Roberto M Amadio 
  
Patrick Baillot 
  
Antoine Madet 
  
An Affine-Intuitionistic System of Types and Effects: Confluence and Termination

We present an affine-intuitionistic system of types and effects which can be regarded as an extension of Barber-Plotkin Dual Intuitionistic Linear Logic to multi-threaded programs with effects. In the system, dynamically generated values such as references or channels are abstracted into a finite set of regions. We introduce a discipline of region usage that entails the confluence (and hence determinacy) of the typable programs. Further, we show that a discipline of region stratification guarantees termination.

Introduction

There is a well-known connection between intuitionistic proofs and typed functional programs that goes under the name of Curry-Howard correspondence. Following the introduction of linear logic [START_REF] Girard | Linear logic[END_REF], this correspondence has been refined to include an explicit treatment of the process of data duplication. Various formalisations of these ideas have been proposed in the literature (see, e.g., [START_REF] Benton | A term calculus for intuitionistic linear logic[END_REF][START_REF] Benton | A mixed linear and non-linear logic; proofs, terms and models[END_REF][START_REF] Plotkin | Type theory and recursion[END_REF][START_REF] Maraist | Call-by-name, call-byvalue, call-by-need, and the linear lambda calculus[END_REF][START_REF] Barber | Dual intuitionistic linear logic[END_REF]) and we will focus here in particular on Affine-Intuitionistic Logic and, more precisely, on an affine version of Barber-Plotkin Dual Intuitionistic Linear Logic (DILL) as described in [START_REF] Barber | Dual intuitionistic linear logic[END_REF].

In DILL, the operation of λ-abstraction is always affine, i.e., the formal parameter is used at most once. The more general situation where the formal parameter has multiple usages is handled through a constructor '! ′ (read bang) marking values that can be duplicated and a destructor let filtering them and effectively allowing their duplication. Following this idea, e.g., an intuitionistic judgement [START_REF] Amadio | On stratified regions[END_REF] is translated into an affine-intuitionistic one (2) as follows:

y : A ⊢ λx.x(xy) : (A → A) → A (1) 
y : (∞, A) ⊢ λx.let !z = x in z!(z!y) : !(!A ⊸ A ) ⊸ A (2) 
We recall that in DILL the hypotheses are split in two zones according to their usage. Namely, one distinguishes between the affine hypotheses that can be used at most once and the intuitionistic ones that can be used arbitrarily many times. In our formalisation, we will use ′ 1 ′ for the former and ′ ∞ ′ for the latter.

Motivations

Our purpose is to explore an extension of this connection to multi-threaded programs with effects. By extending the connection, we mean in particular to design an affine-intuitionistic type system that accounts for multi-threading and side effects and further to refine the system in order to guarantee confluence (and hence determinism) and termination while preserving a reasonable expressive power. By multi-threaded program, we mean a program where distinct threads of execution may be active at the same time (as it is typically the case in concurrent programs) and by effect, we mean the possibility of executing operations that modify the state of a system such as reading/writing a reference or sending/receiving a message. We stress that our aim is not to give a purely logical interpretation of multi-threading and side-effects but rather to apply logical methods to a multi-threaded programming language with side-effects.

Contributions

We will start by introducing a simple-minded extension of the purely functional language with operators to run threads in parallel while reading/writing the store which is loosely inspired by concurrent extensions of the ML programming language such as [START_REF] Giacalone | FACILE: A symmetric integration of concurrent and functional programming[END_REF] and [START_REF] Reppy | CML: A higher-order concurrent language[END_REF] with an interaction mechanism based on (asynchronous) channel communication. In particular, we rely on an operator get(x) to read a value from an address (channel) x and on two operators set(x, V ) and pset(x, V ) to write a value V into an address x, in a volatile (value read is consumed) or persistent (value read is still available) way, respectively. Following a rather standard practice (see, e.g., [START_REF] Lucassen | Polymorphic effect systems[END_REF][START_REF] Tofte | Region-based memory management[END_REF]), we suppose that dynamically generated values such as channels or references are abstracted into a finite number of regions. This abstraction is reflected in the type system where the type of an address depends on the region with which the address is associated. Thus we write Reg r A for the type of addresses containing values of type A and relating to the region r of the store. Our first and probably most difficult contribution, due to the interaction of the bang modality ′ ! ′ with regions, is to design a system where types and usages are preserved by reduction.

The resulting functional-concurrent typed language is neither confluent nor terminating. However, it turns out that there are reasonable strategies to recover these properties. The general idea is that confluence can be recovered by introducing a proper discipline of region usage while termination can be recovered through a discipline of region stratification.

The notion of region usage is reminiscent of the one of hypotheses usage arising in affine-intuitionistic logic. Specifically, we distinguish the regions that can be used at most once to write and at most once to read from those that can be used at most once to write and arbitrarily many times to read.

The notion of region stratification is based on the idea that values stored in a region should only produce effects on smaller regions. The implementation of this idea requires a substantial refinement of the type system that has to predict the effects potentially generated by the evaluation of an expression. This is where type and effect systems, as introduced in [START_REF] Lucassen | Polymorphic effect systems[END_REF], come into play.

It turns out that the notions of region usage and region stratification combine smoothly, leading to the definition of an affine-intuitionistic system of types and effects. The system has affine-intuitionistic logic as its functional core and it can be used to guarantee the determinacy and termination of multi-threaded programs with effects. We stress that the nature of our contribution is mainly methodological and that more theoretical and experimental work is needed to arrive at a usable programming language. One promising direction is to add inductive data types and to extend the language to a synchronous/timed framework (cf. [START_REF] Amadio | On stratified regions[END_REF][START_REF] Boudol | Typing termination in a higher-order concurrent imperative language[END_REF]). In this framework, both confluence (determinism) and termination are valuable properties.

Related Work

Girard, through the introduction of linear logic [START_REF] Girard | Linear logic[END_REF], has widely promoted a finer analysis of the structural rules of logic. There have been various attempts at producing a functional programming language based on these ideas and with a reasonably handy syntax (see, e.g., [START_REF] Benton | A term calculus for intuitionistic linear logic[END_REF][START_REF] Benton | A mixed linear and non-linear logic; proofs, terms and models[END_REF][START_REF] Plotkin | Type theory and recursion[END_REF][START_REF] Maraist | Call-by-name, call-byvalue, call-by-need, and the linear lambda calculus[END_REF][START_REF] Barber | Dual intuitionistic linear logic[END_REF]). The logical origin of the notion of usage can be traced back to Girard's LU system [START_REF] Girard | On the unity of logic[END_REF] and in particular it is adopted in the Barber-Plotkin system [START_REF] Barber | Dual intuitionistic linear logic[END_REF] on which we build on.

A number of works on type systems for concurrent languages such as the π-calculus have been inspired by linear logic even though in many cases the exact relationships with logic are at best unclear even for the fragment without side-effects. The conditions to guarantee confluence are inspired by the work of Kobayashi et al. [START_REF] Kobayashi | Linearity and the pi-calculus[END_REF] and one should expect a comparable expressive power (see also [START_REF] Kobayashi | Type systems for concurrent programs[END_REF][START_REF] Igarashi | Resource usage analysis[END_REF] for much more elaborate notions of usage).

It is well known that intuitionistic logic is at the basis of typed functional programming. The type and effect system introduced in [START_REF] Lucassen | Polymorphic effect systems[END_REF] is an enrichment of the intuitionistic system tracing the effects of imperative higher-order programs acting on a store. The system has provided a successful static analysis tool for the problem of heap-memory deallocation [START_REF] Tofte | Region-based memory management[END_REF]. More recently, this issue has been revisited following the ideas of linear logic [START_REF] Walker | On Regions and Linear Types[END_REF][START_REF] Fluet | Linear regions are all you need[END_REF] .

The so called reducibility candidates method is probably the most important technique to prove termination of typable higher-order programs. Extensions of the method to 'functional fragments' of the π-calculus have been proposed, e.g., in [START_REF] Yoshida | Strong normalisation in the πcalculus[END_REF][START_REF] Sangiorgi | Termination of processes[END_REF]. Boudol [START_REF] Boudol | Typing termination in a higher-order concurrent imperative language[END_REF] has shown that a stratification of the regions guarantees termination for a multi-threaded higher-order functional language with references and cooperative scheduling. Our formulation of the stratification discipline is actually based on [START_REF] Amadio | On stratified regions[END_REF] which revisits and extends [START_REF] Boudol | Typing termination in a higher-order concurrent imperative language[END_REF].

Structure of the Paper

Section 2 introduces an affine-intuitionistic system with regions for a call-byvalue functional-concurrent language. Section 3 introduces a discipline of region usage that guarantees confluence of the typable programs. Section 4 enriches the affine-intuitionistic system introduced in Section 2 with a notion of effect x, y, . . .

(Variables) V ::= * | x | λx.M | !V (Values) M ::= V | M M | !M | let !x = M in M | νx M set(x, V ) | pset(x, V ) | get(x) | (M | M ) (Terms) S ::= (x ← V ) | (x ⇐ V ) | (S | S) (Stores) P ::= M | S | (P | P ) | νx P (Programs) E ::= [ ] | EM | V E | !E | let !x = E in M (Evaluation Contexts) C ::= [ ] | (C | P ) | (P | C) | νx C (Static Contexts)
Table 1: Syntax: programs which provides an upper bound on the set of regions on which the evaluation of a term may produce effects. Finally, Section 5 describes a discipline of region stratification that guarantees the termination of the typable programs. Proofs of the main results are available in Appendix A.

An Affine-Intuitionistic Type System with Regions

We introduce a typed functional-concurrent programming language equipped with a call-by-value evaluation strategy. The functional core of the language relies on Barber-Plotkin's DILL. In order to type the dynamically generated addresses of the store, we introduce regions and suitable notions of usages. The related type system enjoys weakening and substitution and this leads to the expected properties of type preservation and progress.

Syntax: Programs

Table 1 introduces the syntax of our programs. We denote variables with x, y, . . ., and with V the values which are included in the category M of terms.

Stores are denoted by S, and programs P are combinations of terms and stores. We comment on the main operators of the language. * is a constant inhabiting the terminal type 1 (see below). λx.M is the affine abstraction and M M the application. ! marks values that can be duplicated while let !x = M in N filters them and allows their multiple usage in N . In νx M the operator ν generates a fresh address name x whose scope is M . set(x, V ) and pset(x, V ) write the value V in a volatile address and a persistent one, respectively, while get(x) fetches a value from the address x (either volatile or persistent 

= V (set(x, V ′ ); V ′′ ) is a legal term while M ′ = V (V ′′ | (x ← V )) is not.

Operational Semantics

Table 2 describes the operational semantics of our language. Programs are

P | P ′ ≡ P ′ | P (Commut.) (P | P ′ ) | P ′′ ≡ P | (P ′ | P ′′ ) (Assoc.) νx P | P ′ ≡ νx (P | P ′ ) x / ∈ FV (P ′ ) (ν | ) E[νx M ] ≡ νx E[M ] x / ∈ FV (E) (ν E ) E[(λx.M )V ] → E[[V /x]M ] E[let !x = !V in M ] → E[[V /x]M ] E[set(x, V )] → E[ * ] | (x ← V ) E[pset(x, V )] → E[ * ] | (x ⇐ V ) E[get(x)] | (x ← V ) → E[V ] E[get(x)] | (x ⇐ !V ) → E[!V ] | (x ⇐ !V )
Table 2: Operational semantics considered up to a structural equivalence ≡ which is the least equivalence relation preserved by static contexts, and which contains the equations for α-renaming, for the commutativity and associativity of parallel composition, for enlarging the scope of the ν operators to parallel programs, and for extracting the ν from an evaluation context. We use the notation [V /x] for the substitution of the value V for the variable x. The reduction rules apply modulo structural equivalence and in a static context C.

Example 1.

The programs (3) and ( 4) are structurally equivalent (up to some renaming):

((νx λy.M )(νx ′ λx ′ .M ′ ))V | P (3) νx νx ′ ((λy.M )(λy ′ .M ′ ))V | P (4) 
This transformation exposes the term E[(λy.M )(λy

′ .M ′ )] in the static context C = νx νx ′ [ ] | P , where the evaluation context E is [ ]V .
In the sequel we consider the transitive closure of the relation defined by Table 2, also denoted →.

Remark 1. Notice that the let rule and the get rule on a persistent store act similarly in the sense that they require the value being duplicated to be marked with a bang, while the affine β rule and the get rule on a volatile store allow to manipulate affine values. r, r ′ , . . . 

(Regions) α ::= B | A (Types) A ::= 1 | A ⊸ α | !A | Reg r A (Value-types) Γ ::= x 1 : (u 1 , A 1 ), . . . , x n : (u n , A n ) (Contexts) R ::= r 1 : (U 1 , A 1 ), . . . , r n : (U n , A n ) (Region contexts)

Syntax: Types and Contexts

Table 3 introduces the syntax of types and contexts. We denote regions with r, r ′ , . . . and we suppose a region r is either volatile (V(r)) or persistent (P(r)). Types are denoted with α, α ′ , . . .. Note that we distinguish a special behaviour type B which is given to the entities of the language which are not supposed to return a value (such as a store or several values in parallel) while types of entities that may return a value are denoted with A. Among the types A, we distinguish a terminal type 1, an affine functional type A ⊸ B, the type !A of terms of type A that can be duplicated, and the type Reg r A of addresses containing values of type A and related to the region r. Hereby types may depend on regions.

Before commenting on variable and region contexts, we need to define the notion of usage. To this end, it is convenient to introduce a set with three values {0, 1, ∞} and a partial binary operation ⊎ such that

x ⊎ 0 = x 0 ⊎ x = x ∞ ⊎ ∞ = ∞
and which is undefined otherwise.

We denote with u a variable usage and assume that u is either 1 (a variable to be used at most once) or ∞ (a variable that can be used arbitrarily many times). Then a variable context (or simply a context) Γ has the shape:

x 1 : (u 1 , A 1 ), . . . , x n : (u n , A n )
where x i are distinct variables, u i ∈ {1, ∞} and A i are types of terms that may return a result. Writing x : (u, A) means that the variable x ranges on values of type A and can be used according to u. We write dom(Γ) for the set {x 1 , . . . , x n } of variables where the context is defined. The sum on usages is extended to contexts component-wise. In particular, if

x : (u 1 , A) ∈ Γ 1 and x : (u 2 , A) ∈ Γ 2 then x : (u 1 ⊎ u 2 , A) ∈ (Γ 1 ⊎ Γ 2 ) only if u 1 ⊎ u 2 is defined. Example 2.
One may check that the sum:

(x : (1, A), y : (∞, B)) ⊎ (y : (∞, B), z : (1, C)) is equal to x : (1, A), y : (∞, B), z : (1, C)
whereas these two are not defined:

(x : (1, A), y : (∞, B)) ⊎ y : (1, B) (x : (1, A), y : (1, B) ⊎ y : (1, B)
We are going to associate a usage with regions too, but in this case a usage will be a two dimensional vector because we want to be able to distinguish write and read usages. We denote with U an element of one of the following three sets of usages:

{[∞, ∞]} {[1, ∞], [0, ∞]} {[0, 0], [1, 0], [0, 1], [1, 1]}
where by convention we reserve the first component to describe the write usage and the second for the read usage. Thus a region with usage [1, ∞] should be written at most once while it can be read arbitrarily many times.

The addition U 1 ⊎ U 2 is defined provided that:

(a) U 1 and U 2 are in the same set of usages (b) the component-wise addition is defined

Example 3. If U 1 = [∞, ∞] and U 2 = [0, ∞] then the sum is undefined because U 1 and U 2 are not in the same set while if U 1 = [1, ∞] and U 2 = [1, ∞] then the sum is undefined because 1 ⊎ 1 is undefined.
Note that in each set of usages there is a neutral usage U 0 such that U 0 ⊎ U = U for all U in the same set.

A region context R has the shape:

r 1 : (U 1 , A 1 ), . . . , r n : (U n , A n )
where r i are distinct regions, U i are usages in the sense just defined, and A i are value-types. The typing system will additionally guarantee that whenever we use a type Reg r A the region context contains an hypothesis r : (U, A) for some U . Intuitively, writing r : (U, A) means that addresses related to region r contain values of type A and that they can be used according to the usage U . We write dom(R) for the set {r 1 , . . . , r n } of the regions where the region context is defined. As for contexts, the sum on usages is extended to region contexts component-wise. In particular, if r :

(U 1 , A) ∈ R 1 and r : (U 2 , A) ∈ R 2 then r : (U 1 ⊎ U 2 , A) ∈ (R 1 ⊎ R 2 ) only if U 1 ⊎ U 2 is defined. Moreover, for (R 1 ⊎ R 2 )
to be defined we require that dom(R 1 ) = dom(R 2 ). There is no loss of generality in this hypothesis because if, say, r : (U, A) ∈ R 1 and r / ∈ dom(R 2 ) then we can always add r : (U 0 , A) to R 2 where U 0 is the neutral usage of the set to which U belongs (this is left implicit in the typing rules).

Example 4.

One may check that the sum:

(r 1 : ([1, ∞], A), r 2 : ([0, 1], B)) ⊎ (r 1 : ([0, ∞], A), r 2 : ([1, 0], B)) is equal to r 1 : ([1, ∞], A), r 2 : ([1, 1], B)
whereas these two are not defined:

(R, r : ([1, ∞], B)) ⊎ (R, r : ([1, ∞], B)) (R, r : ([0, ∞], B)) ⊎ (R, r : ([1, 0], B))

Affine-Intuitionistic Type System with Regions

Because types depend on regions, we have to be careful in stating in Table 4 when a region-context and a type are compatible (R ↓ α), when a region context is well-formed (R ⊢), when a type is well-formed in a region context (R ⊢ α) and when a context is well-formed in a region context (R ⊢ Γ).

A more informal way to express the condition is to say that a judgement r 1 : (U 1 , A 1 ), . . . , r n : (U n , A n ) ⊢ α is well formed provided that:

(a) all the region names occurring in the types A 1 , . . . , A n , α belong to the set {r 1 , . . . , r n } (b) all types of the shape Reg ri B with i ∈ {1, . . . , n} and occurring in the types A 1 , . . . , A n , α are such that B = A i .

Example 5.

One may verify that

r : (U, 1 ⊸ 1) ⊢ Reg r (1 ⊸ 1)
can be derived while these judgements cannot:

r : (U, 1) ⊢ Reg r (1 ⊸ 1) r : (U, Reg r 1) ⊢ 1
Next, Table 5 introduces an affine-intuitionistic type system with regions whose basic judgement R; Γ ⊢ P : α attributes a type α to the program P in the region context R and the context Γ. Here and in the following we omit the rule for typing a program (S | P ) which is symmetric to the one for the program (P | S).

The formulation of the so called promotion rule, i.e., the rule that introduces the '! ′ operator, requires some care. In particular, we notice that its formulation

R ↓ 1 R ↓ B R ↓ A R ↓ α R ↓ (A ⊸ α) r : (U, A) ∈ R R ↓ Reg r A ∀ r : (U, A) ∈ R R ↓ A R ⊢ R ⊢ R ↓ α R ⊢ α ∀ x : (u, A) ∈ Γ R ⊢ A R ⊢ Γ Table 4
: Type and context formation rules (unstratified) relies on the predicates aff (affine) and saff (strongly affine) on contexts and region contexts which we define below. The intuition is that terms whose typing depends on affine (region) contexts should not be duplicated, i.e., should not be 'marked' with a !. Formally, we write aff (x : (u, A)) if u = 1. We also write aff (r : ([v, v ′ ], A)) if either 1 ∈ {v, v ′ } or (V(r) and v ′ = 0). Moreover, we write aff (R; Γ) (respectively saff (R; Γ)) if the predicate aff holds for at least one of (respectively for all) the hypotheses in R; Γ. Remark 2. Notice that we regard the hypothesis r : ([v, v ′ ], A) as affine if either it contains the information that we can read or write in r at most once or if r is a volatile region from which we can read. The reason for the second condition is that a volatile region may contain data that should be used at most once. For instance, assuming V(r), R = r : ([∞, ∞], A), and Γ = x : (∞, Reg r A), we can derive R; Γ ⊢ get(x) : A. However, we should not derive R; Γ ⊢ !get(x) : !A for otherwise the crucial subject reduction property (Theorem 1) may be compromised.

Finally, we remark that in the conclusion of the promotion rule we may weaken the (region) context with a strongly affine (region) context. This is essential to obtain the following weakening property.

Lemma 1 (weakening). If R; Γ ⊢ P : α and R ⊎R ′ ⊢ Γ⊎Γ ′ then R ⊎R ′ ; Γ⊎Γ ′ ⊢ P : α.

Then we see how our type system applies to some program examples.

Example 6.

Let R = r : ([1, 1], 1) and

M = λx.let !x = x in get(x) | set(x, * )
We check that: R; ⊢ M : !Reg r 1 ⊸ B By the rule for affine implication, this reduces to: Note that we can actually apply the function M to a value !y which is typed using the promotion rule as follows:

R; x : (1, !Reg r 1) ⊢ let !x = x in get(x) | set(x, * ) : B R ⊢ Γ x : (u, A) ∈ Γ R; Γ ⊢ x : A R ⊢ Γ R; Γ ⊢ * : 1 R; Γ, x : (1, A) ⊢ M : α R; Γ ⊢ λx.M : (A ⊸ α) R 1 ; Γ 1 ⊢ M : (A ⊸ α) R 2 ; Γ 2 ⊢ N : A R 1 ⊎ R 2 ; Γ 1 ⊎ Γ 2 ⊢ M N : α R ⊎ R ′ ⊢ (Γ ⊎ Γ ′ ) saff (R ′ ; Γ ′ ) R; Γ ⊢ M : A ¬aff (R; Γ) R ⊎ R ′ ; Γ ⊎ Γ ′ ⊢ !M : !A R 1 ; Γ 1 ⊢ M : !A R 2 ; Γ 2 , x : (∞, A) ⊢ N : α R 1 ⊎ R 2 ; Γ 1 ⊎ Γ 2 ⊢ let !x = M in N : α R; Γ, x : (u, Reg r A) ⊢ P : α R; Γ ⊢ νx P : α R ⊢ Γ x : (u, Reg r A) ∈ Γ r : ([v, v ′ ], A) ∈ R v ′ = 0 R; Γ ⊢ get(x) : A Γ = x : (u, Reg r A) ⊎ Γ ′ V(r) R = r : ([v, v ′ ], A) ⊎ R ′ v = 0 R ⊢ Γ R ′ ; Γ ′ ⊢ V : A R; Γ ⊢ set(x, V ) : 1 Γ = x : (u, Reg r !A) ⊎ Γ ′ P(r) R = r : ([v, v ′ ], !A) ⊎ R ′ v = 0 R ⊢ Γ R ′ ; Γ ′ ⊢ V : !A R; Γ ⊢ pset(x, V ) : 1 Γ = x : (u, Reg r A) ⊎ Γ ′ V(r) R = r : ([v, v ′ ], A) ⊎ R ′ v = 0 R ⊢ Γ R ′ ; Γ ′ ⊢ V : A R; Γ ⊢ (x ← V ) : B Γ = x : (u, Reg r !A) ⊎ Γ ′ P(r) R = r : ([v, v ′ ], !A) ⊎ R ′ v = 0 R ⊢ Γ R ′ ; Γ ′ ⊢ V : !A R; Γ ⊢ (x ⇐ V ) : B R 1 ; Γ 1 ⊢ P : α R 2 ; Γ 2 ⊢ S : B R 1 ⊎ R 2 ; Γ 1 ⊎ Γ 2 ⊢ (P | S) : α R i ; Γ i ⊢ P i : α i P i not a store i = 1, 2 R 1 ⊎ R 2 ; Γ 1 ⊎ Γ 2 ⊢ (P 1 | P 2 ) : B
R 0 ; y : (∞, Reg r 1) ⊢ y : Reg r 1 R 0 ; y : (∞, Reg r 1) ⊢ !y : !Reg r 1
We remark that the region context and the context play two different roles: the context counts the number of occurrences of a variable while the region context counts the number of read-write effects. In our example, the variable x occurs several times but we can be sure that there will be at most one read and at most one write in the related region.

Example 7.

We consider a functional

M = λf.λf ′ .νy (f y | f ′ y)
which can be given the type

(Reg r 1 ⊸ 1) ⊸ (Reg r 1 ⊸ 1) ⊸ B
in a region context R = r : ([0, 0], 1). We can apply M to the functions

V 1 = λx.get(x) and V 2 = λx.set(x, * )
which have the appropriate types in the compatible region contexts R ′ = r : ([0, 1], 1) and R ′′ = r : ([1, 0], 1), respectively. Such affine usages would not be compatible with an intuitionistic implication as in this case one has to promote (put a ! in front of) V 1 and V 2 before passing them as arguments.

As in Barber-Plotkin system [START_REF] Barber | Dual intuitionistic linear logic[END_REF], the substitution lemma comes in two flavours:

Lemma 2 (substitution). Affine substitution (a) and intuitionistic substitution (b) preserve typing:

(a) If R; Γ, x : (1, A) ⊢ M : α, R ′ ; Γ ′ ⊢ V : A, and R ⊎ R ′ ⊢ Γ ⊎ Γ ′ then R ⊎ R ′ ; Γ ⊎ Γ ′ ⊢ [V /x]M : α. (b) If R; Γ, x : (∞, A) ⊢ M : α, R ′ ; Γ ′ ⊢ !V : !A, and R ⊎ R ′ ⊢ Γ ⊎ Γ ′ then R ⊎ R ′ ; Γ ⊎ Γ ′ ⊢ [V /x]M : α.
We rely on Lemma 2 to show that the basic reduction rules in Table 2 preserve typing. Then, observing that typing is invariant under structural equivalence, we can lift the property to the reduction relation which is generated by the basic reduction rules.

Theorem 1 (subject reduction). If R; Γ ⊢ P : α and P → P ′ then R; Γ ⊢ P ′ : α.

In our formalism, a closed program is a program whose only free variables have region types (as in, say, the π-calculus). For closed programs one can state a progress property saying that if a program cannot progress then, up to structural equivalence, every thread is either a value or a term of the shape E[get(x)] and there is no store in parallel of the shape (x ← V ) or (x ⇐ V ). In particular, we notice that a closed value of type !A must have the shape !V so that in well-typed closed programs such as let !x = V in M or E[get(x)] | (x ⇐ V ), V is guaranteed to have the shape !V required by the operational semantics in Table 2.

Proposition 1 (progress). Suppose P is a closed typable program which cannot reduce. Then P is structurally equivalent to a program

νx 1 , . . . , x m (M 1 | • • • | M n | S 1 | • • • | S p ) m, n, p ≥ 0
where M i is either a value or can be uniquely decomposed as a term E[get(y)] such that no value is associated with the address y in the stores S 1 , . . . , S p .

Confluence

In our language, each thread evaluates deterministically according to a callby-value evaluation strategy. The only source of non-determinism comes from a concurrent access to the memory. More specifically, we may have a nondeterministic program if several values are stored at the same address as in the following examples (note that we cannot type a program where values are stored at an address both in a persistent and a volatile way):

get(x) | (x ⇐ V 1 ) | (x ⇐ V 2 ) (5) get(x) | (x ← V 1 ) | (x ← V 2 ) (6)
or if there is a race condition on a volatile address as in the following example:

E 1 [get(x)] | E 2 [get(x)] | (x ← V ) (7) 
On the other hand, a race condition on a persistent address such as:

E 1 [get(x)] | E 2 [get(x)] | (x ⇐ V ) ( 8 
)
does not compromise determinism because the two possible reductions commute. We can rule out the problematic situations ( 5), ( 6) and ( 7), if:

(a) we remove from our system the region usage [∞, ∞]

(b) we restrict the usages of volatile stores to those in which there is at most one read effect (hence the set

{[1, 1], [1, 0], [0, 1], [0, 0]})
To this end, we add a condition v ′ = ∞ to the typing rules for volatile stores set(x, V ) and (x ← V ) as specified in Table 6. We denote with ⊢ C provability in

U ∈ {[1, ∞], [0, ∞]} ∪ {[1, 1], [1, 0], [0, 1], [0, 0]} Γ = x : (u, Reg r A) ⊎ Γ ′ V(r) R = r : ([v, v ′ ], A) ⊎ R ′ v = 0, v ′ = ∞ R ⊢ Γ R ′ ; Γ ′ ⊢ V : A R; Γ ⊢ set(x, V ) : 1 Γ = x : (u, Reg r A) ⊎ Γ ′ V(r) R = r : ([v, v ′ ], A) ⊎ R ′ v = 0, v ′ = ∞ R ⊢ Γ R ′ ; Γ ′ ⊢ V : A R; Γ ⊢ (x ← V ) : B Table 6:
Restricted usages and rules for confluence this restricted system. This system still enjoys the subject reduction property and moreover its typable programs are strongly confluent. 

[set(x, V )] → E[ * ] | (x ← V ) and verify that if R; Γ ⊢ set(x, V ) : 1 then R; Γ ⊢ (x ← V ) : B which entails that E[ * ] | (x ← V ) is typable in the same context as E[set(x, V )].
(b) The restrictions on the usages forbid the typing of a store such as the one in ( 5) and ( 6) where two values are stored in the same region. Moreover, it also forbids the typing of two parallel reads on a volatile store [START_REF] Fluet | Linear regions are all you need[END_REF].

Remark 3. We note that the rules for ensuring confluence require that at most one value is associated with a region (single-assignment). This is quite a restrictive discipline (comparable to the one in [START_REF] Kobayashi | Linearity and the pi-calculus[END_REF]) but one has to keep in mind that it targets regions that can be accessed concurrently by several threads. Of course, the discipline could be relaxed for the regions that are accessed by one single sequential thread. Also, e.g., for optimisation purposes, one may be interested in the confluence/determinism of certain reductions even when the overall program is non-deterministic.

An Affine-Intuitionistic Type and Effect System

We refine the type system to include effects which are denoted with e, e ′ , . . . and are finite sets of regions. The syntax of programs (Table 1) and their operational semantics (Table 2) are unchanged. The only modification to the syntax of types (Table 3) is that the affine implication is now annotated with an effect so that we write: A e ⊸ α which is the type of a function that when given a value of type A may produce something of type α and an effect on the regions in e. This introduces a new dependency of types on regions and consequently the compatibility condition between region contexts and functional types in Table 4 becomes:

R ↓ A R ↓ α e ⊆ dom(R) R ↓ (A e ⊸ α) Example 8.
One may verify that the judgement r : (U,

1 {r} ⊸ 1) ⊢ is derivable.
The typing judgements now take the shape

R; Γ ⊢ P : (α, e)
where the effect e provides an upper bound on the set of regions on which the program P may read or write when it is evaluated. In particular, we can be sure that values and stores produce an empty effect. As for the operations to read and write the store, one exploits the dependency of address types on regions to determine the region where the effect occurs (cf. [START_REF] Lucassen | Polymorphic effect systems[END_REF]).

The affine-intuitionistic type and effect system is spelled out in Table 7. We stress that these rules are the same as the ones in Table 5 modulo the enriched syntax of the functional types and the management of the effect e on the right hand side of the sequents. The management of the effects is additive as in [START_REF] Lucassen | Polymorphic effect systems[END_REF], indeed effects are just sets of regions.

Also to allow for some flexibility, it is convenient to introduce a subtyping relation on types and effects, that is to say on pairs (α, e), as specified in Table 8. We notice that the transitivity rule for subtyping

R ⊢ α ≤ α ′ R ⊢ α ′ ≤ α ′′ R ⊢ α ≤ α ′′
can be derived via a simple induction on the height of the proofs.

Remark 4. The introduction of the subtyping rules has a limited impact on the structure of the typing proofs. Indeed, if R ⊢ A ≤ B then we know that A and B may just differ in the effects annotating the functional types. In particular, when looking at the proof of the typing judgement of a value such as R; Γ ⊢ λx.M : (A, e), we can always argue that A has the shape A 1 e1 ⊸ A 2 and, in case the effect e is not empty, that there is a shorter proof of the judgement

R; Γ ⊢ λx.M : (B 1 e2 ⊸ B 2 , ∅) where R ⊢ A 1 ≤ B 1 , R ⊢ B 2 ≤ A 2
, and e 2 ⊆ e 1 . Then to prove subject reduction, we just repeat the proof of Theorem 1 while using standard arguments to keep track of the effects.

Proposition 3 (subject reduction with effects). Types and effects are preserved by reduction. Remark 5. It is easy to check that a typable program such as E[set(x, V )] which is ready to produce an effect on the region r associated with x will indeed contain r in its effect. Thus the subject reduction property stated above as Proposition 3 entails that the type and effect system does provide an upper bound on the effects a program may produce during its evaluation.

Termination

Terms typable in the unstratified type and effect system (cf. Table 7) may diverge, as exemplified here:

Example 9.
The following term stores at the address x a function that, given an argument, keeps fetching itself from the store forever: νx pset(x, !(λy.let !x = get(x) in xy)) ; let !x = get(x) in x * One may verify that it is typable in a region context

R = r : ([1, ∞], !(1 {r} ⊸ 1))
This example suggests that in order to recover termination, we may order regions and make sure that a value stored in a certain region when put in an evaluation context can only produce effects on smaller regions. This is where our type and effect system comes into play, and to formalise this idea, we introduce in Table 9 rules for the formation of types and contexts which are alternative to those in Table 4.

Example 10.

Assuming Table 9 and taking R = r : (U, 1), one may check that the judgement r : (U, 1), r ′ : (U ′ , 1 {r} ⊸ 1) ⊢ is derivable while

r ′ : (U ′ , 1 {r ′ } ⊸ 1) ⊢ is not.
In particular, the region context of Example 9 is neither derivable.

It is easy to verify that the stratified system is a restriction of the unstratified one and that the subject reduction (Proposition 3) still holds in the restricted stratified system. If confluence is required, then one may add the restrictions spelled out in Table 6.

Concerning termination, we recall that there is a standard forgetful translation ( affine-intuitionistic logic to intuitionistic logic which amounts to forget about the modality ! and the usages and to regard the affine implication as an ordinary intuitionistic implication. Thus, for instance, the translation of types goes as follows: !A = A and A ⊸ B = A → B; while the translation of terms is: !M = M and let !x = M in N = (λx.N )M . In Table 10, we lift this translation from the stratified affine-intuitionistic type and effect system into a stratified intuitionistic type and effect system defined in [START_REF] Amadio | On stratified regions[END_REF].

The translation assumes a decoration phase where the (free or bound) variables with a region type of the shape Reg r A are labelled with the region r. Intuitively, the intuitionistic system abstracts an address x related to the region r to the region r itself so that a decorated variable x r translates into a constant r. In the intuitionistic language, a region r is a term of region type Reg r A, for some A and all stores are persistent. The full definition of the language is recalled in Appendix A.2.

It turns out that a reduction in the affine-intuitionistic system is mapped to exactly a reduction in the intuitionistic system. Then the termination of the intuitionistic system proved in [START_REF] Amadio | On stratified regions[END_REF] entails the termination of the affine-intuitionistic one.

Theorem 2 (termination). Programs typable in the stratified affine-intuitionistic type and effect system terminate.

Conclusion

We have presented an affine-intuitionistic system of types and effects for a functional-concurrent programming language. The main contribution over [START_REF] Amadio | On stratified regions[END_REF] is that the functional core of the system is based on Barber-Plotkin affineintuitionistic logic which distinguishes between affine and intuitionistic hypotheses. The 'non-logical' part of the language, with operators to read and write dynamically generated addresses of a 'store', has been refined to take into account the process of data duplication. In the type system, addresses are abstracted into a finite number of regions. We have introduced a suitable discipline of region usage and shown that it combines with region stratification in the affineintuitionistic setting to regain confluence and termination, respectively. Future Work Beyond these crucial properties, we hope to show that other interesting properties of the functional core can be extended to the considered framework. We think in particular of the construction of denotational models (see, e.g, [START_REF] Bierman | What is a categorical model of intuitionistic linear logic?[END_REF]) and of bounds on the computational complexity of typable programs (see, e.g., [START_REF] Girard | Light linear logic[END_REF]).

We also recall that more work would be required to get an operational programming language, as with the introduction of inductive types and the extension to a synchronous/timed framework (cf. [START_REF] Amadio | On stratified regions[END_REF][START_REF] Boudol | Typing termination in a higher-order concurrent imperative language[END_REF]) where determinism and termination are useful properties. Concerning the rules for types and region contexts formation and for subtyping, the forgetful translation provides a one-to-one mapping from the rules of the affine-intuitionistic system to the rules of the intuitionistic one (the only exception are the rules for !A which become trivial in the intuitionistic framework). Also note that dom(R) = dom(R). With these remarks in mind, the proof of (1-5) is straightforward.

If

R ⊢ AI α then R ⊢ I α. 3. If R ⊢ AI (α, e) then R ⊢ I (α, e). 4. If R ⊢ AI α ≤ α ′ then R ⊢ I α ≤ α ′ . 5. If R ⊢ AI (α, e) ≤ (α ′ , e ′ ) then R ⊢ I (α, e) ≤ (α ′ , e ′ ). 6. If R ⊢ AI Γ then R ⊢ AI Γ.
The proof of (6) follows directly from (2). We just notice that the forgetful translation of a context Γ eliminates all the variable associated with region types. The point is that if these variables occur in the program they will decorated and therefore in the translation they will be replaced by regions, i.e., constants.

In the proof of ( 7), it is useful to make a few preliminary remarks. First, weakening is a derived rule for the intuitionistic system, so that if we can prove R; Γ ⊢ I P : (α, e) and R, R ′ ⊢ Γ, Γ ′ then we can prove R, R

′ ; Γ, Γ ′ ⊢ I P : (α, e) too. Second, if R 1 ⊎ R 2 is defined then R 1 = R 2 = R 1 ⊎ R 2 .
The proof is then a rather direct induction on the provability relation ⊢ AI . When we discharge an assumption and when we introduce a formal parameter with λ or with let we must distinguish the situation where the variable under consideration has region type, say, Reg r A. In this case the variable does not occur in the translation of the related context Γ and it is replaced in the term by the region r.

Next we want to relate the reduction of a program and of its translation. As already mentioned, in the intuitionistic system all stores are persistent. Consequently, a reduction such as:

get(x r ) | (x r ← V ) → V might be simulated by get(r) | (r ⇐ V ) → V | (r ⇐ V ) .
In other terms, the translated program may contain more values in the store than the source program. To account for this, we introduce a 'simulation' relation S indexed on a pair R; Γ such that R ⊢ Γ and Γ is just composed of variables of region type:

S R;Γ = {(P, Q) |R; Γ ⊢ AI P : (α, e), R; ⊢ I Q : (α, e), Q ≡ (P | S)} Lemma 11 (simulation). If (P, Q) ∈ S R;Γ and P → P ′ then Q → Q ′ and (P ′ , Q ′ ) ∈ S R;Γ .
Proof. Suppose (P, Q) ∈ S R;Γ . Then (P, P ) ∈ S R;Γ . Also if P → P ′ then R; Γ ⊢ AI P ′ by subject reduction of the affine-intuitionistic system (incidentally, subject reduction holds for the intuitionistic system too [START_REF] Amadio | On stratified regions[END_REF]). By definition P → P ′ means that P is structurally equivalent to a process P 1 which can be decomposed in a static context C and a redex ∆ of the shape described in Table 2.

We notice that the forgetful translation preserves structural equivalence, namely if P ≡ P 1 then P ≡ P 1 . Indeed, the commutativity and associativity rules of the affine-intuitionistic system match those of the intuitionistic system while the rules for commuting the ν's are 'absorbed' by the translation. For instance, νx P | P ′ = P | P ′ = νx (P | P ′ ) with x not free in P ′ .

We also remark that the forgetful translation can be extended to static and evaluation contexts simply by defining [ ] = [ ]. Then we note that the translation of a static (evaluation) context is an intuitionistic static (evaluation) context. In particular, this holds because the translation of a value is still a value.

Following these remarks, we can derive that Q ≡ C[∆] | S. Thus it is enough to focus on the redexes ∆ and show that each reduction in the affineintuitionistic system is mapped to a reduction in the intuitionistic one and that the resulting program is still related to the program P ′ via the relation S R;Γ .

To this end, we notice that the translation commutes with the substitution so that [V /x]M = [V /x]M . This is a standard argument, modulo the fact that the variable of region type have to be given a special treatment. For instance, we have: [y r /x r ]x r = y r = r = [r/x r ]r = [y r /x r ]x r .

Then one proceeds by case analysis on the redex ∆. Let us look at two cases in some detail.

If ∆ = E[let !x = V in M ] → E[[V /x]M ] then ∆ = E[let !x = V in M ] = E[(λx.M )V ] → E[[V /x]M ] = E[[V /x]M ] = E[[V /x]M .
On the other hand if ∆ = E[get(x r )] | (x r ← V ) then

∆ = E[get(r)] | (r ⇐ V ) → E[V ] | (r ⇐ V ) = E[V ] | (r ⇐ V ) .
Notice that in this case we have an additional store (r ⇐ V ) which is the reason why in the definition of the relation S we relate a program to its translation in parallel with some additional store.

Theorem 4 ([1]

). If R; ⊢ I P : (α, e) then all reductions starting from P terminate.

Corollary 1 (termination). If R; Γ ⊢ AI P : (α, e) then all reductions starting from P terminate.

Proof. By contradiction. We have (P, P ) ∈ S R;Γ and R; ⊢ I P : (α, e). If there is an infinite reduction starting from P then the simulation lemma 11 entails that there is an infinite reduction starting form P . And this contradicts the termination of the intuitionistic system (Theorem 4). 

∅ ⊢ R ⊢ A r / ∈ dom(R) R, r : (U, A) ⊢ R ⊢ R ⊢ 1 R ⊢ R ⊢ B R ⊢ A R ⊢ !A e ⊆ dom(R) R ⊢ A R ⊢ α R ⊢ (A e ⊸ α) R ⊢ r : (U, A) ∈ R R ⊢ Reg r A R ⊢ α e ⊆ dom(R) R ⊢ (α, e)

Table 5 :

 5 An affine-intuitionistic type system with regions If we define R 0 = r : ([0, 0], 1), then by the rule for the let we reduce to: R 0 ; x : (1, !Reg r 1) ⊢ x : !Reg r 1 and R; x : (∞, Reg r 1) ⊢ get(x) | set(x, * ) : B The former is an axiom while the latter is derived from: r : ([0, 1], 1); x : (∞, Reg r 1) ⊢ get(x) : 1 and r : ([1, 0], 1); x : (∞, Reg r 1) ⊢ set(x, * ) : 1

Proposition 2 (

 2 subj. red. and confluence). Suppose R; Γ ⊢ C P : α. Then: (a) If P → P ′ then R; Γ ⊢ C P ′ : α (b) If P → P ′ and P → P ′′ then either P ′ ≡ P ′′ or there is a Q such that P ′ → Q ′ and P ′′ → Q Proof. (a) We just have to reconsider the case where E

7 .

 7 If R; Γ ⊢ AI P : (α, e) (and P has been decorated) then R; Γ ⊢ I P : (α, e). Proof. By induction on the provability relation ⊢ AI .

Table 9 :

 9 Formation of types and contexts (stratified)1 = 1, B = B, A e ⊸ α = A e -→ α, !A = A, Reg r A = Reg r A r 1 : (U 1 , A 1 ), . . . , r n : (U n , A n ) = r 1 : A 1 , . . . , r n : A n x : (u, A), Γ = x : A, Γ if A = Reg r B Γ otherwise x = x, x r = r, * = * , λx.M = λx.M , M N = M N !M = M , let !x = M in N = (λx.N )M , νx M = M , get(x r ) = get(r), set(x r , V ) = set(r, V ), pset(x r , V ) = pset(r, V ), (x r ← V ) = (r ⇐ V ), (x r ⇐ V ) = (r ⇐ V ), P | P ′ = P | P ′

Table 3 :

 3 Syntax: types and contexts

Table 10 :

 10 Forgetful translation

Laboratoire PPS, Université Paris Diderot

LIP -ENS-Lyon, Université de Lyon

Acknowledgements

The first author was partially supported by ANR-06-SETI-010-02 and the second and third authors by ANR-08-BLANC-0211-01.

A Proofs

A.1 Proof of Theorem 1 Lemma 3 (weakening). If R; Γ ⊢ P : α and R ⊎R ′ ⊢ Γ⊎Γ ′ then R ⊎R ′ ; Γ⊎Γ ′ ⊢ P : α.

Proof. By induction on the typing of P . Following Table 5, there are 14 rules to be considered of which we highlight 3. P ≡ M N We have:

We notice that the composition operation ⊎ on contexts is associative and commutative (when it is defined) and that (R

Hence, by induction hypothesis, we get R 1 ⊎ R ′ ; Γ 1 ⊎ Γ ′ ⊢ M : A ⊸ α, from which we derive:

We can always decompose R ′ as R ′ 1 ⊎ R ′ ∞ and Γ ′ as Γ ′ 1 ⊎ Γ ′ ∞ so that ¬aff (R ′ ∞ ; Γ ′ ∞ ) and saff (R ′ 1 ; Γ ′ 1 ). By induction hypothesis, we have R ⊎ R ′ ∞ ; Γ ⊎ Γ ′ ∞ ⊢ M : A. We notice that ¬aff (R ⊎ R ′ ∞ ; Γ ⊎ Γ ′ ∞ ) and saff (R ′ 1 ⊎ R ′′ ; Γ ′ 1 ⊎ Γ ′′ ) (remember that 1 ⊎ ∞ is undefined). Hence we derive:

By induction hypothesis, we have

20

We notice that this argument still holds when introducing the restriction v ′ = ∞ in order to guarantee confluence (cf. Table 6). Indeed, the restriction v ′ = ∞ is equivalent to require that the usage of the region r ranges in the family of usages

Proof. By induction on the typing of P . We highlight 4 cases out of 14.

P ≡ M N We have:

Then we derive:

P ≡ let !y = M in N Renaming y so that y = x, we have:

α As in the case of application, we distinguish two cases.

P ≡ set(y, V ′ ) We distinguish two cases.

1. If y = x we have:

and by induction hypothesis we

By lemma 3, we obtain

Moreover V must be a variable, thus we can derive:

and by lemma 3 we get

Proof. By induction on the typing of P . We highlight 4 cases out of 14.

P ≡ M N We have:

We distinguish 3 cases.

Then we derive:

Hence we know that all the hypotheses of R ′ and Γ ′ are of weakened regions and variables. Thus we also have

, and we can derive:

And also:

Hence we know that all the hypotheses of R 7 and Γ 7 are of weakened regions and variables, such that R 6 ; Γ 6 ⊢ !V : !A. By induction hypothesis we get R 5 ⊎ R 6 ; Γ 5 ⊎ Γ 6 ⊢ [V /x]M : B and we can derive:

with y = x. We just spell out the case where Γ

Hence we know that all the hypotheses of R ′ and Γ ′ are of weakened regions and variables. Thus we also have

Plus from ¬aff (R 5 ; Γ 5 ) we get Γ 5 ⊎Γ 5 = Γ 5 and R 5 ⊎R 5 = R 5 , and we can derive:

We just look at the case y = x. We have:

We deduce that Γ ′ 1 = Γ ′′ 1 ⊎ x : (∞, A), and by induction hypothesis we get

C, from which we derive:

Lemma 6 (structural equivalence preserves typing). If R; Γ ⊢ P : α and P ≡ P ′ then R; Γ ⊢ P ′ : α.

Proof. Recall that structural equivalence is the least equivalence relation induced by the equations stated in Table 2 and closed under static contexts.

Then we proceed by induction on the proof of structural equivalence. This is is mainly a matter of reordering the pieces of the typing proof of P so as to obtain a typing proof of P ′ .

Lemma 7 (evaluation contexts and typing). Suppose that in the proof of R;

Proof. By induction on the structure of E.

Lemma 8 (functional redexes). If R; Γ ⊢ E[∆]

: α where ∆ has the shape

Proof. If ∆ = (λx.M )V we appeal to the affine substitution lemma 4 and if ∆ = let !x = V in M we rely on the intuitionistic lemma 5. This settles the case where the evaluation context E is trivial. If it is complex then we also need lemma 7.

Lemma 9 (side-effects redexes). If R; Γ ⊢ ∆ : α where ∆ is one of the programs on the left-hand side then R; Γ ⊢ ∆ ′ : α where ∆ ′ is the corresponding program on the right-hand side:

(1)

Proof. We proceed by case analysis.

1. Suppose we derive R;

By the typing rule for set(x, V ) we know that

We can decompose R 2 ; Γ 2 into an additive part (R 2 ; Γ 2 ) 0 and a multiplicative one (R 2 ; Γ 2 ) 1 . Then from (R 2 ; Γ 2 ) 0 ⊢ * : 1,

By the typing rule for pset(x, V ) we know that

Then we reason as in the previous case.

3. Suppose R 1 ; Γ 1 ⊢ E[get(x)] : α is derived from R 2 ; Γ 2 ⊢ get(x) : A, that R 3 ; Γ 3 ⊢ (x ← V ) : B, and that R; Γ = (R 1 ; Γ 1 )⊎(R 3 ; Γ 3 ). Then (R 2 ; Γ 2 )⊎ (R 3 ; Γ 3 ) ⊢ V : A, by weakening. Also, let r be the region associated with the address x. We know that V(r) and that R 2 must have a reading usage on r. It follows that aff (R 2 ; Γ 2 ) and therefore the context E cannot contain a !. Thus from (R 2 ; Γ 2 )

Theorem 3 (subject reduction). If R; Γ ⊢ P : α and P → P ′ then R; Γ ⊢ P ′ : α.

Proof. We recall that P → P ′ means that P is structurally equivalent to a program C[∆] where C is a static context, ∆ is one of the programs on the left-hand side of the rewriting rules specified in Table 2, ∆ ′ is the respective program on the right-hand side, and

By lemma 6, we know that R; Γ ⊢ C[∆] : α. This entails that R ′ ; Γ ′ ⊢ ∆ : α ′ for suitable R ′ , Γ ′ , α ′ . By lemmas 8 and 9, we derive that R ′ ; Γ ′ ⊢ ∆ ′ : α ′ . Then by induction on the structure of C we argue that R; Γ ⊢ C[∆ ′ ] : α.

A.2 Proof of Theorem 2

Table 11 summarizes the main syntactic categories and the reduction rules of the intuitionistic system. It is important to notice that in the intuitionistic system regions are terms and that the operations that manipulate the store operate directly on the regions so that we write: get(r), pset(r, V ), and (r ⇐ V ) rather than get(x), pset(x, V ), and (x ⇐ V ).

Table 12 summarizes the typing rules for the stratified type and effect system.

Proviso To avoid confusion, in the following we write ⊢ AI for provability in the affine-intuitionistic system and ⊢ I for provability in the intuitionistic system.

The translation acts on typable programs. In order to define it, it is useful to go through a phase of decoration which amounts to label each occurrence (either free or bound) of a variable x of region type Reg r A with the region r. For instance, suppose R = r 1 : (U 1 , A 1 ), . . . , r 4 : (U 4 , A 4 ) and suppose we have a provable judgement:

Further suppose in the proof the variable x i relates to the region r i for i = 1, . . . , 4. Then the decorated term is:

The idea is that the translation of a decorated variable x r is simply the region r so that in the previous case we obtain the following term of the intuitionistic system:

Note that in the translation the ν's disappear while the λ's and let's are simulated by the intuitionistic λ's.

Assuming the decoration phase, the forgetful translation ( ) is defined in Table 10.

Lemma 10. The forgetful translation preserves provability in the following sense:

Table 7: An affine-intuitionistic type and effect system 

Subtyping rules