
HAL Id: hal-00438101
https://hal.science/hal-00438101v1

Preprint submitted on 2 Dec 2009 (v1), last revised 3 May 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An affine-intuitionistic system of types and effects:
confluence and termination

Roberto Amadio, Patrick Baillot, Antoine Madet

To cite this version:
Roberto Amadio, Patrick Baillot, Antoine Madet. An affine-intuitionistic system of types and effects:
confluence and termination. 2009. �hal-00438101v1�

https://hal.science/hal-00438101v1
https://hal.archives-ouvertes.fr

An affine-intuitionistic system of types and effects:

confluence and termination

Roberto M. Amadio† Patrick Baillot‡ Antoine Madet†

† Université Paris Diderot (Paris 7)

PPS (UMR 7126 CNRS-Paris-Diderot)
‡ ENS Lyon, Univ. Lyon

LIP (UMR 5668 CNRS-ENSL-INRIA-UCBL)

December 2, 2009

Abstract

We present an affine-intuitionistic system of types and effects which can be regarded
as an extension of Barber-Plotkin Dual Intuitionistic Linear Logic to multi-threaded pro-
grams with effects. In the system, dynamically generated values such as references or
channels are abstracted into a finite set of regions. We introduce a discipline of region us-
age that entails the confluence (and hence determinacy) of the typable programs. Further,
we show that a discipline of region stratification guarantees termination.

Keywords: Linear logic. Types and Effects. Confluence. Termination.

1 Introduction

There is a well-known connection between intuitionistic proofs and typed functional programs
that goes under the name of Curry-Howard correspondence. Following the introduction of
linear logic [9], this correspondence has been refined to include an explicit treatment of the
process of data duplication. Various formalisations of these ideas have been proposed in the
literature (see, e.g., [3, 4, 17, 16, 2]) and we will focus here in particular on Affine-Intuitionistic
Logic and, more precisely, on an affine version of Barber-Plotkin Dual Intuitionistic Linear
Logic (DILL) as described in [2].

In DILL, the operation of λ-abstraction is always affine, i.e., the formal parameter is used
at most once. The more general situation where the formal parameter has multiple usages
is handled through a constructor ‘!′ (read bang) marking values that can be duplicated and
a destructor let filtering them and effectively allowing their duplication. Following this idea,
e.g., an intuitionistic judgement is translated into an affine-intuitionistic one as follows:

y : A ⊢ λx.x(xy) : (A→ A)→ A (intuitionistic)
y : (∞, A) ⊢ λx.let !x = x in x!(x!y) : !(!A ⊸ A) ⊸ A (aff.-intuitionistic)

We recall that in DILL the hypotheses are split in two zones according to their usage.
Namely, one distinguishes between the affine hypotheses that can be used at most once and
the intuitionistic ones that can be used arbitrarily many times. In our formalisation, we will
use ‘1′ for the former and ‘∞′ for the latter.

1

Our purpose is to explore an extension of this connection to multi-threaded programs
with effects. By extending the connection, we mean in particular that the type system should
guarantee confluence (and hence determinism) and termination of the typable programs while
preserving a reasonable expressive power. By multi-threaded program, we mean a program
where distinct threads of execution may be active at the same time (as it is typically the
case in concurrent programs) and by effect, we mean the possibility of executing operations
that modify the state of a system such as reading/writing a reference or sending/receiving a
message.

We will start by introducing a simple-minded extension of the purely functional language
with operators to run threads in parallel while reading/modifying the state which is loosely
inspired by concurrent extensions of the ML programming language such as [8] and [18].
Following a rather standard practice (see, e.g., [15, 20]), we suppose that dynamically gen-
erated values such as channels or references are abstracted into a finite number of regions.
This abstraction is reflected in the type system where the type of an address depends on the
region with which the address is associated. Thus we write RegrA for the type of addresses
containing values of type A and relating to the region r of the store.

Not surprisingly, the resulting functional-concurrent language is neither confluent nor
terminating. However, it turns out that there are reasonable strategies to recover these
properties. The general idea is that confluence can be recovered by introducing a proper
discipline of region usage while termination can be recovered through a discipline of region
stratification.

The notion of region usage is reminiscent of the one of hypotheses usage arising in affine-
intuitionistic logic. Specifically, we distinguish the regions that can be used at most once
to write and at most once to read and those that can be used at most once to write and
arbitrarily many times to read.

The notion of region stratification is based on the idea that values stored in a region
should only produce effects on smaller regions. The implementation of this idea requires a
substantial refinement of the type system that has to predict the effects potentially generated
by the evaluation of an expression. This is where type and effect systems, as introduced in
[15], come into play.

It turns out that the notions of region usage and region stratification combine smoothly,
leading to the definition of an affine-intuitionistic system of types and effects. The system has
affine-intuitionistic logic as its functional core and it can be used to guarantee the determinacy
and termination of multi-threaded programs with effects.

Related work Girard, through the introduction of linear logic [9], has widely promoted a
finer analysis of the structural rules of logic. There have been various attempts at producing
a functional programming language based on these ideas and with a reasonably handy syntax
(see, e.g., [3, 4, 17, 16, 2]). The logical origin of the notion of usage can be traced back to
Girard’s LU system [10] and in particular it is adopted in the Barber-Plotkin system [2] on
which we build on.

A number of works on type systems for concurrent languages such as the π-calculus have
been inspired by linear logic even though in many cases the exact relationships with logic are
at best unclear. In particular, Kobayashi et al. [14] introduce a type-system with ‘use-once’
channel types that guarantees confluence. Clearly, this approach inspires our conditions for
confluence. Let us also recall that Kobayashi et al. (see, e.g., [13, 12]) have produced type

2

x, y, . . . (Variables)
V ::= ∗ || x || λx.M || !V (Values)
M ::= V ||MM || !M || let !x = M in M

νx M || set(x, V) || pset(x, V) || get(x) || (M |M) (Terms)
S ::= (x← V) || (x⇐ V) || (S | S) (Stores)
P ::= M || S || (P | P) || νx P (Programs)
E ::= [] || EM || V E || !E || let !x = E in M (Evaluation Contexts)
C ::= [] || (C | P) || (P | C) || νx C (Static Contexts)

Table 1: Syntax: programs

systems with a much more elaborate notion of usage than ours (a usage can be almost as
complex as a CCS process) and shown that they can guarantee a variety of properties of
concurrent programs such as absence of deadlock.

It is well known that intuitionistic logic is at the basis of typed functional programming.
The type and effect system introduced in [15] is an enrichment of the intuitionistic system
tracing the effects of imperative higher-order programs acting on a store. The system has
provided a successful static analysis tool for the problem of heap-memory deallocation [20].
More recently, this issue has been revisited following the ideas of linear logic [23, 7] .

The so called reducibility candidates method is probably the most important technique
to prove termination of typable higher-order programs. Extensions of the method to ‘func-
tional fragments’ of the π-calculus have been proposed, e.g., in [24, 19]. Boudol [6] has shown
that a stratification of the regions guarantees termination for a multi-threaded higher-order
functional language with references and cooperative scheduling. Our formulation of the strat-
ification discipline is actually based on [1] which revisits and extends [6].

Structure of the paper Section 2 introduces an affine-intuitionistic system with regions
for a call-by-value functional-concurrent language. Section 3 introduces a discipline of region
usage that guarantees confluence of the typable programs. Section 4 enriches the affine-
intuitionistic system introduced in section 2 with a notion of effect which provides an upper
bound on the set of regions on which the evaluation of a term may produce effects. Finally,
section 5 describes a discipline of region stratification that guarantees the termination of the
typable programs. Proofs of the main results are available in appendix A.

2 An affine-intuitionistic type system with regions

2.1 Syntax: programs

Table 1 introduces the syntax of our programs. We denote variables with x, y, . . ., and with
V the values which are included in the category M of terms. Stores are denoted by S,
and programs P are combinations of terms and stores. We comment the main operators
of the language: ∗ is a constant inhabiting the terminal type 1 (see below), λx.M is the
affine abstraction and MM the application, ! marks values that can be duplicated while
let !x = M in N filters them and allows their multiple usage in N , in νx M the operator ν
generates a fresh address name x whose scope is M , set(x, V) and pset(x, V) write the value
V in a volatile address and a persistent one, respectively, while get(x) fetches a value from the
address x (either volatile or persistent), finally (M | N) evaluates in parallel M and N . Note

3

P | P ′ ≡ P ′ | P (Commutativity)
(P | P ′) | P ′′ ≡ P | (P ′ | P ′′) (Associativity)

νx P | P ′ ≡ νx (P | P ′) x /∈ FV (P ′) (ν|)
E[νx M] ≡ νx E[M] x /∈ FV (E) (νE)

E[(λx.M)V] → E[[V/x]M]
E[let !x = !V in M] → E[[V/x]M]

E[set(x, V)] → E[∗] | (x← V)
E[pset(x, V)] → E[∗] | (x⇐ V)

E[get(x)] | (x← V) → E[V]
E[get(x)] | (x⇐ !V) → E[!V] | (x⇐ !V)

Table 2: Operational semantics

r, r′, . . . (Regions)
α ::= B || A (Types)
A ::= 1 || A ⊸ A || !A || Reg

r
A (Value-types)

Γ ::= x1 : (u1, A1), . . . , xn : (un, An) (Contexts)
R ::= r1 : (U1, A1), . . . , rn : (Un, An) (Region contexts)

Table 3: Syntax: types and contexts

that when writing either λx.M , or νx M , or let !x = N in M the variable x is bound in M .
As usual, we abbreviate (λz.N)M with M ;N , where z is not free in N . Evaluation contexts
E follow a call-by-value discipline. Static contexts C are composed of parallel composition
and ν’s. Note that stores can only appear in a static context. Thus M = V (set(x, V ′);V ′′) is
a legal term while M ′ = V (V ′′ | (x← V)) is not.

2.2 Operational semantics

Table 2 describes the operational semantics of our language. Programs are considered up to
a structural equivalence ≡ which is the least equivalence relation preserved by static contexts,
and which contains the equations for α-renaming, for the commutativity and associativity of
parallel composition, for enlarging the scope of the ν operators to parallel programs, and for
extracting the ν from an evaluation context. We use the notation [V/x] for the substitution of
the value V for the variable x. The reduction rules apply modulo structural equivalence and
in a static context C. For instance, the program ((νx λy.M)(νx′ λx′.M ′))V | P is structurally
equivalent (up to some renaming) to νx νx′ ((λy.M)(λy′.M ′))V | P . This transformation
exposes the term E[(λy.M)(λy′.M ′)] in the static context C = νx νx′ [] | P , where the
evaluation context E is []V .

2.3 Syntax: types and contexts

Table 3 introduces the syntax of types and contexts. We denote regions with r, r′, . . . and
we suppose a region r is either volatile (V(r)) or persistent (P(r)). Types are denoted with
α,α′, Note that we distinguish a special behaviour type B which is given to the entities
of the language which are not supposed to return a value (such as a store or several values
in parallel) while types of entities that may return a value are denoted with A. Among the
types A, we distinguish a terminal type 1, an affine functional type A ⊸ B, the type !A of

4

terms of type A that can be duplicated, and the type RegrA of addresses containing values
of type A and related to the region r. Hereby types may depend on regions.

Before commenting variable and region contexts, we need to define the notion of usage.
To this end, it is convenient to introduce a set with three values {0, 1,∞} and a partial binary
operation ⊎ such that x ⊎ 0 = 0 ⊎ x = x, ∞⊎∞ =∞ and which is undefined otherwise.

We denote with u a variable usage and assume that u is either 1 (a variable to be used
at most once) or ∞ (a variable that can be used arbitrarily many times). Then a variable
context (or simply a context) Γ has the shape: x1 : (u1, A1), . . . , xn : (un, An), where xi are
distinct variables, ui ∈ {1,∞} and Ai are types of terms that may return a result. Writing
x : (u,A) means that the variable x ranges on values of type A and can be used according to
u. We write dom(Γ) for the set {x1, . . . , xn} of variables where the context is defined. The
sum on usages is extended to contexts componentwise. In particular, if x : (u1, A) ∈ Γ1 and
x : (u2, A) ∈ Γ2 then x : (u1 ⊎ u2, A) ∈ (Γ1 ⊎ Γ2) only if u1 ⊎ u2 is defined.

We are going to associate a usage with regions too, but in this case a usage will be a two
dimensional vector because we want to be able to distinguish input and output usages. We de-
note with U an element of one of the following three sets of usages: {[∞,∞]}, {[1,∞], [0,∞]},
{[0, 0], [1, 0], [0, 1], [1, 1]}, where by convention we reserve the first component to describe the
output usage and the second for the input usage. Thus a region with usage [1,∞] should be
written at most once while it can be read arbitrarily many times.

The addition U1 ⊎ U2 is defined provided U1 and U2 are in the same set of usages and
moreover the componentwise addition is defined. For instance, if U1 = [∞,∞] and U2 = [0,∞]
then the sum is undefined because U1 and U2 are not in the same set while if U1 = [1,∞] and
U2 = [1,∞] then the sum is undefined because 1 ⊎ 1 is undefined. Note that in each set of
usages there is a neutral usage U0 such that U0 ⊎ U = U for all U in the same set.

A region context R has the shape:

r1 : (U1, A1), . . . , rn : (Un, An) (1)

where ri are distinct regions, Ui are usages in the sense just defined, and Ai are types of terms
that may return a result. The typing system will additionally guarantee that whenever we
use a type RegrA the region context contains an hypothesis r : (U,A) for some U . Intuitively,
writing r : (U,A) means that addresses related to region r contain values of type A and that
they can be used according to the usage U . We write dom(R) for the set {r1, . . . , rn} of the
regions where the region context is defined. As for contexts, the sum on usages is extended
to region contexts componentwise. In particular, if r : (U1, A) ∈ R1 and r : (U2, A) ∈ R2

then r : (U1 ⊎ U2, A) ∈ (R1 ⊎ R2) only if U1 ⊎ U2 is defined. Moreover, for (R1 ⊎ R2) to be
defined we require that dom(R1) = dom(R2). There is no loss of generality in this hypothesis
because if, say, r : (U,A) ∈ R1 and r /∈ dom(R2) then we can always add r : (U0, A) to R2

where U0 is the neutral usage of the set to which U belongs (this is left implicit in the typing
rules).

2.4 Affine-intuitionistic type system with regions

Because types depend on regions, we have to be careful in stating in table 4 when a region-
context and a type are compatible (R ↓ α), when a region context is well-formed (R ⊢), when
a type is well-formed in a region context (R ⊢ α) and when a context is well-formed in a
region context (R ⊢ Γ).

5

R ↓ 1 R ↓ B

R ↓ A R ↓ α

R ↓ (A ⊸ α)

r : (U,A) ∈ R

R ↓ Reg
r
A

∀ r : (U, A) ∈ R R ↓ A

R ⊢
R ⊢ R ↓ α

R ⊢ α

∀x : (u, A) ∈ Γ R ⊢ A

R ⊢ Γ

Table 4: Type and context formation rules (unstratified)

A more informal way to express the condition is to say that a judgement r1 : (U1, A1), . . . , rn :
(Un, An) ⊢ α is well formed provided that: (1) all the region names occurring in the types
A1, . . . , An, α belong to the set {r1, . . . , rn} and (2) all types of the shape Regri

B with
i ∈ {1, . . . , n} and occurring in the types A1, . . . , An, α are such that B = Ai. For instance, one
may verify that r : (U,1 ⊸ 1) ⊢ Regr (1 ⊸ 1) can be derived while r : (U,1) ⊢ Regr (1 ⊸ 1)
and r : (U,Regr1) ⊢ 1 cannot.

Next, table 5 introduces an affine-intuitionistic type system with regions whose basic
judgement R; Γ ⊢ P : α attributes a type α to the program P in the region context R and
the context Γ. Here and in the following we omit the rule for typing a program (S | P) which
is symmetric to the one for the program (P | S).

We write aff (x : (u,A)) if u = 1 and aff (r : ([v, v′], A)) if either 1 ∈ {v, v′} or V(r) and
v′ 6= 0. We write aff (R; Γ) (saff (R; Γ)) if the predicate aff holds for at least one (for all) the
hypotheses in R; Γ. Notice that the so called promotion rule that allows to duplicate a value
requires that the related contexts are not affine. Because of this condition, the rule allows
for a form of weakening of the hypotheses in the conclusion. We can then state the following
weakening lemma.

Lemma 1 (weakening) If R; Γ ⊢ P : α and R ⊎R′ ⊢ Γ ⊎ Γ′ then R ⊎R′; Γ ⊎ Γ′ ⊢ P : α.

Example 2 Let R = r : ([1, 1],1) and M = λx.let !x = x in get(x) | set(x, ∗). We check that:
R; ⊢M : !Regr1 ⊸ B. By the rule for affine implication, this reduces to: R;x : (1, !Regr1) ⊢
let !x = x in get(x) | set(x, ∗) : B. If we define R0 = r : ([0, 0],1), then by the rule for the let we
reduce to: R0;x : (1, !Regr1) ⊢ x : !Regr1 and R;x : (∞,Regr1) ⊢ get(x) | set(x, ∗) : B. The
former is an axiom while the latter is derived from: r : ([0, 1],1);x : (∞,Regr1) ⊢ get(x) : 1
and r : ([1, 0],1);x : (∞,Regr1) ⊢ set(x, ∗) : 1. Note that we can actually apply the function
M to a value !y which is typed using the promotion rule as follows:

R0; y : (∞,Regr1) ⊢ y : Regr1

R0; y : (∞,Regr1) ⊢ !y : !Regr1

We remark that the region context and the context play two different roles: the context counts
the number of occurrences of a variable while the region context counts the number of input-
output effects. In our example, the variable x occurs several times but we can be sure that
there will be at most one input and at most one output in the related region.

Example 3 We consider a functional M = λf.λf ′.νy (fy | f ′y) which can be given the type
(Regr1 ⊸ 1) ⊸ (Regr1 ⊸ 1) ⊸ B in a region context R = r : ([0, 0],1). We can apply M
to the functions V1 = λx.get(x) and V2 = λx.set(x, ∗) which have the appropriate types in the
compatible region contexts R′ = r : ([0, 1],1) and R′′ = r : ([1, 0],1), respectively. Such affine
usages would not be compatible with an intuitionistic implication as in this case one has to
promote (put a ! in front of) V1 and V2 before passing them as arguments.

6

R ⊢ Γ x : (u, A) ∈ Γ

R; Γ ⊢ x : A

R ⊢ Γ

R; Γ ⊢ ∗ : 1

R; Γ, x : (1, A) ⊢M : α

R; Γ ⊢ λx.M : (A ⊸ α)

R1; Γ1 ⊢M : (A ⊸ α)
R2; Γ2 ⊢ N : A

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢MN : α

R ⊎R′ ⊢ (Γ ⊎ Γ′) saff (R′; Γ′)
R; Γ ⊢M : A ¬aff (R; Γ)

R ⊎ R′; Γ ⊎ Γ′ ⊢ !M : !A

R1; Γ1 ⊢M : !A
R2; Γ2, x : (∞, A) ⊢ N : α

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ let !x = M in N : α

R; Γ, x : (u, Reg
r
A) ⊢ P : α

R; Γ ⊢ νx P : α

R ⊢ Γ x : (u, Reg
r
A) ∈ Γ

r : ([v, v′], A) ∈ R v′ 6= 0

R; Γ ⊢ get(x) : A

Γ = x : (u, Reg
r
A) ⊎ Γ′ V(r)

R = r : ([v, v′], A) ⊎R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : A

R; Γ ⊢ set(x, V) : 1

Γ = x : (u, Reg
r
!A) ⊎ Γ′ P(r)

R = r : ([v, v′], !A) ⊎ R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : !A

R; Γ ⊢ pset(x, V) : 1

Γ = x : (u, Reg
r
A) ⊎ Γ′ V(r)

R = r : ([v, v′], A) ⊎R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : A

R; Γ ⊢ (x← V) : B

Γ = x : (u, Reg
r
!A) ⊎ Γ′ P(r)

R = r : ([v, v′], !A) ⊎ R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : !A

R; Γ ⊢ (x⇐ V) : B

R1; Γ1 ⊢ P : α R2; Γ2 ⊢ S : B

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ (P | S) : α

Ri; Γi ⊢ Pi : αi Pi not a store i = 1, 2

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ (P1 | P2) : B

Table 5: An affine-intuitionistic type system with regions

7

As in Barber-Plotkin system [2], the preservation of typing by substitution comes in two
flavours: one for affine variables and another for intuitionistic variables.

Lemma 4 (substitution) (1) If R; Γ, x : (1, A) ⊢M : α, R′; Γ′ ⊢ V : A, and R⊎R′ ⊢ Γ⊎Γ′

then R ⊎R′; Γ ⊎ Γ′ ⊢ [V/x]M : α.

(2) If R; Γ, x : (∞, A) ⊢ M : α, R′; Γ′ ⊢ !V : !A, and R ⊎ R′ ⊢ Γ ⊎ Γ′ then R ⊎ R′; Γ ⊎ Γ′ ⊢
[V/x]M : α.

We rely on lemma 4 to show that the basic reduction rules in table 2 preserve typing.
Then, observing that typing is invariant under structural equivalence, we can lift the property
to the reduction relation which is generated by the basic reduction rules.

Theorem 5 (subject reduction) If R; Γ ⊢ P : α and P → P ′ then R; Γ ⊢ P ′ : α.

In our formalism, a closed program is a program whose only free variables have region
types (as in, say, the π-calculus). For closed programs one can state a progress property saying
that if a program cannot progress then, up to structural equivalence, every thread is either a
value or a term of the shape E[get(x)] and there is no store in parallel of the shape (x← V)
or (x ⇐ V). In particular, we notice that a closed value of type !A must have the shape !V
so that in well-typed closed programs such as let !x = V in M or E[get(x)] | (x ⇐ V), V is
guaranteed to have the shape !V required by the operational semantics in table 2.

Proposition 6 (progress) Suppose P is a closed typable program which cannot reduce.
Then P is structurally equivalent to a program

νx1, . . . , xm (M1 | · · · |Mn | S1 | · · · | Sp) m,n, p ≥ 0

where Mi is either a value or can be uniquely decomposed as a term E[get(y)] such that no
value is associated with the address y in the stores S1, . . . , Sp.

3 Confluence

In our language, each thread evaluates deterministically according to a call-by-value evalu-
ation strategy. The only source of non-determinism comes from a concurrent access to the
memory. More specifically, we may have a non-deterministic program if several values are
stored at the same address as in the following example:

get(x) | (x⇐ V1) | (x⇐ V2) (2)

or if there is a race condition on a volatile address as in the following example:

E1[get(x)] | E2[get(x)] | (x← V) (3)

On the other hand, a race condition on a persistent address such as:

E1[get(x)] | E2[get(x)] | (x⇐ V) (4)

does not compromise determinism because the two possible reductions commute. We can rule
out the problematic situations 2 and 3 if we remove from our system the region usage [∞,∞]

8

U ∈ {[1,∞], [0,∞]} ∪ {[1, 1], [1, 0], [0, 1], [0, 0]}

Γ = x : (u, Reg
r
A) ⊎ Γ′ V(r)

R = r : ([v, v′], A) ⊎R′ v 6= 0, v′ 6=∞
R ⊢ Γ R′; Γ′ ⊢ V : A

R; Γ ⊢ set(x, V) : 1

Γ = x : (u, Reg
r
A) ⊎ Γ′ V(r)

R = r : ([v, v′], A) ⊎R′ v 6= 0, v′ 6=∞
R ⊢ Γ R′; Γ′ ⊢ V : A

R; Γ ⊢ (x← V) : B

Table 6: Restricted usages and restricted rules for confluence

and if we restrict the usages of non-persistent stores to those in which there is at most one
read effect. More precisely, we add a condition v′ 6= ∞ to the typing rules for volatile stores
set(x, V) and (x← V) as specified in table 6.

We denote with ⊢C provability in this restricted system. This system still enjoys the
subject reduction property and moreover its typable programs are strongly confluent.

Proposition 7 (subj. red. and confluence) Suppose R; Γ ⊢C P : α. Then:

(1) If P → P ′ then R; Γ ⊢C P ′ : α.

(2) If P → P ′ and P → P ′′ then either P ′ ≡ P ′′ or there is a Q such that P ′ → Q′ and
P ′′ → Q.

Proof. (1) We just have to reconsider the case where E[set(x, V)] → E[∗] | (x ← V) and
verify that if R; Γ ⊢ set(x, V) : 1 then R; Γ ⊢ (x ← V) : B which entails that E[∗] | (x ← V)
is typable in the same context as E[set(x, V)].

(2) The restrictions on the usages forbid the typing of a store such as the one in 2 where
two values are stored in the same region. Moreover, it also forbids the typing of two parallel
reads on a volatile store. 2

We note that the rules for ensuring confluence require that at most one value is associated
with a region. This is quite a restrictive discipline but one has to keep in mind that it targets
regions that can be accessed concurrently by several threads. Of course, the discipline could
be relaxed for the regions that are accessed by one single sequential thread.

4 An affine-intuitionistic type and effect system

We refine the type system to include effects which are denoted with e, e′, . . . and are finite
sets of regions. The syntax of programs (table 1) and their operational semantics (table 2)
are unchanged. The only modification to the syntax of types (table 3) is that the affine

implication is now annotated with an effect so that we write: A
e

⊸ α. This introduces a new
dependency of types on regions and consequently the compatibility condition between region
contexts and functional types in table 4 becomes:

R ↓ A R ↓ α e ⊆ dom(R)

R ↓ (A
e

⊸ α)

For instance, one may verify that the judgement r : (U,1
{r}
⊸ 1) ⊢ is derivable. Also to allow

for some flexibility, it is convenient to introduce a subtyping relation on types and effects as
specified in table 7.

9

R ⊢ α ≤ α

R ⊢ A ≤ A′

R ⊢ !A ≤ !A′

e ⊆ e′ ⊆ dom(R)
R ⊢ A′ ≤ A R ⊢ α ≤ α′

R ⊢ (A
e

⊸ α) ≤ (A′ e
′

⊸ α′)

e ⊆ e′ ⊆ dom(R)
R ⊢ α ≤ α′

R ⊢ (α, e) ≤ (α, e′)

R; Γ ⊢M : (α, e)
R ⊢ (α, e) ≤ (α′, e′)

R; Γ ⊢M : (α′, e′)

Table 7: Subtyping induced by effect containment

We notice that the transitivity rule for subtyping

R ⊢ α ≤ α′ R ⊢ α′ ≤ α′′

R ⊢ α ≤ α′′

can be derived via a simple induction on the height of the proofs. The typing judgements
now take the shape R; Γ ⊢ P : (α, e) where the effect e provides an upper bound on the set
of regions on which the program P may read or write when it is evaluated. In particular, we
can be sure that values and stores produce an empty effect. As for the operations to read
and write the store, one exploits the dependency of address types on regions to determine the
region where the effect occurs (cf. [15]). For the sake of completeness, the typing rules are
spelled out in table 8.

We stress that these rules are the same as the ones in table 5 modulo the enriched syntax
of the functional types and the management of the effect e on the right hand side of the
sequents. The management of the effects is additive as in [15], indeed effects are just sets of
regions.

The introduction of the subtyping rules has a limited impact on the structure of the
typing proofs. Indeed, if R ⊢ A ≤ B then we know that A and B may just differ in the
effects annotating the functional types. In particular, when looking at the proof of the typing
judgement of a value such as R; Γ ⊢ λx.M : (A, e), we can always argue that A has the shape

A1

e1

⊸ A2 and, in case the effect e is not empty, that there is a shorter proof of the judgement

R; Γ ⊢ λx.M : (B1

e2

⊸ B2, ∅) where R ⊢ A1 ≤ B1, R ⊢ B2 ≤ A2, and e2 ⊆ e1.
Then to prove subject reduction, we just repeat the proof of theorem 5 while using stan-

dard arguments to keep track of the effects.

Proposition 8 (subject reduction with effects) Types and effects are preserved by re-
duction.

It easy to check that a typable program such as E[set(x, V)] which is ready to produce an
effect on the region r associated with x will indeed contain r in its effect. Thus the subject
reduction property stated above as proposition 8 entails that the type and effect system does
provide an upper bound on the effects a program may produce during its evaluation.

5 Termination

Terms typable in the unstratified type and effect system described in table 8 may diverge. For
instance, the following term M stores at the address x a function that, given an argument,

10

R ⊢ Γ x : (u, A) ∈ Γ

R; Γ ⊢ x : (A, ∅)
R ⊢ Γ

R; Γ ⊢ ∗ : (1, ∅)

R; Γ, x : (1, A) ⊢M : (α, e)

R; Γ ⊢ λx.M : (A
e

⊸ α, ∅)

R1; Γ1 ⊢M : (A
e

⊸ α, e′)
R2; Γ2 ⊢ N : (A, e′′)

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢MN : (α, e ∪ e′ ∪ e′′)

R ⊎R′ ⊢ (Γ ⊎ Γ′) saff (R′; Γ′)
R; Γ ⊢M : (A, e) ¬aff (R; Γ)

R ⊎R′; Γ ⊎ Γ′ ⊢ !M : (!A, e)

R1; Γ1 ⊢M : (!A, e)
R2; Γ2, x : (∞, A) ⊢ (N, e′) : α

R1 ⊎ R2; Γ1 ⊎ Γ2 ⊢ let !x = M in N : (α, e ∪ e′)

R; Γ, x : (u, Reg
r
A) ⊢ P : (α, e)

R; Γ ⊢ νx P : (α, e)

R ⊢ Γ x : (u, Reg
r
A) ∈ Γ

r : ([v, v′], A) ∈ R v′ 6= 0

R; Γ ⊢ get(x) : (A, {r})

Γ = x : (u, Reg
r
A) ⊎ Γ′ V(r)

R = r : ([v, v′], A) ⊎R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : (A, ∅)
R; Γ ⊢ set(x, V) : (1, {r})

Γ = x : (u, Reg
r
!A) ⊎ Γ′ P(r)

R = r : ([v, v′], !A) ⊎ R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : (!A, ∅)
R; Γ ⊢ pset(x, V) : (1, {r})

Γ = x : (u, Reg
r
A) ⊎ Γ′ V(r)

R = r : ([v, v′], A) ⊎R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : (A, ∅)
R; Γ ⊢ (x← V) : (B, ∅)

Γ = x : (u, Reg
r
!A) ⊎ Γ′ P(r)

R = r : ([v, v′], !A) ⊎ R′ v 6= 0
R ⊢ Γ R′; Γ′ ⊢ V : (!A, ∅)

R; Γ ⊢ (x⇐ V) : (B, ∅)

R1; Γ1 ⊢ P : (α, e)
R2; Γ2 ⊢ S : (B, ∅)

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ (P | S) : (α, e)

Ri; Γi ⊢ Pi : (αi, ei)
Pi not a store i = 1, 2

R1 ⊎ R2; Γ1 ⊎ Γ2 ⊢ (P1 | P2) : (B, e1 ∪ e2)

Table 8: An affine-intuitionistic type and effect system

11

∅ ⊢
R ⊢ A r /∈ dom(R)

R, r : (U, A) ⊢
R ⊢

R ⊢ 1

R ⊢
R ⊢ B

R ⊢ A

R ⊢ !A

R ⊢ A R ⊢ α e ⊆ dom(R)

R ⊢ (A
e

⊸ α)

R ⊢ r : (U, A) ∈ R

R ⊢ Reg
r
A

R ⊢ α e ⊆ dom(R)

R ⊢ (α, e)

Table 9: Rules for the formation of types and contexts (stratified)

1 = 1, B = B, A
e

⊸ α = A
e

−→ α, !A = A, Reg
r
A = Reg

r
A

r1 : (U1, A1), . . . , rn : (Un, An) = r1 : A1, . . . , rn : An

x : (u, A),Γ =

x : A, Γ if A 6= Reg
r
B

Γ otherwise

x = x, xr = r, ∗ = ∗, λx.M = λx.M, MN = MN

!M = M, let !x = M in N = (λx.N)M, νx M = M,

get(xr) = get(r), set(xr, V) = set(r, V), pset(xr, V) = pset(r, V),

(xr ← V) = (r ⇐ V), (xr ⇐ V) = (r ⇐ V), P | P ′ = P | P ′

Table 10: Forgetful translation

keeps fetching itself from the store forever:

M = νx pset(x, !(λy.let !x = get(x) in xy)) ; let !x = get(x) in x ∗ . (5)

One may verify that M is typable in a region context R = r : ([1,∞], !(1
{r}
⊸ 1)).

This example suggests that in order to recover termination, we may order regions and
make sure that a value stored in a certain region when put in an evaluation context can
only produce effects on smaller regions. To formalise this idea, we introduce in table 9 rules
for the formation of types and contexts which are alternative to those in table 4. Assuming

R = r : (U,1), one may check that the judgement r : (U,1), r′ : (U ′,1
{r}
⊸ 1) ⊢ is derivable

while r′ : (U ′,1
{r′}
⊸ 1) ⊢ is not.

It is easy to verify that the stratified system is a restriction of the unstratified one and that
the subject reduction theorem 8 still holds in the restricted stratified system. If confluence is
required, then one may add the restrictions spelled out in table 6.

Concerning termination, we recall that there is a standard forgetful translation () from
affine-intuitionistic logic to intuitionistic logic which amounts to forget about the modality !
and the usages and to regard the affine implication as an ordinary intuitionistic implication.
Thus, for instance, the translation of types goes as follows: !A = A and A ⊸ B = A → B;
while the translation of terms is: !M = M and let !x = M in N = (λx.N)M . In table 10,
we lift this translation from the stratified affine-intuitionistic type and effect system into a
stratified intuitionistic type and effect system defined in [1].

The translation assumes a decoration phase where the (free or bound) variables with a
region type of the shape RegrA are labelled with the region r. Intuitively, the intuitionistic

12

system abstracts an address x related to the region r to the region r itself so that a decorated
variable xr translates into a constant r. In the intuitionistic language, a region r is a term
of region type RegrA, for some A and all stores are persistent. The full definition of the
language is recalled in appendix 9.

It turns out that a reduction in the affine-intuitionistic system is mapped to exactly a
reduction in the intuitionistic system. Then the termination of the intuitionistic system
proved in [1] entails the termination of the affine-intuitionistic one.

Theorem 9 (termination) Programs typable in the stratified affine-intuitionistic type and
effect system terminate.

6 Conclusion

We have presented an affine-intuitionistic system of types and effects for a functional-concurrent
programming language. The functional core of the system is based on Barbed-Plotkin affine-
intuitionistic logic which distinguishes between affine and intuitionistic hypotheses. The lan-
guage also includes a ‘non-logical’ part with operators to read and write dynamically generated
addresses of a ‘store’. In the type system, such addresses are abstracted into a finite number
of regions. We have shown that suitable disciplines of region usage and region stratification
allow to regain confluence and termination, respectively.

Beyond these crucial properties, we hope to show in future work that other interesting
properties of the functional core can be extended to the considered framework. We think
in particular of the construction of denotational models (see, e.g, [5]) and of bounds on the
computational complexity of typable programs (see, e.g., [11]).

Acknowledgements The first author was partially supported by ANR-06-SETI-010-02 and the second

and third authors by ANR-08-BLANC-0211-01.

References

[1] R.M. Amadio. On stratified regions. In Proc. APLAS, Springer LNCS (to appear), 2009. Extended
version available as arXiv:0904.2076v2.

[2] A. Barber. Dual intuitionistic linear logic. University of Edinburgh, Technical report ECS-LFCS-96-347,
1996.

[3] N. Benton, G. Bierman, V. de Paiva and M. Hyland. A Term Calculus for Intuitionistic Linear Logic. In
Proc. Typed Lambda Calculi and Applications, Springer LNCS 664:75-90, 2003.

[4] N. Benton. A mixed linear and non-linear logic; proofs, terms and models. In Proc. Computer Science
Logic, Springer LNCS 933:121-135, 2004.

[5] G. Bierman. What is a categorical model of intuitionistic linear logic? In Proc. Typed Lambda-Calculi
and Applications, Springer LNCS 902:78-93, 1995.

[6] G. Boudol. Typing termination in a higher-order concurrent imperative language. In Proc. CONCUR,
Springer LNCS 4703:272-286, 2007.

[7] M. Fluet, G. Morrisett, and A. Ahmed. Linear Regions Are All You Need. In Proc. ESOP, Springer
LNCS 3924: 7-21, 2006.

[8] A. Giacalone, P. Mishra, and S. Prasad. FACILE: A Symmetric Integration of Concurrent and Functional
Programming. In Proc. TAPSOFT, Springer LNCS 352:184-209, 1989.

[9] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1-102, 1987.

[10] J.-Y. Girard. On the unity of logic. Ann. Pure Appl. Logic, 59(3):201-217, 1993.

13

[11] J.-Y. Girard. Light Linear Logic. Information and Computation, 143(2): 175-204, 1998.

[12] A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans. Program. Lang. Syst. 27(2): 264-313,
2005.

[13] N. Kobayashi. Type systems for concurrent programs. In Proc. 10th Anniversary Colloquium of
UNU/IIST, Springer LNCS 2757:439-453, 2003.

[14] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. ACM Trans. on Program. Lang.
and Systems, 21(5):914-947, 1999.

[15] J. Lucassen and D. Gifford. Polymorphic effect systems. In Proc. ACM-POPL, pp 47-57, 1988.

[16] J. Maraist, M. Odersky, D. Turner, and Ph. Wadler. Call-by-Name, Call-by-Value, Call-by-Need, and the
Linear Lambda Calculus. In Proc. Mathematical Foundations of Programming Semantics, Elect. Notes in
Comp. Sci. 1(1), Elsevier, 1995.

[17] G. Plotkin. Type theory and recursion. In Proc. IEEE-LICS, Abstract, 1993.

[18] J. Reppy. CML: A higher-order concurrent language. In Proc. ACM-SIGPLAN Conf. on Prog. Language
Design and Implementation, pp 293-305, 1991.

[19] D. Sangiorgi. Termination of processes. Math. Struct. in Comp. Sci., 16:1-39, 2006.

[20] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computation, 132(2):
109-176, 1997.

[21] Ph. Wadler. A Taste of Linear Logic. In Proc. Mathematical Foundations of Computer Science, Springer
LNCS 711:185-210, 1993.

[22] D. Walker. Substructural type systems. Chapter 1 of Advanced topics in types and programming languages,
B. Pierce (ed.), MIT Press, 2002.

[23] D. Walker and K.Watkins. On Regions and Linear Types. In Proc. Int. Conf. on Fun. Prog., pp 181-
192,2001.

[24] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the π-calculus. Information and Compu-
tation, 191(2):145-202, 2004.

14

A Proofs

A.1 Proof of theorem 5

Lemma 10 (weakening) If R; Γ ⊢ P : α and R ⊎R′ ⊢ Γ ⊎ Γ′ then R ⊎R′; Γ ⊎ Γ′ ⊢ P : α.

Proof. By induction on the typing of P . Following table 5, there are 14 rules to be considered
of which we highlight 3.

P ≡MN We have:
R1; Γ1 ⊢M : A ⊸ α R2; Γ2 ⊢ N : A

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢MN : α
.

We notice that the composition operation ⊎ on contexts is associative and commutative
(when it is defined) and that (R1⊎R2⊎R′) ⊢ (Γ1⊎Γ2⊎Γ′) entails that (R1⊎R′) ⊢ (Γ1⊎Γ′).
Hence, by induction hypothesis, we get R1 ⊎ R′; Γ1 ⊎ Γ′ ⊢ M : A ⊸ α, from which we
derive:

R1 ⊎R′; Γ1 ⊎ Γ′ ⊢M : A ⊸ α R2; Γ2 ⊢ N : A

R1 ⊎R2 ⊎R′; Γ1 ⊎ Γ2 ⊎ Γ′ ⊢MN : α
.

P ≡ !M We have:
R ⊎R′′ ⊢ Γ ⊎ Γ′′ saff (R′′; Γ′′)
¬aff (R; Γ) R; Γ ⊢M : A

R ⊎R′′; Γ ⊎ Γ′′ ⊢ !M : !A
.

We can always decompose R′ as R′
1 ⊎ R′

∞ and Γ′ as Γ′
1 ⊎ Γ′

∞ so that ¬aff (R′
∞; Γ′

∞)
and saff (R′

1; Γ
′
1). By induction hypothesis, we have R ⊎ R′

∞; Γ ⊎ Γ′
∞ ⊢ M : A. We

notice that ¬aff (R ⊎R′
∞; Γ ⊎ Γ′

∞) and saff (R′
1 ⊎R′′; Γ′

1 ⊎ Γ′′) (remember that 1 ⊎∞ is
undefined). Hence we derive:

(R ⊎R′
∞ ⊎R′

1 ⊎R′′) ⊢ (Γ ⊎ Γ′
∞ ⊎ Γ′

1 ⊎ Γ′′) saff (R′
1 ⊎R′′; Γ′

1 ⊎ Γ′′)
¬aff (R ⊎R′

∞; Γ ⊎ Γ′
∞) R ⊎R′

∞; Γ ⊎ Γ′
∞ ⊢M : A

R ⊎R′ ⊎R′′; Γ ⊎ Γ′ ⊎ Γ′′ ⊢ !M : !A
.

P ≡ set(x, V) We have:
Γ = x : (u,RegrA) ⊎ Γ′′

R = r : ([v, v′], A) ⊎R′′ v 6= 0
R ⊢ Γ R′′; Γ′′ ⊢ V : A

R; Γ ⊢ set(x, V) : 1
.

By induction hypothesis, we have R′′ ⊎R′; Γ′′ ⊎ Γ′ ⊢ V : A, from which we derive:

Γ ⊎ Γ′ = x : (u,RegrA) ⊎ (Γ′′ ⊎ Γ′)
R ⊎R′ = r : ([v, v′], A) ⊎ (R′′ ⊎R′) v 6= 0
R ⊎R′ ⊢ Γ ⊎ Γ′ R′′ ⊎R′; Γ′′ ⊎ Γ′ ⊢ V : A

R ⊎R′; Γ ⊎ Γ′ ⊢ set(x, V) : 1
.

We notice that this argument still holds when introducing the restriction v′ 6= ∞
in order to guarantee confluence (cf. table 6). Indeed, the restriction v′ 6= ∞ is
equivalent to require that the usage of the region r ranges in the family of usages
{[1, 1], [1, 0], [0, 1], [0, 0]}. 2

15

Lemma 11 (affine substitution lemma) If R1; Γ1, x : (1, A) ⊢ P : α, R2; Γ2 ⊢ V : A, and
R1 ⊎R2 ⊢ Γ1 ⊎ Γ2 then R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ [V/x]P : α.

Proof. By induction on the typing of P . We highlight 4 cases out of 14.

P ≡MN We have:
R3; Γ

′
3 ⊢M : C ⊸ α R4; Γ

′
4 ⊢ N : C

R3 ⊎R4; Γ
′
3 ⊎ Γ′

4 ⊢MN : α
.

Because x : (1, A) is an affine hypothesis, it can occur exclusively either in Γ′
3 or in Γ′

4.
We consider both cases.

1. Γ′
3 = Γ3, x : (1, A) and Γ′

4 = Γ4 with x /∈ dom(Γ4). By induction hypothesis we
have R2 ⊎R3; Γ2 ⊎Γ3 ⊢ [V/x]M : C ⊸ α. Plus x /∈ FV (N) so [V/x]N ≡ N , hence
R4; Γ4 ⊢ [V/x]N : C. Then we derive:

R2 ⊎R3; Γ2 ⊎ Γ3 ⊢ [V/x]M : C ⊸ α R4; Γ4 ⊢ [V/x]N : C

R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](MN) : α
.

2. Γ′
3 = Γ3 with x /∈ dom(Γ3) and Γ′

4 = Γ4, x : (1, A).

By induction hypothesis we have R2 ⊎R4; Γ2 ⊎Γ4 ⊢ [V/x]N : C. Plus x /∈ FV (M)
so [V/x]M ≡M , hence R3; Γ3 ⊢ [V/x]M : C ⊸ α. Then we derive:

R3; Γ3 ⊢ [V/x]M : C ⊸ α R2 ⊎R4; Γ2 ⊎ Γ4 ⊢ [V/x]N : C

R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](MN) : α
.

P ≡ !M We have:

R1 ⊎R′ ⊢ (Γ1 ⊎ (Γ′, x : (1, A))) saff (R′; Γ′, x : (1, A))
R1; Γ1 ⊢M : A ¬aff (R1; Γ1)

R1 ⊎R′; Γ1 ⊎ (Γ′, x : (1, A)) ⊢ !M : !A

We deduce that x /∈ FV (!M), hence [V/x](!M) ≡ !M and R1⊎R′; Γ1⊎Γ′ ⊢ [V/x](!M) :
!A. By lemma 10, we get R1 ⊎R′ ⊎R2; Γ1 ⊎ Γ′ ⊎ Γ2 ⊢ [V/x](!M) : !A.

P ≡ let !y = M in N Renaming y so that y 6= x, we have:

R3; Γ
′
3 ⊢M : !C R4; Γ

′
4, y : (∞, C) ⊢ N : α

R3 ⊎R4; Γ
′
3 ⊎ Γ′

4 ⊢ let !y = M in N : α

As in the case of application, we distinguish two cases.

1. Γ′
3 = Γ3, x : (1, A) and Γ′

4 = Γ4 with x /∈ dom(Γ4).
By induction hypothesis, we have R2⊎R3; Γ2⊎Γ3 ⊢ [V/x]M : !C. Plus x /∈ FV (N)
so [V/x]N ≡ N , hence R4; Γ4, y : (∞, C) ⊢ [V/x]N : α. Then we derive:

R2 ⊎R3; Γ2 ⊎ Γ3 ⊢ [V/x]M : !C R4; Γ4, y : (∞, C) ⊢ [V/x]N : α

R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](let !y = M in N) : α
.

16

2. Γ′
3 = Γ3 with x /∈ dom(Γ3) and Γ′

4 = Γ4, x : (1, A).
By induction hypothesis we have R2 ⊎ R4; Γ2, y : (∞, C) ⊎ Γ4 ⊢ [V/x]N : α. Plus
x /∈ FV (M) so [V/x]M ≡M , hence R3; Γ3 ⊢ [V/x]M : !C. Then we derive:

R3; Γ3 ⊢ [V/x]M : !C R2 ⊎R4; Γ2, y : (∞, C) ⊎ Γ4 ⊢ [V/x]N : α

R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](let !y = M in N) : α
.

P ≡ set(y, V ′) We distinguish two cases.

1. If y 6= x we have:

Γ1, x : (1, A) = y : (u,RegrC) ⊎ Γ′
1

R1 = r : ([v, v′], C) ⊎R′
1 v 6= 0

R1 ⊢ Γ1, x : (1, A) R′
1; Γ

′
1 ⊢ V ′ : C

R1; Γ1, x : (1, A) ⊢ set(y, V ′) : 1
.

We deduce that Γ′
1 = Γ′′

1 ⊎ x : (1, A), and by induction hypothesis we get R′
1 ⊎

R2; Γ
′′
1 ⊎ Γ2 ⊢ [V/x]V ′ : C, from which we derive:

Γ1 = y : (u,RegrC) ⊎ Γ′′
1

R1 = r : ([v, v′], C) ⊎R′
1 v 6= 0

R1 ⊢ Γ1 R′
1 ⊎R2; Γ

′′
1 ⊎ Γ2 ⊢ [V/x]V ′ : C

R1; Γ1 ⊢ [V/x]set(y, V ′) : 1
.

By lemma 10, we obtain R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ [V/x]set(y, V ′) : 1.

2. If y = x then [V/x]set(y, V ′) ≡ set(V, V ′), A = RegrC, and u = 1. Moreover V
must be a variable, thus we can derive:

Γ1 = V : (1,RegrC) ⊎ Γ′
1

R1 = r : ([v, v′], C) ⊎R′
1 v 6= 0

R1 ⊢ Γ1 R′
1; Γ

′
1 ⊢ V ′ : C

R1; Γ1 ⊢ [V/x]set(y, V ′) : 1
,

and by lemma 10 we get R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ [V/x]set(y, V ′) : 1. 2

Lemma 12 (intuitionistic substitution lemma) If R1; Γ1, x : (∞, A) ⊢ P : α, R2; Γ2 ⊢
!V : !A, and R1 ⊎R2 ⊢ Γ1 ⊎ Γ2 then R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ [V/x]P : α.

Proof. By induction on the typing of P . We highlight 4 cases out of 14.

P ≡MN We have:
R3; Γ

′
3 ⊢M : C ⊸ α R4; Γ

′
4 ⊢ N : C

R3 ⊎R4; Γ
′
3 ⊎ Γ′

4 ⊢MN : α
.

We distinguish 3 cases.

1. Γ′
3 = Γ3, x : (∞, A) and Γ′

4 = Γ4 with x /∈ dom(Γ4).
By induction hypothesis we have R2 ⊎ R3; Γ2 ⊎ Γ3 ⊢ [V/x]M : C ⊸ α. Plus
x /∈ FV (N) so [V/x]N ≡ N , hence R4; Γ4 ⊢ [V/x]N : C. Then we derive:

R2 ⊎R3; Γ2 ⊎ Γ3 ⊢ [V/x]M : C ⊸ α R4; Γ4 ⊢ [V/x]N : C

R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](MN) : α
.

17

2. Γ′
3 = Γ3 with x /∈ dom(Γ3) and Γ′

4 = Γ4, x : (∞, A).
By induction hypothesis we have R2 ⊎R4; Γ2 ⊎Γ4 ⊢ [V/x]N : C. Plus x /∈ FV (M)
so [V/x]M ≡M , hence R3; Γ3 ⊢ [V/x]M : C ⊸ α. Then we derive:

R3; Γ3 ⊢ [V/x]M : C ⊸ α R2 ⊎R4; Γ2 ⊎ Γ4 ⊢ [V/x]N : C

R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](MN) : α
.

3. Γ′
3 = Γ3, x : (∞, A) and Γ′

4 = Γ4, x : (∞, A).
By induction hypothesis we have R2 ⊎ R3; Γ2 ⊎ Γ3 ⊢ [V/x]M : C ⊸ α and R2 ⊎
R4; Γ2 ⊎ Γ4 ⊢ [V/x]N : C. Moreover we have:

R5 ⊎R′ ⊢ Γ5 ⊎ Γ′ saff (R′; Γ′)
R5; Γ5 ⊢ V : A ¬aff (R5; Γ5)

R2; Γ2 ⊢ !V : !A
,

where R2 = R5⊎R′ and Γ2 = Γ5⊎Γ′. Hence we know that all the hypotheses of R′

and Γ′ are of weakened regions and variables. Thus we also have R3⊎R5; Γ3⊎Γ5 ⊢
[V/x]M : C ⊸ α and R4 ⊎ R5; Γ4 ⊎ Γ5 ⊢ [V/x]N : C. Plus from ¬aff (R5; Γ5) we
get R5 ⊎R5 = R5 and Γ5 ⊎ Γ5 = Γ5, and we can derive:

R3 ⊎R5; Γ3 ⊎ Γ5 ⊢ [V/x]M : C ⊸ α R4 ⊎R5; Γ4 ⊎ Γ5 ⊢ [V/x]N : C

R3 ⊎R4 ⊎R5; Γ3 ⊎ Γ4 ⊎ Γ5 ⊢ [V/x](MN) : α
.

By lemma 10 we obtain R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](MN) : α.

P ≡ !M Suppose:

R5 ⊎R′ ⊢ (Γ5, x : (∞, A)) ⊎ Γ′ saff (R′; Γ′)
R5; Γ5, x : (∞, A) ⊢M : B ¬aff (R5; Γ5, x : (∞, A))

R5 ⊎R′; (Γ5, x : (∞, A)) ⊎ Γ′ ⊢ !M : !B

.

And also:
R6 ⊎R7 ⊢ Γ6 ⊎ Γ7 saff (R7; Γ7)
aff (R6; Γ6) R6; Γ6 ⊢ V : A

R2; Γ2 ⊢ !V : !A
,

with R2 = R6 ⊎ R7 and Γ2 = Γ6 ⊎ Γ7. Hence we know that all the hypotheses of R7

and Γ7 are of weakened regions and variables, such that R6; Γ6 ⊢ !V : !A. By induction
hypothesis we get R5 ⊎R6; Γ5 ⊎ Γ6 ⊢ [V/x]M : B and we can derive:

(R5 ⊎R6) ⊎ (R7 ⊎R′) ⊢ (Γ5 ⊎ Γ6) ⊎ (Γ7 ⊎ Γ′) saff (R7 ⊎R′; Γ7 ⊎ Γ′)
¬aff (R5 ⊎R6; Γ5 ⊎ Γ6) R5 ⊎R6; Γ5 ⊎ Γ6 ⊢ [V/x]M : B

R5 ⊎R2 ⊎R′; Γ5 ⊎ Γ2 ⊎ Γ′ ⊢ [V/x]!M : !B
.

P ≡ let !y = M in N We have:

R3; Γ
′
3 ⊢M : !C R4; Γ

′
4, y : (∞, C) ⊢ N : α

R3 ⊎R4; Γ
′
3 ⊎ Γ′

4 ⊢ let !y = M in N : α
.

with y 6= x. We just spell out the case where Γ′
3 = Γ3, x : (∞, A) and Γ′

4 = Γ4, x : (∞, A).
By induction hypothesis, we have R2 ⊎R3; Γ2 ⊎ Γ3 ⊢ [V/x]M : !C and R2 ⊎R4; (Γ2, y :
(∞, C)) ⊎ Γ4 ⊢ [V/x]N : α. Moreover we have:

R5 ⊎R′ ⊢ Γ5 ⊎ Γ′ saff (R′; Γ′)
R5; Γ5 ⊢ V : A ¬aff (R5; Γ5)

R2; Γ2 ⊢ !V : !A
,

18

where Γ2 = Γ5⊎Γ′ and R2 = R5⊎R′. Hence we know that all the hypotheses of R′ and Γ′

are of weakened regions and variables. Thus we also have R3⊎R5; Γ3⊎Γ5 ⊢ [V/x]M : !C
and R4 ⊎ R5; (Γ4, y : (∞, C)) ⊎ Γ5 ⊢ [V/x]N : α. Plus from ¬aff (R5; Γ5) we get
Γ5 ⊎ Γ5 = Γ5 and R5 ⊎R5 = R5, and we can derive:

R3 ⊎R5; Γ3 ⊎ Γ5 ⊢ [V/x]M : !C
R4 ⊎R5; (Γ4, y : (∞, C)) ⊎ Γ5 ⊢ [V/x]N : α

R3 ⊎R4 ⊎R5; Γ3 ⊎ Γ4 ⊎ Γ5 ⊢ [V/x](let !y = M in N) : α

.

By lemma 10, we obtain R2 ⊎R3 ⊎R4; Γ2 ⊎ Γ3 ⊎ Γ4 ⊢ [V/x](let !y = M in N) : α.

P ≡ set(y, V ′) We just look at the case y 6= x. We have:

Γ1, x : (∞, A) = y : (u,RegrC) ⊎ Γ′
1

R1 = r : ([v, v′], C) ⊎R′
1 v′ 6= 0

R1 ⊢ Γ1, x : (∞, A) R′
1; Γ

′
1 ⊢ V ′ : C

R1; Γ1, x : (∞, A) ⊢ set(y, V ′) : 1
.

We deduce that Γ′
1 = Γ′′

1 ⊎x : (∞, A), and by induction hypothesis we get R′
1 ⊎R2; Γ

′′
1 ⊎

Γ2 ⊢ [V/x]V ′ : C, from which we derive:

Γ1 = y : (u,RegrC) ⊎ Γ′′
1

R1 = r : ([v, v′], C) ⊎R′
1 v′ 6= 0

R1 ⊢ Γ1 R′
1 ⊎R2; Γ

′′
1 ⊎ Γ2 ⊢ [V/x]V ′ : C

R1 ⊎R2; Γ1 ⊎ Γ2 ⊢ [V/x]set(y, V ′) : 1
.

2

Lemma 13 (structural equivalence preserves typing) If R; Γ ⊢ P : α and P ≡ P ′ then
R; Γ ⊢ P ′ : α.

Proof. Recall that structural equivalence is the least equivalence relation induced by the
equations stated in table 2 and closed under static contexts. Then we proceed by induction
on the proof of structural equivalence. This is is mainly a matter of reordering the pieces of
the typing proof of P so as to obtain a typing proof of P ′. 2

Lemma 14 (evaluation contexts and typing) Suppose that in the proof of R; Γ ⊢ E[M] :
α we prove R′; Γ′ ⊢ M : A. Then replacing M with a M ′ such that R′; Γ′ ⊢ M ′ : A, we can
still derive R; Γ ⊢ E[M ′] : α.

Proof. By induction on the structure of E. 2

Lemma 15 (functional redexes) If R; Γ ⊢ E[∆] : α where ∆ has the shape (λx.M)V or
let !x = V in M then R; Γ ⊢ E[[V/x]M] : α.

Proof. If ∆ = (λx.M)V we appeal to the affine substitution lemma 11 and if ∆ = let !x =
V in M we rely on the intuitionistic lemma 12. This settles the case where the evaluation
context E is trivial. If it is complex then we also need lemma 14. 2

19

Lemma 16 (side-effects redexes) If R; Γ ⊢ ∆ : α where ∆ is one of the programs on the
left-hand side then R; Γ ⊢ ∆′ : α where ∆′ is the corresponding program on the right-hand
side:

(1) E[set(x, V)] E[∗] | (x← V)
(2) E[pset(x, V)] E[∗] | (x⇐ V)
(3) E[get(x)] | (x← V) E[V]
(4) E[get(x)] | (x⇐ !V) E[!V] | (x⇐ !V)

Proof. We proceed by case analysis.

1. Suppose we derive R; Γ ⊢ E[set(x, V)] : α from R2; Γ2 ⊢ set(x, V) : 1. By the typing rule
for set(x, V) we know that R2 = r : ([v, v′], A)⊎R3, V(r), Γ2 = x : (u,RegrA)⊎Γ3, and
R3; Γ3 ⊢ V : A. It follows that R2; Γ2 ⊢ (x← V) : B. We can decompose R2; Γ2 into an
additive part (R2; Γ2)

0 and a multiplicative one (R2; Γ2)
1. Then from (R2; Γ2)

0 ⊢ ∗ : 1,
we can derive R1; Γ1 ⊢ E[∗] : α, where (R1; Γ1) ⊎ (R2; Γ2)

1 = R; Γ.

2. Suppose we derive R; Γ ⊢ E[pset(x, V)] : α from R2; Γ2 ⊢ pset(x, V) : 1. By the typing
rule for pset(x, V) we know that R2 = r : ([v, v′], !A)⊎R3, P(r), Γ2 = x : (u,Regr !A)⊎Γ3,
and R3; Γ3 ⊢ V : !A. It follows that R2; Γ2 ⊢ (x ⇐ V) : B. Then we reason as in the
previous case.

3. Suppose R1; Γ1 ⊢ E[get(x)] : α is derived from R2; Γ2 ⊢ get(x) : A, that R3; Γ3 ⊢ (x ←
V) : B, and that R; Γ = (R1; Γ1) ⊎ (R3; Γ3). Then (R2; Γ2) ⊎ (R3; Γ3) ⊢ V : A, by
weakening. Also, let r be the region associated with the address x. We know that
V(r) and that R2 must have a reading usage on r. It follows that aff (R2; Γ2) and
therefore the context E cannot contain a sub-context of the shape !E′. Thus from
(R2; Γ2) ⊎ (R3; Γ3) ⊢ V : A we can derive R; Γ ⊢ E[V] : α.

4. Suppose R1; Γ1 ⊢ E[get(x)] : α is derived from R2; Γ2 ⊢ get(x) : !A, that R3; Γ3 ⊢
(x ⇐ !V) : B, and that R; Γ = (R1; Γ1) ⊎ (R3; Γ3). By the promotion rule, R3; Γ3 is a
weakening of R4; Γ4 such that ¬aff (R4; Γ4) and R4; Γ4 ⊢ V : A. Then from R4; Γ4 ⊢
!V : !A we can derive R′; Γ′ ⊢ E[!V] : α where R; Γ is a weakening of (R′; Γ′) ⊎ (R3; Γ3).
2

Theorem 17 (subject reduction) If R; Γ ⊢ P : α and P → P ′ then R; Γ ⊢ P ′ : α.

Proof. We recall that P → P ′ means that P is structurally equivalent to a program C[∆]
where C is a static context, ∆ is one of the programs on the left-hand side of the rewriting
rules specified in table 2, ∆′ is the respective program on the right-hand side, and P ′ is
syntactically equal to C[∆′].

By lemma 13, we know that R; Γ ⊢ C[∆] : α. This entails that R′; Γ′ ⊢ ∆ : α′ for suitable
R′,Γ′, α′. By lemmas 15 and 16, we derive that R′; Γ′ ⊢ ∆′ : α′. Then by induction on the
structure of C we argue that R; Γ ⊢ C[∆′] : α. 2

A.2 Proof of theorem 9

Table 11 summarizes the main syntactic categories and the reduction rules of the intuitionistic
system. It is important to notice that in the intuitionistic system regions are terms and that
the operations that manipulate the store operate directly on the regions so that we write:
get(r), pset(r, V), and (r ⇐ V) rather than get(x), pset(x, V), and (x⇐ V).

Table 12 summarizes the typing rules for the stratified type and effect system.

20

Syntax: terms

x, y, . . . (Variables)
r, s, . . . (Regions)
V ::= x || ∗ || r || λx.M (Values)
M ::= V ||MM || get(V) || pset(V, V) || (M |M) (Terms)
S ::= (r ⇐ v) || (S | S) (Stores)
P ::= M || S || (P | P) (Programs)
E ::= [] || EM || V E (Evaluation Contexts)
C ::= [] || (C | P)(P | C) (Static Contexts)

Operational semantics

P | P ′ ≡ P ′ | P (Commutativity)
(P | P ′) | P ′′ ≡ P | (P ′ | P ′′) (Associativity)

E[(λx.M)V] → E[[V/x]M]
E[get(r)], (r ⇐ V) → E[V], (r ⇐ V)

E[pset(r, V)] → E[∗], (r ⇐ V)

Syntax: types and contexts

α ::= A || B (Types)

A ::= 1 || (A
e

−→ α) || Reg
r
A (Value-types)

Γ ::= x1 : A1, . . . , xn : An (Contexts)
R ::= r1 : A1, . . . , rn : An (Region contexts)

Table 11: Intuitionistic system: syntactic categories and operational semantics

Proviso To avoid confusion, in the following we write ⊢AI for provability in the affine-
intuitionistic system and ⊢I for provability in the intuitionistic system.

The translation acts on typable programs. In order to define it, it is useful to go through a
phase of decoration which amounts to label each occurrence (either free or bound) of a variable
x of region type RegrA with the region r. For instance, suppose R = r1 : (U1, A1), . . . , r4 :
(U4, A4) and suppose we have a provable judgement:

R;x1 : (u1,Regr1
A) ⊢AI x1 | let !x2 = . . . in x2 | λx3.x3 | νx4 x4 : (B, ∅)

Further suppose in the proof the variable xi relates to the region ri for i = 1, . . . , 4. Then the
decorated term is:

xr1

1 | let !x2 = . . . in xr2

2 | λx3.x
r3

3 | νx4 xr4

4 .

The idea is that the translation of a decorated variable xr is simply the region r so that in
the previous case we obtain the following term of the intuitionistic system:

r1 | (λx2.r2)(. . .) | λx3.r3 | r4 .

Note that in the translation the ν’s disappear while the λ’s and let’s are simulated by the
intuitionistic λ’s.

Assuming the decoration phase, the forgetful translation () is defined in table 10.

Lemma 18 The forgetful translation preserves provability in the following sense:

1. If R ⊢AI then R ⊢I .

21

Stratified region contexts and types

∅ ⊢
R ⊢ A r /∈ dom(R)

R, r : A ⊢
R ⊢

R ⊢ 1

R ⊢
R ⊢ B

R ⊢ A R ⊢ α e ⊆ dom(R)

R ⊢ (A
e

−→ α)

R ⊢ r : A ∈ R

R ⊢ Reg
r
A

R ⊢ α e ⊆ dom(R)

R ⊢ (α, e)

Subtyping rules

R ⊢ α

R ⊢ α ≤ α

R ⊢ A′ ≤ A R ⊢ α ≤ α′

e ⊆ e′ ⊆ dom(R)

R ⊢ (A
e

−→ α) ≤ (A′ e
′

−→ α′)

R ⊢ α ≤ α′

e ⊆ e′ ⊆ dom(R)

R ⊢ (α, e) ≤ (α′, e′)

R; Γ ⊢M : (α, e) R ⊢ (α, e) ≤ (α′, e′)

R; Γ ⊢M : (α′, e′)

Terms, stores, and programs

R ⊢ Γ x : A ∈ Γ

R; Γ ⊢ x : (A, ∅)
R ⊢ Γ r : A ∈ R

R; Γ ⊢ r : (Reg
r
A, ∅)

R ⊢ Γ

R; Γ ⊢ ∗ : (1, ∅)

R; Γ, x : A ⊢M : (α, e)

R; Γ ⊢ λx.M : (A
e

−→ α, ∅)
R; Γ ⊢M : (A

e2−→ α, e1) R; Γ ⊢ N : (A, e3)

R; Γ ⊢MN : (α, e1 ∪ e2 ∪ e3)

R; Γ ⊢ V : (Reg
r
A, ∅)

R; Γ ⊢ get(V) : (A, {r})
R; Γ ⊢ V : (Reg

r
A, ∅) R; Γ ⊢ V ′ : (A, ∅)

R; Γ ⊢ pset(V, V ′) : (1, {r})

r : A ∈ R R; Γ ⊢ V : (A, ∅)
R; Γ ⊢ (r ⇐ V) : (B, ∅)

R; Γ ⊢ P : (α, e)
R; Γ ⊢ S : (B, ∅)

R; Γ ⊢ (P | S) : (α, e)

Pi not a store R; Γ ⊢ Pi : (αi, ei), i = 1, 2

R; Γ ⊢ (P1 | P2) : (B, e1 ∪ e2)

Table 12: Intuitionistic system: stratified types and effects

22

2. If R ⊢AI α then R ⊢I α.

3. If R ⊢AI (α, e) then R ⊢I (α, e).

4. If R ⊢AI α ≤ α′ then R ⊢I α ≤ α′.

5. If R ⊢AI (α, e) ≤ (α′, e′) then R ⊢I (α, e) ≤ (α′, e′).

6. If R ⊢AI Γ then R ⊢AI Γ.

7. If R; Γ ⊢AI P : (α, e) (and P has been decorated) then R; Γ ⊢I P : (α, e).

Proof. By induction on the provability relation ⊢AI .
Concerning the rules for types and region contexts formation and for subtyping, the for-

getful translation provides a one-to-one mapping from the rules of the affine-intuitionistic
system to the rules of the intuitionistic one (the only exception are the rules for !A which
become trivial in the intuitionistic framework). Also note that dom(R) = dom(R). With
these remarks in mind, the proof of (1-5) is straightforward.

The proof of (6) follows directly from (2). We just notice that the forgetful translation of
a context Γ eliminates all the variable associated with region types. The point is that if these
variables occur in the program they will decorated and therefore in the translation they will
be replaced by regions, i.e., constants.

In the proof of (7), it is useful to make a few preliminary remarks. First, weakening is
a derived rule for the intuitionistic system, so that if we can prove R; Γ ⊢I P : (α, e) and
R,R′ ⊢ Γ,Γ′ then we can prove R,R′; Γ,Γ′ ⊢I P : (α, e) too. Second, if R1 ⊎ R2 is defined
then R1 = R2 = R1 ⊎R2. The proof is then a rather direct induction on the provability
relation ⊢AI . When we discharge an assumption and when we introduce a formal parameter
with λ or with let we must distinguish the situation where the variable under consideration
has region type, say, RegrA. In this case the variable does not occur in the translation of the
related context Γ and it is replaced in the term by the region r. 2

Next we want to relate the reduction of a program and of its translation. As already
mentioned, in the intuitionistic system all stores are persistent. Consequently, a reduction
such as:

get(xr) | (xr ← V)→ V

might be simulated by
get(r) | (r ⇐ V)→ V | (r ⇐ V) .

In other terms, the translated program may contain more values in the store than the source
program. To account for this, we introduce a ‘simulation’ relation S indexed on a pair R; Γ
such that R ⊢ Γ and Γ is just composed of variables of region type:

SR;Γ = {(P,Q) | R; Γ ⊢AI P : (α, e), R; ⊢I Q : (α, e), Q ≡ (P | S)}

Lemma 19 (simulation) If (P,Q) ∈ SR;Γ and P → P ′ then Q→ Q′ and (P ′, Q′) ∈ SR;Γ.

Proof. Suppose (P,Q) ∈ SR;Γ. Then (P,P) ∈ SR;Γ. Also if P → P ′ then R; Γ ⊢AI P ′ by
subject reduction of the affine-intuitionistic system (incidentally, subject reduction holds for
the intuitionistic system too [1]).

23

By definition P → P ′ means that P is structurally equivalent to a process P1 which can
be decomposed in a static context C and a redex ∆ of the shape described in table 2.

We notice that the forgetful translation preserves structural equivalence, namely if P ≡ P1

then P ≡ P1. Indeed, the commutativity and associativity rules of the affine-intuitionistic
system match those of the intuitionistic system while the rules for commuting the ν’s are
‘absorbed’ by the translation. For instance, νx P | P ′ = P | P ′ = νx (P | P ′) with x not free
in P ′.

We also remark that the forgetful translation can be extended to static and evaluation
contexts simply by defining [] = []. Then we note that the translation of a static (evaluation)
context is an intuitionistic static (evaluation) context. In particular, this holds because the
translation of a value is still a value.

Following these remarks, we can derive that Q ≡ C[∆] | S. Thus it is enough to focus
on the redexes ∆ and show that each reduction in the affine-intuitionistic system is mapped
to a reduction in the intuitionistic one and that the resulting program is still related to the
program P ′ via the relation SR;Γ.

To this end, we notice that the translation commutes with the substitution so that
[V/x]M = [V /x]M . This is a standard argument, modulo the fact that the variable of
region type have to be given a special treatment. For instance, we have:

[yr/xr]xr = yr = r = [r/xr]r = [yr/xr]xr .

Then one proceeds by case analysis on the redex ∆. Let us look at two cases in some detail.
If ∆ = E[let !x = V in M]→ E[[V/x]M] then

∆ = E[let !x = V in M] = E[(λx.M)V]→
E[[V /x]M] = E[[V/x]M] = E[[V/x]M .

On the other hand if ∆ = E[get(xr)] | (xr ← V) then

∆ = E[get(r)] | (r ⇐ V) → E[V] | (r ⇐ V) = E[V] | (r ⇐ V) .

Notice that in this case we have an additional store (r ⇐ V) which is the reason why in
the definition of the relation S we relate a program to its translation in parallel with some
additional store. 2

Theorem 20 ([1]) If R; ⊢I P : (α, e) then all reductions starting from P terminate.

Corollary 21 (termination) If R; Γ ⊢AI P : (α, e) then all reductions starting from P
terminate.

Proof. By contradiction. We have (P,P) ∈ SR;Γ and R; ⊢I P : (α, e). If there is an infinite
reduction starting from P then the simulation lemma 19 entails that there is an infinite
reduction starting form P . And this contradicts the termination of the intuitionistic system
(theorem 20). 2

24

