﬂTl, fort<o,0€X.
The set {m, | 0 € ¥} determines h but may not be uniquely determined.

Definition 8.1. A support function for the triple (N,X,T') is a support function A :
|X| — R integral with respect to N which in addition has the compatibility property

(6) m; =m, mod M(7,T;), for 7 <o, 0€X.

We denote by SF(N,3,T") the additive group of support functions for the triple
(N,%,T). It is a subgroup of SF(N,X). A vector m € M defines an element of
SF(N,X,T') hence we have a homomorphism M — SF(N,X,T"), which is injective if
the support of ¥ spans Ny as a real vector space.

Any h € SF(N,Y) determines T™-invariant Cartier divisor Dy on Tx by

(7) Dy, = div(t™™) for o € ¥,

where div(g) denotes the principal Cartier divisor of the rational function g on an
irreducible variety. Notice that Dj is independent of the possible choices of different
Cartier data {m, | o € X} defining h. If 0,0’ € ¥, 7 = o No’ then T, =T, N T,
and (5) guarantees that ¢t~ "’ and ¢~ are both regular functions on T;. Any
TM_invariant Cartier divisor on T% is of the form Dy, for h € SF(N, ¥), i.e., it is defined
by Cartier data.

Lemma 8.2. If h € SF(N,X) is defined by the Cartier data {m, | o € X} then it
defines a TM -invariant Cartier divisor on TZF if and only if (6) holds, that is, if and
only if h € SF(N,%,T).
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Proof. The condition to determine a Cartier divisor is that for any ,0’ € ¥, 7 = oNo’
the transition function ¢t~ is an invertible regular function on 777 = TT> N TTo.
By Lemma 3.9 this is equivalent to (6). O

We have shown that the group CDivpu (T%) of TM-invariant Cartier divisors on
TL can be seen as a subset of CDivyw (7). The set {div(t™)}en is a subgroup of
CDivpu (TL) consisting of principal Cartier divisors.

The map

SF(N,%,T) — CDivpu (T%),  h i+ Dy,

is a group isomorphism. The inverse map sends a Cartier divisor D on Tg , given by
the Cartier data {m, | o € X}, to the function

=X =R, hp)=(v,m,) ifveo.

A Cartier divisor on Ty determines an invertible sheaf Or, (D). If U is an affine
open set in which D = div(gy) for some rational function gy then the set of sections
H'(U, Oz, (D)) consists of those rational functions f such that fgy is a regular function
on U.

We denote by OTg the structure sheaf on the toric variety TZF . The invertible sheaf

of a TM_invariant Cartier divisor D on Ty is the sheaf of OTg—moduleS OTEF (D). By
(7) the set of sections of this sheaf on T17 is

(8) HO(T"", Opp (D)) = (7 ki),
We denote by Pg the following subset of M:
(9) Phi= () mo +To.
oeY

The set of global sections of the sheaf (’)Tr(D) is equal to

(10) H(Ty, Opp (D)) = (Nt kit = @ k™

oEY mGPF

Remark 8.3. As in the normal case, a T™-invariant Cartier divisor D defines an equivari-
ant line bundle £p whose sections coincide with those of the invertible sheaf (’)TEF(D).

See [26], Chapter 2.

The Picard group Pic(X) of a variety X consists of the isomorphism classes of in-
vertible sheaves in X.

Lemma 8.4. Suppose that |X| = Nr. For any Cartier divisor D on the toric variety T%
we have an (’)Tr -module isomorphism (’)Tr( ) = (’)Tr(Dh) for some h € SF(N, X F)

The following are equivalent for h € SF(N 2. T).

i.heM
ii. Dy, is a principal Cartier divisor.
ili. Lp, s a trivial line bundle.
iv. The sheaf Orr (Dp) is isomorphic to Opr as Orr-module.

Proof. See Proposition 2.4 of [26]. O
Proposition 8.5. Suppose that || = Nr. Then we have canonical isomorphisms
SF(N,%,T)/M — Pic(T%) — CDivaars (T%) /{div(t™) }menr,

from which we deduce a canonical injection Pic(TL) — Pic(Tk).
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Proof. This follows by using the same arguments as in Corollary 2.5 [26]. U

If p belongs to the 1-skeleton (1) of the fan 3 we denote by v, the primitive integral
vector for the lattice N in the ray p, that is the generator of the semigroup p N N. We
associate to h € SF(V, X) the polyhedron

(11) Py :={m € Mg | <1/p,m> > h(up), peX(l)}.
Recall that
(12) ]Dlh = lPh and Ph + Ph’ = Ph+h’

for any integer [ > 1 and h,h’ € SF(N,X).

Proposition 8.6. Suppose that || = Nr. The following are equivalent for h €
SF(N,X,T) defining a Cartier divisor D = Dy,.
i. The OTEF -module (’)TEF(D) is generated by its global sections.
ii. h is upper converz, i.e., h(v) + h(v') < h(v + V') for all v,V € Ng.
iii. The polytope Py has vertices {m, | o € X}.
If these conditions hold the convex hull of the set PIF) is the polytope Py, and h is the
support function of the polytope P,.

Proof. The proof follows as in the normal case (see Theorem 2.7 [26]). O
If |¥| = Ngr the support function h € SF(N,%,T"), defined by the Cartier data
{mq | 0 € X}, is strictly upper convez if it is upper convex and in addition

h(v) = (v,my) if and only if v € o , for o € 3.

Suppose that h € SF(N, 3, I") satisfies the equivalent conditions of Proposition 8.6.
Set D = Dy,. If P, = {u1,...,us} we have a morphism

(13) @D:T£—>P2_1, Op = (t": -0 the)

(defined in homogeneous coordinates of szl). The morphism ®p is equivariant with
respect the map of tori @ : ™ — TM' where TM’ denotes the torus of Pz_l with
respect to the fixed coordinates.

Proposition 8.7. Suppose that || = Ngr. The following are equivalent for h €
SF(N,X,T) defining a Cartier divisor D = Dy,.
i. D is very ample.
ii. h is strictly upper convexr and for all o € X(d) the set {m —m, | m € Ph}
generates the semigroup I, .

Proof. Suppose that h is not strictly upper convex. Then there exists d-dimensional
cones 0,0’ € ¥ such that 7 = o N ¢’ is of dimension d — 1 and m, = m,,. This implies
that the section defined by ™ in the open set U = T U T'+’ is nowhere vanishing.

By definition there exists 1 < i < s such that m, = u;.

The restriction of ®p to U factors through the affine open set C*~!, where the i-th
homogeneous coordinate does not vanish. It is of the form:

Dy U — C°71, with @y = (£, gl Me ikt =Te | qlsT o),

By Lemma 3.5 the closure of the orbit orb(7,T") is a complete one-dimensional toric
variety contained in U. The restriction Q)\W must be constant hence ® is not an
embedding. This implies that if Dy, is very ample h is strictly upper convex.

Suppose that h is strictly upper convex. If o € ¥ is a d-dimensional cone then m,,

belongs to {u;}?_, say m, = us. The restriction of ® to T' factors though the affine
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open set of Pz_l where the last homogeneous coordinate does not vanish. It is described
algebraically by the homomorphism of k-algebras:

Ely, .. ys_1] = k[t'], gy t9™e i=1,...,5— 1.

This maps defines a closed immersion if and only if it is surjective. This happens if and
only if the set of vectors {u; — ms}i<i<s—1 generate the semigroup I',. O

Proposition 8.8. Suppose that || = Ngr. The following are equivalent for h €
SF(N,3,T).

i. Dy, is ample

ii. h is strictly upper conver.

Proof. If D is ample then [D is very ample for [ > 0. Since [D = Dy, it follows that
h is strictly upper convex if [h is and the assertion holds by Proposition 8.7.

Conversely suppose that h is strictly upper convex. We prove that [ Dy, is very ample
for [ > 0. By Proposition 8.7 it is sufficient to prove that there exists an integer
[ > 0 such that for each d-dimensional cone o € ¥ the semigroup I', is generated by
{m —1Im, | m € Pglh}.

Ifo’ € ¥, dimo’ = d, 7 = ¢’No we have that I'; = I’y +Z>o(—u) for any u € ', in the
relative interior of the cone 7+ N (see Lemma 3.9). For instance we take u = my —mg.
We obtain similarly that I'; = T'yr + Z>o(u).

If v € T, then v belongs to I'; and there exists 4/ € I',» and an integer p > 0 such
that v =~ + pu. If [ > p we obtain:

(14) Imer + "+ (L — p)(my — myr) = lmy + 7.

If I is big enough, a formula of the form (14) holds for any 7 in a finite set G, of
generators of I', (where p and +/ vary with +) and for any cone ¢’ € X(d). Since v and
My — Mg belong to I'ys this implies t™e+7 defines a section in H(T o, Orr (Dip)) (see

(8)) for any cone o’ € X(d). We deduce that for any v € G, the vector Im, +~ belongs
to the set Pglh and t™o %7 defines a global section of OTg(Dlh)- O

Remark 8.9. Let A = {uq,...,u} be asubset of a lattice M such that ZA = M, i.e., A
spans M as a lattice. Gel'fand, Kapranov, and Zelevinsky [12] define a projective toric
variety X 4 as the closure of the image of the map

. . .M -1
A= (" )TV = P

Let us explain how their definition fits with our notion of projective toric variety. Let
P be the convex hull of A in Mgy and X the dual fan of P. Each o € ¥ of maximal
dimension determines a vertex m, of P, which is necessarily an element of A. We
associate to o the semigroup I'y 1= Y Z>¢(u; — my,). If 7 < 0 we define I'; by (2).
The set I' := {I'y | 6 € £} is well-defined and the triple (N, 3,I") defines a toric variety
Tg (the argument is the same as the one used in the proof of Proposition 5.1). The
support function h of P belongs to SF(N, X, T') and is strictly upper convex. If D = Dy,
we deduce from the definitions that A C P}. By Proposition 8.7 the Cartier divisor
D is very ample, and the morphism (13) is an equivariant embedding of Tg in the
projective space. It follows that X 4 and Tg are isomorphic toric varieties. Notice that
the embedding defined by (13) may be degenerate, that is, the image may lie in a proper
linear subspace.

Remark 8.10. If F = Y7, ¢jt“ € k[t™] is a polynomial with ¢i...cs # 0, then F
defines a global section of OTg(D) such that the closure of {F = 0} N T in TL does

not meet any zero-dimensional orbit of Tg .
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FI1GURE 1. The cones of 3 subdividing the first orthant in Example 8.12

Proposition 8.11. Suppose that |X| = Nr. Then the toric variety Tg is projective if
and only if its normalization Tx is projective.

Proof. Suppose that Ty is projective. Then there exists a strictly upper convex
function h € SF(N,Y). By definition, there exists an integer ky > 1 such that koh €
SF(N,%,T). It follows that T% is projective by Proposition 8.8.

If Tg is projective there exists a strictly upper convex function h € SF(N,X,T).
Since SF(N,X,T') ¢ SF(N,Y) it follows that T is projective. O

Example 8.12. We give an example of complete non-normal toric variety TZF , which
is non projective. We recall first the Example 6.1.17 of [5] of a complete smooth toric
variety T, which is non-projective. The maximal faces of the fan = associated to (P!)?
are the eight orthants of R3. We denote the canonical basis of Z3 by e, f, g and we
set N = Z3. In term of this basis we consider the vectors a = (2,1,1), b = (1,2,1),
c=(1,1,2) and d = (1,1,1). We define from = a complete fan X, by subdividing the
first orthant R?;O = R>oe + R>of + R>0g, adding the rays defined by a, b, c,d in the
way indicated in the Figure 1.

Let us denote by a*, c¢*,d* (resp. d’, ¢, ¢’) the dual basis of a,c,d (resp. of a,c,e). In
term of these basis of M we introduce the following non-saturated semigroups:

Loca = a*ZZO + C*Zzo + (CL* + d*)ZZO + (C* + d*)ZZO + 2d*Z20,
T = a*ZZO + C*Zzo + (CL* + d*)ZZO + (C* + d*)ZZO =+ 2d*Z,
Toce = a,Z20 + C,Z20 + (a’ + el)Zzo + (Cl + el)Zzo + 26/Z20.

Let us denote by 04.q the cone R>pa + R>oc + R>od. We use a similar notation to
define the cones o4 and og.. Let us define a semigroup I', associated to each cone
o € X by:

Facd if o = Oacd
T, = Loce lf g = Oace

Tae if o = Oac

oNM otherwise.

Then the triple (N, X, T") satisfies the conditions in the definition 4.1: It is immediate
that ZI'; = M and R>oI', = 7, for any o € ¥. We check the compatibility conditions
among those semigroups defining different charts. First, if 7 # o4 is a proper face of
Oacd then we get that T'yeq + M(7,Tqeq) = 7N M is a regular semigroup. The same
assertion holds replacing acd by ace. In these cases the compatibility conditions are
the same as in the normal case. It remains to check what happens when 7 = o4
is the common face of 0,y and ogee. One gets that T'geq + M(7,Tgeq) = Tge while
Toce + M(7,Tace) is the semigroup I7,. generated by o, a’ + €', + ¢/, £2¢/. Since
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d=c* d =a"+d* and ¢ = —d* it follows that 'y, = T, hence all the compatibility

conditions hold. By Proposition 8.11 we deduce that the complete toric variety Tg is
non-normal and non-projective.

Part II: Local uniformization of maximal rank monomial valuations on
toric varieties by Semple-Nash modifications

In this Part we prove that a maximal rank monomial valuation dominating a point
of a toric variety admits a canonical local uniformization by a finite number of iterated
blowing ups of logarithmic jacobian ideals. Recall that, as shown below, if k is an
algebraically closed field of characteristic zero the blowing up of the logarithmic jacobian
ideal of an affine toric variety 7" coincides with the Semple-Nash modification. This
fact, originally due to Gérard Gonzalez Sprinberg in the normal case ([14]), is our
starting point.

The sequence of logarithmic jacobian blowing-ups of a toric variety Tg;g; is a sequence
TF(i+l)
26 :
¥ with attached families 01 of semigroups. The center of a monomial valuation of
T (i+1)
' Tz({)
to a d-dimensional cone 7 of the fan (). The main result of this part shows that the

of toric varieties defined by a sequence () of refinements (or subdivisions) of

maximal rank d on the toric variety is a zero dimensional orbit corresponding

affine toric variety TTF(?)H) becomes smooth after finitely many iterations of logarithmic
jacobian blowing-ups (see Theorem 12.35).

In most proofs of resolution the strategy is to attach to points an invariant which
takes its minimal value only for regular points and then show that it can be made to
decrease by successive blowing-ups. Our strategy is different: we show that the very
nature of the blowing-up of the logarithmic jacobian ideals forces the cones distinguished
by the valuation in the successive refinements ©(*) of ¥ to stabilize for i large enough,
meaning that they are not subdivided in the XU) for j > i. If one can stabilize the cones
of maximal dimension the logarithmic jacobian blowing-ups are finite morphisms from
then on, and it is easy to show that they resolve in finitely many steps (see Proposition
12.20). This stabilization is not measured by the constancy of some local invariant.
The basic idea is to show stabilization by extending it from lower-dimensional cones to
higher-dimensional ones, so that if one really insists on having an invariant, it should
be the minimal codimension of stable faces of the cone 7(9 picked by the valuation; it
is at most d — 1 since edges are stable, and if it is zero, we are essentially done.

Here is a quick description of the structure of the proof: first we study the problem
with respect to the monomial valuation associated to a vector v € NN, where o € 3(d).
For each j such a vector determines a unique cone 1) € %) containing v in its relative
interior, and the first observation is that this sequence (G(j )) j>o stabilizes for j > jq say;
the limit #(>) = §U1) is by definition a stable cone of 3U1). This implies that the chart
TGF(SO)) is non-singular for j > 0 (see Propositions 12.20 and 12.22).

One of the difficulties is that the logarithmic jacobian blowing-up of the variety does
not induce the logarithmic jacobian blowing-up of its lower-dimensional orbit closures.
A key point in the proof is that given a stable cone 7, a nested sequence of cones
¢ e »U) containing 7 as a codimension one face necessarily stabilizes (Proposition
12.25). This uses the fact that for every one dimensional orbit closure associated to
a stable cone of codimension one, the effect of the ambient blowing-up is very similar
that of its logarithmic jacobian blowing-up (see Claim 12.26). A monomial valuation
of maximal rank defines a nested sequence of d-dimensional cones 7) € (). We show
first that this sequence contains a stable cone 0 # n < 7 for j > 0. If n # 70
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we analyze the the blowing up of the logarithmic jacobian ideal on the orbit closure
associated to 77 on the chart picked up by the valuation and we prove that after finitely
many iterations we obtain a stable cone n < 6 < 1) of smaller codimension.

In Sections 13 and 14 we give an interpretation of the main result in terms of the
Zariski-Riemann space of a fan, introduced by Ewald and Ishida ([10]).

The recent paper [1] suggests that it would be interesting to develop an approach
from a computational viewpoint to the iteration of Semple-Nash modification.

9. THE SEMPLE-NASH MODIFICATION: PRELIMINARIES

In [27], Semple introduced the Semple-Nash modification of an algebraic variety and
asked whether a finite number of iterations would resolve the singularities of the variety.
The same question was apparently rediscovered by Chevalley and Nash in the 1960’s,
and studied notably by Nobile (see [24]), Gonzalez-Sprinberg (see [16] and [14]), Hiron-
aka (see [19]), and Spivakovsky (see [29]). The best consequence so far of all this work
is the Theorem, due to Spivakovsky, stating that by iterating the operation consist-
ing of the Semple-Nash modification followed by normalization one eventually resolves
singularities of surfaces over an algebraically closed field of characteristic zero.

Let X be a reduced algebraic variety or analytic space, which we may assume of
pure dimension d for simplicity. Whenever we speak of the Semple-Nash modification,
we assume that we are working over an algebraically closed field k of characteristic
zero. Consider the Grassmanian g: GrassgQ2% — X; it is a proper algebraic map, which
has the property that its fiber over a point of x is the Grassmanian of d-dimensional
subspaces of the Zariski tangent space Fx .. The map g is characterized by the fact that
g*Qﬁ( has a locally free quotient of rank d and ¢ factorizes in a unique manner every
map to X with this property. Let X° denote the non-singular part of X, which is d-
dimensional and dense in X by our assumptions. Since the restriction Q§(|X ¢ is locally
free the map ¢ has an algebraic section over X° and the Semple-Nash modification
is defined as the closure NX of the image of this section, endowed with the natural
projection nyx: NX — X induced by g. The map nx is proper and is an isomorphism
over X?; it is a modification. Like the Grassmanian of Q}(, it is defined up to a unique
X-isomorphism.

A local description can be given for a chart X|U of X embedded in affine space
AN (k) by taking the closure in (X|U) x G(N,d) of the graph of the Gauss map
v: (X|U)? = G(N,d) sending each non-singular point to the class of its tangent space
in the Grassmanian of d-dimensional vector subspaces in AY (k). For any point # € X
the fiber ny'(z) is the subset of G(NN,d) consisting of limit positions at z € X of tan-
gent spaces to X along sequences of non-singular points tending to x. In this guise, the
Semple-Nash modification appears in a complex-analytic framework in the paper [39]
of Hassler Whitney in connection with equisingularity problems.

Proposition 9.1. (Nobile), see [24] and [33]. Let X be a reduced equidimensional space;
if the map
ny: NX - X

is an isomorphism, the space X is non-singular.

For the convenience of the reader, we sketch the proof found in [33]:
If the map nx is an isomorphism, the sheaf Q}( has a locally free quotient of rank d.
The problem is local, so it is enough to prove that the existence of a surjective map
o: Qﬁ( . = Ogl( . implies, in characteristic zero, that Ox , is regular. Passing to the
completion and tensoring Q}( . by @)(7m we may assume that Ox, is complete. We

consider the linear map e: (’)g( . — Ox, sending the first basis vector to 1 and the
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others to 0. The composition of e with the map ¢ gives a surjective map, so that there
has to be an element h € Ox, such that the image of dh in Ox, by eo ¢ is equal
to 1, and then the k-derivation D: Ox, — Ox, corresponding to e o ¢ is such that
Dh = 1. In characteristic zero one can formally integrate this non vanishing vector
field using the formal expansion of exp(—hD) to get an isomorphism Ox , ~ O[[h]]
where 01 ~ Ox,/(h). By construction O; satisfies the same assumptions as Ox , in
one less dimension. By induction we are reduced to dimension zero, but a reduced zero
dimensional complete equicharacteristic local ring is k in our case. We refer to [33] for
details, and to [24] for the original proof.

Remark 9.2. We will see below in Section 11, Proposition 11.3, the characteristic-free
version of this statement, which is that if the blowing-up of the logarithmic jacobian ideal
is an isomorphism, the toric variety is smooth. Note that the Semple-Nash modification
is defined in any characteristic but its being an isomorphism does not imply regularity
in positive characteristic; it is the case for y? — ¢ = 0 with (p,q) = 1 in characteristic
p. See [24].

10. THE SEMPLE-NASH MODIFICATION IN THE TORIC CASE

The following is an extension to the case of not necessarily normal toric varieties of
a result of Gonzalez-Sprinberg ([14]; a summary of this work appeared in [15]) which
was revisited by Lejeune-Jalabert and Reguera in the appendix to [23].
Let X be an affine toric variety over an algebraically closed field k. Using the notations
of Section 3 we write its ring

R=k[Uy,...,U]/P,

where P is a prime binomial ideal (Umz — U"Z)geL of the polynomial ring k[Uy,...,U,].
Let d be the dimension of X and denote by £ C Z" the lattice generated by the
differences (m’ —n%)gcy; by [8], it is a direct factor of Z" since X is irreducible and k is
algebraically closed. Setting ¢ = r — d, we may identify L with {1,..., L} with L = |L|
in such a way that the lattice generated by (m! —n',...,m¢ — n) has rank c. The

quotient Z" /L is isomorphic to Z¢ and we have an exact sequence

(15) 0 L%z —2zd 0.

Our affine toric variety X is Speck[t'], where T is the semigroup generated in Z¢ by
the images 71, ..., of the basis vectors of Z". The logarithmic jacobian ideal of X
is the ideal of R = k[t"] generated by the images of the products Uj, ... U;, such that

iq
Det(7iy,---,%,) # 0.

Proposition 10.1. (Generalizing [14] [15] and [23]) Let X be an affine toric variety
over an algebraically closed field of characteristic zero. The Semple-Nash modification
of X 1is isomorphic to the blowing-up its logarithmic jacobian ideal.

Proof. Keeping the notations just introduced, a straightforward computation using log-
arithmic differentials shows that the jacobian determinant Jg 1, of rank ¢ = r — d of

the generators (Umz — U”Z)ge{l,___7L} of our prime binomial ideal P C k[Uy,...,U,], as-
sociated to a sequence K = (ki,...,k.) of distinct elements of {1,...,r} and a subset
L' C{1,...,L} of cardinality ¢, satisfies the congruence

U, - U Jiw = (JJ U™ Detgp (((m —n))) mod.P,

e’
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where (<m - n)) is the matrix of the vectors (m’ — ng)ge{17___7L}, and Det 1/ indicates
the minor in question. By Lemma 6.3 of [34], the rank of the image in k"*” of the
matrix ((m —n)) is equal to c.

By ([24], proof of Th.1) the Nash modification of X is isomorphic to the blowing
up in X of the ideal generated as K = (kq,...,k.) runs through the sets of ¢ distinct

elements of (1,...,r) by the elements Jg 1,, satisfying the congruences
4
Uky - Uk Lo = ( H U™ )Detr 1, (({m —n))) mod.P,
¢eLg

where Ly = (1,...,¢) is, after renumbering of {1,...,L}, a subset such that these
jacobian determinants are not all zero; such subsets exist since the Jg 1, are not all
zero. Remark the necessity that Jx 1, = 0 whenever the determinant on the right side
is zero.

Remark also that by [3], we may not suppose that the first ¢ binomials define a
complete intersection.

Now for each K let us multiply both sides by U;, ...U;,, where I = (i1,...,iq) =
{1,...,7}\ K. We obtain for each K the equality:

(16) Ur...Urdxro = Usy ... Ui ( J] U)Detrp, (((m —n))) mod.P.
leLg

Taking exterior powers for the map v in the sequence (15) gives an injection
r—d 4y r—d
0-A L 2Nz

r—d
whose image is a primitive vector in A Z" since it is a direct factor.
Let Lo C L be the lattice generated by the differences (m! —n', ... m® —n°), that is,
corresponding to the first ¢ binomial equations. The image of its (r — d)-th exterior

power is a non-zero multiple of the primitive vector TAd L; all the ¢ x ¢ minors of the
matrix ((m — n)) involving vectors m‘ — n’ with £ > ¢ are rationally dependent upon
those which do not. Consider now the d-th exterior power of the map dual to the
surjection Z" — Z¢ — 0 of (15):

d .o d
0 =ANZ* >AN7Z.

d ~ d .
The image of A Z9 is a primitive vector in A Z".

d . —d
By the natural duality isomorphism between A Z" and TA Z" (see [2] §11, No. 11,
Prop. 12) deduced from the pairings

d . d d r—d
AZ'QANZ —Z, NZ'® A Z'—Z,

this vector correspond to the image of TAd L in such a way that the coordinate which
corresponds to the determinant of the vectors v;,,...,7;, in Z is a rational multiple
of the determinant Detg r,(({(m — n))), which is non-zero since our base field is of
characteristic zero.

Equation 16 now shows that the ideal of R generated by the Jg 1,, differs from the
ideal generated by the images of the products Uj, ... U;, such that Det(v;,,...,7i,) # 0
only by the product by invertible ideals, so that these two ideals determine isomorphic
blowing ups, which proves the Proposition. O
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Remark 10.2. The proof found in [23] is valid in the non-normal case; the proof given
here makes explicit the connection of the logarithmic jacobian ideal with the usual one.

Remark 10.3. The isomorphism of Proposition 1.8 carries the logarithmic jacobian ideal
of k[t"*!"] onto the tensor product of the logarithmic jacobian ideals of the factors.

Remark 10.4. In the one-dimensional case the logarithmic jacobian ideal is the maximal
ideal corresponding to the closed orbit. It is a classical fact that iterating the blowing-up
of the singular point resolves the singularities of any branch.

11. THE SHEAF OF LOGARITHMIC JACOBIAN IDEALS ON A TORIC VARIETY

Let the pair (X,T) define a toric variety 7L as in Definition 4.1.
On the affine open set 777, o € ¥ we consider the ideal 7, of k[t'?] generated by
monomials of the form ¢%, where « belongs to the set
|To| ={a1++ag | ar,...,aq €Ty and a3 A+ A ag # 0}.

As we saw in Proposition 10.1 the ideal J, is called the logarithmic jacobian ideal of
T'e.

Remark 11.1. If ~q,...,, are generators of the semigroup I', then the monomials t¢,
for av in
(17) {r}/il +"'+7id | Vi1 /\"'/\r)/id 750, 1<4q,..0 1 ET},

generate the ideal J,. Abusing notation we denote the set (17) with the same letter
J», whenever the set of generators of I', is clear from the context.

Proposition 11.2. The family {J, | 0 € ¥} defines a TM -invariant sheaf of ideals J
on T, which is called the sheaf of logarithmic jacobian ideals of Tg.

Proof. 1t is sufficient to check that if 7 < o, o0 € X, then the ideal J, coincides with
the extension J,k[t' 7], induced by the inclusion k[t'7] < k[t'"] defined by T, C I',.

By Lemma 3.9 if m € T', belongs to the relative interior of the cone & N7+ then we
have that I'; =T’ + Z>o(—m).

If v1,...,7 are generators of I', then ~i,...,7,, —m are generators of I';. This
implies the inclusion J, C J,. By Remark 11.1 an exponent « in [, which does not
belong to the set Jy is of the form: a = 3, +- - -+7;,_, —m, with v;; A---Ay;,_ A(=m) #
0. Then, the element 8 := ~;, + --- + 7, , + m belongs to J, and we obtain that:
t* =728 ¢ Jk[t'7], and T k[t'7] = T, O

Proposition 11.3. The toric variety Tg is mon-singular if and only if the blowing up
of the logarithmic jacobian ideal is an isomorphism.

Proof. We only have to prove that if the blowing up of the logarithmic jacobian ideal
of an affine toric variety is an isomorphism the variety is smooth. We deal first with
the case of a semigroup I' such that the cone & generated by I' is strictly convex, or
equivalently that the cone o is of dimension d = rankM > 1. In this situation the
semigroup I' has a unique minimal system of generators 71,...,%d, Vd+1,--- (see [9],
Chapter V, Lemma 3.5, page 155. The result is proved there for & N M but the same
argument applies to I'). If there are more than d generators, we may assume that the
first d generators are linearly independent. Then 7411 is linearly dependent on the
previous ones which gives us another element m = v; +---+v;—1 +Va+1+ Vi1 + - +4
of our ideal. Our assumption ensures that m — m() = Ya+1 — Vi (or its opposite) is
in I', which contradicts the assumption of minimality since the appearance of y441 in
the right hand side of an expression y411 — v = > axVk, ar € N, would contradict the
strict convexity of the cone & by implying either that some positive multiple of —vy441
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isin I' or that —v; is in I'. The same argument works for v; — v44+1. Therefore I' has d
independent generators which generate M and k[t'] is a polynomial ring.

If the dimension of ¢ is < d we deduce from the assumption and Proposition 12.22,
ii) below that M(o,I') = M (o). Then we reduce to the case dimo = d by Lemma 12.18
below. Neither of those two results uses this proposition. O

Lemma 11.4. There is a continuous piecewise linear function ordy: |X| — R such
that for each 7 € ¥ the function ord . is the restriction of ordys to 7.

Proof. This follows from the definition of ordy, (see (3)), by using that J is a sheaf
of monomial ideals.

Remark 11.5. Note that Lemma 11.4 holds more generally if we replace J by any sheaf
of monomial ideals Z on T%.

The will need the following lemma in Section 12.

Lemma 11.6. Let 6+ N I be a face of the finitely generated semigroup I' C M. The
logarithmic jacobian ideal J of the image T' of T in the lattice M /M (0) is equal to the
image of the logarithmic jacobian ideal J of I

Proof Let us denote by 4; the images in M /M (#) of the generators ~; of I' and by
p the rank of the lattice M/M(0). If %;,,...,%;, are linearly independent in M /M (),
then v;,,...,7;, must be linearly independent from 6+. Remark that since - N T
is a face it must contain d — p generators of I' which are linearly independent, since
6+ NT spans the rank d — p lattice M (6,T). Choosing linearly independent generators
Yipprs - > Vig € 6+ NT of T gives us a generator ~;, +o Vi Vi T T Yig of T
whose image is 7;; + -+ + ¥;,, showing that J is contained in the image of J. If we
now take d independent generators i, ,...,%i,,Yips1,---»Vig Of I', since they generate
M, there must exist d — p independent elements in their images, say ¥;,,...,%,. Then

the image ¥;;, + -+ + %, + Vi, + -+ Vi, belongs to the logarithmic jacobian ideal J.
which shows that the image of J is equal to j . O

12. ITERATING THE BLOWING-UP OF THE LOGARITHMIC JACOBIAN IDEAL

Let I' € M a finitely generated subsemigroup of a rank d lattice M such that ZI" = M.
We assume in addition that the convex rational cone & := R>(I', which is d-dimensional
since ZI' = M, is strictly convex, which is equivalent to saying that the dual cone
o C NR is strictly convex of dimension d. The semigroup I' determines the affine toric
variety T' = Speck[t']. We fix a finite set of generators 71, ..., of I'. We consider
the set

\7:{711++71d"}/11/\/\’de#(),lgll,,zalgr}

defining the logarithmic jacobian ideal of TT.

The Newton polyhedron N, (J) of the monomial ideal 7 (see Section 5), is contained
in the interior of &, since the elements of 7 are sums of d-linearly independent elements
in the d-dimensional cone . The set J determines the order function defined by (3).
The maximal cones 7 C ¢ of linearity of the function ord; form the d-skeleton of a fan
> supported on o. The map

(18) 7= mif ordy(v) = (v,m) for all v € 7.

is a bijection between the set X(d) of d-dimensional cones of ¥ and the set of vertices

of the polyhedron N, (7).



TORIC GEOMETRY AND THE SEMPLE-NASH MODIFICATION 25

We now consider the blowing up of the monomial ideal 7. A cone 7(1) € %(d)
determines a vertex m(Y) of N5 (J) by (18) and also the finitely generated semigroup

PS—Q()I) =1+ Z Zzo(m—m(l)) C 7:(1) N M.
meJ

In view of the description recalled above of ¥(d) in terms of NV, (J), the cone Rzofg)l)

(2)
is 7). The affine toric variety TFT(U is a chart of the blowing up of J and this toric
(2)

variety is covered by charts of this form (see Section 5). The semigroup I

by {v1,..., %} U{m — m(l)}mej-

is generated

Lemma 12.1. If we choose a representation m() = Vi, + -+ i, as a sum of linearly

)

independent vectors in I' then the semigroup Fgl) 1 generated by

JFLs
19) i U{n v [1<s<di<i<rl#ioun N\ v #0}
J=1,...d
Proof. To simplify the notations we can assume that ig = s for s = 1,...,d. First

notice that if v, 1 < [ < r, has the property that v A /\23’:10 47 then the vector

m' =~y + zzflo 47i belongs to J hence m’ — m) =~ — Vi, 1S a generator of I’f()l).

Since v1,...,74 € I’g) by construction we get that v; € I‘f()l) is not in the minimal set
of generators of the semigroup I’(T2(Z).

Suppose now that v,,,...,7p, are linearly independent vectors. We denote by sg
the integer such that v, ..., 7y, € {1,...,d} and vp, ,\,. sy, €{d+1,... .7} We
can permute the vectors vp, .,,...,7p, in such a way that the i-th coeflicient of the
expansion of v, in terms of the basis v1,...,v4 of Nq, is non-zero for i = so+1,...,d

(otherwise we would get that y,, A--- A7y, = 0 contrary to the assumption). Then the

vector m = 2?21 7y, belongs to J and we deduce that m — m() = Z‘ijzsﬁl('ypi - %)

hence the vectors (19) generate the semigroup F(TQ()I). O

We denote also by jT((QI)) the finite subset of F(TQ()I)
(2)
generating the logarithmic jacobian ideal of TFT<1), by the same symbol this last ideal
2

corresponding to the monomials

(2
of k[tFT(l)] , and by ordj(z) . 7(M — R the corresponding order function.
(D)

(2)
Remark 12.2. On the chart T' - the pull back of the ideal J by the blowing up of J
(2) (2)
is the principal ideal tm(l)k:[trr(l)] = tjk[trr“)]. The Newton polyhedron

Ny (T) =T + 78 =m) 4 70

(2)
of t7 k[tFr(U] is principal, i.e., it has only one vertex m®).

Lemma 12.3. There is a continuous piecewise linear function ord ;2 : 0 — R such

that for each () € Y(d) the function ord is the restriction of ord ;2 to (),

@)
I

Proof. This follows from Lemma 11.4. O
As above, the maximal cones 7 C o of linearity of the function ord ;) form the

d-skeleton of a fan ¥ supported on o and subdividing the fan ¥. In particular, if
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72 ¢ @) (d) is contained in 7 € ¥(d) then we denote by m® the vertex of the
Newton polyhedron N, ( jT((21))) of jT((ZI)) such that

ord ;2 (V) = (r,m®) for all v e (2.

By iterating this construction we obtain a sequence of piecewise linear functions
ord 7(;) on o, together with the corresponding fans »@), with 7 = JW and 2V = 3,
and such that ) is a subdivision of XU~ for all j > 2.

By definition a cone 7U) € %0)(d) is contained in a unique cone 7) € £ (d), for
0<1<j—1, where we set 79 := o. Then we have unique vectors m") € M such that

ord ;o) (v) = (v,mW) for all v € 7) and 1 < 1 < j.
The cone 71 corresponds to a chart of the blowing up of the logarithmic jacobian
)
ideal J (] _y of k[ 7G=D]. This chart is the affine toric variety defined by the semigroup

P =19+ > Zsg(m—ml),

)
meJ G-

By induction this procedure also provides a system of generators of each semigroup

I‘ij(j)l). We use also the notation jT((];)rl) to refer to the finite set of generators of the
(3+1)

logarithmic jacobian ideal of k[trr(f) ] (see Remark 11.1). The following inclusions, for

j > 2, are consequence of the definitions:

(20) TD_, <UD go-n) c k0], g k0 ] € gk )
By (20) we have that
(21) ord 7+ (v) < ord ;¢ (v) for all v € 0.

p+D

Remark 12.4. For 1 < [ < j we deduce from Remark 12.2 that j((l k[t -0 ] =

)
tm(l)k[t 7 ], hence the Newton polyhedron N, (l)(j i) = j((l y + 70 =m0 4 +0

has only one vertex m().

Notation 12.5. We denote the Newton polyhedron NV, (1) (j (j_1)) simply by V(T ((] )
since there is no risk of confusion.

Proposition 12.6. The following assertions are equivalent:
1. 7—(]) = T(j_l)
. (9)
ii. The blowing up of the ideal jT({j)fl) of TV :6-1 s a finite morphism.
©)
/ 7(G-1)
and Pij(;r)l) have the same saturation in the lattice M; it is equal to 7YY N M =

Proof. The hypothesis i. is equivalent to the following fact: the semigroups I'

#U) N M. This is equivalent to the following geometric statement: the composite of the
G+

normalization of T" - with the blowing up of the logarithmic jacobian ideal of T’ T(J D

@
is the normalization map of T"76-1 and therefore this blowing up is finite. Conversely,

rl+n @
if ii. holds, the blowing up morphism 7T’ P20 5 7M0-1 induces an isomorphism of the
normalizations, from which i. follows in view of Remark 4.6. O

Remark 12.7. The conditions of the Lemma are also equivalent to the fact that the
Newton polyhedron of the ideal ‘77((]1')—1) has only one vertex m(7).
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Definition 12.8. For any integer j > 1 we introduce a function
Y9 {r C o | 0# 7 convex rational polyhedral cone } — Z>1.

If v1,...,vs are the primitive integral vectors for the lattice N which span the edges of
7, then the value of f)(7) is defined by
S
FO(r) =Y ord g ().

i=1

Remark 12.9. Notice that if 0 # 7 is any rational polyhedral cone contained in ) e
»0)(d) then fU)(r) = S5 (v;,mY)) and if 7 is of dimension d then fU)(r) > d.
Moreover, by (21) we obtain that

(22) FI7) < fU75().
Lemma 12.10. The following conditions are equivalent for j > 1:
i. The equality f9)(rU=1) =d holds.

ii. The cone 7U~Y is reqular for the lattice N and I’%_l) =70-D M.
(J)
iii. The toric variety TY2G-1 s smooth.

Note that if the conditions of the Lemma are satisfied, the polyhedron NV, ;1) (.77((]},1))
has only one vertex mU).
Proof. 1t is clear that ii. and iii. are equivalent. It is enough to prove the result for
j = 1. Suppose first that i. holds. By hypothesis the fan ) is the fan consisting of
the faces of o. If vq,..., v, are the primitive vectors for the lattice N which span the
cone o then (v;,;m) >0,i=1,...,s since m = m™) belongs to the interior of &. Since
flo)=d=>7_(vi,m) we get that s = d and (v;, m) = 1.

By definition of J the vector m is sum of d generators of I' which are linearly inde-
pendent, say m =1 + - - 4+ 4. Since Z;l:l@i,yj) =1fori=1,...,d we obtain that,

up to relabeling the v;, the vectors vy, ..., in Ng form the dual basis of v,...,74 in
Mwrg. Finally, notice that the parallelogram generated by the primitive vectors ~vi,...,7g
in Mg contains no integral points different from the vertices. It follows that v1,...,7vq4
form a basis of M.

Conversely, if ii. holds then we check from the definitions that i. holds. O

Proposition 12.11. Suppose that 70) € XU)(d) is contained in 70U~ € £U-D(d).
The following equalities are equivalent:
i. fO(r0)) = f(] D (7)),
ii. mU) = mU-1
Proof. Notice that if m@) = mU=1) then i. follows by Remark 12.9.
Suppose that the equality i. holds. By Remark 12.4 we have that

No-v(T (]_123) mU=1 4 70-1) and,/\/m(j((]) ) = m@ 4 70).

i
Since 7 is contained in 7UD we get that #0=1 < #U) and then N (J)(j G- 2)) —
m=Y 4+ 70) By (20) we get

(23) mU=D 4 70)  00) 4 70)

Let v4q,...,vs be the primitive integral vectors for the lattice N which span the cone

7U). The vector v := >i_, vi belongs to the interior of the cones 70) and 701D, By
Remark 12.9 and the hypothesis we deduce

fUDED) = w,ml=) = O D) = (p,m).
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This equality and the inclusion (23) imply that mU—1) = m0). O

Proposition 12.12. There exists an integer | > 1 such that for any cone T € E(l)(d)
if fO(r) > d then fO(7) > fO(7).

Proof. Let us assume that the assertion of the Proposition does not hold. This implies
that there exists a infinite sequence of convex polyhedral cones

(24) c=70 505 5... 50 5.
such that 70) € £0)(d) and
(25) fO DY = fO (7)) > d, for all j > 2.

By Remark 12.9 we have that f@)(70)) = fG=1(70)) for all j > 2. Proposition
12.11 implies then that mU) = mU=1 for all j > 2.

Claim 12.13. There exists a strictly increasing sequence (i;)j>1 of integers > 0 such
that 7(5) #£ 7+ that is, the inclusion 7(3) > 7+ 4s strict, for j > 1.
Proof of the claim. Assume that the claim does not hold. This implies that 7() =
) . (49)
7U=1 for all j > 1. By Proposition 12.6 the blowing up of the ideal ‘77((]1')—1) of T"~G-
is a finite morphism, dominated by the normalization of T, for all j > 1. It follows

€)
that for j > 0 the variety THG-1) s normal. By Proposition 11.3, this variety is also
smooth. By Lemma 12.10 it follows that f(J)(T(])) = d for j > 0. This is a contradiction
with (25). O

Let us fix a representation for m = m(!) in terms of the generators of T':
m =1+ +7 with 1 A== Aya #0,

(up to an eventual relabeling of the generators {v;}/_; of the semigroup I).
By Claim 12.13 we can suppose without loss of generality that i1 = 0, that is, the
Newton polyhedron N,(7) has at least two different vertices m and n.

Lemma 12.14. Given one of the v; which appear in the decomposition of m, say 74,
for any j > 0 the vector nj := n — jyq has the property that

n; € jf{;;l) and (nj —m) Ayt A= Avyg—1 # 0.

Proof. We prove the assertion by induction on j. Notice that for j = 0 the vector
ng = n belongs to J by hypothesis. We suppose by induction that n; € jT(f;)Ll),
1<1 <35,

We prove first that:

(26) (np—=m)Ayi A+ Ayg—1 #0, for 0 <1 <.

Assume on the contrary that (26) does not hold for some 0 <1 < j. After relabeling
the vectors v1,...,74_1 if necessary, we have an expansion of the form:
(27) ng—m=ayy + -+ apy, with h <d -1,

and in addition the coefficients of (27) are non-zero rational numbers which are not of
the same sign, that is,

a; > 0 for ¢ = 1,...,s
a; < 0 for ¢ = s+1,...,h.

Indeed, if all coefficients a; in (27) are > 0 we obtain that

n=m-+ayy;+---+apy,+lyg Cm+a,
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contradicting that n # m is a vertex of N;(J). In particular, we have that n; # m.
Similarly, if all the coefficients a; are smaller than zero we get that

m:nl—alwl—---—a;ﬁhCnl—l—éCnl—l—i’(l).

This implies that m is not a vertex of the Newton polyhedron ./\/'T(l)(jﬁ;)rl)), since

n; € jT(fl—)H) and n; # m.
If &« € R we denote by [a] the smallest integer p such that o < p.

Claim 12.15. If ¢:= Y7 ,[a;|, 0 < p < q and b; are integers such that 0 < b; < [a;],
i=1,...,5s and Y ;_ | bj = p then the vector B, :=mn; — Y ;_; by belongs to gbrtl)

T(l+p)

Proof of the claim. We prove the assertion by induction on p. For p = 0 we have
B0 = my hence the assertion holds by assumption. Suppose that 3;, € jff;f;;rl) f

0 < p < q. The vector
s s h
Bip—m=mn —m— Z bivi = Z(az —bi)yi + Z ai%i

belongs to Fil:[ f;fl)) Since p < ¢ there is a strictly positive coefficient in this expansion

of B, —m, say a1 — by, for instance. We get (8, —m) Aya A--- Avyg # 0, hence the
vector

Bipt1=0Bp—m+r2+-+7%=0p—m
belongs to jﬁ:iﬁ)). O

By Claim 12.15 the expansion

s h
Brg—m =Y (ai—[a])yi+ Y am
i=1

i=s+1

has only coefficients < 0 and 3;, € jT(l+q+2) We get also that m # 3, since the

coefficients as41, .. ., ap are non-zero and Eclﬁgr\l/zactors Y1, - .., are linearly independent.
We deduce from this that
s h
m=Bg— Y (ai—Tla])vi— Y aii € Bg+0 C Brg+70Heh.
=1 i=s+1

This contradicts the assumption, m being a vertex of the Newton polyhedron of jﬁffii).

Finally, we have proven that (26) holds hence

42
Nj41 = (TL]' - m) +v+-F+ -1 € jfjjtlg’
This concludes the induction in the proof of Lemma 12.14. O
The cone
F(o0) — ﬂ 70 — ﬂ +(5)
I>1 §>1

is a closed convex subset of o different from 0. A vector 0 # w € 7(>) defines a monomial
valuation w of the field of fractions of k[t'], which verifies that if 0 # > a7 € k[t']
then w(}_ a,t?) = ming »o(w,v). By definition this valuation is non-negative in the

(9)
subrings k[trr(ﬂ'—l)] for all 7 > 1. Notice that the vector w € NR is not necessarily an
element of Nq and it may lie in a face of o (different from 0). We remark that for all
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j > 1 we have that min{(w,vy) | v € jT((jj)_l) = (w, m) since w takes non negative values
on jT({;l) which contains the set {y —m |~y € jT({j)_l)}.

Since 71 ...,74 span Mg at least one of the vectors ~; verifies that (w,v;) # 0.
Suppose for instance that (w,~4) > 0.

By Lemma 12.14, for any integer j > 0 the vector n; = n — jv4 belongs to jT((];.J)rl) C

YUY This implies that

()
w(tnj) = <U}, n]> = <’U), TL> - ](wﬁd>
LG+
becomes strictly negative for j large enough. This is a contradiction since t" € k[t +0) ]
(3+1)
and the valuation w is non negative on the ring k[tFrU) ] O

Corollary 12.16. With the previous notations, given any sequence of the form (24) if
TT is not smooth it is not possible that m™™ = m\9) for all j > 2.

Proof. This is now a consequence of Proposition 12.11.

Definition 12.17.

i. If 0 # n C o is a cone we denote by v, the sum of the primitive vectors, for the
lattice N in the edges of the cone n.
ii. A conen C o is stable if there is an integer I > 1 such that n € £U) for all j > I.
iii. The stability problem for the toric variety T consists of determining if the
sequence of fans (XU));>¢ stabilizes, that is ©) = 20+ for j > 0.
iv. If # € XU the stability problem for the cone 6 consists of determining if the
sequence of fans, {#U) € ©U) | 9U) < §} j > I, stabilizes.

For instance, if p € 1) is of dimension one then p is stable.

Lemma 12.18. If § € XU~V is a cone of codimension > 0 and M(H,Fé])) = M(0)
(see Notation 4.9), then the stability problem for the cone § C Ng is equivalent to a
stability problem for the cone 0, viewed in (Ng)mr, with respect to the sequence of iterated
Semple-Nash modifications of another toric variety of dimension equal to dim6.

Proof. The sublattice M (0) = M N 6+ of M is obviously saturated, so that it is a
direct summand of M. Let us consider a sublattice M’ of M such that M = M (0)® M'.
Such a sublattice M’ is spanned by vectors vg 41, ..., v, completing a basis v1, ..., vg,
of M(0) to a basis of M. Any v € M can be written in a unique way as vy = () +aa(7)
with aq(y) € M(0) and as(y) € M'. The restriction 8: M’ +— M /M (0) of the canonical
map M — M/M(0) to the sublattice M’ C M is an isomorphism. The image f’éj) of

Féj ) by the canonical map M — M/M(0) is a semigroup of finite type, generates the
lattice M /M (#) and spans a strictly convex cone Rzof((f ),
The semigroup Fé] 'n 6, which is the minimal face of I’éj ), is a rank ¢ lattice by

Lemma 3.9. Using the equality Féj Jnot =M (0) one checks directly that the map

(28) Iy — M) x TP, 5 (a1(7), 80 az())

~

(4)
is a semigroup isomorphism. The map (28) determines an isomorphism '
orb(G,Féj )) X Tré]). In particular, the variety Tréj) is smooth if and only if Tré]) is
smooth.

According to Remark 10.3 and Lemma 11.6 the blowing up of logarithmic jacobian
ideals commutes with the splitting defined by (28). The assertion follows from this since



TORIC GEOMETRY AND THE SEMPLE-NASH MODIFICATION 31

the cone 6, viewed in the R-linear subspace (Ng)Rr it spans in Ng, is the dual cone of
Rol'Y). 0

Remark 12.19. Geometrically, we see that the semigroup I’(j ) in Lemma 12.18 corre-
sponds to the toric variety of dimension dim @ which is a transverse linear section of

(49)
TT4" at the point (1,...,1) of the orbit corresponding to 6.

Pr0p051t10n 12.20. If 0 is a stable cone then there is an integer I > 1 such that the
variety TF is smooth for all j > 1. If TF is smooth the cone 6 is stable.

Proof. By Lemma 12.18 and ii. of Proposition 12.22 below, we can assume that

i (9)
codimf = 0. The blowing up of the ideal Ty U) of TV is a finite morphism, dominated for
all 7 > 0 by the normalization of TF , which is equal to that of TF (see Proposition

) (4)
12.6). It follows that for j > 0 the map TP 5 5 77" is an isomorphism. By
Proposition 11.3, this variety is smooth. The second assertion follows directly from the
definitions. 0

Remark 12.21. By Proposition 12.20 the stability problem is equivalent to the problem of
determining if the iteration of the blowing ups of logarithmic jacobian ideals eventually
resolves the singularities of the toric variety 7.

Proposition 12.22. Given 0 # v € 0 NN, for any j > 1 there exists a unique cone
0U) € 0U) such that v € int(#Y)). Then forj > 0 we have:

i. If go = codimf=1 and if mU) € .79(] yy s such that ord ;) (v) = (v,m), then
for any representation

(29) m@ =47 4. 4

()

g1, there are

as a sum of linearly independent elements in the semigroup I’
exactly qo of them in M(§U=1),
i, MUV, TY) )= M(@U-V) = M(8D) (cf. Notation 4.9).

Moreover, the sequence of cones (G(j)) stabilizes.

Proof. Notice that the vector v is in a subdivision of 8Y) induced by U+, so that
we have §U+1) C U0). The sequence (codimpyg, 69)); is increasing, thus there exists an
integer 0 < gop < d — 1 such that codim ) = ¢, for j > 0.

Since v € int(Y)) N N, we have the equalities

(30) r9 eIyt =TV Ayt = e, 1),

The lattice M (U~ T ((9(') 1y) is a sublattice of finite index i(eU—D), I’((f(gfl)) of M(6U=1)

(see Notation 4.9 and Lemma 3.9). By definition M (#U~1) is a saturated subsemigroup
of M, and it is also a rank qo lattice. By (20) we deduce that M(8U~1) = M (9\))
and M(G(jfl),l“éj)) C M(G(j),l“éjﬂ)) Then, the sequence of indices (i(#7~1) Féj(g n))j
stabilizes, hence M(H(j_l),l’éj)) = (9(3),I’é]+1)) for j > 0. The lattice M (6~ U,I‘éj))
is a priori a sublattice of finite index of M (#U—1).

We deal first with the proof of (i). Up to relabeling the vectors we can assume that
those 'yl-(j) appearing in (29), which belong to M (#U~1) are fy@ e ,fygj) for 0 < s < qo.
By (30) these vectors belong to M(#U—1) I’((QJJ 1y)- Suppose that s # go. Since, the
images of the 7(])’ i=s+1,...,d, generate a rank d — g sublattice of M /M (U~1),
we get that d — qo of them, say for i = ¢y + 1,...,d, are linearly independent modulo
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M(AU—), We can find vectors 7§21a .. ,Wég) I’(J N v+, such that 79) Al /\mgj) A
'Y§j+)1 . fyqo 2 0. Then the vector

m' =D @D 439 3D 40 D)
verifies that m’ € j(] 1) Since 0 = (v, ’Ny](.j)> < (v, 'y](j)>, for s +1 < j < go we would
have (v, m’) < (v,m)), a contradiction.

Suppose that (ii) does not hold. Then, since I’éjg.fl) generates the lattice M, there

exist v,/ GF(j) _y, such that v —~" € M(0 G=Dy\ M (91 F(]) ). In view of (30) we

pi—1)
get 0 # (v,v) = (v,7/). Since 7(%)“, e ’%gj) define linearly independent vectors in the

lattice M /M (Y=Y which is of rank d — qo, there exists an integer go+ 1 < ip < d such

that v (resp. 7') together with 7(%)“, e ,%(g) 1 %(gll’ . ,%(lj) are linearly independent

modulo M (G(j _1)) Suppose without loss of generality that 19 = d. Then the vectors

v _’Y+Z 1'7@ and'}’ =7 +Z 1"}//) belong to "79(3 1),hencefy ml) = v — fy(])

and A ’y mi) =~ — 'y( 7 are both elements of Fé( 5 U Since (v, éj)> > 0, it follows that

A—4"=~v—~"and (v,7) = (1,7") < (v,7) = (v,7'). By repeating this construction, since
v € 0 NN, in a finite number of steps we reduce to the case when (v,v) = (v,7') = 0.
()
) 9(1 1

By Lemma 12.18 and ii. we can assume that gg = 0. By (21) the sequence of positive
integers ((v,m7)));> is decreasing, hence it stabilizes. Suppose that the sequence (§())
@
does not stabilize. By Proposition 12.20 this implies that the toric variety T' oG-1) s
not smooth for any j > 1.

Let us fix an integer j; > 0. By Proposition 12.12 there exists a smallest integer jo >

As we remarked before this implies that v —~' € M(§U~ ), a contradiction.

j1 such that mU2) #+ mU1) . We consider a representation of mU2) ¢ ‘79((];.22)_1) of the form
s since mU) € JB)
by (20). We obtain that (v, m) —mU2)) = 0, hence mU1) —m2) ¢ I’((f(?;l) Nv*. Since

v € intdU2) and dim#V?) = d we deduce also that Fé](f;l) Nvt = {0}, a contradiction,

which ends the proof of Proposition 12.22. O

(29). The vector mU1) — mU2) belongs to the semigroup T

If » € Ngr is a rational convex polyhedral cone the duality between the lattices N
and M induces a duality between the lattices N, and M, = M /M (n) and also a duality
between N (n) = N/N, and M(n) = M Nn* (cf. Notations 4.9).

If 0 # n is a stable cone one can consider for j > 0 the orbit closure Tg((j),l)(n)
associated to n € XU~Y . By convenience we recall the notations to describe this toric
variety in this case. See Lemma 4.10 and Notations 4.9.

Notation 12.23. If n € £~ is a stable cone the variety T (n) is covered by charts

2(1 1)
defined by the semigroups Fé](;fl) A, forn < 001 and 9U-D € 20U~ Notice that the
semigroup Fé@fl) Nn* is a face of Fé@fl), and it spans the lattice M (), ng)) = ng) Nn*

by Lemma 3.9. By Proposition 12.22 ii. this lattice is equal to M (n) if j > 0. The fan
»U=1D(n) consists of the images 89~ (n) of cones AU~ ¢ E(j_l) in N(n)r. The cone

6U=1(n) is the dual cone of RZO(F%_U ). We denote by ‘79(1 1y (1) the logarithmic
() il
jacobian ideal of k:[tre(jfl)m77 ].

The following technical lemma will be useful.
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Lemma 12.24. Let 0 # n be a stable cone of codimension dy < d. We denote by
m: Mg — Mgp/M(n)r, a— &
the canonical projection. If (H(j))j s a sequence such that
(31) 9U) € xU) 90) 59Ut gnd 5 < o),
then for j > 0 we have:
i W(Péj(z 1)) (Fé](xl)) and the semigroup fn = (Fé& 0
€dy+1s- -+ €a of M/M(n).
ii. If mY) is the vertex of the polyhedron N(je(ﬂ yy) such that

) is generated by a basis

(32) ord ;) (v) = (v,m")), Vv €69,

then for any representation of the form (29) of mY) as a sum of lmearly inde-

pendent vectors in Fé(z 1y then exactly dy of the 'y( 2 belong to F((3 y N nt, say

fori=1,...,do, while (v, (])> =1fori=dy+1,...,d.
iii. The vector m(J) belongs to the face 9(0 y of N( G(J 1)) determined by vy, (cf.

Definition 12.17). The face 9(} yy 18 the Minkowski sum

NIy @) + Pyl
where 73(?1) yy 18 the convex hull of the set |J 5201 P 52(5) + (U= n b,
for 5id0+1’ oW F(() such that 6'(33+1 A 58) #£0, and (Vn,éi(lj)> =1 for

P Jj—1)

l=dy+1,...,d

Proof. Since 1 is a stable cone we get that M (n) = M (n, I’%j)), by applying Proposition
12.22 to the constant sequence of cones 7; := 7. By Lemma 12.18 the cone n C (Ny)r

is a stable cone for the semigroup 7T(F1(7])) for 7 > jo > 0. By Proposition 12.20 the

sequence of semigroups (W(ng )))ijo stabilizes and W(F%] )) is generated by a basis of

M/M(n), for j > 0. By Lemma 3.9 we have that I’Szj) = Fé@,l) + Z>o(—u;), for any

uj € I‘((fg,l) which belongs to int(AU~1) Nnt). We deduce that W(Fé@fl)) = 7T(F7(7j)) for
Jj>0.
Since n < 6Y) we get from (32) that ord ;i) (vy) = (vy, m7)). This implies that m)

belongs to .7-"9(?]) ;- Notice also that mU) belongs to .777(j). By Proposition 12.22 i., for any
)

representation of m) of the form (29), dy of the 'yi(J belong to nt, say for i = 1,...,dp.
By Lemma 11.6 the vectors ﬂ('yl-(j )) =40, i =dy+1,...,d are linearly independent
elements of I';, such that ml) = > ﬁi(j ) belongs to the logarithmic jacobian ideal jn
of k[tf"]. We know that (v,m) = (v,7m) for any m € M and v € 7, thus the vector m0)
is in the face of N'(7,) determined by v,. By i. the semigroup I’ is regular, hence we
deduce that ml) = Z‘ii:doﬂ é; and, up to relabeling7 € = ﬁ/i(j), i=dy+1,...,d. This

ends the proof of ii. and also shows that m{) e N(je(] (M) + Pé{])fl).
We have also shown the equalities
ord ;) (vy) = (v, mY) = (v, M) = d — dy.

Fmally, We remark that the argument given above applies more generally for any vector

m € .79(] ;) in the face .7-"9(?]) ;- This implies that iii. holds. O
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Proposition 12.25. If 0 # n is a stable cone and if (G(j))j is a sequence of cones of
the form (31) such that 09 contains 1 as a face of codimension one, then

(33) M(9G=D W)

o) = MO for j >0,

and the sequence of cones (01));>; stabilizes.

Proof. We denote by qq the integer codim 0\ for j > 0 and by dy the codimension
of . Notice that 0 < gg < d — 1 since 0 # 7 < 1),

We deal first with the proof of (33). By the argument given in the proof of Proposition
12.22 we get M(001) = M(09) and M (000,19 ) = M9, T ) for j > 0.
We recall that for j > 0 the lattice spanned by the face Féj(z y N n't is equal to M(n)
(see Notations 12.23).

If (33) were not true then there exists v,v" € Fé]g._l) such that v —~' € M(9U~D)\
M(&U*l),rg@,l)). Notice then that (1,,7) = (vy,) since M(0U~1) C M(n) by dual-
ity.

By Lemma 12.24, if m\¥) € gl (] ;) is such that ord ;¢ (v) = (v, mW)) for any v € §U)
then for any representation of m9) of the form (29), dy of the %'(j) belong to M (n).

By applying the argument of Proposition 12.22 we can assume, replacing j by a bigger
number, that (v,,7) = 0, that is v and +' belong to the face I’é(z y N nt

By hypothesis n < #U~1 is a face of codimension one. The image of H(j Dt
M(n)r/M (Y=g is the dual cone of the image AU~V of §U—1 in (Not-1y, / (Nyp)R.
Notice that the lattice Ny¢-1)/N, and the cone 0U—1) are independent of j for j >> 0.
We denote by 7 the generator of the semigroup 67 —1) N (Nyi-1) /Ny) and by @ the class
of a € M(n) modulo M(6U~1).

Among those 'yi(j ) which belong to 77 there exists at least one, say 'y(j )
not belong to M(#U=1), hence (7, 'yd > # 0. Notice also that 0 # (7,5) = (1,7/).
Then, we apply the same argument as in the proof of Proposition 12.22 i. to get that
v — 7c(l ) and ~ - ( )

this procedure, replacing ~ and v by v —

the case 0 = (7,5) = (#,7’). But this imphes that +,~' belong to M (AU~ Féj(z ")
contradicting the hypothesis. This ends the proof of the equality (33).

, which does

belong to T+l nt and (7,5 — %(lj)> < (v,%). By iterating

0)
(]) (4)

and v — v, ’, respectively, we reduce to

We prove now that the sequence (1)) stabilizes. Since (33) holds, by Lemma 12.18
we can assume that go = 0. Then, by hypothesis the lattice M (n) is of rank one. The
cone AU=D Nyl c M(n)r is a one dimensional face of #U~1 for all 7 > 0. Since
601 < 9U) we get that the cone 9 := U= N nt is independent of j, for j > 0.

With notations of Lemma 12.24, the Minkowski sum 7~ 1(¢;) N Y 49 is an affine

9(i—1)
() , which belongs to ) fori=2,....,d.

one dimensional cone with only one vertex 6U—-1)7

2

We denote by 7(] ) the smallest generator of the rank one semigroup I’(J y N . Notice

that 'yy ) is independent of j for j > 0.
By Lemma 12.24 the vector m() = %ﬁ 4+ 4 'Yd € je(a ;) is the unique vertex of

the face .7-"(]) y = = mU) 4+ 9. Since vy € 0U) the cone AU) is dual to the cone spanned by
{v - mU ‘ Ve je(gj—l)}'

Claim 12.26. The semigroup Féj(g y N Nt is regular for j > 0.
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Proof of the claim. By Proposition 12.22 the semigroup F(() Nyt = F(() nd

Jj—1) Jj—1)

generates the group M (n), for j > 0. If it has only one generator the result follows
directly. Assume that it has at least two generators. Let us denote by § > 79 ) the
second element by order of size. The element nl¥) = 75] ) + - (J ) + 0 belongs to

j;é)_l) so that n() —m0) = 5—7% D is in Fé](;:l) We see that after ﬁnltely many steps the

smallest generator of our semigroup has decreased, so in the end we reach the generator
of the regular semigroup ¥N M, which proves the result. This is similar to the resolution

process for one dimensional affine toric varieties by Semple-Nash modifications. O

By Lemma 12.24 and Claim 12.26 the elements ’y@, e ’71(1]) form a ba