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Abstract

In this article we propose a new macroscopic model derived from a time-continu-
ous version of the Vicsek Algorithm [1, 6, 10, 16], where we introduce the dependence
of some local density and angle of vision in the orientation interaction.

With some adaptations to the concept of generalized collisional invariants, we
prove that the methodology developped in [8] works to derive a macroscopic limit
of this dynamical system. The system of PDE may present some zones of non-
hyperbolicity, which is a new feature compared to the macroscopic model of [8].

We perform an asymptotic study of the coefficients obtained in this system of
PDE’s and show that there are indeed some cases where the system is not hyperbolic.
This study is also useful to measure the influence of the angle of vision in the final
continuum model.
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1 Introduction

The study of complex particle systems is challenging, on the mathematical point of view,
since they can exhibit some unusual behavior. The Vicsek algorithm [1, 6, 10, 16] has
been proposed as a model for describing the behavior of individuals inside animal societies
such as fish schools or flocks of birds. In this model, all the particles have constant speed
and change their direction according to their neighbors. There is no obvious conservation
relation except for the mass. If we want to derive some macroscopic model from the
particular description, we can expect to find some non-conservative system of PDE’s.
This is the result of [8], where the kinetic version of the Vicsek algorithm they propose is
shown to have a continuum limit at large scale, which involves a non-conservative system
of PDE’s. This system is shown to be hyperbolic.

In numerical experiments (see [5]), there is formation of bands of high density, strongly
ordered, travelling through a disordered area of low density, at large time. This is obtained
with the individual based model (IBM), but the macroscopic system of [8] seems to be
unable to reproduce this dynamic. One of the possibility to obtain such behavior with a
macroscopic model is to have a certain bistability in the equilibria (see for example [9, 15]),
which is not the case. Another possibility could be the lack of hyperbolicity in some cases,
leading to concentrations.

Another observation is that the order parameter, in these numerical experiments, is
not constant. Numerically, it depends on the local density ρ. And this is not coherent
with the local equilibria of the macroscopic model, since they all have the same order
parameter. The idea of the present paper is to study some refinements to the kinetic
model in order to reproduce properties observed on the individual based computations.

The first step in [8] to derive the kinetic model is to introduce a time-continuous
version of the algorithm, since the original version is discrete in time. This imposes to
add a new parameter ν, which can be viewed as a frequency of interaction between a
particle and its neighbors. The mean-field kinetic model associated to the particle system
consists of the following Kolmogorov-Fokker-Planck equation :

∂tf + ω · ∇xf + ∇ω(Ff) = d∆wf, (1.1)

where ∆ω is the Laplace-Belltrami operator on the unit sphere and f is the probability
density function. Here ω is the angle variable, belonging to the unit sphere S2 (or S1,
depending if we work in dimension 3 or 2). The force F is the alignment interaction,
which depends on f and on ν. It tends to align the particles with the direction of the
flux of f . The constant coefficient d represent the intensity of the noise. But there is
no rigorous proof of the convergence of the dynamic system of particles to this kinetic
model when the number of particles increase. We can reasonably expect that a limit
should be of the previous form. The fact that ν and the noise parameter d are constant
implies then that the local equilibrium obtained in the macroscopic limit is always of the
same shape, independently of the local density. One of the hypothesis is that some extra
noise could appear in the limit of a large number of particles, due to fluctuations in the
process of computing the mean velocity. Indeed, if there are particles in the area of vision
distributed according to some angular law, the central limit theorem tells us that the
fluctuation between the mean velocity and the expected velocity for the law depends on
the number of particles. So in this paper we want to see what happens when we add a
dependence to some local density ρ for the coefficient d.
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We will also add this dependence to the parameter ν (the rate of changing direction for
one particle). We could indeed imagine that it is more likely to move when there is a large
number of particles around, due to some social pressure. In [8], this parameter ν does
also depend of the difference between one particle direction and its target direction. Most
results will be given here without this dependence for convenience, but some computations
have been done with, which will be given in annex.

The other refinement is to add some “angle of vision”, that is to say that the kernel
used to compute a mean around each particle will not be invariant under rotation, as
in [8]. The procedure to add these features in the model is described in section 2. Finally
we will detail a little bit more what are the differences if we work in 2 or 3 dimensions.
Indeed some computations at the end lead to explicit expressions or not, according to the
dimension, and all the results were on a 3-dimensional framework in [8].

The goal of this article is to study the features of the macroscopic limit of this new
model. Indeed if we introduce a small parameter ε for the time and space scaling, we
obtain a continuum model, as ε → 0. The derivation of this model is given in section 3.
The limit of the distribution function is given by f 0 = Mρ,Ω where the function Mρ,Ω

plays here the same role as the maxwellian, in classical theory of rarefied gases. The total
mass ρ = ρ(x, t) ≥ 0 of f 0 and the director of its flux Ω = Ω(x, t) ∈ S2 (or S1) satisfy the
following system of first order partial differential equations :

∂tρ+ ∇x · (c1ρΩ) = 0. (1.2)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (1.3)

where the convection speeds c1, c2 and the interaction parameter λ depend on ρ. Their
expressions will be specified in the course of the paper (see (3.55) and (3.58)-(3.59)).

The purpose of this article is to study how the features introduced at the microscopic
level influence the properties of the macroscopic model.

The first particularity here is that the shape of distribution in angle is dependent of
the density ρ, and we cannot write the equilibrium of the form ρMΩ, as in [8]. But if we
are only interested in the system in ρ and Ω, it seems to be the same, except that the
coefficients here are not constant. However, at section 4, we will see that the negativity
of the coefficient λ can lead to a loss of hyperbolicity in some regimes, and that indeed,
the dependence on ρ now allows λ to be negative. The other particularity of is that the
difference between velocities c1 and c2 can be enhanced by the introduction of a restricted
angle of vision.

2 A continuous Vicsek model with anisotropy and

density dependent collision frequency

We start by presenting the individual-based model and the continuum limit we derived
from it. The elements of the derivation of this macroscopic model will be given in section 3.

2.1 Starting point : particle dynamics

Here, we briefly recall the time-continuous version of the Vicsek algorithm, and introduce
how we take in account the anisotropy of observation. The collision frequency, which is
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a parameter specific to the time-continuous version (there is no such parameter in the
original discrete model), is chosen dependent of a certain local density, in order to match
some large-scale properties of the discrete model. Indeed this parameter is related to some
order parameter for the equilibrium, and in simulations some links between local density
and order parameter are observed (see [5]). In a modelling point of view, we can argue
that the particles could tend to change there orientation more rapidly if the density is
larger, due to some social pressure.

We consider a system ofN particles with positionsXk in Rn (with k ∈ J1, NK and n = 2
or 3) and orientations ωk in the unit sphere Sn−1, which we will simply write S when there
is no ambiguity.

The kth particle moves at constant speed (say 1, since we can do a change of variable)
following its orientation. This last one relax towards the mean orientation ωk of its
neighbors, with rate ν (depending in some mean density ρk around it), under the constraint
that ωk is of norm 1 :

dXk

dt
= ωk, (2.4)

dωk

dt
= ν(ρk) (Id − ωk ⊗ ωk)ωk, (2.5)

where we denote by Id − ωk ⊗ ωk the projector on the plane orthogonal to ωk, that is to
say (Id − ω ⊗ ω)υ = υ − (υ · ω)ω. This projection is necessary in order to keep ωk on the
unit sphere.

It remains to define the way ωk and ρk are computed. In the original model the
mean ωk is computed on all the neighbors in a ball of fixed radius R centered in the given
particle. Here we take the mean according to a kernel K taking in account the distance
between the given particle and a given neighbor, and the cosine of the angle between the
orientation of the first particle and the right line joining the two particles :

ωk =
Jk

|Jk|
, Jk =

N∑

j=1

K

(
|Xj −Xk|,

Xj −Xk

|Xj −Xk|
· ωk

)
ωj. (2.6)

We proceed in an analogous way to compute the local density ρk, with eventually an other

kernel K̃ :

ρk =

N∑

j=1

K̃

(
|Xj −Xk|,

Xj −Xk

|Xj −Xk|
· ωk

)
ωj, with (2.7)

∫

ξ∈Rn

K̃(|ξ|, |ξ|−1 ξ · ω)dξ = 1. (2.8)

This last normalisation condition (which is not depending on ω ∈ S) is chosen so that
the density is 1 if in average there is one particle per unit volume.

We finally have to add noise to this model to reach some interesting equilibrium,
coming from the balance between the force of alignment and the diffusion caused by the
noise. The idea is to add a brownian motion on the sphere (see [12] for more details on
how to define such an object) for the orientation, and we obtain the following system of
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stochastic differential equations :

dXk

dt
= ωk, (2.9)

dωk = (Id − ωk ⊗ ωk)(ν(ρk)ωk dt+
√

2D(ρk) dB
k
t ), (2.10)

where (Bk
t ) are independent standard brownian motions on Rn, and D is the intensity of

the noise. Again here we let this parameter depend on the local density ρk.
In [8], the relaxation coefficient ν depends on the (cosine of the) angle between the

orientation of one particle and the mean orientation : in (2.10), we could replace ν(ρk)
by ν(ρk, ωk · ωk), in order to take in account some “ability to turn”. With our new fea-
tures here, this would involve many more computations. For simplicity here, we will work
without this dependence, but this can be done with (and leads to the same conclusion),
following exactly the same method. I will only present the final results with this depen-
dence in some cases, and add some remarks to explain the difference in some steps of the
derivation.

Some numerical simulations tends to show that this time-continuous system present
the same behavior at large scale as the discrete one (for example the formation of bands,
as in [5]). More precise investigations on the numerical comparison between the discrete
and continuous in time dynamical system are in progress.

2.2 The continuum model

In this paper, following the approach of [8], we derive the following continuum model from
the particle dynamics described above :

∂tρ+ ∇x · (c1(ρ)ρΩ) = 0, (2.11)

ρ (∂tΩ + c2(ρ)(Ω · ∇x)Ω) + λ(ρ) (Id − Ω ⊗ Ω)∇xρ = 0. (2.12)

The functions ρ(x, t) > 0 and Ω(x, t) ∈ S describe the average density and particle
direction at some point x ∈ Rn.

The first equation is the conservation of mass : the density ρmoves through direction Ω
with velocity c1(ρ). The second one describes the evolution of the direction Ω. The
perturbations of this vector travel with velocity c2(ρ), influenced by a kind of pressure
due to the density, of intensity λ(ρ). The operator Id − Ω ⊗ Ω (projecting orthogonally
to Ω) ensures the direction Ω to be of unit norm.

The difference with the version in [8] is only in the definitions of these speeds c1
and c2, and of the parameter λ (which will be specified in the next section, see (3.55)
and (3.58)-(3.59)). Here, they depend on the density ρ, and their expressions are slightly
different (due to this dependency and the anisotropy of the observation).

In this article we will investigate the properties of (2.11)-(2.12) and show that, contrary
to the result of [8], the model can be non hyperbolic in certain regimes. This question
and the importance of the non-hyperbolicity will be discussed in section 4.

Again it is important to see that we have two different speeds, which means that the
perturbations on the mean orientation do not travel at the same velocity than the “fluid”.
We will also see that the fact that there is an non isotropic observation kernel enhances
the difference between c1 and c2.
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3 Elements of the derivation of the continuum model

This derivation proceeds like in [8] but there are significant differences due to the addi-
tional complexity. In this section, we will recall briefly the method of [8] and will focus
on the points which are specific to the present study.

The derivation proceeds in several steps. The first one consists in writing a kinetic
version of the particle dynamics.

3.1 Step 1 : mean-field model

Let f(x, ω, t) be the probability density of finding one particle at time t, position x ∈ Rn

and orientation ω ∈ S. The mean-field version of (2.9)-(2.10) is given by

∂tf + ω · ∇xf + ∇ω · (Ff) = ∇ω · (d(ρ)∇ωf), (3.13)

with

F (x, ω, t) = ν(ρ) (Id − ω ⊗ ω)Ω(x, ω, t), (3.14)

ρ(x, ω, t) =

∫

y∈Rn, υ∈S

K̃

(
|x− y|, y − x

|x− y| · ω
)
f(y, υ, t) dy dυ , (3.15)

Ω(x, ω, t) =
J(x, ω, t)

|J(x, ω, t)| , (3.16)

J(x, ω, t) =

∫

y∈Rn, υ∈S

K

(
|x− y|, y − x

|x− y| · ω
)
υ f(y, υ, t) dy dυ . (3.17)

The first equation (3.13) is the so called Kolmogorov-Focker-Planck equation. The force
term F (x, ω, t) corresponds to the orientation interaction.

If there is no noise, as in (2.4)-(2.5), this is easy to derive formally this system, since
the empirical distribution satisfy this same equation (with d(ρ) = 0).

When the noise is added, some difficulties appear. We could try for example to use a
method like the BBGKY hierarchy (see [11] for an example on an other model for self-
propelled particles, the Cucker-Smale model). But since the interaction is not a sum of
binary interactions, the distribution of one particle directly depends on the distribution
of N particles, and we cannot reduce to a system involving only the one-particle and the
two-particles distributions. The other difficulty is to deal with the classical assumption
of propagation of chaos.

So we start with this model as a base for the derivation of the continuum model. A
rigorous proof of how to obtain such a mean-field model from the individual dynamic
system (2.9)-(2.10) is left to future work.

Remark 3.1.1 If we want to take in account some “ability to turn”, we just replace ν(ρ)
by ν(ρ, ω · Ω).

The following step consists in observing this system at large scale, in both space in time.
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3.2 Step 2 : hydrodynamic scaling

The hydrodynamic scaling consists in the same rescaling for the time and space vari-
able. We introduce a small parameter ε and we set x′ = εx, and t′ = εt. We de-
fine f ε(x′, ω, t′) = f(x, ω, t), and we rewrite the system (3.13)-(3.15) in this new coordi-
nates.

The system is the same, except that there is a factor ε in front of each of the terms
with space or time derivative. But now the expressions of ρ and Ω depend on ε : for
instance the flux J

ε
is defined by

J
ε
(x, ω, t) =

∫

y∈Rn, υ∈S

K

( |x− y|
ε

,
y − x

|x− y| · ω
)
υ f ε(y, υ, t)

dy

εn
dυ . (3.18)

We have a similar expansion for ρε. The important point is to realize that ρε and Ω
ε

can
be easily expanded in terms of ε, and the non-locality only appears at high order.

We have the following expansions, the proof of which is given in lemma 1 of an-
nex A.1.1 :

Ω
ε
(x, ω, t) = Ωε(x, t) + εκ (ω · ∇x) Ωε(x, t) +O(ε2) , (3.19)

ρε(x, ω, t) = ρε(x, t) + εκ̃ ω · ∇xρ
ε(x, t) +O(ε2) , (3.20)

where the local density ρε and orientation Ωε only depend on the space and time variables
and are given by

Ωε(x, t) =
jε(x, t)

|jε(x, t)| , with jε(x, t) =

∫

υ∈S

υ f ε(x, υ, t) dυ , (3.21)

ρε(x, t) =

∫

υ∈S

f ε(x, υ, t) dυ , (3.22)

and κ and κ̃ are constants, only depending on the observation kernels K and K̃. We have
that these constants are positive if the observation kernel is directed forward, and the
more acute the angle of vision, the bigger the constant related to the kernel.

Now we can introduce these expansions in the mean-field model, and after some easy
algebra, the rescaled model from (3.13)-(3.15) can be written in the form

ε(∂tf
ε + ω · ∇xf

ε + κP (f ε) + κ̃ R(f ε)) = Q(f ε) +O(ε2) , (3.23)

where Q, P and R are the operators given by the equations below. Notice that Q (the
only term of order 0 in ε) only acts on the variable ω and the study of its properties will
be important for the following.

Q(f) = −ν(ρ[f ])∇ω · (FΩ[f ]f) + d(ρ[f ])∆ωf, (3.24)

FΩ(ω) = (Id − ω ⊗ ω)Ω, (3.25)

P (f) = ν(ρ[f ])∇ω · (GΩ[f ]f), (3.26)

GΩ(ω) = (∇xΩ)Tω − (∇xΩ : ω ⊗ ω)ω, (3.27)

R(f) = ∇ω ·
(
(ω · ∇xρ) (ν̇(ρ[f ])FΩ[f ]f − ḋ(ρ[f ])∇ωf)

)
, (3.28)

ρ[f ] =

∫

ω∈S

f(., ω) dω , (3.29)

Ω[f ] =
j[f ]

| j[f ] | , with j[f ] =

∫

ω∈S

ω f(., ω) dω . (3.30)
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Here are the notations : ν̇ and ḋ are the derivatives of ν (with respect to ρ), and ∇xΩ
is the gradient tensor of Ω that is to say (∇xΩ)ij = ∂xi

Ωj . We write T the transpose of
operators. And we use “:” to denote the “contraction” of two operators (if A = (Aij)
and B = (Bij) then A : B =

∑
i,j=1,...,nAijBij , this is the trace of ABT ).

Remark 3.2.1 If ν also depends on ω · Ω, the expression of the operator Q is the same
with ν(ρ[f ], ω · Ω[f ]) instead of ν(ρ[f ]). But then the expressions of P and R complicate
in a significant way, since there are also terms with the derivative of ν with respect to this
second variable.

Now we are ready to study this system when ε→ 0.

3.3 Step 3 : limit as ε→ 0

This is the main step, here we can express the fact that the continuum limit (2.11)-(2.12)
is derived form the mean-field kinetic version of the particle dynamics in a more precise
way.

Theorem 1 The limit ε → 0 of f ε is given (formally) by f 0 = Mρ,Ω where ρ = ρ(x, t) ≥ 0
is the total mass of f 0 and Ω = Ω(x, t) ∈ S is the director of its flux :

ρ(x, t) =

∫

ω∈S

f 0(x, ω, t) dω, (3.31)

Ω =
j

|j| , j(x, t) =

∫

ω∈S

f 0(x, ω, t)ω dω, (3.32)

and Mρ,Ω is a given function of ω ·Ω and
ν

d
which will be specified later on (see (3.36)).

Furthermore, ρ(x, t) and Ω(x, t) satisfy the following system of first order partial differ-
ential equations:

∂tρ+ ∇x · (c1ρΩ) = 0. (3.33)

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (3.34)

where the convection speeds c1, c2 and the interaction parameter λ depend on ρ. Their
expressions will be given in this section (see (3.55) and (3.58)-(3.59)).

The method to obtain this result follows closely [8], and is only summarized here. We
will focus on the details which are specific to this study.

3.3.1 Equilibria

The first important point is to determine the null space E of Q, since it contains the limits
of (3.23). We find, like [8], that it is a n-dimensional manifold consisting of functions
analogous to maxwellian distributions in the classical Boltzmann theory :

E = {Mρ,Ω(ω) | ρ ∈ R+, Ω ∈ S} , (3.35)

where

Mρ,Ω(ω) = C(ρ)eα(ρ) ω·Ω . (3.36)
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Here we have written α(ρ) =
ν(ρ)

d(ρ)
to simplify the notations. The main difference with [8]

is the dependence on ρ for this equilibrium on a nonlinear way, coming from the depen-
dence of ν and d. This will result in additional terms in the computations, and so in
additional terms in the expressions of the constants in the limit model.

The normalization constant C(ρ) is defined by C(ρ) =
ρ∫

S
eα(ρ) ω·Ω dω

(depending only

on ρ and α, not on Ω), so that ρ is the total mass Mρ,Ω(ω), and we have that Ω is the
director of its flux, that is to say, using the notations (3.29), (3.30) :

ρ[Mρ,Ω] = ρ , Ω[Mρ,Ω] = Ω. (3.37)

We also note, that, like in [8], the operator Q(f) can be written as

Q(f) = d(ρ[f ])∇ω ·
[
Mρ[f ],Ω[f ]∇ω

(
f

Mρ[f ],Ω[f ]

)]
(3.38)

and satisfies

H(f) :=

∫

ω∈S

Q(f)
f

Mρ[f ],Ω[f ]

dω = −d
∫

ω∈S

Mρ[f ],Ω[f ]

∣∣∣∣∇ω

(
f

Mρ[f ],Ω[f ]

)∣∣∣∣
2

dω ≤ 0. (3.39)

We can easily compute the flux of this equilibrium :

j[Mρ,Ω] = 〈cos θ〉Mα
ρΩ, (3.40)

where for any function γ(cos θ), the symbol 〈γ(cos θ)〉Mα
denotes the mean of γ following

the density
1

ρ
Mρ,Ω, i.e.

〈γ(cos θ)〉Mα
=

1

ρ

∫

ω∈S

Mρ,Ω(ω)γ(ω · Ω) dω =

∫
S
γ(ω · Ω)eα(ρ) ω·Ω dω∫

S
eα(ρ) ω·Ω dω

. (3.41)

Notice that 〈γ(cos θ)〉M only depends on α(ρ), not on Ω, we have the expression in di-
mension n (for n = 2 or n = 3) :

〈γ(cos θ)〉Mα
=

∫ π

0
γ(cos θ)eα(ρ) cos θ sinn−2 θ dθ∫ π

0
eα(ρ) cos θ sinn−2 θ dθ

. (3.42)

Remark 3.3.1 In the case where ν depends on ρ and ω ·Ω, we have to replace in all this

point α(ρ)ω · Ω by α̂(ρ, ω · Ω), where α̂(ρ, µ) =

∫ µ

0

ν(ρ, τ)

d(ρ)
dτ .

3.3.2 Collisional invariants

The second important point is the determination of generalized collisional invariants.
Indeed, since there is no other conservation relation than the conservation of mass, the
collision invariants reduce to the constants, and the integration of the equation against
these invariants only gives one equation, which is not sufficient to describe the behavior
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of the equilibrium (which lives on a n-dimensional manifold). The main idea in [8] was to
overcome this problem with a generalization of the concept of the collisional invariants.

A collision invariant is a function such that the integration of Q(f) against it gives
zero for all function f of ω. So we ask for a generalized invariant to satisfy this definition
only for a restricted subset of functions f . In the case where the dependence on ρ in the
equilibria was linear, restricting to all functions with a given orientation Ω was sufficient
to obtain the remaining equation. Here we have to restrict also to functions with a given
density too.

We define the generalized collisional invariants Cρ,Ω of Q (associated with some ρ > 0
and some Ω ∈ S) as the functions ψ such that

∫

ω∈S

Q(f)ψ dω = 0, ∀f such that Ω[f ] = Ω and ρ[f ] = ρ. (3.43)

If we define the linear operator Lρ,Ω by Lρ,Ω(f) = d(ρ)∇ω ·
[
Mρ,Ω∇ω

(
f

Mρ,Ω

)]
, we have

that

Cρ,Ω =

{
ψ|
∫

ω∈S

Lρ,Ω(f)ψ dω = 0, ∀f such that Ω[f ] = Ω and ρ[f ] = ρ

}
. (3.44)

Using the linearity of the operators j[.], ρ[.], and Lρ,Ω, we get :

Cρ,Ω =

{
ψ|
∫

ω∈S

Lρ,Ω(f)ψ dω = 0, ∀f such that j[f ] × Ω = 0

}
. (3.45)

This computation has been done in [8], in dimension 3, so the result is that Cρ,Ω is of
the form Span{1, ψ1,α(ρ), ψ2,α(ρ)}. The expression of these functions can be done with an
auxiliary function gα(µ), which is the unique regular solution on the following elliptic
problem on [−1, 1] (in dimension 3) :

− (1 − µ2)∂µ(eαµ(1 − µ2)∂µg) + eαµg = −(1 − µ2)3/2eαµ. (3.46)

Indeed, this problem has a unique solution, in the space V (a “ weighted H1”) defined
by V = {g | (1 − µ2)−1/2g ∈ L2(−1, 1), (1 − µ2)1/2∂µg ∈ L2(−1, 1)}, and this solution is
negative (by the maximum principle).

Then, with the spherical coordinates (θ, φ) in a cartesian basis (e1, e2,Ω), we have
the following expressions for the general collisional invariants : ψ1,α = −gα(cos θ) sin φ,
and ψ2,α = gα(cos θ) cosφ.

We introduce to simplify notations the function hρ(µ) = (1− µ2)−1/2gα(ρ) ∈ L2(−1, 1)

that is to say hρ(cos θ) =
gα(ρ)(cos θ)

sin θ
and we have

~ψρ,Ω(ω) = (Ω × ω) hρ(Ω · ω) = ψ1,α(ρ)e1 + ψ2,α(ρ)e2 . (3.47)

We call ~ψ the generalized collisional invariant vector associated to ρ and Ω.
In dimension 2, we also have a two-dimensional vector space of generalized collisional

invariants (associated to some density ρ and orientation Ω). It is spanned by the constants
and a function ψρ,Ω, which is the unique solution with zero average of the following elliptic
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equation (here we identify functions of S1 and 2π-periodic functions of R, with θ = 0
corresponding to Ω) :

∂θ(e
α(ρ) cos θ∂θψ) = sin θ eα(ρ) cos θ . (3.48)

In fact in that case we have an explicit expression :

ψα(θ) =
π

α

∫ θ

0
e−α cos ϕdϕ∫ π

0
e−α cos ϕdϕ

− θ

α
. (3.49)

So if we define hρ(cos θ) =
ψα(θ)

sin θ
(this is possible since this term is an even 2π-periodic

function), so we also have ψρ,Ω(ω) = (Ω × ω) hρ(Ω · ω) if we denote by × the determinant
of two vectors, and the notations are coherent in 2 and 3-dimensional framework, which
will be convenient for the following.

Remark 3.3.2 If we take in account the “ability to turn”, we just replace αµ in (3.46)
by α̂(ρ, µ) (for dimension 3). In dimension 2, we replace α(ρ) cos θ by α̂(ρ, cos θ) in (3.48),
and we still have an explicit expression :

ψbα(θ) = ψ0
bα(θ) − ψ0

bα(π)

ψ∞
bα (π)

ψ∞
bα (θ), (3.50)

where

ψ0
bα(θ) = −

∫ θ

0

(∫ π

ϕ

ebα(ρ,cos φ) sinφ dφ

)
e−bα(ρ,cos ϕ) dϕ, (3.51)

ψ∞
bα (θ) =

∫ θ

0

e−bα(ρ,cos ϕ) dϕ . (3.52)

3.3.3 Computation of the limit as ε → 0

The third and final important point is taking the limit ε→ 0 in the equation (3.23), after
integrating against the collision invariants.

When ε → 0, if f ε does not present any pathologic behavior (for example all derivatives
of f are bounded), we have that Q(f ε) → 0, so f ε → Mρ,Ω (here we suppose that f ε

converges to some function f , and that this is also true for all the derivative we need). So
we have ρε → ρ, and Ωε → Ω.

For the mass equation, using the constant invariant and integrating, we get the con-
servation of mass (in fact we can even replace the O(ε) by zero in this equation since in
the original model (3.13) we have conservation of mass) :

∂tρ
ε + ∇x · jε = O(ε). (3.53)

We get in the ε → 0 limit :

∂tρ+ ∇x · (c1ρΩ) = 0, (3.54)

where (see (3.40)) :

c1 = 〈cos θ〉Mα
. (3.55)
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The complications start for the equation on Ω. The method is the same, we multiply
at the right by ~ψρε,Ωε, integrate on the sphere, and take the limit ε→ 0. Since ~ψ depends

continuously on ρ and Ω, we obtain finally an expression with ~ψρ,Ω.
We get an expression of the form Ω×X = 0 (equivalent to (Id−Ω⊗Ω)X = 0), where

X =

∫

ω∈S

(∂t(Mρ,Ω) + ω · ∇x(Mρ,Ω) + κP (Mρ,Ω) + κ̃R(Mρ,Ω)) hρ(ω · Ω)ω dω . (3.56)

Here the computation is similar as [8] for some terms, but some additional work is
required for the terms coming from the nonlinearity of Mρ,Ω in ρ and the operators P
and R.

We give the result of the computations under the form of a proposition :

Proposition 1 (Id − Ω ⊗ Ω)X = 0, where X is given in (3.56), is equivalent to

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (3.57)

where

λ(ρ) =
1

α
+ ρ

α̇

α

(
(1 − n κ̃ d) 〈cos θ〉fMα

− 〈cos θ〉Mα
+ κ̃ ν〈sin2 θ〉fMα

)
, (3.58)

c2(ρ) = (1 − nκ d) 〈cos θ〉fMα
− κ ν〈cos2 θ〉fMα

, (3.59)

with, if we are in dimension n (for n = 2 or n = 3) :

〈γ(cos θ)〉fMα
=

∫ π

0
γ(cos θ)hρ(cos θ)eα(ρ) cos θ sinn θ dθ∫ π

0
hρ(cos θ)eα(ρ) cos θ sinn θ dθ

. (3.60)

This is actually the last part of theorem 1, with a precise definition for coefficients c2
and λ, and this ends the derivation of the continuum model (2.11)-(2.12).

The computations to get this result are given in Annex A.1.2, we just detail briefly
here the way we do it. The idea is first to get rid of the derivatives in ω coming from the
operators P and R with an integration by parts on the sphere, and then to use chain rule
to obtain an expression of the form

X =
∑

Ai

(∫

ω∈S

γi(ω · Ω)ω⊗ji Mρ,Ωdω

)
, (3.61)

where Ai are simple linear operations only depending on the time and space derivatives
of ρ and Ω (like taking the scalar product with ∇xρ, for example), and γi are functions
involving hρ for instance.

Finally we compute (Id − Ω ⊗ Ω)
∫

ω∈S
γ(ω · Ω)ω⊗jMρ,Ω dω in spherical (or polar) co-

ordinates in a basis where the last element is Ω, which simplifies a lot of terms.

Remark 3.3.3 Here, we only give the results obtained in the case where ν depends on ω·Ω
(and not on ρ) and where d is a constant. We get the same results, except that the
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constants are given (with analogous definitions) by :

c1 = 〈cos θ〉Mbα
(3.62)

c2 =
〈
cos θ(1 − κ(ν cos θ − ν ′ sin2 θ))

〉
fMbα

− κd

〈
n cos θ +

ν ′

ν
((n+ 2) cos2 θ − 1) − ν ′′

ν
cos θ sin2 θ

〉

fMbα

,
(3.63)

λ = d

〈
1

ν

〉

fMbα

. (3.64)

Since ν is supposed to be positive, the constant λ is positive, and we will see in the
next section that its possible change of sign with the dependence on ρ is important. This
is why we focus on the dependance on ρ and not in ω · Ω in this article.

4 Properties of the macroscopic model

4.1 Hyperbolicity

The main result about model (2.11)-(2.12) is that if d or ν depends on ρ, the model may
lose hyperbolicity in some regions of the state space.

It is not possible to do another scaling to get rid of c1 (and have a more simple analysis
of the system), like in [8], because c1 depends on ρ.

We consider waves travelling along one direction, and denote by θ the angle between Ω

and this direction. If we write c̃1(ρ) =
d(ρc1(ρ))

dρ
, we have the following statement :

Theorem 2 If λ(ρ) > 0, then the system (2.11)-(2.12) is hyperbolic. And if λ < 0, this
system is hyperbolic if and only if

| tan θ| < |c2 − c̃1|
2
√
−λc1

. (4.65)

Here are the graphics of the boundary of the region of hyperbolicity (for θ ∈ [0, π
2
],

the system is hyperbolic in the lower part of the area delimited by the curve, and is not
hyperbolic in the upper part) for ν of the form ρβ , for different values of parameters d, β, κ
and κ̃.
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Before giving a proof of this theorem, we will discuss the interest and the problems
due to the non-hyperbolicity.

The first thing to remark is that the model is not always well-posed. Indeed, in general,
we cannot ensure that a solution will stay in the region of hyperbolicity for all time.

The property of hyperbolicity is linked with the fact that perturbation propagate
with finite speed. Here the presence of a region of ellipticity means that we could have
propagation with infinite speed across this region.

This leads to a second remark : it may be possible to construct non-classical shocks,
using the crossing of a zone of non-hyperbolicity, see [14], and [13].

The interest is that me may construct some travelling waves, as observed in [5]. Ac-
tually we did not manage to construct such solutions yet, this is part of our future work.

We should also construct models with formation of coherent structures from such
non-hyperbolic models, if we could use stabilisation with diffusion.

Here the expansion at higher order in ε in this model, in order to obtain diffusion
terms in the macroscopic model becomes too much complicated to perform some study.

Proof of theorem 2
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We compute, in dimension 3, in an fixed cartesian coordinate system (Ω1,Ω2,Ω3) and
use spherical coordinates (θ, φ) in this system. Then, Ω = (sin θ cosφ, sin θ sinφ, cos θ).
A simple algebra shows that (ρ, θ, φ) satisfy the system

∂tρ+ ∂x(ρc1(ρ) sin θ cosφ) + ∂y(ρc1(ρ) sin θ sin φ) + ∂z(ρc1(ρ) cos θ) = 0. (4.66)

∂tθ + c2(ρ)(sin θ cosφ ∂xθ + sin θ sinφ ∂yθ + cos θ∂zθ)+

+ λ (cos θ cosφ ∂x ln ρ+ cos θ sinφ ∂y ln ρ− sin θ ∂z ln ρ) = 0. (4.67)

∂tφ+ c2(ρ)(sin θ cosφ ∂xφ+ sin θ sinφ ∂yφ+ cos θ∂zφ)+

+ λ (− sin θ sinφ ∂x ln ρ+ sin θ cosφ ∂y ln ρ) = 0. (4.68)

Supposing that ρ, θ, φ are independent of x and y amounts to looking at waves which
propagate in the z direction at a solid angle (θ, φ) with the velocity director Ω. In this
geometry, the system reads :

∂tρ+ c̃1(ρ) cos θ ∂zρ− c1(ρ)ρ sin θ ∂zθ = 0. (4.69)

∂tθ + c2(ρ) cos θ ∂zθ − λ sin θ ∂z ln ρ = 0. (4.70)

∂tφ+ c2(ρ) cos θ ∂zφ = 0, (4.71)

where c̃1(ρ) =
d(ρc1(ρ))

dρ
= c1(ρ) + ρα̇

(
〈cos2 θ〉Mα

− 〈cos θ〉2Mα

)
.

This is a first order system of the form



∂tρ

∂tθ

∂tφ


+ A(ρ, θ, φ)




∂zρ

∂zθ

∂zφ


 = 0, (4.72)

with

A(ρ, θ, φ) =




c̃1(ρ) cos θ −c1(ρ)ρ sin θ 0
−λ sin θ

ρ
c2(ρ) cos θ 0

0 0 c2(ρ) cos θ


 , (4.73)

and this system is hyperbolic in case λ > 0. The eigenvalues γ± et γ0 are given by

γ0 = c cos θ, γ± =
1

2

[
(c̃1 + c2) cos θ ±

(
(c2 − c̃1)

2 cos2 θ + 4λc1 sin2 θ
)1/2
]
, (4.74)

In case of dimension 2, we get the same thing with only the eigenvalues γ±.
Now if λ < 0, asking γ± to be real is exactly equivalent to the equation (4.65), and

this ends the proof. ⋄

4.2 Influence of the anisotropy

The influence of the anisotropy on the final macroscopic model is only visible through the
values of the speed c2 and the parameter λ.

So this can have an impact on the regions of non-hyperbolicity, and the behaviour of
the information on the orientation. In annex A.2, we perform an asymptotic study of this
coefficients, when the noise is small.

If we suppose that ρ
α̇(ρ)

α(ρ)
is bounded with respect to d(ρ) (for instance a power law

for α), and that d(ρ) is a small parameter, we get the following expansions :
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c1(ρ) = 1 − 1

2ν(ρ)
d(ρ) +O(d2) (4.75)

c2(ρ) = 1 − κν(ρ) −
(

3

2ν(ρ)
− κ

)
d(ρ) +O(d2) (4.76)

λ(ρ) =
d(ρ)

ν(ρ)

(
1 − ρ

α̇(ρ)

α(ρ)
(1 − κ̃ν(ρ))

)
+O(d2). (4.77)

First, this shows that in some cases we have actually λ < 0, for instance when ν = ν0ρ
β

with β > 1, κ̃ = 0 and d is a sufficiently small constant.
Then we see that when the noise is small, the difference between c1 and c2 is enhanced

when κ is a large positive constant. This can be interpreted as follows : if the observation
kernel is strongly directed forward, then the information on the orientation moves rapidly
backward. This could be compared to results on modelling of traffic flows, where the speed
of a congested phase depends on the distance of anticipation of the drivers (see [2, 4, 7]).

Remark 4.2.1 We can also do an expansion in the more general case where ν depends
on ρ and ω ·Ω. In annex A.2.1 we give tips to perform this expansion. Here we only give
the final expansion in the case where ν and d do not depend on ρ. In this case we can

suppose ν(1) = 1 (up to a rescaling), and denote γ =
dν

d(ω · Ω)

∣∣∣∣
ω·Ω=1

. We finally get an

expansion, as d→ 0, of the coefficients given by (3.62)-(3.64), with n = 2 :

c1(d) = 1 − d

2
+O(d2), (4.78)

c2 = 1 − κ +

(
(1 +

3

2
γ)κ− 3

2

)
d+O(d2), (4.79)

λ = d+
3

2
γ d2 +O(d3). (4.80)

5 Conclusion

In this article, we have seen that the introduction of a dependance on some local density for
some parameters at the microscopic level implies a significant change in the macroscopic
limit : the possible loss of hyperbolicity in some regimes. The introduction of a non-
isotropic kernel of observation is not sufficient to imply a strong difference of behavior for
the continuum model. However, it enhances some properties, as the differences between
the velocity of the fluid, and the velocity of the information on the orientation.

It is important to note that the method introduced in [8] works to derive the macro-
scopic model. In particular the concept of generalized collisional invariants is still valid,
with some adaptations.

Some questions are left open. The limit here is formal, and we are still looking for
an appropriate functional framework to obtain more precise results of convergence. The
rigorous obtention of the kinetic version of the dynamical system of particles is also part
of our future work.

Finally, the next step to this study consists in some numerical simulations, in order
to see how the difference between c2 and c1 can be observed in simulations of the discrete
dynamical system, or how the particles behave in the regions of non-hyperbolicity.
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A Annex

A.1 Proof of some statements for section 3

A.1.1 Expansion of the local density and orientation

We recall the expressions of Ω
ε

and ρε :

Ω
ε
(x, ω, t) =

J
ε
(x, ω, t)

|Jε
(x, ω, t)|

, (A.81)

J
ε
(x, ω, t) =

∫

y∈Rn, υ∈S

K

( |x− y|
ε

,
y − x

|x− y| · ω
)
υ f ε(y, υ, t)

dy

εn
dυ , (A.82)

ρε(x, ω, t) =

∫

y∈Rn, υ∈S

K̃

( |x− y|
ε

,
y − x

|x− y| · ω
)
f ε(y, υ, t)

dy

εn
dυ , (A.83)

Lemma 1 We have the following expansions :

Ω
ε
(x, ω, t) = Ωε(x, t) + εκ (ω · ∇x) Ωε(x, t) +O(ε2) , (A.84)

ρε(x, ω, t) = ρε(x, t) + εκ̃ ω · ∇xρ
ε(x, t) +O(ε2) , (A.85)

where κ is a constant, depending on the observation kernel K, and

Ωε(x, t) =
jε(x, t)

|jε(x, t)| , with jε(x, t) =

∫

υ∈S2

υ f ε(x, υ, t) dυ , (A.86)

ρε(x, t) =

∫

υ∈S2

f ε(x, υ, t) dυ , (A.87)

Proof

After change of variable y = x+ εξ, let us expand f at first order in ε in (A.82). We
get

J
ε
(x, ω, t) =

∫

ξ∈Rn, υ∈S

K(|ξ|, |ξ|−1 ξ ·ω) υ (f ε(x, υ, t)+ ε ξ ·∇xf
ε(x, υ, t)+O(ε2)) dξ dυ . (A.88)

We have to compute

K0(ω) =

∫

ξ∈Rn

K(|ξ|, |ξ|−1 ξ ·ω)dξ and K1(ω) =

∫

ξ∈Rn

K(|ξ|, |ξ|−1 ξ ·ω) ξ dξ. (A.89)

For any rotation R, change of variable ξ̃ = R(ξ) gives on one hand

K0(ω) = K0(R(ω)) , (A.90)

and so K0 does not depend on ω.
On the other hand, we get

R(K1(ω)) = K1(R(ω)) , (A.91)
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which shows that K1(ω) is a vector invariant by any rotation of axe ω, so it is parallel
to ω. Fix one vector e of S, we have K1(e) = αe. Then taking one rotation mapping ω
to e, we get R(K1(ω)) = K1(e) = αe = R(αω), so K1(ω) = αω.

Let then κ =
α

K0
, and we have

J
ε
(x, ω, t)

K0
=

∫

υ∈S

υ (f ε(x, υ, t) + ε κ ω · ∇xf
ε(x, υ, t)) dυ +O(ε2) (A.92)

= jε(x, t) + ε κ (ω · ∇x)j
ε(x, t) +O(ε2) . (A.93)

Putting (A.93) into (A.81), we get

∣∣∣∣∣
J

ε
(x, ω, t)

K0

∣∣∣∣∣

2

= |jε(x, t)|2 + 2 ε κ jε(x, t) · (ω · ∇x)j
ε(x, t) +O(ε2) , (A.94)

so

∣∣∣∣∣
J

ε
(x, ω, t)

K0

∣∣∣∣∣

−1

=
1

|jε(x, t)|

(
1 − ε κ

|jε(x, t)|2 j
ε(x, t) · (ω · ∇x)j

ε(x, t)

)
+O(ε2) , (A.95)

and finally

Ω
ε
(x, ω, t) =

jε(x, t)

|jε(x, t)|

+ ε κ

(
(ω · ∇x)j

ε(x, t)

|jε(x, t)| − jε(x, t)

|jε(x, t)| ·
(ω · ∇x)j

ε(x, t)

|jε(x, t)|
jε(x, t)

|jε(x, t)|

)
+O(ε2).

(A.96)

But we also have

(ω · ∇x)Ω
ε(x, t) =

(ω · ∇x)j
ε(x, t)

|jε(x, t)| +

(
ω · ∇x

(
1

|jε(x, t)|

))
jε(x, t) (A.97)

=
(ω · ∇x)j

ε(x, t)

|jε(x, t)| − 1

|jε(x, t)|3 (((ω · ∇x)j
ε(x, t)) · jε(x, t)) jε(x, t) .

(A.98)

Therefore
Ω

ε
(x, ω, t) = Ωε(x, t) + εκ (ω · ∇x) Ωε(x, t) +O(ε2) , (A.99)

and this is the first part of the lemma.
After the same change of variable y = x + εξ and expansion in (A.83), and using the

same techniques, and the normalisation condition (2.8), we get

ρε(x, ω, t) =

∫

υ∈S

κ̃f ε(x, υ, t) + ε K̃1(ω) · ∇xf
ε(x, υ, t) dυ +O(ε2) (A.100)

= ρε(x, t) + ε κ̃ ω · ∇xρ
ε(x, t) +O(ε2) . (A.101)

This is the second part of the lemma. ⋄
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A.1.2 Proof of Proposition 1

We write α for α(ρ) in the following.
We have (Id − Ω ⊗ Ω)X = 0, where

X =

∫

ω∈S

(∂t(Mρ,Ω) + ω · ∇x(Mρ,Ω) + κP (Mρ,Ω) + κ̃R(Mρ,Ω)) hρ(ω · Ω)ω dω . (A.102)

We first transform the terms with P and R, with an integration by parts on the sphere
to get rid of the partial derivatives with respect to ω.

We recall that P (Mρ,Ω) = ν∇ω · (Mρ,ΩGΩ)(ω), with

GΩ(ω) = (∇xΩ)Tω − (∇xΩ : ω ⊗ ω)ω. (A.103)

Integrating by parts, we get, for a function a and a vector field A on the sphere S,

∫

ω∈S

∇ω · A(ω) a(ω · Ω)ωdω = −
∫

ω∈S

(a(ω · Ω)A(ω) + A(ω) · Ω a′(ω · Ω)ω) dω (A.104)

So we have
∫

ω∈S

P (ρMρ,Ω)hρ(cos θ)ωdω = −ν
∫

ω∈S

Bρ,Ω(ω)hMρ,Ω dω, (A.105)

where the argument Ω ·ω of the functions Mρ,Ω and hρ is written cos θ, and omitted when
no confusion is possible. Here the function BΩ(ω) is given by

BΩ(ω) = hρGΩ(ω) + h′α Ω ·GΩ(ω)ω (A.106)

= hρ (∇xΩ)Tω − (hρ + cos θh′α)(∇xΩ : ω ⊗ ω)ω, (A.107)

because ((∇xΩ)T ω) · Ω = ω · (∇xΩ Ω) = ω · (1
2
∇x|Ω|2) = 0.

We have R(Mρ,Ω) = ∇ω ·
(
(ω · ∇xρ)(ν̇FΩMρ,Ω − ḋ∇ωMρ,Ω)

)
(ω).

But since ∇ωMρ,Ω = αMρ,Ω (Id − ω ⊗ ω)Ω, we get R(Mρ,Ω) = dα̇∇ω · (Mρ,ΩHρ,Ω)(ω),
with

Hρ,Ω(ω) = (ω · ∇x)(Id − ω ⊗ ω)Ω = ω · ∇xρΩ − cos θ ω ⊗ ω∇xρ . (A.108)

We get with the same computations,

∫

ω∈S

R(ρMρ,Ω)hρ(cos θ)ωdω = −d α̇
∫

ω∈S

Eρ,Ω(ω)Mρ,Ω dω, (A.109)

where the function Eρ,Ω(ω) is given by

Eρ,Ω(ω) = hρHρ,Ω(ω) + h′α Ω ·Hρ,Ω(ω)ω (A.110)

= hρ ω · ∇xρΩ + (sin2 θ h′α − cos θ hρ)ω ⊗ ω∇xρ . (A.111)

Now we will use the chain rule to have all the partial derivatives with respect to t

and x applied only on ρ and Ω.
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We have

∂t(Mρ,Ω) + ω · ∇x(Mρ,Ω) =

Mρ,Ω

[
(∂tρ+ ω · ∇xρ)

∂

∂ρ
ln(Mρ,Ω) +

(
∂

∂Ω
ln(Mρ,Ω)

)
(∂tΩ + (ω · ∇x)Ω)

]
.

(A.112)

Elementary differential geometry gives the derivative of lnMρ,Ω with respect to Ω
acting on a tangent vector dΩ to the sphere as follows:

∂ lnMρ,Ω

∂Ω
(dΩ) = αω · dΩ. (A.113)

Term in
∂

∂ρ
:

∂ lnMρ,Ω

∂ρ
=

d

dρ
lnC(ρ) +

dα

dρ
ω · Ω (A.114)

=
1

ρ
− d

dρ
ln

(∫

S

eα ω·Ωdω

)
+ α̇ ω · Ω (A.115)

=
1

ρ
− α̇

∫
S
ω · Ωeα ω·Ωdω∫
S
eα ω·Ωdω

+ α̇ ω · Ω (A.116)

=
1

ρ
+ α̇(cos θ − 〈cos θ〉Mα

), (A.117)

Define

γ1(ρ, cos θ) =

[
1

ρ
+ α̇ (cos θ − 〈cos θ〉Mα

)

]
hρ, (A.118)

γ2(ρ, cos θ) = αhρ, (A.119)

γ3(ρ, cos θ) = κ dα (hρ + cos θh′α), (A.120)

γ4(ρ, cos θ) = κ̃ d α̇ (sin2 θ h′α − cos θ hρ), (A.121)

γ5(ρ, cos θ) = κ̃ d α̇ hρ, (A.122)

and we get

X =

(∫

ω∈S

γ1(ρ, cos θ)ωMρ,Ω dω

)
∂tρ

−
(∫

ω∈S

γ5(ρ, cos θ)ωMρ,Ω dω

)
· ∇xρΩ

− κ d (∇xΩ)T

(∫

ω∈S

γ2(ρ, cos θ)ωMρ,Ω dω

)

+

(∫

ω∈S

γ2(ρ, cos θ)ω ⊗ ωMρ,Ω dω

)
∂tΩ

+

(∫

ω∈S

(γ1 − γ4)(ρ, cos θ)ω ⊗ ωMρ,Ω dω

)
∇xρ

+

(∫

ω∈S

(γ2 + γ3)(ρ, cos θ)ω ⊗ ω ⊗ ωMρ,Ω dω

)
: ∇xΩ.

(A.123)
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We denote by X1, X2, X3, X4, X5 and X6 these six terms. To do the computation we
write ω in spherical coordinates (or polar in dimension 2).

First X2, which is parallel to Ω, does not contribute to (Id − Ω ⊗ Ω)X.

Then,

∫

ω∈S

γ MρΩ
ω dω = 〈ρ cos θ γ〉Mα

Ω, and since (∇xΩ)T Ω = (Ω·∇x)Ω is orthogonal

to Ω, we have :

(Id − Ω ⊗ Ω)X1 = 0, (A.124)

(Id − Ω ⊗ Ω)X3 = X3 = κ d ρ 〈cos θ γ2〉Mα
(Ω · ∇x)Ω. (A.125)

For X4 and X5, we have to compute I2(γ) =
∫

ω∈S
ω ⊗ ω γMρ,Ω dω.

We get

∫

ω∈S

ω ⊗ ω γMρ,Ω dω =
ρ

n− 1
〈sin2 θ γ〉Mα

(Id − Ω ⊗ Ω) + ρ〈cos2 θ γ〉Mα
Ω ⊗ Ω , (A.126)

where n is the dimension (in dimension 3, we get a 1
2

coefficient for the term in sin2 θ,
coming from the mean of cos2 φ or sin2 φ in spherical coordinates).

Taking the orthogonal component to Ω, we only keep the first term. Knowing that ∂tΩ
is orthogonal to Ω, we finally get :

(Id − Ω ⊗ Ω)X4 =
ρ

n− 1
〈sin2 θ γ2〉Mα

∂tΩ (A.127)

(Id − Ω ⊗ Ω)X5 =
ρ

n− 1
〈sin2 θ (γ1 − γ4)〉Mα

(Id − Ω ⊗ Ω)∇xρ , (A.128)

We have to compute the term with X6. Same kind of computation, a little bit more
complicated.

∫

ω∈S

ω ⊗ ω ⊗ ω γMρ,Ω dω =
ρ

n− 1
〈sin2 θ cos θ γ〉Mα

((Id − Ω ⊗ Ω) ⊗ Ω+

+ Ω ⊗ (Id − Ω ⊗ Ω) + [(Id − Ω ⊗ Ω) ⊗ Ω ⊗ (Id − Ω ⊗ Ω)]:24)

+ ρ〈cos3 θ γ〉Mα
Ω ⊗ Ω ⊗ Ω,

(A.129)

where the index ’: 24’ indicates contraction of the indices 2 and 4. In other words, the
tensor element (

∫ 2π

0
ω ⊗ ω ⊗ ω dφ)ijk equals π sin2 θ cos θ when (i, j, k) equals any of the

triples (1, 1, 3), (2, 2, 3), (3, 1, 1), (3, 2, 2), (1, 3, 1), (2, 3, 2), equals 2π cos3 θ when (i, j, k)
is the triple (3, 3, 3) and is equal to 0 otherwise (in dimension 3, and the analogous in
dimension 2). In fact we want to compute X6 =

∫
ω∈S

(ω⊗ω : ∇xΩ) γ2 ωMρ,Ω dω, so, using
Einstein’s summation convention, the following formula follows:

X6 =

(∫

ω∈S

ω ⊗ ω ⊗ ω γMρ,Ω dω

)

ijk

∂xj
Ωk =

=
ρ

n− 1
〈sin2 θ cos θ γ〉Mα

((Id − Ω ⊗ Ω)ijΩk∂xj
Ωk + Ωi(Id − Ω ⊗ Ω)jk∂xj

Ωk+

+ (Id − Ω ⊗ Ω)ikΩj∂xj
Ωk)

+ ρ〈cos3 θ γ〉Mα
ΩiΩjΩk∂xj

Ωk.

(A.130)
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But since Ω is a unit vector, Ωk∂xj
Ωk = 1

2
∂xj

(|Ω|2) = 0 and the first and last terms in the
sum vanish. The expression simplifies into:

X6 =
ρ

n− 1
〈sin2 θ cos θ γ〉Mα

((Id − Ω ⊗ Ω) : (∇xΩ)) Ω+

+
ρ

n− 1
〈sin2 θ cos θ γ〉Mα

(Id − Ω ⊗ Ω)((Ω · ∇x)Ω).
(A.131)

The first term is parallel to Ω. Besides, since Ω is a unit vector, (Ω · ∇)Ω is normal to Ω.
So, we finally get

(Id − Ω ⊗ Ω)X6 =
ρ

n− 1
〈sin2 θ cos θ (γ2 + γ3)〉Mα

(Ω · ∇x)Ω. (A.132)

So we have that (Id − Ω ⊗ Ω)X = 0, is equivalent to

ρ

n− 1
〈sin2 θ (γ1 − γ4)〉Mα

(Id − Ω ⊗ Ω)∇xρ+
ρ

n− 1
〈sin2 θ γ2〉Mα

∂tΩ

+
ρ

n− 1
〈sin2 θ cos θ (γ2 + γ3) − (n− 1)κ d cos θγ2〉Mα

(Ω · ∇x)Ω = 0.
(A.133)

For any function γ(cos θ) and σ(cos θ), we denote by 〈γ(cos θ)〉σMα
the mean of γ

following the “weight” σMρ,Ω, (which is consistant with our previous definition of 〈·〉Mα
)

so we have 〈γ(cos θ)〉σMα
=

〈σ(cos θ)γ(cos θ)〉Mα

〈σ(cos θ)〉Mα

.

We have the expression in dimension n (for n = 2 or n = 3) :

〈γ(cos θ)〉σMα
=

∫ π

0
γ(cos θ)σ(cos θ)eα(ρ) cos θ sinn−2 θ dθ∫ π

0
σ(cos θ)eα(ρ) cos θ sinn−2 θ dθ

. (A.134)

Dividing by 1
n−1

〈γ2 sin2 θ〉Mα
in (A.133) we finally get :

ρ (∂tΩ + c2(Ω · ∇)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0, (A.135)

where the coefficients λ(ρ) and c2(ρ) are given by λ(ρ) = ρ

〈
γ1 − γ4

γ2

〉

sin2 θhρMα

and

by c2(ρ) =

〈
cos θ

(
1 +

γ3

γ2

)
− (n− 1)κ d

cos θ

sin2 θ

〉

sin2 θhρMα

.

So we have

λ =
1

α
+ ρ

α̇

α

(
(1 + κ̃ d) 〈cos θ〉sin2 θhρMα

− κ̃ d

〈
sin2 θ

h′α
hρ

〉

sin2 θhρMα

− 〈cos θ〉Mα

)
, (A.136)

c2 = (1 + κ d) 〈cos θ〉sin2 θhρMα
+ κ d

〈
cos2 θ

h′α
hρ

− (n− 1)
cos θ

sin2 θ

〉

sin2 θhρMα

. (A.137)

We compute

〈
γ(cos θ)

h′α
hρ

〉

sin2 θhρMα

using (A.134) and an integration by parts (we inte-

grate the factor sin θ h′α(cos θ), and since sinn−1 θ hρ(θ) cancels at θ = 0 and θ = π, the
boundary terms vanish) and we get

〈
γ(cos θ)

h′α
hρ

〉

sin2 θhρMα

=

〈
n− 1

sin2 θ
cos θγ − α γ − γ′

〉

sin2 θhρMα

. (A.138)

22



Now we can simplify the expressions above (taking γ(x) = x2 for c2 and γ(x) = 1−x2

for λ).

λ =
1

α
+ ρ

α̇

α

(
(1 − n κ̃ d) 〈cos θ〉sin2 θhρMα

− 〈cos θ〉Mα
+ κ̃ ν〈sin2 θ〉sin2 θhρMα

)
, (A.139)

c2 = (1 − nκ d) 〈cos θ〉sin2 θhρMα
− κ ν〈cos2 θ〉sin2 θhρMα

. (A.140)

A.2 Asymptotics of the coefficients

We try to obtain an asymptotic expansion of c1, c2 and λ when the noise is small.
We recall the expressions (3.55), (3.59), (3.58) here :

c1(ρ) = 〈cos θ〉Mα(ρ)
, c2(ρ) = (1 − nκ d(ρ)) 〈cos θ〉fMα(ρ)

− κ ν(ρ)〈cos2 θ〉fMα(ρ)
, (A.141)

λ(ρ) =
1

α(ρ)
+

ρ
α̇(ρ)

α(ρ)

(
(1 − n κ̃ d(ρ)) 〈cos θ〉fMα(ρ)

− 〈cos θ〉Mα(ρ)
+ κ̃ ν(ρ)〈sin2 θ〉fMα(ρ)

)
. (A.142)

with, if we are in dimension n (for n = 2 or n = 3) :

〈γ(cos θ)〉Mα(ρ)
=

∫ π

0
γ(cos θ)eα(ρ) cos θ sinn−2 θ dθ∫ π

0
eα(ρ) cos θ sinn−2 θ dθ

, (A.143)

〈γ(cos θ)〉fMα(ρ)
=

∫ π

0
γ(cos θ)hρ(cos θ)eα(ρ) cos θ sinn θ dθ∫ π

0
hρ(cos θ)eα(ρ) cos θ sinn θ dθ

. (A.144)

Since we do not have an explicit expression of hρ in dimension 3, the computations are
not easy in that case, we do not have a lot of information on the solution of the elliptic
problem (3.46).

So from now we will only study the case of dimension 2.
We only have to study the averages 〈cos θ〉Mα

, 〈cos θ〉fMα
, and 〈cos2 θ〉fMα

as α → ∞.
This expressions only depend on α, and we can replace hρ(cos θ) sin θ in (A.144) by ψα,
which we recall the explicit expression (3.49) obtained in dimension 2 :

ψα(θ) =
π

α

∫ θ

0
e−α cos ϕdϕ∫ π

0
e−α cos ϕdϕ

− θ

α
. (A.145)

We will show the following result :

Proposition 2 When α→ ∞, we have the following expansions :

〈cos θ〉Mα
=

∫ π

0
cos θeα cos θ dθ∫ π

0
eα cos θ dθ

= 1 − 1

2α
+O

(
1

α2

)
, (A.146)

〈cosk θ〉fMα
=

∫ π

0
cosk θ ψα(θ)eα cos θ sin θ dθ∫ π

0
ψα(θ)eα cos θ sin θ dθ

= 1 − 3k

2α
+O

(
1

α2

)
. (A.147)
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Now if we suppose that ν(ρ) and ρ
α̇(ρ)

α(ρ)
are of order 1 (for instance a power law for α)

, and that d(ρ) is a small parameter, we can put these expansions in (A.141)-(3.58), and
expand in term of the noise d(ρ). We get

c1(ρ) = 1 − 1

2ν(ρ)
d(ρ) +O(d2) (A.148)

c2(ρ) = 1 − κν(ρ) −
(

3

2ν(ρ)
− κ

)
d(ρ) +O(d2) (A.149)

λ(ρ) =
d(ρ)

ν(ρ)

(
1 − ρ

α̇(ρ)

α(ρ)
(1 − κ̃ν)

)
+O(d2) (A.150)

Proof of proposition 2.
We will use Watson’s lemma, the proof of which is elementary, see [3] for examples

and variants :

Lemma 2

Let p be a continuous fonction on ]0, T ], with T > 0. Let Iα(p) =

∫ T

0

p(t)e−αtdt.

Suppose that p(t) = tβ

(
N−1∑

k=0

akt
k +O(tN)

)
, with β > −1.

Alors Id(p) = α−β−1

(
N−1∑

k=0

akΓ(β + k + 1)α−k +O(α−N)

)
.

Now we do the change of variable t = 1 − cos θ in the integrals.
We have

m1(α) =

∫ π

0

eα cos θ dθ = eα

∫ 2

0

1√
2t− t2

e−αt dt (A.151)

=
eα

√
2α

(
Γ(1

2
) +

1

4α
Γ(3

2
) +O

(
1

α2

))
, (A.152)

and

m2(α) =

∫ π

0

cos θeα cos θ dθ = eα

∫ 2

0

1 − t√
2t− t2

e−αt dt (A.153)

=
eα

√
2α

(
Γ(1

2
) − 3

4α
Γ(3

2
) +O

(
1

α2

))
, (A.154)

Since Γ(3
2
) = 1

2
Γ(1

2
), we get 〈cos θ〉Mα

=
m2(α)

m1(α)
= 1 − 1

2α
+O

(
1

α2

)
.

Let φα(θ) = π

∫ θ

0
eα cos ϕdϕ∫ π

0
eα cos ϕdϕ

for convenience.

We have 〈cosk θ〉fMα
=

∫ π

0
cosk θ (θ − φα(θ))eα cos θ sin θ dθ∫ π

0
(θ − φα(θ))eα cos θ sin θ dθ

.
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Again we compute

m̃k(α) =

∫ π

0

cosk θ (θ − φα(θ))eα cos θ sin θ dθ (A.155)

= eα

∫ 2

0

(1 − t)k cos−1(1 − t)e−αt dt− eα

∫ 2

0

φα(cos−1(1 − t))e−αt dt (A.156)

We have first that

|φα(cos−1(1 − t))| =

∣∣∣∣∣π
∫ θ

0
eα cos ϕdϕ∫ π

0
eα cos ϕdϕ

∣∣∣∣∣ (A.157)

6
π cos−1(1 − t)e−α(1−t)

m1(α)
(A.158)

6 C
√
αeαt−2α (A.159)

So

∫ 2

0

φα(cos−1(1 − t))e−αt dt = O

(
1

αN

)
for all N > 0.

Now since cos−1(1 − t) = 2 sin−1

√
t

2
=

√
2t

(
1 +

t

12
+O(t2)

)
, we can apply the

lemma and we get m̃k(α) =
√

2αeα

(
Γ(3

2
) + ( 1

12
− k)

1

α
Γ(5

2
) +O

(
1

α2

))
.

Then since Γ(5
2
) = 3

2
Γ(3

2
), and 〈cosk θ〉fMα

=
m̃k

m̃0

, we get the result (A.147) and this

ends the proof. ⋄

A.2.1 Tips for the general case

Here we give some tips to perform an asymptotic study of the coefficients when ν also
depend on ω · Ω. We are only able to do it in dimension 2.

We have to compute expressions of the form :

〈γ(cos θ)〉Mbα
=

∫ π

0
γ(cos θ)ebα(ρ,cos θ) dθ∫ π

0
ebα(ρ,cos θ) dθ

, (A.160)

〈γ(cos θ)〉fMbα
=

∫ π

0
γ(cos θ)ψbα(θ)ebα(ρ,cos θ) sin θ dθ∫ π

0
ψbα(θ)ebα(ρ,cos θ) sin θ dθ

, (A.161)

where

α̂(ρ, µ) =

∫ µ

0

ν(ρ, τ)

d(ρ)
dτ (A.162)

ψbα(θ) = ψ0
bα(θ) − ψ0

bα(π)

ψ∞
bα (π)

ψ∞
bα (θ), (A.163)

with

ψ0
bα(θ) = −

∫ θ

0

(∫ π

ϕ

ebα(ρ,cos φ) sinφ dφ

)
e−bα(ρ,cos ϕ) dϕ, (A.164)

ψ∞
bα (θ) =

∫ θ

0

e−bα(ρ,cos ϕ) dϕ . (A.165)
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We want an expansion for a given ρ, when d(ρ) is supposed to be a small parameter. So
the dependance in ρ here is not important : we can write d for d(ρ), ν(cos θ) for ν(ρ, cos θ),

and
σ(cos θ)

d
for α̂(ρ, cos θ), where σ(µ) =

∫ µ

0

ν(τ)dτ .

So we just have to expand expressions of the form

∫ π

0

γ(cos θ) exp

(
σ(cos θ)

d

)
dθ

and

∫ π

0

γ(cos θ)ψ(θ) exp

(
σ(cos θ)

d

)
dθ, where ψ(θ) is given by

ψ(θ) = ψ0(θ) −
ψ0(π)

ψ∞(π)
ψ∞(θ), (A.166)

ψ0(θ) = −
∫ θ

0

(∫ π

ϕ

sinφ exp

(
σ(cos φ)

d

)
dφ

)
exp

(
−σ(cosϕ)

d

)
dϕ, (A.167)

ψ∞(θ) =

∫ θ

0

exp

(
−σ(cosϕ)

d

)
dϕ . (A.168)

The first step consists in an expansion of the form ψ(θ) =
N−1∑

i=1

gi(cos θ)di + RN,d(θ),

where RN,d is sufficiently small, and the functions gi do not depend on d. After that we

will only have to expand terms of the form

∫ π

0

γ(cos θ) exp

(
σ(cos θ)

d

)
dθ.

We integrate by parts N times the term under the integral in φ dans (A.167) :

∫ π

ϕ

sin φ exp

(
σ(cosφ)

d

)
dφ =

N∑

k=1



−fk(cosφ) exp

(
σ(cos φ)

d

)

ν(cos φ)




π

ϕ

dk+

+ dN

∫ π

ϕ

sinφfN+1(cosφ) exp

(
σ(cosφ)

d

)
dφ,

(A.169)

where the functions fn are given by the following induction relation :

f1(x) = 1 (A.170)

fn+1(x) = − d

dx

(
fn(x)

ν(x)

)
. (A.171)

So if we define

τN(θ) = −
∫ θ

0

N∑

k=1

dk fk(cosϕ)

ν(cosϕ)
dϕ

− dN

∫ θ

0

∫ π

ϕ

sinφ fN+1(cosφ) exp

(
σ(cosφ) − σ(cosϕ)

d

)
dφ dϕ,

(A.172)

we get :

ψ(θ) = τN (θ) − τN (π)

ψ∞(π)
ψ∞(θ). (A.173)
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And if we define

gi(cos θ) = −
∫ θ

0

fi(cosϕ)

ν(cosϕ)
dϕ, (A.174)

RN,d(θ) = ψ(θ) −
N−1∑

i=1

gi(cos θ)di (A.175)

we obtain with some easy estimations

|RN,d(θ)| 6 C

(
|θ|dN + exp

(
−σ(cos θ)

d

))
. (A.176)

Now it remains to expand integrals of the form

Sd(r) =

∫ π

0

r(cos θ) exp

(
σ(cos θ)

d

)
dθ. (A.177)

We do a change of variable, setting t = σ(1) − σ(cos θ), and a(t) = σ−1(σ(1) − t),
where σ−1 is the inverse function of σ (which is increasing since ν > 0, actually we
have a(t) = cos θ). We get :

Sd(r) = exp

(
σ(1)

d

)∫ σ(1)−σ(−1)

0

r(a(t))e−
t
d

ν(a(t))
√

1 − a(t)2
dt. (A.178)

To bypass problems with the upper bound of the integral, we set T = σ(1) and restrict
(since σ(−1) < 0) the integral to ]0, T ]. In any case, if θ 7→ r(cos θ) is integrable, what

remains is O(1), and so for all N , it is O(dNe
T
d ). So we have

Sd(r) = e
T
d

∫ T

0

r(a(t))e−
t
d

ν(a(t))
√

1 − a(t)2
dt+O(dNe

T
d ), ∀N. (A.179)

The function ν being positive, a has the same regularity as σ, and we can compute the

derivatives by induction. We have a′(t) = − 1

ν(a(t))
, and we realize then that a(n) nearly

satisfies the same induction relation as fn. We actually get

a(n)(t) = −fn(a(t))

ν(a(t))
, (A.180)

which gives us the Taylor expansion of a at 0 up to order N (we have a(0) = 1).

a(t) = 1 −
N∑

k=1

fn(1)

ν(1)n!
tN +O(tN+1). (A.181)

So we can now have an expansion of
r(a(t))

ν(a(t))
√

1 − a(t)2
at 0 and we can use lemma 2

(Watson’s lemma) in (A.179) to perform the last computations.
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