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TORIC GEOMETRY AND THE SEMPLE-NASH MODIFICATION

PEDRO D. GONZALEZ PEREZ AND BERNARD TEISSIER

ABSTRACT. This paper proposes some material towards a theory of general toric varieties
without the assumption of normality. Their combinatorial description involves a fan to which
is attached a set of semigroups subjected to gluing-up conditions. In particular it contains a
combinatorial construction of the blowing up of a sheaf of monomial ideals on a toric variety.
In the second part this is used to show that iterating the Semple-Nash modification or its
characteristic-free avatar eventually resolves the singularities of any toric variety. This solves
for toric varieties an old problem of singularity theory.

INTRODUCTION

In the first part of this paper we study abstract toric varieties without the assumption of
normality. Since Sumihiro’s Theorem on the existence of a covering of a toric variety by invariant
affine varieties fails without the assumption of normality, we have to set the existence of such
a covering as part of the definition of a toric variety. Then an abstract toric variety has a
combinatorial description: it corresponds to certain semigroups in the convex duals of the cones
of a fan, which satisfy a natural gluing-up condition. This generalizes the definition of [E]
which concerns toric varieties equivariantly embedded in projective space. In spirit it is also a
continuation of our previous work [H] on embedded normalization and embedded toric resolution
of singularities of affine toric varieties. We can then define blowing-ups of sheaves of monomial
ideals as toric varieties, and describe the corresponding operations on semigroups. We also
provide the combinatorial description of torus-invariant Cartier divisors on a toric variety and
the general versions of the classical criterions for ampleness and very-ampleness.

In the second part of the paper we use the description of blowing-ups given in the first part
to show that one can, over an algebraically closed field, resolve the singularities of a toric variety
by iterating the blowing-up of the logarithmic jacobian ideal introduced in [E] If the field is
of characteristic zero, this blowing-up is isomorphic to the Semple-Nash modification, so that a
consequence of our result is that in characteristic zero one can resolve the singularities of a toric
variety by iterating the Semple-Nash modification.

This answers in the special case of toric varieties an interesting question apparently first
asked by Semple in [@] One can present the relation of this proposed resolution process with
”classical” resolution of singularities as follows: two types of proper birational correspondances
naturally associate a singular variety to a non singular one: proper birational projections of an
embedded non-singular algebraic variety to a smaller dimensional ambient space, and the taking
of the envelope of a family of linear subspaces (of an affine or projective space) whose parameter
space is a non singular algebraic variety. Hironaka’s resolution shows that in characteristic zero
all singularities may be created by the first process, and Semple-Nash resolution would show that
at least all singularities of projective varieties may be created by iterating the second process,
if we now allow singular spaces as parameter spaces.

Part I: Toric varieties

The purpose of this part is to develop the combinatorial theory of toric varieties without the
assumption of normality. We refer to [§], [, [1], [LJ], and [[d] for background on normal toric
varieties, and to @] and [@] for certain classes of non necessarily normal toric varieties. We
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recommend [E] as a particularly accessible introduction, and mention the forthcoming book of
D. Cox, J. Little and H. Schenk on the subject.

1. SEMIGROUPS AND SEMIGROUP ALGEBRAS

The theory of affine toric varieties over a field k is the geometric version of the theory
of semigroup algebras over k. For part of the theory, one can omit the assumption that
the semigroup is finitely generated, and replace the field k£ by a commutative ring.

Definition 1.1. A (commutative) semigroup I' is a set equipped with an operation
4+:IT'xI' — T' such that € + €5 = ¢35 + €. We shall assume that I' contains a zero
element 0 such that e +0 = e. A system of generators of a semigroup is a subset (;) of
I" such that each element of I' is a (finite) linear combination of the v; with non negative
integral coefficients. We denote by ZI' the group generated by I' (defined in a similar
way as the field of fractions of an integral domain). The elements of ZI" are finite linear
combinations of the «; with integral coefficients.

Examples of semigroups:
e Given finitely many coprime integers the set of all combinations of these integers with
non negative integral coefficients is a subsemigroup I' of the semigroup N of integers,
and N\ ' is finite. In fact any semigroup of integers is finitely generated.
o Let (s;)i>1 be a sequence of integers such that s; > 2 for ¢ > 2. Define a sequence of
rational numbers v; inductively by:

1 1

M= Vi1 =SYit — -

S1 S1..-8i+1
The set of integral linear combinations of the 7; is a subsemigroup of Qx>o, which not
finitely generated. In fact the 7; form a minimal set of generators.
e Let d be an integer and let & (the reason for the dual notation will appear below) be
a convex cone of dimension d in R%. Denote by M the integral lattice of R?. Then the
intersection & N M is a subsemigroup of the group M, which generates M as a group.
By a Theorem of Gordan, if the convex cone & is rational in the sense that it is the inter-
section of finitely many half spaces determined by hyperplanes with integral coefficients,
then the semigroup & N M is finitely generated.

Definition 1.2. If A is a subsemigroup of A the saturation of A in A is the semigroup
O consisting of those elements of A which have a multiple in A. The semigroup A is
saturated in A if A = 0.

Lemma 1.3. Let 7 be a rational convex cone in R% for the lattice M. The semigroup
TN M is saturated in M and the saturation of a subsemigroup I' of M is & N M where
o = Rl is the closed convex cone generated by I'.

Proof.: The first statement is clear. If R>o' = &, any element of 6 N M is a
combination with rational coefficients of elements of I'. Chasing denominators shows
that an integral multiple of this element is in I". The converse is clear. [

Definition 1.4. Let I be a finitely generated commutative semigroup and A a commu-
tative ring. The semigroup algebra A[t'] of I with coefficients in A is the ring consisting
of finite sums ), a,t” with a, € A, endowed with the multiplication law

O aytO bst®) = Y (D abe)te.
Y 4

¢ y+d=(¢
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Proposition 1.5. IfT' is a finitely generated subsemigroup of the lattice M C R?, and
& = R>ol is the rational convex cone generated by I', the integral closure of E[t"] in its
field of fractions is k[t°"M].

This follows directly from Lemma [L.3.

Remark 1.6. Quite generally, if k is a field the Krull dimension of k[t!] is equal to the
rational rank of the semigroup I', which is the integer dimql'®zQ (see [RJ], Proposition
3.1).

Remark 1.7. A finitely generated semigroup is torsion free if and only if it is isomorphic
to a subsemigroup of a finitely generated free abelian group.

Indeed, the group generated by I is also finitely generated and splits as the sum of
a finitely generated free abelian group and a torsion group 7. Then I is torsion free if
and only if 'N7 = (0). In this case the group generated by I is torsion free.

Remark 1.8. If ' is a torsion free semigroup the ideal of A[t!] generated by the (t")yer\ {0}
is non trivial if and only if the cone Rl is strictly convex. If k is a field, it is then a
maximal ideal. We shall mostly be interested in the local study of the spectrum of semi-
group algebras in the vicinity of the origin of coordinates, which corresponds precisely
to that ideal.

The semigroup algebra has the following universal property: any semigroup map from
I" to the multiplicative semigroup of an A-algebra B extends uniquely to an homomor-
phism A[t'] — B of A-algebras.

An additive map of semigroups ¢: I' — I" induces a graded map of A-algebras
Alg]: A[t'] — A[t"] which is injective (resp. surjective) if ¢ is. If the semigroup I
is torsion-free, the semigroup algebra A[t'] injects into A[tZ'] = A[tF,... .51 and
therefore is an integral domain if A is.

Proposition 1.9. Let I', IV be two semigroups. The map of A-algebras
A[tl"xl'"] N A[’LLF] DA A[’UPI]; t(%’Y’) — Y ®a Uﬁ/
is an isomorphism.

Proof. This follows immediately from the universal property. l

2. ALGEBRAIC TORI

Let k be a field. The multiplicative group £* of non zero elements of k is equipped
with the structure of algebraic group over k, usually denoted by G, := Speck[t*!]. A
d-dimensional algebraic torus over k is an algebraic group isomorphic to a (k*)?.

If M is a rank d lattice then T™ := Speck[t}] is an algebraic torus over k. If we fix
a basis my, ..., mg of the lattice M we get group isomorphism

Z¢ — M, a=(a,...,aq) — Z a;m;
i=1,..d

and isomorphism of k-algebras k[ti™', ..., ¢t3'] — Kk[t™] which induces an isomorphism
TM (k) — (k)7

Remark 2.1. More generally one can consider the scheme SpecA[tM], which is an alge-
braic torus over SpecA for any commutative ring A.

A character of the torus T'(k) is a group homomorphism T'(k) — k*. The set of
characters Hom a1g.gmups(TM ,k*) of TM (k) is a multiplicative group isomorphic to the
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lattice M by the homomorphism given by m — t™ for m € M. We identify the
monomials ¢™ of the semigroup algebra k[t"] with the characters of the torus.

By the universal property of the semigroup algebras applied to k[t"] we have a
representation of k-rational points of 7™ as group homomorphisms:

TM (k) = Homgoups(M, k*) = N @z k*,

where N := Hom (M, Z) the dual lattice of M. We denote by (, ): N x M — Z the
duality pairing between the lattices N and M.

A one parameter subgroup of 7™ (k) is group homomorphism k* — TM (k). Any
vector v € N gives rise to a one parameter subgroup A, which maps z € k* to the
closed point of TM (k) given by the homomorphism of semigroups M — k*, m — 2™,
The set of one parameter subgroups Hom a1 groups(k*, 7" M) forms a multiplicative group,
which is isomorphic to N by the homomorphism given by v +— A,.

By duality, we have that M = Hom (N,Z) = Hom (T, k*). Hence every character
x : TM — k* is given by a unique v € M and we denote it by x = t™. We have the
pairing

Hom alg.groups (Td, k*) X Homalg.groups(k*y Td) — Hom alg.groups(k*a k*)
("™, A\y) = Mo Nyt z e 20m)

corresponding to the duality pairing (,) : N x M — Z. This shows that the lattice N
is recovered from the torus TM.

3. AFFINE TORIC VARIETIES

In this section we consider a finitely generated subsemigroup I' of a free abelian group
M of rank d. We assume in addition that the group ZI' generated by I' is equal to M.
We denote by N the dual lattice of M. We introduce some useful notations.

Notation 3.1. We denote by MR the d-dimensional real vector space M ®z R. The
semigroup I', viewed in MR, spans the cone R>oI' C Mg which we denote also by &.
The dual cone of  is the cone 0 := {v € Ngr | (v,7) > 0, ¥y € 5}. We use the notation
7 < o to indicate that 7 is a face of 0. Any face of & is of the form & N7+ for a unique
face 7 of o, where 7 is the linear subspace {y € Mg | (v,7) =0, Vv € 7}.

Let ~1,...,7 be generators of I'. Then the semigroup I' is the image of N C Z" by
the surjective linear map b: Z" — M determined by b(e;) = 7; where the ¢;, 1 <i <r
form the canonical basis of N”. The kernel £ of b is isomorphic to Z" <.

Let us consider the map of semigroup algebras associated to the map b|N": N™ — Z<,
whose image is I'. It is a map of A-algebras A[Uq,...,U,| — A[tfl, e ,tflﬂ]. Its image
is the subalgebra A[t"] of A[ti,... 5.

An element m € Z" can be written uniquely m = my —m_ where m and m_ have
non negative entries and disjoint support.

By construction, the kernel of the surjection A[Uy,...,U,] — A[t'] is the ideal gen-
erated by the binomials (U™+ — U™~) where b(my) = b(m_). It is the toric ideal
associated to the map b. Note that it is not in general generated by the binomials
associated to a basis of £. Since the algebra A[t'] is an integral domain if A is, the
toric ideal is a prime ideal in that case.

Conversely, assuming now that A is an algebraically closed field k, an ideal generated

by binomials in k[Uy,...,U,] is called a binomial ideal. Those ideals are studied in
H], where it is shown that a prime binomial ideal I C k[Uy,...,U,| gives rise to a
semigroup algebra k[Uy,...,U,]/I ~ k[t'], where I' = N"/ ~, and ~ is an equivalence

relation associated to the binomial relations. The affine toric variety T' := Spec k[t']
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is the subvariety of the affine space A" (k) defined by the binomial equations generating
the toric ideal. By the universal property of the semigroup algebra, there is a bijection

{Closed points of Spec k[t']} < {semigroup homomorphisms I' — k},

where k is considered as semigroup with respect to multiplication.

In particular, the torus T (k) = Homgyqups (M, k*) is embedded in TT. as the prin-
cipal open set where t7 --- 7" #£ Q.

From the description of closed points of T in terms of homomorphisms of semigroups
we have an action of the torus 7™ (k) on TT (k). Another way to describe this action,
which shows that it is algebraic, is to say that thanks to the universal property of
semigroup algebras it corresponds to the composed map of k-algebras

k[tY] — k[t'] @ k[t'] — E[tY] @ k[t1]

where the first map is determined by t7 +— t7 ®; t7 and the second by the inclusion
I' € M. The corresponding map T™ x TT — TT is the action.
Let us now seek the invariant subsets of 7T under the torus action.

Definition 3.2. Given a semigroup I, a subsemigroup F' C I' is a face of I if whenever
x,y € ' satisfy x +y € F, the n x and y are in F.

Let us remark that this condition is equivalent to the fact that the vector space of
finite sums 3 5 g ast’ is in fact a prime ideal Ir of k[t']. It also implies that T'\ F is
a subsemigroup of I' and that the Minkowski sum I' + (I' \ F') is contained in I"\ F'.

Lemma 3.3. The faces of the semigroup I are of the form T N 1L, for v < 0.

Proof. Let F be a face of the semigroup I'. Then there is a face & N 7+ of & which
contains F and is of minimal dimension. Then F is also a face of the semigroup I' N7+
and there is an element vy € F which belongs to the relative interior of the cone 5 N7+,
Under these conditions is enough to prove that if 7 =0 then F' =T.

Notice that if v € T and if (y +T') N Z>0y0 # 0 then v € F since F is a face and
70 € F. By Theorem 1.9 [[[4] there is §y € T'Nint(5) such that do +5 N M C T'. We
deduce that the intersection (v + dy+ N M)NZ>p7yo is non-empty, for any v € I', since
Y € int(d) N T O

Notation 3.4. If 7 < ¢ the set I' N7+ is a subsemigroup of finite type of I'. If 7 < o
the lattice M (7,T) spanned by I' N7+ is a sublattice of finite index of M(7) := M N7+,

Remark 3.5. The torus of the affine toric variety TT N is TM(TD) | If A is a commutative

~

ring, the homomorphism of A-algebras A[l'] — A[l'N74] =2 A[[]/Ipn,L, is surjective
and defines a closed embedding

i TV T
over SpecA. If k = A the image by the embedding i, of a closed point u € IO (k)
(or u € TM(™T)(k)) is the semigroup homomorphism i,(u) : I’ — k by

u(y) ifyert,
R { 0 otherwise.

Proposition 3.6. The map
7+ orb(r,T) 1= i (TMD)  (pesp. 7 i (T777))

defines a bijection (resp. inclusion-reversing bijection) between the faces of o and the
orbits (resp. the closures of the orbits) of the torus action on T".
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Proof. Let u : I' — k be a semigroup homomorphism. Then u~!(k*) is a face of T,
hence of the form I' N 7 for some face 7 of 0. Any such u extends in a unique manner
to a group homomorphism M (7,T') — k* defining an element of the torus 7™ ("1 of the
affine toric variety o, Conversely, given a group homomorphism u: M(7,T") — k*
we define a semigroup homomorphism i, (u) : I' — k as indicated above.

It follows that the orbit of the point defined by u by the action of T™ coincides with

the image by i, of the orbit TM("T) of the point U N 7+ — k* on the toric

variety TV . The rest of the assertion follows from Remark B.5. O
The partition induced by the orbits of the torus action on T is of the form:

(1) " = |_| orb(7,T").

7<o

Proposition 3.7. If X is an affine toric variety with torus T™ then X is TM -equivariantly
isomorphic to TV for T' C M a semigroup of finite type such that ZT' = M.

Proof. This is well-known (see Chapter 5, Proposition 2.4, [f]). O
We characterize the affine 7™ -invariant open subsets of 7.

Definition 3.8. For any face 7 of o the set
(2) T, =T+ M(r,T)
is a semigroup of finite type generating the lattice M.

Notice that the cone I';R> is equal to 7 and if 7 < o the set int(¢ N 7+) N T is non
empty (int denotes relative interior).

Lemma 3.9.

i. The minimal face of the semigroup T' is a sublattice of M equal to T No.
ii. For any m €T in the relative interior of (& N 71) we have that

FT =1+ Zzo(—m).
ili. If 7 < 0 < o we have that M(7,Ty) = M(7,T';) and Ty =Ty + M(1,Ty).

Proof. i. By Lemma B.J the correspondence 7 +— I' N 71 is a bijection between the
faces of the cone o and the faces of the semigroup I'. By duality the minimal face of I"
is equal to I' N o!. It is enough to prove that if I' is a semigroup such that ZI' = M
and 'R>¢p = MR then I' = M. Since M is the saturation of I' the assertion reduces to
the case of rank one semigroups, for which it is elementary by Bezout identity.

ii. If m € int(6 N7+) NT then the semigroup I' + Z>o(—m) C M spans the cone ¥ =
+7+ C Mg. By i. the minimal face of this semigroup is the lattice (I'+Zx>o(—m))N7+
which coincides by definition with the lattice M (7,T").

iii. The lattices M (7,Tg) and M(7,T') are both generated by I' N 7+ hence are equal.
We have that I'; = 'y + M(7,Ty) since 6+ C 7+. O

Lemma 3.10. If 7 < o the inclusion of semigroups T' C T, determines a TM -equivariant
embedding T C TV as an affine open set. Conversely, if X C TV is a TM -equivariant
embedding of an affine open set then there is a unique T < o such that X is TM-
equivariantly isomorphic to T'7.

Proof. By Lemma B.9 we have that I'; = I + Z>o(—m). More generally if v € " and
f =17, the localization T}: = Spec  k[T]; is equal to T +(=1Z>0 and it is embedded in
T as a principal open set.

Conversely, an affine TM-invariant open subset of TT is an affine toric variety for the
torus T™ hence it is of the form T, for A € M a subsemigroup of finite type, such that
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ZA = M (see Proposition B.7). We denote the cone R>oA by . Since the embedding
Tr € TT is TM equivariant it is defined by the inclusion of algebras k[t'] — k[th]
corresponding to the inclusion of semigroups I' € A. We deduce that & C 6 and hence
that 8 C o by duality. We prove that if 7 is the smallest face of ¢ which contains 8 then
A =T,. It is enough to prove that if int(f) Nint(c) # () then A =T.

Notice that the lattice F' = o N M is the minimal face of ' and the prime ideal I
of k[t'] defines the orbit orb(c,T'), which is embedded as a closed subset of T'. Let us
consider a vector v such that v € int()Nint(c). Then we get that c-NM =N M N+
is contained in N M Nyt = - N M hence T'\ (6- N M) is contained in A\ (- N M) and
therefore 1 ¢ Ipk[t}]. Since T® C T' is an open immersion orb(c,T) is contained in
T™. By () and Proposition B.§ the closure of any orbit contained T contains orb(c, I")
thus 70 c TA. O

Remark 3.11. The immersion of T™-invariant affine open subsets is compatible with
normalization. By Lemma B.10 any T™-invariant affine open set of 7T is of the form
le: for f =7, v € I'. Then the following diagram commutes:

T&OM N TF
M e
&N
Ty = Ty,
since I' + (—v)Z>¢ is saturated in & N M + (—7)Z>¢. The vertical arrows are embed-

dings as principal open sets while the horizontal arrows are normalization maps (see
Proposition [[.5).

4. TORIC VARIETIES

Recall that a fan is a finite set X of strictly convex polyhedral cones rational for the
a lattice IV, such that if o € ¥ any face 7 of o belongs to ¥ and if 0,0’ € ¥ the cone
7=0Nco’isin X. If j > 0 is an integer the subset of 3(j) of j-dimensional cones of ¥ is
called the j-skeleton of the fan. The support of the fan ¥ is the set |X| = Uyexo C Ng.
We give first a combinatorial definition of toric varieties.

Definition 4.1. A toric variety is given by the datum of a triple (N, 3, T") consisting of
lattice N, a fan ¥ in Ng and a family of finitely generated subsemigroups I' = {T', C|
o € ¥} of a lattice M = Hom(N, Z) such that:

i. ZI'yc = M, for o € X.

ii. 'y =T+ M(7,I'y), for a each 0 € ¥ and any face 7 of o.
The corresponding toric variety 7: g is the union of the affine varieties 7' for ¢ € &
where for any pair 0,0’ in ¥ we glue up 7' and T+’ along their common open affine
variety T ono’ .

Remark 4.2. The lattice N in the triple (N, X,T") is determined by I'. We recall it by
convenience. We omit the reference to the lattice NV in the notation Tg .

Remark 4.3. This definition is consistent with the case of affine toric varieties. If TT is an
affine toric variety in the sense of Section f|. If o’ := {7 | 7 <o} and I := {T'; | 7 < 7},
where T, is the semigroup defined by (B) for 7 < o then the conditions i. and ii. are
satisfied by Lemma B.9. Then 7T is TM-invariantly isomorphic to TCE/.

Remark 4.4. A triple (N, X, T") determines similarly a toric scheme over SpecA, for any

commutative ring A

Lemma 4.5. Let (X,T) as in Definition [[.1 define a toric variety TL. Then we have:
i Ifo,0eX andiftr=0Nn0 then ', =1, 4+ Ty.
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ii. The variety Tg 1s separated.

Proof. The intersection 7 = ¢ N is a face of both ¢ and §. By Lemma B.9 we
have that M (7,T';) = M(7,T'y) = M(7,Ty). By axiom i. in the Definition [£1] we get
Iy, I'y C I'; and 'y + ', C I';. Conversely, by the separation lemma for polyhedral
cones, for any u € int(5 N (—0)) we have that 7 = o Nu' = § Nut. Notice that we
can assume that u € Ty N (=) Nint(5 N (—0)) # @. Then by Lemma B-g we obtain
't =15 4+ Z>o(—u). Hence I'; is contained in I', + I'g since —u € T'y.

The homomorphism k[t"0] @y, k[t"] — k[t"7] which sends Y@1Y — 77" is surjective
since I'y; + I'g = I';. In geometric terms this implies that the diagonal map Th —
TT x T % is a closed embedding for any #, ¢ € ¥ with 7 = # N 7 hence the variety Tg
is separated (see Chapter 2 [[7)). O

Remark 4.6. The morphisms corresponding to the inclusions k[t'e] — E[tFe*To] are
open embeddings compatible with the normalization maps. The normalization of the
toric variety Tg is the toric variety Tx corresponding to the fan ¥ and the normalization
map is obtained by gluing-up normalizations T, := T°"M of the charts T"7, for Ty € T

and o € X.

Lemma 4.7. Let A\, be a one-parameter subgroup of the torus T™ for some v € N.
Then lim, .o A\y(z) exists in the toric variety Tg if and only if v belongs to |S| N N.

Proof. The statement is well-known in the normal case (see Proposition 1.6 [Ld]).
The normalization map n: Ty, — Tg is an isomorphism over the torus 7M. If \,: k* —
™ C T, EF is a one-parameter subgroup defined by v € N it lifts to the normalization,
i.e., there is a morphism \,: k* — T™ C T¥ in such a way that n o A\, = \,. Since the
normalization is a proper morphism we get by the valuative criterion of properness that
lim, 0 Ay(2) exists in the toric variety Tg if and only if lim, g A,(2) exists in Ty;. [

Lemma 4.8. Let Xg be a toric variety. Then the map
7 > orb(7, T i= i (TM (1))
defines a bijection between the faces of ¥ and the orbits of the torus action on Tg.

Proof. This is consequence of the definitions and Lemma B.§. O
In order to illustrate the combinatorial definition of a toric variety we describe the
orbit closures as toric varieties.

Notation 4.9. If 7 € ¥ we denote by IV the sublattice of N spanned by 7 NN and by
N(7) the image of N in N/N,. The lattice N(7) is the dual lattice of M(7) = M N7+,
Since M (7,T';) is a sublattice of finite index i(7,I';) of M(7) then the dual lattice
N(1,T;) of M(7,T';) contains N(7) as a sublattice of finite index equal to i(7,T;).

If 0 € ¥ and 7 < o0 the image o(7) of o in N(7)r = Nr/(IN;)R is a polyhedral cone,
rational for the lattice N(7,T';). The set (1) := {o(7) | 0 € ¥,7 < ¢} is a fan in
N(T)r. If o(7) € B(7) we set [y, := Ty N7, It is easy to see that o(7) C N(7)g is
the dual cone of the cone spanned by I'y N7+ in M (7)R. Let us denote by I'(7) the set

{To(r) [ o(7) € B(7)}-
Lemma 4.10. Let X% be a toric variety. If 7 € ¥ the triple (N(7,T;),%(7),T(7))
defines a toric variety T;((:)) We have a closed embedding i, : Tg((:)) — Tg. The map

T 1, (Tg((:)))

defines a bijection between the faces of ¥ and orbit closures of the action of TM on Tg.
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Proof. If 7 is not a face of o, for ¢ € X then orb(7,I';) is does not intersect the affine
invariant open set 7%; if 7 < ¢, for 0 € ¥ the closure of the orbit orb(r,I';) in the
affine open set 777 is equal to 77" (see Lemma B.6).

If 7 <0 <o then §(7) < o(7) and 6+ C 7+ hence M(,T,) = M(0(7),I', N 7t) is
the sublattice spanned by I'; N 6.

If 7 < 0,0 and if § = 0 N ¢’ then we deduce from condition ii. in Definition [i.]] that:

LoN 7t =Te N7+ M(0(7),To(r) = Tor N7+ + M(0(7),Tr())-

We obtain that the triple (N(7,T;),%(7),[(7)) satisfies the axioms in Definition [.1]
with respect to the torus 7M7),
We have also described an embedding 7. ; ((:)) — Tg in such a way that the intersection

of this variety with any affine chart containing orb(7,T") is the closure of the orbit
orb(,T") in the chart. The conclusion follows from Lemma [L.§. U

Remark 4.11. The non singular locus of the toric variety Tg is the union of the orbits
orb(7,T") corresponding to regular cones 7 € ¥ such their index i(7,T';) is equal to 1.

5. BLOWING UPS

The theory of normal toric varieties deals with normalized equivariant blowing ups,
i.e., blowing ups of equivariant ideals followed by normalization. In this section we build
blowing ups of equivariant ideals in toric varieties.

Let o be a strictly convex rational cone in Ng and I' a subsemigroup of finite type
of the lattice M such that ZI' = M and the saturation of I in M is equal to 6 N M.
For simplicity we assume that the cone o is of dimension d hence & is strictly convex.

Let us consider a graded ideal Z in A[t'], which is necessarily generated by monomials
t™1, ..., t"™. We build the corresponding Newton polyhedron N,(I), by definition the
convex hull in Mg of the m; + &, which is also the convex hull of the set |Z| of exponents
of monomials belonging to the ideal T of A[t']. It is quite convenient to denote with
the same letter Z the set {my,...my}.

The set Z determines the order function:

(3) ordz: 0 — R, v~ min(y,m).

meZ

The order function ordz coincides with the support function of the polyhedron N, (Z).
It is a gauge (ordz(Au) = Aordz(u) for A > 0) which is piecewise linear. The maximal
cones of linearity of the function ordz form the d-skeleton of the fan ¥(Z) subdividing
o. Each such cone o; in the d-skeleton of ¥(Z) is the convex dual of the convex rational
cone generated by the vectors (m — m;)men, (z), Where m; is a vertex of N, (Z). The
correspondence m; — o; is a bijection between the set of vertices {m1,...,ms} C T of
the polyhedron N, (Z) and the d-skeleton of ¥(Z), such that

m; — o if and only if ordz(v) = (v, m;) for all v € o;.
Note that ' C 6 N M C &; N M. In each of the cones &; we consider the semigroup
(4) Ly =T+ (my —mg,...,mi_1 —mi, M1 —my,...,my —m;) CG; N M.

By Lemma [[.3, the saturation in M of this semigroup is equal to &; N M. We denote
by I'(Z) the set consisting of the semigroups I';, together with I'; ; (defined by equation
@) forr<oi,i=1,...,s.

Proposition 5.1. The triple (N,3(Z),I'(Z)) defines a toric scheme B over Spec A.
The inclusions ' C I';, i = 1,...,s, determine a canonical map of schemes

7: B — Spec AJt']
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over Spec A, which is the blowing up of the ideal T.

Proof. We prove first that the triple (N, X(Z),T'(Z)) verifies the compatibility condi-
tions stated in Definition .1 By Lemma B.J it is enough to check them for the affine
open sets corresponding to two vertices, say my and mg, of N,(Z). Then, if 7 = o1 N0
the condition we have to prove is that I'y ; = I'a ;.

Notice that the vector m := mo — m; € I'y belongs to the interior of 1 N Tt By
Lemma @ and the definitions we get I'i ; = I'y + Z>o(—m) and similarly T'y, =
I'y + Z>om. Then the assertion follows since I'; -, which is equal to

'+ Z(mg —my) + Z Zzo(mj —mp) =0T+ Z(m1 —ma) + Z Zzo(mj —ma),
J=2,...k j=2,...k

is the same semigroup as I'y -.

It follows that the scheme B is covered by the affine sets Spec A[t'/] fori=1,...,s.
Since each T; contains T, there is a natural map m: Spec A[t'] — Spec A[t']. The
sheaf of ideals on B determined by the compositions with 7 of the generators of Z is
generated by ¢ o 7 in the chart SpecA[t!].

It is not difficult to prove that any semigroup I'; defined by (f]), for i > s, that is
when m; is not a vertex of N,(Z), is of the form I'; ; for some 1 < j < s and 7 < 0.
This means that the corresponding affine chart Spec A[t'?] of the blowing up of T is in
fact an affine open subset of Spec A[t'7], where m; is a vertex of N (Z). O

Corollary 5.2. The blowing-up of an equivariant sheaf of ideals on a toric variety Xg
is a toric variety. Its description above each equivariant open affine chart of Xg s given

by Proposition [5.1.

6. TORIC MORPHISMS

Recall that a morphism ¢: T M, M of algebraic tori gives rise to two group
homomorphisms

¢* M — M and ¢, : N — N

between the corresponding lattices of characters and between the corresponding lat-
tices of one-parameter subgroups. The homomorphisms ¢* and ¢, are mutually dual
and determine the morphism ¢: 7™ — TM of algebraic tori. Note that ¢ is defined
algebraically by

E[tM] — kM, 7t moe M.

Now suppose that we have two toric varieties Tg and Tg with respective tori 7™ and
TM' defined by the combinatorial data given by the triples (N,%,T') and (N',%/,TV)
(see Definition [E.1]).

Definition 6.1. The homomorphism ¢, is a map of fans with attached semigroups
(N,3,T) — (N',¥,T") if for any o’ € ¥’ there exists o € ¥ such that ¢*(I';) C I',.

Note then that ¢, is a map of fans, that is, for any ¢’ € X/ there is a cone o € X such
that image by ¢’ by the R-linear extension of ¢, is contained in o. See Section 1.5 [L9].

Proposition 6.2. Let ¢: TM — TM be a morphism of algebraic tori. If ¢, defines
a map of fans with attached semigroups (N, X, T) — (N',X/,T") then it gives rise to a
morphism: ¢: TL, - Tg which extends ¢: TM " TM gnd s equivariant with respect
to ¢. Conversely, if f: TL, — Tg s an equivariant morphism with respect to ¢ then ¢,
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defines a map of fans with attached semigroups (N', %', T") — (N,%,T) and f = ¢. In
addition we have a commutative diagram

Ty — Ty

! !

!
(Ao

where the vertical arrows are normalizations and the horizontal ones are the toric mor-
phisms which extend ¢ : T™ — TM

Proof. For any o/ € X' there exists a cone ¢ € X such that the restriction of ¢*
determines a semigroup homomorphism I'; — I',. The corresponding homomorphism
of k-algebras k[I'y] — k[I'!,] defines a morphism:

bot T — T given on closed points by bor o(x) =T 0 ¢TF07

where x € TF;’; z: I, — k is a homomorphism of semigroups. The morphism gz_bo.lp is
equivariant through ¢ since for any y € TM' y: M’ — k* group homomorphism and
any x € T e we get:

b0 (y-2) = (y-x) 0 djp, = (Yo o) - (x0df,) = ¢(y) - Por o ().

By gluing-up the affine pieces together we get a morphism ¢: Tg,, — Tg which is
equivariant with respect to ¢.

For the converse, since f is assumed to be equivariant through ¢ the image by f of
each orbit of the action of TM" on Trz,/ is contained in one orbit of the action of TM
on TL. If 7/ < ¢’ and ¢’ € ¥/ then the orbit orb(¢’,I",) is contained in the closure of
orb(7/,T",) by Proposition B.6. Then there exist 0,7 € ¥ such that

f(orb(c’,T,)) C orb(e,T,) and f(orb(r',T.,)) C orb(r,T).

Since f is continuous orb(o, I',;) must be contained in the closure of orb(7,I';), hence 7
is a face of ¢ by Proposition B-§ and Lemma B3 By () it follows that f(T%e) c T .
The restriction f‘TF,’: TV — TTe s equivariant with respect to ¢ : ™' _, M,

Hence f‘TF// : T — TTe is defined algebraically by the homomorphism of k-algebras

k[tT7] — k[t">'], which is obtained by restriction from the homomorphism of k-algebras
E[tM] — k[tM'] which maps t™ + t¢"(™) for m € M. This implies that ¢*(I'y) C I,
and also that f = ¢.
Since ¢, is a map of fans it defines a toric morphism between the normalizations of
Tg and Tg . Finally, it is easy to check that the diagram above is commutative. ([l
It is sometimes useful to consider morphisms of toric varieties which send the torus
of the source into a non dense orbit of the target: Let (N,X,T') and (N', %/, T") be two
triples defining toric varieties Tg and 7. 5’ . Let 7 be a cone of . Suppose that we have
a morphism of algebraic tori ¢ : TM — TM(I7) guch that ¢, : N’ — N(7,T;) defines
a map of fans with attached semigroups (N',%',T") — (N(7,I';),3(7),(7)). Then by
Proposition .3 and Lemma B.J we have a toric morphism
¢TIy — T;((:))
Let us denote by n: Ty, — T; g the normalization map and by i, : T: w(r) — Tx the closed

embedding of the closure of orb(7) in T%. The following Proposition is consequence of
Proposition .9 and Lemma B.3.
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Proposition 6.3. The composite of ¢ with the closed embedding i, : Tg((:)) — Tg lifts

to the normalization of Tg, i.e., there exists a toric morphism 1 : Tg,/ — Tx(7) such
that iy o ¢ = noi, o if and only if there is a lattice homomorphism ¢ : M (1) — M’
such that p\nr(rr,) = ¢* and then ¢ = ¢.

Example 6.4. By Proposition [6.J the map u — (u,0,0), which parametrizes the sin-
gular locus of the Whitney umbrella {z3z2 — 2% = 0} does not lift to the normalization
while u — (u?,0,0) does.

7. ABSTRACT TORIC VARIETIES
We recall the usual definition of toric variety.

Definition 7.1. A toric variety X is an irreducible (separated) algebraic variety equi-
pped with an action of an algebraic torus 1" embedded in X as a Zariski open set such
that the action of T on X is morphism which extends the action of T' over itself by
multiplication.

As stated in Proposition B.7 any affine toric variety is the spectrum of certain semi-
group algebra. Gel'fand, Kapranov, and Zelevinsky have defined and studied those pro-
jective toric varieties which are equivariantly embedded in the projective space, which
is viewed as a toric variety, see [[i], Chapter 5.

The following Theorem, which is consequence of a more general result of Sumihiro,
provides the key to establish a combinatorial description of normal toric varieties.

Theorem 7.2. (see PJ]) Any normal toric variety X has a finite covering by T-
mvariant affine normal toric varieties.

The statement of Theorem [[.2 does not hold if the normality assumption is dropped.

Example 7.3. Let C C P2C be the projective nodal cubic with equation y?z —22?(x+ z).
It is a rational curve with a node singularity at P = (0 : 0 : 1) and only one point
@ = (0 : 1:0) at the line of infinity 2 = 0. The curve C is rational and has a
parametrization 7 : P& — C such that 7(0) = m(c0) = P and 7(1) = Q. Then we
have that mg«: C* — C'\ {P,Q} is an isomorphism. The multiplicative action of C*
on P}; corresponds by 7 to the group law action on the cubic hence it is algebraic. It
follows that C' is a toric variety with respect to Definition [.]. Notice that C is the
only open set containing P which is invariant by the action of C*. This example is
also a projective toric curve which does not admit any equivariant embedding in the

projective space (see I page 4 and [q)).
We modify the abstract definition of toric varieties as follows:

Definition 7.4. A toric variety X is an irreducible separated algebraic variety equi-
pped with an action of an algebraic torus 7' embedded in X as a Zariski open set such
that the action of T" on X is morphism which extends the action of T' over itself by
multiplication and X has a finite covering by affine T-invariant Zariski open sets.

Theorem 7.5. If X is a toric variety in the sense of Definition with torus T', then
there exists a triple (N, %, T) as in Definition[[.] and an isomorphism ¢: T — ™ such
that the pair (T, X) is equivariantly isomorphic to (TM ,Tg ) with respect to .

Proof. We denote by M the lattice of characters of the torus T hence T'= T™ and
N is the dual lattice of M.

By Proposition B.7 an affine TM-invariant open subset is of the form 7 where T',
is a subsemigroup of finite type of M such that ZI';, = M, and ¢ C Ng is the dual cone
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of 6 = R>oI'y C Mr. By Lemma the open affine TM-invariant subsets of 777 are
T'", for 7 < o, where I'; = 'y + M(1,T,).

By definition X is covered by a finite number of TM-invariant affine open subsets of
the form {T"},cx. We can assume that if 0 € ¥ and if 7 < o then 7 € ¥. We are
going to show that ¥ is a fan in Nr, hence TV # TTo' if o # 0.

We have that for any 0,0’ € ¥ the intersection 7' N T+ is an affine open subset
of X (see Chapter 2 [[J]). It is also a T™-invariant affine subset of both 7' and T+,
hence it is of the form T'7. By Lemma we obtain two inclusion of semigroups
I'y - T and I'yy — I's. Since X is separated the diagonal map 777 — TT7 x TTo is
a closed embedding (see Chapter 2 [1J]). Algebraically, this implies the surjectivity of
the homomorphism

k[tYe] @ k[t"e'] — k[t'"] , determined by ¥ @17 — 77
It follows that the homomorphism of semigroups I'y x 'y — Ty, (7,7) — v+7' is
surjective. This proves that I'; =T', + I';s thus
R>ol, =7 =Rxo(Ty +To) =5 + 0’
By duality we deduce that 7 = o N ¢’. By Proposition we obtain
I.=Ts+M(1,T'y) =Ty + M(1,T,).

In conclusion, ¥ is a fan in Ng and if I := {[', | o € X} the triple (IV, X, T") verifies
the compatibility properties of Definition [l.1 and the variety Xg is TM_equivariantly
isomorphic to X. O

The following corollary is consequence of Proposition .4 and Theorem [7.5.

Corollary 7.6. The category with objets the triples (N,X,T") of Definition [[.] and
morphisms those maps of fans with attached semigroups of definition s equivalent
to the category with objets the toric varieties of Definition [7.4 and morphisms those
equivariant morphism which extend morphisms of the corresponding algebraic tori; see

Proposition [6.4.
8. INVERTIBLE SHEAVES ON TORIC VARIETIES

In this section we describe how some of the classical results in the study of invariant
invertible sheaves on a normal toric variety extend to the general case.

Let T g denote a toric variety defined by the triple (N, 3,T"). Recall that if o € 3 we
denote by T, = T°"™ the normalization of the chart 77v and by T% the normalization
of TL.

A support function h : |X| — R is a continuous function such that for each o € ¥
the restriction h,: 0 — R is linear. We say that h is integral with respect to N if
R(|IE| N N) C Z. We denote by SF(V,X) the set of support functions integral with
respect to V. If h is a support function integral with respect to IV then for any o € 3
there exists m, € M such that

h(v) = (v,my), forallveo.
Notice that by continuity we have that
(5) m; =mgs mod M(r)=MnNr7t, forT<0,0€cX.
The set {m, | 0 € X} determines h but may not be uniquely determined.

Definition 8.1. A support function for the triple (V,X,I") is a support function h :
|X| — R integral with respect to N which in addition verifies the compatibility property

(6) m; =m, mod M(r,T';), for 7 <o, 0€X.
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We denote by SF(N,3,T) the additive group of support functions for the triple
(N,%X,T). It is a subgroup of SF(N,X). A vector m € M defines an element of
SF(N,%,T") hence we have a homomorphism M — SF(N,X,T"), which is injective if
the support of ¥ spans Ny as a real vector space.

Any h € SF(N,Y) determines TM-invariant Cartier divisor Dj, on T by

(7) Dy, = div(t™™) for 0 € 3,

where div(g) denotes the principal Cartier divisor of the rational function g on an
irreducible variety. Notice that Dj is independent of the possible choices of different
Cartier data {m, | o € X} defining h. If 0,0’ € 3, 7 = o No’ then T, =T, N T,
and (f) guarantees that ¢t~ %™’ and ™= ~™o' are both regular functions on T,. Any
TM_invariant Cartier divisor on T% is of the form Dy, for h € SF(N, ), i.e., it is defined
by Cartier data.

Lemma 8.2. If h € SF(N,Y) is defined by the Cartier data {m, | o € ¥} then it
defines a T™ -invariant Cartier divisor on Tg if and only if (§) holds, that is, if and
only if h € SF(N,%,T).

Proof. The condition to determine a Cartier divisor is that for any 0,0’ € X, 7 = oNo’
the transition function ¢t~ is an invertible regular function on 777 = TT> N TTo.
By Lemma B.9 this is equivalent to (f). O

We have shown that the group CDivyu (T%) of TM-invariant Cartier divisors on
TL can be seen as a subset of CDivyw (7). The set {div(t™)} e is a subgroup of
CDivym (TL) consisting of principal Cartier divisors.

The map

SF(N,%,T') — CDivyum (T%),  h+ Dy,
is a group isomorphism. The inverse map sends a Cartier divisor D on T\ g , given by
the Cartier data {m, | o € X}, to the function

hp =13 =R, hpv)=(v,m,) ifveo.

A Cartier divisor on Ty determines an invertible sheaf Or, (D). If U is an affine
open set in which D = div(gy) for some rational function gy then the set of sections
H°(U, Oz, (D)) consists of those rational functions f which verify that fgy is a regular
function on U.

We denote by OTg the structure sheaf on the toric variety Tg . The invertible sheaf

of a TM-invariant Cartier divisor D on T} is the sheaf of OTg—modules OTEF (D). By
([@ the set of sections of this sheaf on TT¢ is

(8) HO(I™, 0y (D)) = 7 k[t
We denote by Pg the following subset of M:
9) = () mo + T
ceX

The set of global sections of the sheaf (’)Tzr is equal to

(10) HO(TE, Opgp (D)) = () ™ k[t'"] = D kt™.

o€y mEPE

Remark 8.3. As in the normal case, a T™-invariant Cartier divisor D defines an equivari-
ant line bundle £p whose sections coincide with those of the invertible sheaf OTET(D).

See [[d], Chapter 2.
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The Picard group Pic(X) of a variety X consists of the isomorphism classes of in-
vertible sheaves in X.

Lemma 8.4. Suppose that |X| = Nr. For any Cartier divisor D on the toric variety Tg
we have an OTEF -module isomorphism OTg(D) & OTg(Dh) for some h € SF(N,X,T).
The following are equivalent for h € SF(N,%,T).
i heM
ii. Dy, is a principal Cartier divisor.
iii. Lp, s a trivial line bundle.
iv. The sheaf Orr (Dy,) is isomorphic to Opr as Opr-module.

Proof. See Proposition 2.4 of [[9]. O
Proposition 8.5. Suppose that |X| = Nr. Then we have canonical isomorphisms
SE(N,%,T)/M — Pic(TL) — CDivyar (T%) /{div(t™) Y menr,
from which we deduce a canonical injection Pic(TL) — Pic(Tk).

Proof. This follows by using the same arguments as in Corollary 2.5 [I9]. g

If p belongs to the 1-skeleton (1) of the fan ¥ we denote by v, the primitive integral
vector for the lattice N in the ray p, that is the generator of the semigroup pN N. We
associate to h € SF(N,X) the polyhedron

(1) Py = {m € M | (v,m) > h(v,), p € S(1)}.
Recall that
(12) Py =1P, and P, + Pp, = Py

for any integer [ > 1 and h,h' € SF(N,X).
Proposition 8.6. Suppose that |X| = Ngr. The following are equivalent for h €
SF(N,X,T") defining a Cartier divisor D = Dy,.

i. The OTg -module (’)TEF(D) is generated by its global sections.

ii. h is upper converz, i.e., h(v) + h(v') < h(v + V') for all v,V € Ng.

iii. The polytope Py has vertices {m, | o € X}.
If these conditions hold the convex hull of the set Pg is the polytope P and h is the
support function of the polytope P.

Proof. The proof follows as in the normal case (see Theorem 2.7 [I9]). O
If |¥| = Ngr the support function h € SF(N,X,T'), defined by the Cartier data
{m, | o € ¥}, is strictly upper convez if it is upper convex and in addition

h(v) = (v,my) if and only if v € o , for o € 3.
Suppose that h € SF(N,X,T) verifies the equivalent conditions of Proposition B.§.
Set D = Dy,. If P, = {u1,...,us} we have a morphism
(13) Op: Ty, — Pl ®p = (141 -t

(defined in homogeneous coordinates of Pz_l). The morphism ®p is equivariant with
respect the map of tori @ : ™ — TM' where TM' denotes the torus of PZ_I with
respect to the fixed coordinates.

Proposition 8.7. Suppose that |X| = Ngr. The following are equivalent for h €
SF(N,X,T) defining a Cartier divisor D = Dy,.
i. D is very ample.



16 PEDRO D. GONZALEZ PEREZ AND BERNARD TEISSIER

ii. h is strictly upper convexr and for all o € X(d) the set {m —m, | m € Ph}
generates the semigroup I, .

Proof. Suppose that h is not strictly upper convex. Then there exists d-dimensional
cones 0,0’ € ¥ such that 7 = o0 N ¢’ is of dimension d — 1 and m, = m,,. This implies
that the section defined by #™ in the open set U = T77 U T"' is no where vanishing.

By definition there exists 1 < i < s such that m, = u;.

The restriction of ®p to U factors through the affine open set C*~!, where the i-th
homogeneous coordinate does not vanish. It is of the form:

Dy U — C°71 with @y = (877, gl gl Te gl T,

By Lemma B.§ the closure of the orbit orb(r,T') is a complete one-dimensional toric
variety contained in U. The restriction (I)\W must be constant hence ® is not an
embedding. This implies that if Dy is very ample h is strictly upper convex.

Suppose that h is strictly upper convex. If o € ¥ is a d-dimensional cone then m,,
belongs to {u;}?_, say m, = us. The restriction of ® to T T's factors though the affine
open set of PZ_I where the last homogeneous coordinate does not vanish. It is described

algebraically by the homomorphism of k-algebras:
Elyi, ... ys—1] — k[tY], wyir—t9 ™Mo i=1,...,5— 1.

This maps defines a closed immersion if and only if it is surjective. This happens if and
only if the set of vectors {u; — ms}1<i<s—1 generate the semigroup I',. O

Proposition 8.8. Suppose that |X| = Nr. The following are equivalent for h €
SF(N,3,T).

i. Dy, is ample

ii. h is strictly upper conver.

Proof. If D is ample then [ D is very ample for [ >> 0. Since D = Dy, it follows that
h is strictly upper convex if [h is and the assertion holds by Proposition B.7.

Conversely suppose that h is strictly upper convex. We prove that [.Dy, is very ample
for I > 0. By Proposition B.7 it is sufficient to prove that there exists an integer
[ > 0 such that for each d-dimensional cone o € ¥ the semigroup I', is generated by
{m —1lmys | me PBM}.

Ifo’ € ¥,dimo’ = d, 7 = 0’No we have that I'; = I’y +Z>o(—u) for any u € ', in the
relative interior of the cone 71N (see Lemma [.9). For instance we take u = m,s —m,.
We obtain similarly that I'; = T'yr + Z>o(u).

If v € T, then v belongs to I'; and there exists 4/ € I',» and an integer p > 0 such
that v =+ + pu. If [ > p we obtain:

(14) Imgr +7 + (I —p)(my —myr) = lmg + 7.

If [ is big enough, a formula of the form ([[4) holds for any « in a finite set G, of
generators of I', (where p and ' vary with 7) and for any cone ¢’ € ¥(d). Since 7" and
My — Mg belong to I'ys this implies ¢™e+7 defines a section in HO(TT+, OTg (Dip)) (see
@) for any cone o’ € X(d). We deduce that for any v € G, the vector im, -+~ belongs
to the set PIF)m and ¢ 17 defines a global section of OTg(Dlh)- O

Remark 8.9. Let A = {uq,...,us} be a subset of a lattice M such that ZA = M, i.e.,
A spans M as a lattice. Gel'fand, Kapranov, and Zelevinsky [fi] define a projective toric
variety X 4 as the closure of the image of the map

oa= (" ..oty T — Pyl
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Let us explain how their definition fits with our notion of projective toric variety. Let
P be the convex hull of A in MR and ¥ de dual fan of P. Each ¢ € ¥ of maximal
dimension determines a vertex m, of P, which is necessarily an element of A. We
associate to o the semigroup I'y := > Z>o(u; — my). If 7 < o we define I'; as in
Lemma B.9. The set I := {I'y | # € ¥} is well-defined and the triple (N, %,T") defines a
toric variety Tg (the argument is the same as the one used in the proof of Proposition
B-1). The support function h of P belongs to SF(N,X,T') and is strictly upper convex.
If D = Dy, we deduce from the definitions that PB = A. By Proposition B.7 the Cartier
divisor D is very ample, and the morphism () is an equivariant embedding of Tg in
the projective space P$~! such that (@p)jpm = pa. 1t follows that X4 = dp(TE).

Remark 8.10. If F = Y7, ¢jt“ € k[tM] is a polynomial with ¢;...cs # 0, then F
defines a global section of (’)TEF(D) such that the closure of {F = 0} NTM in TL does

not meet any zero-dimensional orbit of Tg .
Part II: Resolution of toric varieties by Semple-Nash modifications

In this part we prove that any toric variety has canonical resolutions of singularities
by iterated blowing ups of logarithmic jacobian ideals and also by iterated normalized
blowing ups of logarithmic jacobian ideals. Recall that if £ is a field of characteristic
zero the blowing up of the logarithmic jacobian ideal of an affine toric variety T, as
indicated below, coincides with the Semple-Nash modification.

9. THE SEMPLE-NASH MODIFICATION: PRELIMINARIES

In [Bd], Semple introduced the Semple-Nash modification of an algebraic variety and
asked whether a finite number of iterations would resolve the singularities of the variety.
The same question was apparently rediscovered by Chevalley and Nash in the 1960’s,
and studied notably by Nobile (see [[[7]), Gonzalez-Sprinberg (see [L1] and [f]), Hiron-
aka (see [[[3]), and Spivakovsky (see [RI]]). The best consequence so far of all this work
is the Theorem, due to Spivakovsky, stating that by iterating the operation consist-
ing of the Semple-Nash modification followed by normalization one eventually resolves
singularities of surfaces over an algebraically closed field of characteristic zero.

Let X be a reduced algebraic variety or analytic space, which we may assume of
pure dimension d for simplicity. Whenever we speak of the Semple-Nash modification,
we assume that we are working over an algebraically closed field k of characteristic
zero. Consider the Grassmanian g: Grassko — X; it is a proper algebraic map, which
has the property that its fiber over a point of x is the Grassmanian of d-dimensional
subspaces of the Zariski tangent space Fx .. The map g is characterized by the fact that
g*Qk has a locally free quotient of rank d and g factorizes in a unique manner every
map to X with this property. Let X° denote the non singular part of X, which is d-
dimensional and dense in X by our assumptions. Since the restriction Q§<|X © is locally
free the map ¢ has an algebraic section over X° and the Semple-Nash modification
is defined as the closure NX of the image of this section, endowed with the natural
projection nx: NX — X induced by ¢g. The map nx is proper and is an isomorphism
over X°?; it is a modification. Like the Grassmanian of Q}X, it is defined up to a unique
X-isomorphism.

A local description can be given for a chart X|U of X embedded in affine space
AN (k) by taking the closure of the graph of the Gauss map 7: (X|U)° — G(N,d). For
any point = € X the fiber ny'(z) is the subset of G(N, d) consisting of limit positions
at x € X of tangent spaces to X along sequences of non singular points tending to x.
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Proposition 9.1. (Nobile), see [[7] and [P4]. Let X be a reduced equidimensional space;
if the map

nx: NX — X
is an isomorphism, the space X is non singular.

For the convenience of the reader, we sketch the proof found in [P4]:
If the map nx is an isomorphism, the sheaf Qﬁ( has a locally free quotient of rank d.
The problem is local, so it is enough to prove that the existence of a surjective map
o: Q}Xx — (93271, implies that (93271, is regular. Passing to the completion and tensoring

Q}Xx by @X,w we may assume that Ox, is complete. We consider the linear map

e: (9327 . — Ox  sending the first basis vector to 1 and the others to 0. The composition
of e with the map ¢ gives a surjective map, so that there has to be an element h € Ox ,
such that the image of dh in Ox, by e o ¢ is equal to 1, and then the k-derivation
D: Ox, — Ox, corresponding to e o ¢ is such that Dh = 1. In characteristic zero
one can formally integrate this non vanishing vector field using the formal expansion of
exp P to get an isomorphism Ox , ~ O1[[h]] where O; ~ Ox ,/(h). By construction
O, satisfies the same assumptions as Ox . in one less dimension. By induction we are
reduced to dimension zero, but a reduced zero dimensional complete equicharacteristic
local ring is k in our case. We refer to [24] for details, and to [L7] for the original proof.

Remark 9.2. We will see below in Section [, Proposition the characteristic-free
version of this statement, which is that if the blowing-up of the logarithmic jacobian ideal
is an isomorphism, the toric variety is smooth. Note that the Semple-Nash modification
is defined in any characteristic but its being an isomorphism does not imply regularity
in positive characteristic; it is the case for y?> — 23 = 0 in characteristic 2. See [[[7].

10. THE SEMPLE-NASH MODIFICATION IN THE TORIC CASE

The following is an extension to the case of not necessarily normal toric varieties of a
result of Gonzalez-Sprinberg ([ff]; a summary of this work appeared in [[J]) which was
revisited by Lejeune-Jalabert and Reguera in the appendix to [[[q].

Let X be an affine toric variety over an algebraically closed field k. Using the notations
of Section | we write its ring

R=k[Uy,...,U,]/P,

where P is a prime binomial ideal (U™ — U™ )ser, of the polynomial ring k[U7, ..., Uy].
Let d be the dimension of X and denote by £ C Z" the lattice generated by the
differences (m® — n®)ser; by [E-S], it is a direct factor of Z" since X is irreducible and
k is algebraically closed. Setting ¢ = r — d, we may identify L with {1,...,L} with
L = |L| in such a way that the lattice generated by (m! —n' ..., m® — n°) has rank c.

The quotient Z"/L is isomorphic to Z¢ and we have an exact sequence
(15) 05z —7? 0.

Our affine toric variety X is Speck[t"], where T is the semigroup generated in Z? by the
images 71, ..., of the basis vectors of Z".

Proposition 10.1. (Generalizing [fl] [L0] and [[d]) Keeping the notations just intro-
duced, let X be an affine toric variety over an algebraically closed field of characteristic
zero. The Semple-Nash modification of X is isomorphic to the blowing-up of the ideal
of R generated by the images of the products U;, ...U;, such that Det(v;,,...,7vi,) # 0.
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Proof. A straightforward computation using logarithmic differentials shows that the
jacobian determinant Jx 1, of rank ¢ = r — d of the generators (U’”‘Z -U "2)56{17.“, ry of
our prime binomial ideal P C k[Uy,...,U,], associated to a sequence K = (ki,...,k.)
of distinct elements of {1,...,7} and a subset L' C {1,..., L} of cardinality ¢, satisfies

the congruence

Uty - Upe-Jw = ([ U™)Detin (((m —n))) mod.P,
Lel’

where ((m—mn)) is the matrix M of the vectors (m‘

—ng)ge{l,...7L}, and Det g 1, indicates
the minor in question. By Lemma 6.3 of [2], the rank of the image in k"% of the
matrix M is equal to c¢. Now we know that we may assume that the lattice generated
by (m! —nt, ..., m®—n°) has rank c, so that the binomial variety corresponding to the
ideal (U™ —U nl)lgggc is a complete intersection X of dimension r — ¢ containing our
binomial variety X. By [L7], the Nash modification of X is isomorphic to the blowing
up of the restriction to X of the jacobian ideal of X;. Therefore the Semple-Nash
modification of our binomial variety coincides with the blowing-up in X of the ideal
generated as K = (ky,...,k.) runs through the sets of ¢ distinct elements of (1,...,7)

by the elements Jx 1, satisfying the congruences

Uk, - Uk, I Ly = ( H UmZ)DetK,LO(«m — n>)) mod. P,
f€Lg

where Ly = (1, ..., ¢) and with the necessity that Jg 1,, = 0 whenever the determinant
on the right side is zero.

Now for each K let us multiply both sides by U;, ...U;,, where I = (i1,...,iq) =
{1,..., N} \ K. We obtain for each K the equality:

(16) Ur...Urdxro = Usy .. Ui ( J] U)Detip (((m —n))) mod.P.
{€Lg

Taking exterior powers for the map ¢ in the sequence ([[§) gives an injection

At r—d

O—>A£ AN Z"

r—d
whose image is a primitive vector in A Z" since it is a direct factor.

Let Lo C L be the lattice generated by the differences (m! —n',...,m® — n°), that is,
corresponding to the first ¢ binomial equations. The image of its (r — d)-th exterior

power is a non zero multiple of the primitive vector TAd L; all the ¢ x ¢ minors of the
matrix M involving vectors m¢ — n® with ¢ > ¢ are rationally dependent upon those
which do not. Consider now the d-the exterior power of the map dual to the surjection
Zr — Z1 — 0 of ([[{):
d . d .
0—ANZ—ANZ".
The image of 1[{ Zd is a primitive vector in 16{ Zr.

d . r—d
By the natural duality isomorphism between A Z" and A Z" (see [{] §11, No. 11,
Prop. 12) deduced from the pairings

d . d d r—d
ANZONZ —Z, NT'® A Z'" — Z,

r—d
this vector correspond to the image of A L in such a way that the coordinate which
corresponds to the determinant of the vectors v;,,...,v;, in Z¢ is a rational multiple
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of the determinant Detg 1, (((m — n))), which is non zero since our base field is of
characteristic zero.

Equation [ now shows that the ideal of R generated by the Jk 1, differs from the
ideal generated by the images of the products U;, ... U;, such that Det(v;,,...,7i,) # 0
only by the product by invertible ideals, so that these two ideals determine isomorphic
blowing ups, which proves the Proposition. O

Remark 10.2. The proof found in [LJ-R] is valid in the non-normal case; the proof given

here makes explicit the connection of the logarithmic jacobian ideal with the usual one.

11. THE SHEAF OF LOGARITHMIC JACOBIAN IDEALS ON A TORIC VARIETY

Let the pair (X,T)) define a toric variety 7L as in Definition [.1].
On the affine open set 777, 0 € ¥ we consider the ideal J, of k[t'*] generated by
monomials of the form ¢%, where « belongs to the set

|Tol={an+ - +ag | a1,...,aq €Ty and a3 A -+ A g # 0}.
The ideal J, is called the logarithmic jacobian ideal of T 7.

Remark 11.1. If ~1,...,, are generators of I', the semigroup I', then the monomials
t%, for « in
(17) {’7@'1 T iy | Yiy N N iy #0,1<14y,...,1q §7‘},

generate the ideal J,. Abusing notation we denote the set ([[7) with the same letter
J», whenever the set of generators of I', is clear from the context.

Proposition 11.2. The family {J, | o € £} defines a TM -invariant sheaf of ideals J
on Tg, which is called the sheaf of logarithmic jacobian ideals of Tg.

Proof. It is sufficient to check that if 7 < o, ¢ € X, then the ideal J, coincides with
the extension J,k[t' 7], induced by the inclusion k[t'*] < k[t'"] defined by T, C I';.

By Lemma . if m € ', belongs to the relative interior of the cone & N 71 then we
have that I'; =T'; + Z>o(—m) (such a vector m always exists).

If v1,...,7 are generators of I', then ~q,...,7,,—m are generators of I';. This
implies the inclusion 7, C J,. By Remark an exponent « in J, which does not
belong to the set J, is of the form: a = ~;, +- - -+, , —m, with v, A---Av;,_ A(—m) #
0. Then, the element 8 := 7, + --- + 7, , + m belongs to J, and we obtain that:
t* =728 ¢ J k[t'7], and T, k[t'"] = T>. O

Lemma 11.3. There is a continuous piecewise linear function ordy: |X| — R such
that for each 7 € ¥ the function ord . is the restriction of ordys to 7.

Proof. This follows from the definition of ordz, (see (f)), by using that 7 is a sheaf
of monomial ideals.

Remark 11.4. Note that Lemma holds more generally if we replace J by any sheaf
of monomial ideals 7 on Tg .

12. ITERATING THE SEMPLE-NASH MODIFICATION

Let I' C M a finitely generated subsemigroup of a rank d lattice M such that ZI" = M.
We assume in addition that the convex rational cone ¢ := R>ol", which is d-dimensional
since ZI' = M, is strictly convex, which is equivalent to saying that the dual cone
o C Ng is strictly convex of dimension d. The semigroup I' determines the affine toric
variety T' = Speck[t']. We fix a finite set of generators 71, ..., of I'. We consider
the set

T =Y+ %, | v A Ay 20,1 <, onyip <7}
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defining the logarithmic jacobian ideal of TT.

The Newton polyhedron N, (J) of the monomial ideal J (see Section [), is contained
in the interior of &, since the elements of 7 are sums of d-linearly independent elements
in the d-dimensional cone &. The set J determines the order function defined by ().
The maximal cones 7 C o of linearity of the function ord; form the d-skeleton of a fan
> supported on . The map

(18) 7+ m if ordy(v) = (v,m) for all v € 7.

is a bijection between the set X(d) of d-dimensional cones of ¥ and the set of vertices
of the polyhedron N, (7).

We now consider the blowing up of the monomial ideal 7. A cone 7() € %(d)
determines a vertex m(!) of N, (J) by ([§) and also the finitely generated semigroup

Fs_z(z) =1+ Z Zzo(m—m(l)) C 7:(1) N M.
meJ

In view of the description recalled above of X(d) in terms of N,(J), the cone RZOFS()U
(2)
is 7). The affine toric variety 7"+ is a chart of the blowing up of J and this toric

variety is covered by charts of this form.

The semigroup Fg)l) is generated by {v1,...,7} U {m —mM},c7. We denote also

by ‘77((21)) the finite subset of F(TZ()I) corresponding to the monomials generating the loga-

(2) (2)
rithmic jacobian ideal of Trr“), by the same symbol this last ideal of k:[trr“)] , and by

ord 7@ (1) — R the corresponding order function.
(1)

Proposition 12.1. There is a continuous piecewise linear function ord ;2: 0 — R

such that for each ) € 2@ the function ord is the restriction of ord 72y to @),

AH
Proof. This follows from Lemma [[T.3. O

As above, the maximal cones 7 C o of linearity of the function ord ;) form the

d-skeleton of a fan X supported on ¢ and subdividing the fan ¥. In particular, if
7@ € £®(d) is contained in 7™ € X(d) then we denote by m® the vertex of the

Newton polyhedron NT(1)(JT((21))) of ‘77((21)) such that

ord ;¢ (v) = (v, m®) for all v e 7.

(2)
Remark 12.2. On the chart TFT(U the pull back of the ideal J by the blowing up of J

(2) (2)
is the principal ideal tm(l)k:[trr(l)] =t7 k‘[trr(”]. The Newton polyhedron

Ny (T) =T + 7Y =m® 4 70

-
F(Q) . . . . . 1
of t7k[t -] is principal, i.e., it has only one vertex m).

By iterating this construction we obtain a sequence of piecewise linear functions
ord 7(;) on o, together with the corresponding fans ¥ with 7 = J® and =M = %,
and such that ) is a subdivision of £U~1 for all j > 2.

By definition a cone 70) € £ (d) is contained in a unique cone 7() € £V (q), for
0<1<j—1, where we set 79 := o. Then we have unique vectors m") € M such that

ord ;o) (V) = (v,mW) for all v € 79) and 1 <1 < j.
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The cone 7U) corresponds to a chart of the blowing up of the logarithmic jacobian

ideal J ((] ) of k[t T(J D). This chart is the affine toric variety defined by the semigroup

F(TJJ)I) = F(Tjg,l) + Z Z>o(m — m(j)).

(7)
meJ (i1

By induction this procedure also provides a system of generators of each semigroup

I’ E)l We use also the notation jT((j;l) to refer to the finite set of generators of the

(3+1)
logarithmic jacobian ideal of k[tpr(j) | (see Remark [[1.1]). The following inclusions, for
j > 2, are consequence of the definitions:

(19) T, TV, k-] c k™01, g9, K0 € 9RO,
(1+1)

Remark 123 For 1 <1 < j we deduce from Remark [[2.9 that J((l vk [Fr(l) | =

tm(l)k[ o ] hence the Newton polyhedron./\f(z)(j((l y) = j((l y + 70 =ml 4+ 0

has only one vertex m(®.

Proposition 12.4. The affine toric variety T* is non singular if and only if the blowing
up of the logarithmic jacobian ideal is an isomorphism.

Proof. We only have to prove that if the blowing up is an isomorphism the variety is
smooth. Remembering that I' generates the group M, let us choose a minimal system
of generators vi,...,7%d,Vd+1,--. such that m1) = ~; + .- + 4 corresponds to the
generator of the logarithmic jacobian ideal which, by our assumption, is principal. If
there are more than d generators, then 7441 is linearly dependent on the previous ones
which gives us another element m = 1 + -+« + -1 + Ygu1 + Yi+1 + -+ + g4 of our
ideal. Our assumption ensures that m — m() = ~v4,; —; € T which contradicts the
assumption of minimality. Therefore I' has d independent generators which generate M
and k[t'] is a polynomial ring. O

Proposition 12.5. The following assertions are equivalent:

()
ii. The blowmg up of the ideal J( ) of TV G- s g finite morphism.

(-1
Proof. The hypothesis i. is equivalent to the following fact: the semigroups I' %71)

and F(J(jr) ) have the same saturation in the lattice M; it is equal to FU—DNM = 70 NM.

This is equivalent to the following geometric statement: the composite of the normal-
(49) (49)
ization of T"+0+1 with the blowing up of the logarithmic jacobian ideal of TH6-1 i

@)
the normalization map of T"7G-1 and therefore this blowing up is finite. Conversely, if

r+n @
. holds, the blowing up morphism T° T2o o 7M76-1 induces an isomorphism of the
normahzatlons, from which i. follows in view of Remark [L.6. O

Definition 12.6. For any integer j > 1 we introduce a function
U {7 € 0|0+ 7 convex rational polyhedral cone } — Z>;.

If 11,...,vs are the primitive integral vectors for the lattice N which span the edges of
7, then the value of f)(7) is defined by

D7) = ord i) (1)-
i=1
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Remark 12.7. Notice that if 0 # 7 is any rational polyhedral cone contained in 7U)
»0)(d) then fU)(7) = 35 (v;,m\Y)) and if 7 is of dimension d then fU)(r) > d.
Moreover, we obtain that

(20) fO(r) < fU=0(r),
since ord ;(;) (v) < ord ;¢-1 (v) for any v € 7 by (I9).

Lemma 12.8. The following conditions are equivalent for j > 1:
i. The polyhedron ./\/’T(j—l)(jﬁl(jj)il)) has only one vertex m\) and fO)(rU-1) = 4.
W, =70 M.

ii. The cone 7U~Y is reqular for the lattice N and T i
.

iii. The toric variety TF(TJ()J'*” 18 smooth.

Proof. 1t is clear that ii. and iii. are equivalent. It is enough to prove the result for
j = 1. Suppose first that i. holds. By hypothesis the fan $(!) is the fan consisting of
the faces of o. If vq,...,vs are the primitive vectors for the lattice N which span the
cone o then (v;,;m) >0,i=1,...,s since m = m™) belongs to the interior of &. Since
flo)=d=>7_(vi,m) we get that s = d and (v;, m) = 1.

By definition of J the vector m is sum of d generators of I' which are linearly inde-
pendent, say m = y; + - - - + 4. Since Z;l:l<ui,7j> =1fori=1,...,d we obtain that,

up to relabelling the v;, the vectors vy, ..., in Ng form the dual basis of v1,...,74 in
Mmg. Finally, notice that the parallelogram generated by the primitive vectors ~v1,...,7qg
in Mg contains no integral points different from the vertices. It follows that ~v{,...,7vq
form a basis of M.

Conversely, if ii. holds then we check from the definitions that i. holds. O

Proposition 12.9. Suppose that 79) € $U)(d) is contained in 70~ € LU=V (d). The
following equalities are equivalent:

i f(j)(T(j)) = f(j—l)(T(j));
Proof. Notice that if mU) = mU=1 then i. follows by Remark [2.7
Suppose that the equality i holds. By Remark we have that

N, (TU7DY =m0 4 207D and A, (7)) = m@) 4 70),

Since 7U) is contained in 701 we get that U~ c #U) and then NT(j)(jT((J;Q) =
m=Y 4+ 70), By ([9) we get
(21) m(j—l) + 7:(]') C m(]) + 7‘-(3')_

Let v1,...,vs be the primitive integral vectors for the lattice N which span the cone
7). The vector v := >i_, vi belongs to the interior of the cones 7U) and 7U-Y. By
Remark and the hypothesis we deduce

f(j—l)(T(j)) = (v, m(j—1)> — f(j)(T(j)) = (v, m(j)>_
This equality and the inclusion (21)) imply that mU~—1 =m0, O

Proposition 12.10. There exists an integer | > 1 such that for any cone T € 2(1)(d)
if fO(r) > d then fO(r) > fO(7).

Proof. Let us assume that the assertion of the Proposition does not hold. This implies
that there exists a infinite sequence of convex polyhedral cones

(22) c=70 5050 5...0570 ...
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such that 700) € %) (d) and

(23) FOEDY = fM (W) > g, for all j > 2.
By Remark we have that fU)(r0)) = fU=1(70)) for all j > 2. Proposition 2.9
implies then that m@) = mU=1 for all j > 2.

Claim 1. There exists a strictly increasing sequence (ij)j>1 of integers > 0 such that
73) £ 7@+ that is, the inclusion 75) > 70+ s strict, for j > 1.

Proof of the claim. Assume that the claim does not hold. This implies that 7) =
' . (49)
7U=Y for all j > 1. By Proposition the blowing up of the ideal ‘77((]3')71) of T +G-1
is a finite morphism, dominated by the normalization of T, for all j > 1. It follows
(49)
that for j > 0 the variety Th0-0 s normal. By Proposition [[2.4, this variety is also
smooth. By Lemma it follows that fU)(70)) = d for j > 0. This is a contradiction
with (2J). O

Let us fix a representation for m = m) in terms of the generators of I':
m ="+ + 7y with y1 A=+ Ayg # 0,

(up to an eventual relabelling of the generators {v;}7_; of the semigroup I').
By Claim [I] we can suppose without loss of generality that ¢; = 0, that is, the Newton
polyhedron N, (7) has at least two different vertices m and n.

Lemma 12.11. Given one of the v; which appear in the decomposition of m, say 74,
for any j > 0 the vector nj := n — jvq verifies that

weﬂgnmﬂm—mA%AmAwA#&

Proof We prove the assertion by induction on j. Notice that for j = 0 the vector

1o = n belongs to J by hypothesis. We suppose by induction that n; € jT(fj)'l), 1<l <y.

We prove first that:

(24) (m—m)AY A Avyg_1 #Z0, for 0 <1 <.

Assume on the contrary that (24) does not hold for some 0 < I < j. After relabelling
the vectors v1,...,74-1 if necessary, we have an expansion of the form:
(25) m—m=ayy1+- -+ apy, with h <d—1,

and in addition the coefficients of (R5) are non-zero rational numbers which are not of
the same sign, that is,

a; > 0 for ¢« = 1,...,s
a; < 0 for ¢ = s+1,...,h.

Indeed, if all coefficients a; in (RH) are > 0 we obtain that
n=m+4aiy1+ -+ apyp +1lyg Cm+a,

contradicting that n # m is a vertex of N,(J). In particular, we have that n; # m.
Similarly, if all the coefficients a; are smaller than zero we get that

m=m—aiy— - —apyn Cy+ 6 Cm+ 7.

This implies that m is not a vertex of the Newton polyhedron ./\/'T(z)(JT(fII)), since

I+1
m e JT(J ) and nm#Em.
If & € R we denote by [a] the smallest integer p such that o < p.
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Claim 2. If ¢ := > 7 _i[a;], 0 < p < ¢ and b; are integers such that 0 < b; < [a;],

i=1,...,s and >.; 4 b; = p then the vector 0, :=mn — Y ;_; biy; belongs to j(f:ﬁj—l

Proof of the claim. We prove the assertion by induction on p. For p = 0 we have

010 = m hence the assertion holds by assumption. Suppose that 6;, € jﬁ;ﬁjl) for
0 < p < q. The vector
h
O —m =1 —m— me = Z —bi)yi+ Y
=1 i=s+1
belongs to F(l(ff;i)) Since p < ¢ there is a strictly positive coefficient in this expansion

of 0;, —m, say a; — by, for instance. We get 0; , Ay2 A --- Ayq # 0, hence the vector
Opr1:=0p—m+y2+-+7=>0,p—m
l 2
belongs to J ((ltiil)). O

By Claim [ the expansion

s h
Og—m=> (ai—[a])vi+ > a
=1

i=s+1
has only coefficients < 0 and 0;, € jﬁ:ﬂfg We get also that m # 6;, since the
coefficients as11, . . ., ap are non-zero and the vectors vy, ...,y are linearly independent.

We deduce from this that
s h
m=0;,— Z(ai — fai])yi — Z aiyi € g+ C O+ FUTHD,
i=1 i=s+1

This contradicts the assumption, m being a vertex of the Newton polyhedron of jﬁ:f;lz)).

Finally, we have proven that (R4) holds hence

Nj1 = (T]j —m)+y 4+ 4+ Y1 € j,r({:j)
This concludes the induction in the proof of Lemma [[2.11]. O
The cone
o) — ﬂ O — ﬂ (i)
1>1 i>1

is a closed convex subset of o different from 0. A vector 0 # w € 7(>) defines a monomial
valuation w of the field of fractions of k[t'], which verifies that if 0 # > a7 € k[t']
then w(} a,t7) = ming, »o(w,7). By definition this valuation is non-negative in the

©)
subrings k[trf(jfl)] for all j > 1. Notice that the vector w € Ng is not necessarily an
element of Nq and it may lie in a face of o different from 0. We remark that for all
j > 1 we have that min{(w,v) | v € JU - 1)} = (w, m) since w takes non negative values
on jT((j;l) which contains the set {y —m,~v € ‘77(3'4)}'

Since 71 ...,74 span Mg at least one of the vectors ; verifies that (w,~;) # 0.

Suppose for instance that (w,~4) > 0.
By Lemma [[2.11], for any integer j > 0 the vector n; = n — j7q belongs to J (JJJ)FI

I‘(]J) ). This implies that

w(tﬁj) = (’wﬂ]j> = <w7n> - j<w7'7d>



26 PEDRO D. GONZALEZ PEREZ AND BERNARD TEISSIER

. . ) . e _ G+

becomes strictly negative for j large enough. This is a contradiction since t"i € k[t () |
. . . : rt+h

and the valuation w is non negative on the ring k[t +@ . O

Theorem 12.12. Any toric variety has a canonical resolution of singularities by iter-
ation of blowing ups of the sheaf of logarithmic jacobian ideals.

Proof. Reduction 1. It is enough to prove it in the affine case.

Reduction 2. We can assume in addition that the affine toric variety has no torus
factors, i.e., it is defined by a semigroup I' such that the cone ¢ = Rl is strictly
convex and of dimension d = dim MR.

By Proposition and induction there exists a positive integer j such that fU) (r)=
1 for all 7 € £U)(d). By Lemma this condition characterizes when the j-th iterated

blowing up 7. EF((JJ)) of the logarithmic jacobian ideal of T becomes smooth. O

13. ITERATING THE NORMALIZED SEMPLE-NASH MODIFICATION

In this section we verify that by the same method one can prove that for a toric
variety the iteration of the operation consisting of the blowing-up of the logarithmic
jacobian ideal followed by normalization eventually resolves singularities.

Let us first note that the normalized blowing up of an ideal on an algebraic variety
X is also the normalized blowing of its inverse image on the normalization of X. This
amounts to considering our logarithmic jacobian ideal in the algebra k[t°"M] instead of
E[t"]. We may assume that our toric variety X is normal to start with, and restrict to
an affine chart corresponding to a cone o.

It has its logarithmic jacobian ideal which determines a Newton polyhedron, just as
in Section [[3, and the cones of linearity of the support function which are subcones of
o. The affine charts of the normalized blowing-up are of the form Speck[t%(l)mM | and as
we saw at the beginning of the previous section, the saturation of the semigroup I'_ )
describing the blowing-up in this chart is #(1) N M. This saturated semigroup gives rise
to a new logarithmic jacobian ideal J52¢(2).

Iterating this construction we see that the only difference with the construction of
Section [[J is that at each step we take the logarithmic jacobian ideal associated with
the saturation of the semigroup provided by the previous blowing up. The analogues
of Lemma and Proposition remain valid, and so do the inclusions ([[9) with
respect to the ideals %)), The same argument can then be applied to this situation,
with the simplification that the inclusions 79 > 70+ are strict in view of Proposition
[2:. Thus we have proved the following

Theorem 13.1. Any toric variety has a canonical resolution of singularities by itera-
tion of normalized blowing ups of the sheaf of logarithmic jacobian ideals or normalized
Semple-Nash modifications in characteristic zero.

Remark 13.2. The recent paper [[l] suggests that it would be interesting to develop an

approach from a computational viewpoint to the iteration of (normalized) Semple-Nash
modification.
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