An Affine-Intuitionistic System of Types and
Effects: Confluence and Termination

Roberto M. Amadio* Patrick Baillot! Antoine Madet*

Abstract

We present an affine-intuitionistic system of types and effects which can
be regarded as an extension of Barber-Plotkin Dual Intuitionistic Linear
Logic to multi-threaded programs with effects. In the system, dynamically
generated values such as references or channels are abstracted into a finite
set of regions. We introduce a discipline of region usage that entails the
confluence (and hence determinacy) of the typable programs. Further, we
show that a discipline of region stratification guarantees termination.

1 Introduction

There is a well-known connection between intuitionistic proofs and typed func-
tional programs that goes under the name of Curry-Howard correspondence.
Following the introduction of linear logic [E], this correspondence has been re-
fined to include an explicit treatment of the process of data duplication. Vari-
ous formalisations of these ideas have been proposed in the literature (see, e.g.,
[, E, E, ,) and we will focus here in particular on Affine-Intuitionistic Logic
and, more precisely, on an affine version of Barber-Plotkin Dual Intuitionistic
Linear Logic (DILL) as described in [J.

In DILL, the operation of A-abstraction is always affine, i.e., the formal
parameter is used at most once. The more general situation where the formal
parameter has multiple usages is handled through a constructor ‘!’ (read bang)
marking values that can be duplicated and a destructor let filtering them and
effectively allowing their duplication. Following this idea, e.g., an intuitionistic
judgement ([]) is translated into an affine-intuitionistic one (f) as follows:

y: A drax(zy): (A— A) = A (1)
y:(co,A)F dzletlz=xin zl(zly) : I(l1A —oA) —- A (2)

We recall that in DILL the hypotheses are split in two zones according to their
usage. Namely, one distinguishes between the affine hypotheses that can be
used at most once and the intuitionistic ones that can be used arbitrarily many
times. In our formalisation, we will use ‘1’ for the former and ‘oo’ for the latter.

I Laboratoire PPS, Université Paris Diderot
2LIP - ENS-Lyon, Université de Lyon

1.1 Motivations

Our purpose is to explore an extension of this connection to multi-threaded pro-
grams with effects. By extending the connection, we mean in particular to design
an affine-intuitionistic type system that accounts for multi-threading and side
effects and further to refine the system in order to guarantee confluence (and
hence determinism) and termination while preserving a reasonable expressive
power. By multi-threaded program, we mean a program where distinct threads
of execution may be active at the same time (as it is typically the case in
concurrent programs) and by effect, we mean the possibility of executing oper-
ations that modify the state of a system such as reading/writing a reference or
sending /receiving a message. We stress that our aim is not to give a purely log-
ical interpretation of multi-threading and side-effects but rather to apply logical
methods to a multi-threaded programming language with side-effects.

1.2 Contributions

We will start by introducing a simple-minded extension of the purely functional
language with operators to run threads in parallel while reading/writing the
store which is loosely inspired by concurrent extensions of the ML program-
ming language such as [§] and [[[§] with an interaction mechanism based on
(asynchronous) channel communication. In particular, we rely on an opera-
tor get(z) to read a value from an address (channel) x and on two operators
set(x, V') and pset(x, V') to write a value V into an address «, in a volatile (value
read is consumed) or persistent (value read is still available) way, respectively.

Following a rather standard practice (see, e.g., @ @] we suppose that
dynamically generated values such as channels or references are abstracted into
a finite number of regions. This abstraction is reflected in the type system
where the type of an address depends on the region with which the address is
associated. Thus we write Reg, A for the type of addresses containing values
of type A and relating to the region r of the store. Our first and probably
most difficult contribution, due to the interaction of the bang modality ! with
regions, is to design a system where types and usages are preserved by reduction.

The resulting functional-concurrent typed language is neither confluent nor
terminating. However, it turns out that there are reasonable strategies to re-
cover these properties. The general idea is that confluence can be recovered
by introducing a proper discipline of region usage while termination can be
recovered through a discipline of region stratification.

The notion of region usage is reminiscent of the one of hypotheses usage
arising in affine-intuitionistic logic. Specifically, we distinguish the regions that
can be used at most once to write and at most once to read from those that can
be used at most once to write and arbitrarily many times to read.

The notion of region stratification is based on the idea that values stored in
a region should only produce effects on smaller regions. The implementation
of this idea requires a substantial refinement of the type system that has to
predict the effects potentially generated by the evaluation of an expression.

This is where type and effect systems, as introduced in [[LH], come into play.

It turns out that the notions of region usage and region stratification com-
bine smoothly, leading to the definition of an affine-intuitionistic system of types
and effects. The system has affine-intuitionistic logic as its functional core and
it can be used to guarantee the determinacy and termination of multi-threaded
programs with effects. We stress that the nature of our contribution is mainly
methodological and that more theoretical and experimental work is needed to
arrive at a usable programming language. One promising direction is to add
inductive data types and to extend the language to a synchronous/timed frame-
work (cf. [il, B]). In this framework, both confluence (determinism) and termi-
nation are valuable properties.

1.3 Related Work

Girard, through the introduction of linear logic [H], has widely promoted a finer
analysis of the structural rules of logic. There have been various attempts at
producing a functional programming language based on these ideas and with a
reasonably handy syntax (see, e.g., [E, H. 7, [, E]) The logical origin of the
notion of usage can be traced back to Girard’s LU system [[L(] and in particular
it is adopted in the Barber-Plotkin system [E] on which we build on.

A number of works on type systems for concurrent languages such as the
m-calculus have been inspired by linear logic even though in many cases the
exact relationships with logic are at best unclear even for the fragment without
side-effects. The conditions to guarantee confluence are inspired by the work of
Kobayashi et al. [@] and one should expect a comparable expressive power (see
also L3, [for much more elaborate notions of usage).

It is well known that intuitionistic logic is at the basis of typed functional
programming. The type and effect system introduced in [@] is an enrichment of
the intuitionistic system tracing the effects of imperative higher-order programs
acting on a store. The system has provided a successful static analysis tool
for the problem of heap-memory deallocation @] More recently, this issue has
been revisited following the ideas of linear logic [@, ﬂ] .

The so called reducibility candidates method is probably the most important
technique to prove termination of typable higher-order programs. Extensions
of the method to ‘functional fragments’ of the m-calculus have been proposed,
e.g., in [@, E] Boudol @] has shown that a stratification of the regions guar-
antees termination for a multi-threaded higher-order functional language with
references and cooperative scheduling. Our formulation of the stratification
discipline is actually based on [[]] which revisits and extends [f.

1.4 Structure of the Paper

Section E introduces an affine-intuitionistic system with regions for a call-by-
value functional-concurrent language. Section E introduces a discipline of region
usage that guarantees confluence of the typable programs. Section E enriches
the affine-intuitionistic system introduced in Section P with a notion of effect

e (Variables)
n= x|z | M|V (Values)
n= V| MM|IM |let\z =M in M |ve M

set(z, V) | pset(z, V) | get(x) | (M | M) (Terms)
= (x4 V)| (x<V)[(S]9) (Stores)
= M|S|(P|P)|vx P (Programs)
2= [||EM|VE|'E|let!lx =Fin M (Evaluation Contexts)
= []|(C|P)|(P|C)|vxC (Static Contexts)

S
AN ®» §<§
|

Table 1: Syntax: programs

which provides an upper bound on the set of regions on which the evaluation of
a term may produce effects. Finally, Section E describes a discipline of region
stratification that guarantees the termination of the typable programs. Proofs
of the main results are available in Appendix @

2 An Affine-Intuitionistic Type System with Re-
gions

We introduce a typed functional-concurrent programming language equipped
with a call-by-value evaluation strategy. The functional core of the language
relies on Barber-Plotkin’s DILL. In order to type the dynamically generated
addresses of the store, we introduce regions and suitable notions of usages. The
related type system enjoys weakening and substitution and this leads to the
expected properties of type preservation and progress.

2.1 Syntax: Programs

Table [I| introduces the syntax of our programs. We denote variables with
,y, ..., and with V' the values which are included in the category M of terms.
Stores are denoted by S, and programs P are combinations of terms and stores.
We comment on the main operators of the language. * is a constant inhabit-
ing the terminal type 1 (see below). Ax.M is the affine abstraction and M M
the application. ! marks values that can be duplicated while let !z = M in N
filters them and allows their multiple usage in N. In vax M the operator v
generates a fresh address name = whose scope is M. set(z,V) and pset(z, V)
write the value V' in a wolatile address and a persistent one, respectively, while
get(x) fetches a value from the address = (either volatile or persistent). Finally
(M | N) evaluates in parallel M and N. Note that when writing either Az.M,
or ve M, or let !z = N in M the variable z is bound in M. As usual, we
abbreviate (Az.N)M with M; N, where z is not free in N. Evaluation contexts
FE follow a call-by-value discipline. Static contexts C' are composed of parallel

composition and v’s. Note that stores can only appear in a static context. Thus
M = V(set(z,V'); V") is a legal term while M’ =V (V" | (z < V)) is not.

2.2 Operational Semantics

Table E describes the operational semantics of our language. Programs are

P|P = P|P (Commut.)
(P|P)|P" = P|(P]|P" (Assoc.)
ve PP = vz (P|P) x¢ FV(P') (v)
Elve M] = vax E[M] xz¢ FV(E) (vE)
E[(AeM)V] = E[[V/2z]M]
Elletlz =1V in M] — E[[V/x]M]
Efset(z, V)] — E[*]|(z+ V)
Elpset(z,V)] — E[x]|(z<V)
Elget(z)] | (< V) — E[V]
Elget(z)] | (z <= 1V) — E[WV]]|(x<1V)

Table 2: Operational semantics

considered up to a structural equivalence = which is the least equivalence relation
preserved by static contexts, and which contains the equations for a-renaming,
for the commutativity and associativity of parallel composition, for enlarging the
scope of the v operators to parallel programs, and for extracting the v from an
evaluation context. We use the notation [V/x] for the substitution of the value
V' for the variable x. The reduction rules apply modulo structural equivalence
and in a static context C.

Example 1.

The programs (f]) and ([{]) are structurally equivalent (up to some renaming):
((vz Ay-M)(va' X' .MV | P (3)
ve ve' (Ay.M)\y' M)V | P (4)

This transformation exposes the term E[(Ay.M)(A\y’.M’)] in the static context
C =vz va' []| P, where the evaluation context E is [|V.

In the sequel we consider the transitive closure of the relation defined by
Table 2, also denoted —.

Remark 1. Notice that the let rule and the get rule on a persistent store act
similarly in the sense that they require the value being duplicated to be marked
with a bang, while the affine 5 rule and the get rule on a volatile store allow to
manipulate affine values.

o, (Regions)

a == BJA (Types)

A = 1|A-—oa|!A|Reg.A (Value-types)

I == z1:(u,41),..., 20 (un, Ay) (Contexts)

R r1: (U1, A1), ... ,mn 2 (Un, An) (Region contexts)

Table 3: Syntax: types and contexts

2.3 Syntax: Types and Contexts

Table E introduces the syntax of types and contexts. We denote regions with
r,7’,... and we suppose a region r is either volatile (V(r)) or persistent (P(r)).
Types are denoted with a, o/, Note that we distinguish a special behaviour
type B which is given to the entities of the language which are not supposed
to return a value (such as a store or several values in parallel) while types of
entities that may return a value are denoted with A. Among the types A, we
distinguish a terminal type 1, an affine functional type A — B, the type !A
of terms of type A that can be duplicated, and the type Reg, A of addresses
containing values of type A and related to the region r. Hereby types may
depend on regions.

Before commenting on variable and region contexts, we need to define the
notion of usage. To this end, it is convenient to introduce a set with three values
{0,1, 00} and a partial binary operation W such that

rW0 = =z
Oz = =z
ocoloo = oo

and which is undefined otherwise.

We denote with u a variable usage and assume that u is either 1 (a variable
to be used at most once) or co (a variable that can be used arbitrarily many
times). Then a variable context (or simply a context) I" has the shape:

x1: (w1, Ar), .o s (Up, Ay)

where x; are distinct variables, u; € {1,00} and A; are types of terms that
may return a result. Writing = : (u, A) means that the variable x ranges on
values of type A and can be used according to u. We write dom(T") for the
set {x1,...,2,} of variables where the context is defined. The sum on usages
is extended to contexts component-wise. In particular, if = : (uy, A) € T'; and
x: (ug, A) € Ty then z : (ug Wug, A) € (T'1 WI'y) only if uy Wus is defined.

Example 2.
One may check that the sum:

(x:(1,A),y:(c0,B))W(y: (00,B),z:(1,C))

is equal to
(1 A),y: (00, B),2: (1,0)

whereas these two are not defined:

(x:(1,A),y:(co,B))Wy:(1,B)
(x:(1,A),y: (1,B)wy: (1,B)

We are going to associate a usage with regions too, but in this case a usage
will be a two dimensional vector because we want to be able to distinguish write
and read usages. We denote with U an element of one of the following three
sets of usages:

{[o0, 00]} {[1,00], [0, 00]} {[0,0],[1,0],[0,1], [1, 1]}

where by convention we reserve the first component to describe the write usage
and the second for the read usage. Thus a region with usage [1, co] should be
written at most once while it can be read arbitrarily many times.

The addition Uy W U, is defined provided that:

(a) U; and Us are in the same set of usages

(b) the component-wise addition is defined

Example 3.
If Uy = [00,00] and Uz = [0, 0] then the sum is undefined because Uy and Us
are not in the same set while if U7 = [1,00] and U = [1, 00| then the sum is

undefined because 1 W 1 is undefined.

Note that in each set of usages there is a neutral usage Uy such that UywU = U
for all U in the same set.
A region context R has the shape:

Tt (Ul,Al),...,Tn : (UnaAn)

where 7; are distinct regions, U; are usages in the sense just defined, and A;
are value-types. The typing system will additionally guarantee that whenever
we use a type Reg, A the region context contains an hypothesis r : (U, A) for
some U. Intuitively, writing r : (U, A) means that addresses related to region r
contain values of type A and that they can be used according to the usage U.
We write dom(R) for the set {r1,...,r,} of the regions where the region context
is defined. As for contexts, the sum on usages is extended to region contexts
component-wise. In particular, if r: (U1, A) € Ry and r : (Uz, A) € Ry then
r: (U WUy, A) € (R1 W Ry) only if Uy WU, is defined. Moreover, for (R; W Ry)
to be defined we require that dom(Ry) = dom(Rz). There is no loss of generality
in this hypothesis because if, say, r : (U, A) € Ry and r ¢ dom(R2) then we can
always add r : (Up, A) to Ry where Uy is the neutral usage of the set to which
U belongs (this is left implicit in the typing rules).

Example 4.
One may check that the sum:

(r1: ([1,00], A), 72 : ([0,1], B))
W (ry : ([0,00], A), 72 : ([1,0], B))

is equal to
r1: ([1,00], A),r2 : ([1,1], B)

whereas these two are not defined:

(R,7: ([1,00], B)) W (R, : ([1,00], B))
(R,7:([0,00], B)) W (R, : ([1,0], B))

2.4 Affine-Intuitionistic Type System with Regions

Because types depend on regions, we have to be careful in stating in Tableg
when a region-context and a type are compatible (R | «), when a region context
is well-formed (R), when a type is well-formed in a region context (R «)
and when a context is well-formed in a region context (R T').

A more informal way to express the condition is to say that a judgement
r1: (U1, A1), .., o (Un, An) B a is well formed provided that:

(a) all the region names occurring in the types Ay, ..., A,, a belong to the set

{r1,...,mn}

(b) all types of the shape Reg,. B with i € {1,...,n} and occurring in the types
Ay, ..., A,, «a are such that B = A;.

Example 5.
One may verify that

r:(U,1—o1)F Reg, (1 —1)
can be derived while these judgements cannot:

r: (U, 1) F Reg,(1 —-1)
r:(U,Reg, 1)1

Next, Table E introduces an affine-intuitionistic type system with regions
whose basic judgement
R;THP:«

attributes a type a to the program P in the region context R and the context
I'. Here and in the following we omit the rule for typing a program (S | P)
which is symmetric to the one for the program (P | S).

The formulation of the so called promotion rule, i.e., the rule that introduces
the ‘! operator, requires some care. In particular, we notice that its formulation

RI1 R|B

R|A Rla r:(UA)€R

RI(A —a) R | Reg, A

Vr:(U,A)e R RLA R+ Rla
R RF«

Va:(u,A) el REA
RET

Table 4: Type and context formation rules (unstratified)

relies on the predicates aff (affine) and saff (strongly affine) on contexts and
region contexts which we define below. The intuition is that terms whose typing
depends on affine (region) contexts should not be duplicated, i.e., should not
be ‘marked’ with a !. Formally, we write aff (x : (u, A)) if u = 1. We also write
aff (r = ([v,v'], A)) if either 1 € {v,v'} or (V(r) and v’ # 0). Moreover, we write
aff (R;T) (respectively saff (R;T)) if the predicate aff holds for at least one of
(respectively for all) the hypotheses in R;T.

Remark 2. Notice that we regard the hypothesis 7 : ([v,v'], A) as affine if either
it contains the information that we can read or write in r at most once or if r is
a volatile region from which we can read. The reason for the second condition
is that a volatile region may contain data that should be used at most once.
For instance, assuming V(r), R = r : ([oo, 00|, A), and I" = x : (00, Reg,. A), we
can derive R;T' I get(x) : A. However, we should not derive R;T F !get(z) : 1A
for otherwise the crucial subject reduction property (Theorem m) may be com-
promised.

Finally, we remark that in the conclusion of the promotion rule we may
weaken the (region) context with a strongly affine (region) context. This is
essential to obtain the following weakening property.

Lemma 1 (weakening). If R;T' + P: « and RIR' +TWI then RER;TWI' I
P:a.

Then we see how our type system applies to some program examples.

Example 6.
Let R=r:([1,1],1) and

M = dzlet lx = x in get(x) | set(x, *)

We check that:
R;_ M :!Reg, 1 - B

By the rule for affine implication, this reduces to:

R;x: (1,!Reg, 1) F let lz = x in get(x) | set(z, %) : B

R-FT z:(u,A) el RET

R'kax: A R;I'Ex:1
Ri;ThEM:(A—a)
RT,z:(1,A)FM:« Roy;ToFN: A
R,iTHXe. M : (A—a) RiWRy; Iy Wls - MN : «
RYR F (T WIY) saff(R;T) Ry;TiEM: A
R;'EM:A —aff (R;T) Ro;To,x: (00, A)F N«
RYR;TWIVHIM: 1A RiWRy; T Wlgkletlx =M in N:«
RFT z:(u,Reg,A)el
R;T,x: (u,Reg, A) - P:« r:(jv,v],A) e R v #0
RT'tvx P:a R;TF get(z) : A

I'=x2:(u,Reg, A)WwT" V(r) I'=2:(u,Reg, lA)WT" P(r)
R=r:(v,v'],A)g R ©v#0 R=r:(v,,JA) YR v#0
RET RiT'FV:A RET RiT'HV 1A
R;TFset(z,V):1 R;T'F pset(z, V) : 1
I'=xz:(u,Reg, A)WT" V(r) I'=x2:(u,Reg lA)w T P(r)
R=r:(v,v'],A)d R ©v#0 R=r:(v,,JA) YR v#0
RET R:T'"FV:A RET R:T'FV:IA
R;TH(zx+V):B RTH(z<«V):B
Ri;T1FP:aa Ry;I'oFHS:B R P, :a; P;not astorei =1,2

RlLﬂRg;FlLﬂFQI—(P|S):a RlL'HRg;FlL'HFQ}—(Pllpg):B

Table 5: An affine-intuitionistic type system with regions

10

If we define Ry = r: ([0,0],1), then by the rule for the let we reduce to:
Ro;x : (1,'Reg, 1) F z : IReg, 1

and
R;x : (00,Reg, 1) b get(x) | set(x,*) : B
The former is an axiom while the latter is derived from:
r:([0,1],1); 2 : (00, Reg, 1) I get(x) : 1
and
r:([1,0],1);2 : (0o, Reg, 1) - set(x, %) : 1
Note that we can actually apply the function M to a value !y which is typed
using the promotion rule as follows:
R07y : (OO, Regrl) + Y- Regrl
Ro;y : (0o,Reg, 1) F 1y : IReg, 1

We remark that the region context and the context play two different roles: the
context counts the number of occurrences of a variable while the region context
counts the number of read-write effects. In our example, the variable occurs
several times but we can be sure that there will be at most one read and at
most one write in the related region.

Example 7.
We consider a functional

M =X vy (fy] f'y)
which can be given the type
(Reg,1 — 1) — (Reg,1 — 1) — B
in a region context R = r: ([0,0],1). We can apply M to the functions
Vi = Az.get(z) and Vo = Az.set(x, *)

which have the appropriate types in the compatible region contexts R’ = r :
([0,1],1) and R” = r : ([1,0], 1), respectively. Such affine usages would not be
compatible with an intuitionistic implication as in this case one has to promote
(put a ! in front of) V; and V4 before passing them as arguments.

As in Barber-Plotkin system [J], the substitution lemma comes in two flavours:

Lemma 2 (substitution). Affine substitution () and intuitionistic substitu-
tion (ﬂ) preserve typing:

(a) If BT,z : (1,A)F M : a, R;T" -V ¢ A and RUR F T WI then
RYR;TWI'E [V/2]M : a.

11

(b) If R;T,x : (00, A) - M : o, R;T' IV 1 1A, and RW R + T WIV then
RYR;TWI'F [V/2]M : a.

We rely on Lemma E to show that the basic reduction rules in Table E pre-
serve typing. Then, observing that typing is invariant under structural equiva-
lence, we can lift the property to the reduction relation which is generated by
the basic reduction rules.

Theorem 1 (subject reduction). If R;I'+ P : « and P — P’ then R;T' + P’ : .

In our formalism, a closed program is a program whose only free variables
have region types (as in, say, the w-calculus). For closed programs one can state a
progress property saying that if a program cannot progress then, up to structural
equivalence, every thread is either a value or a term of the shape Flget(z)] and
there is no store in parallel of the shape (z < V) or (z <= V). In particular,
we notice that a closed value of type !A must have the shape !V so that in
well-typed closed programs such as let lz =V in M or E|get(x)] | (x < V), V is
guaranteed to have the shape !V required by the operational semantics in Table

Proposition 1 (progress). Suppose P is a closed typable program which cannot
reduce. Then P 1s structurally equivalent to a program

VZL'l,,SCm(M1||Mn|S1||Sp) mvnaPZO

where M; is either a value or can be uniquely decomposed as a term E[get(y)]
such that no value is associated with the address y in the stores Si,...,Sp.

3 Confluence

In our language, each thread evaluates deterministically according to a call-
by-value evaluation strategy. The only source of non-determinism comes from
a concurrent access to the memory. More specifically, we may have a non-
deterministic program if several values are stored at the same address as in the
following examples (note that we cannot type a program where values are stored
at an address both in a persistent and a volatile way):

(z=W)|(z < Vo) (5)
(z =WV [(z V) (6)

get(z) |
get(z) |
or if there is a race condition on a volatile address as in the following example:

Er[get(z)] | Exget(x)] | (z V) (7)
On the other hand, a race condition on a persistent address such as:

E[get(x)] | Ex[get(x)] | (z <= V) (8)

does not compromise determinism because the two possible reductions commute.
We can rule out the problematic situations (), () and (), if:

12

(a) we remove from our system the region usage [00, 0]

(b) we restrict the usages of volatile stores to those in which there is at most
one read effect (hence the set {[1,1],[1,0], [0, 1],[0,0]})

To this end, we add a condition v' # oo to the typing rules for volatile stores
set(z, V) and (z < V) as specified in Table fl. We denote with ¢ provability in

U € {[1,00],[0,00]} U{[1, 1], [1, 0], [0,1], [0, 0]}

I'=x:(u,Reg,A) W' V(r)
R=r:(v,A)WR v#0,v #
RET RiT'FV:A

R;TFset(z,V): 1

I'=2: (u,Reg, A) W T’ V(r)
R=r:(v,A)WR v#0,v #
RET RiTVHV A

RiTH(z«+V):B
Table 6: Restricted usages and rules for confluence

this restricted system. This system still enjoys the subject reduction property
and moreover its typable programs are strongly confluent.

Proposition 2 (subj. red. and confluence). Suppose R;T' t¢ P : . Then:
(a) If P — P’ then R;T' ¢ P : «

(b) If P — P" and P — P” then either P' = P" or there is a Q such that
P'—Q and P" — Q

Proof.

(a) We just have to reconsider the case where E[set(z, V)] — E[x] | (x + V)
and verify that if R;T'F set(z, V) : 1 then R;T' - (z <— V') : B which entails
that E[*] | (x + V) is typable in the same context as Flset(z, V)].

(b) The restrictions on the usages forbid the typing of a store such as the one
in (f]) and () where two values are stored in the same region. Moreover, it
also forbids the typing of two parallel reads on a volatile store ([).

O

Remark 3. We note that the rules for ensuring confluence require that at most
one value is associated with a region (single-assignment). This is quite a re-
strictive discipline (comparable to the one in [[I4]) but one has to keep in mind
that it targets regions that can be accessed concurrently by several threads.
Of course, the discipline could be relaxed for the regions that are accessed by

13

one single sequential thread. Also, e.g., for optimisation purposes, one may be
interested in the confluence/determinism of certain reductions even when the
overall program is non-deterministic.

4 An Affine-Intuitionistic Type and Effect Sys-
tem

We refine the type system to include effects which are denoted with e, ¢/, ... and
are finite sets of regions. The syntax of programs (Table EI) and their operational
semantics (Table E) are unchanged. The only modification to the syntax of types
(Table) is that the affine implication is now annotated with an effect so that
we write: .
A—a«a

which is the type of a function that when given a value of type A may produce
something of type o and an effect on the regions in e. This introduces a new
dependency of types on regions and consequently the compatibility condition
between region contexts and functional types in Table E becomes:

RJA Rla eCdom(R)

R (A a)
Example 8.
One may verify that the judgement
r:(U,1 {:g 1)k

is derivable.

The typing judgements now take the shape
R;T'FP:(aye)

where the effect e provides an upper bound on the set of regions on which the
program P may read or write when it is evaluated. In particular, we can be sure
that values and stores produce an empty effect. As for the operations to read
and write the store, one exploits the dependency of address types on regions to
determine the region where the effect occurs (cf. [LF]).

The affine-intuitionistic type and effect system is spelled out in Table Iﬂ We
stress that these rules are the same as the ones in Table | modulo the enriched
syntax of the functional types and the management of the effect e on the right
hand side of the sequents. The management of the effects is additive as in [[L],
indeed effects are just sets of regions.

Also to allow for some flexibility, it is convenient to introduce a subtyping
relation on types and effects, that is to say on pairs («, e), as specified in Table
E. We notice that the transitivity rule for subtyping

14

RFa<d REA <o
REa<do

can be derived via a simple induction on the height of the proofs.

Remark 4. The introduction of the subtyping rules has a limited impact on
the structure of the typing proofs. Indeed, if R - A < B then we know that
A and B may just differ in the effects annotating the functional types. In
particular, when looking at the proof of the typing judgement of a value such as
R;T'F Xx.M : (A, e), we can always argue that A has the shape A; % Ay and,
in case the effect e is not empty, that there is a shorter proof of the judgement

R;TF Xe.M : (B hict Bs,0) where RF Ay < By, R By < Ay, and es C €.

Then to prove subject reduction, we just repeat the proof of Theorem EI
while using standard arguments to keep track of the effects.

Proposition 3 (subject reduction with effects). Types and effects are preserved
by reduction.

Remark 5. Tt is easy to check that a typable program such as Flset(x, V)] which
is ready to produce an effect on the region r associated with x will indeed contain
r in its effect. Thus the subject reduction property stated above as Proposition
entails that the type and effect system does provide an upper bound on the
effects a program may produce during its evaluation.

5 Termination

Terms typable in the unstratified type and effect system (cf. Table ﬂ) may
diverge, as exemplified here:

Example 9.
The following term stores at the address = a function that, given an argument,
keeps fetching itself from the store forever:

ve pset(x, l(Ay.let lo = get(z) in zy)) ; let lo = get(z) in xx
One may verify that it is typable in a region context

R=r: (100,11 2 1))

This example suggests that in order to recover termination, we may order
regions and make sure that a value stored in a certain region when put in an
evaluation context can only produce effects on smaller regions. This is where our
type and effect system comes into play, and to formalise this idea, we introduce
in Table E rules for the formation of types and contexts which are alternative
to those in Table E

15

Example 10.
Assuming TableE and taking R = : (U, 1), one may check that the judgement

r:(U,1),r: (U1 {—Tgl) =

is derivable while
{r'}
r (U1 — 1)+

is not. In particular, the region context of Example E is neither derivable.

It is easy to verify that the stratified system is a restriction of the unstratified
one and that the subject reduction (Proposition) still holds in the restricted
stratified system. If confluence is required, then one may add the restrictions
spelled out in Table .

Concerning termination, we recall that there is a standard forgetful transla-
tion (-) from affine-intuitionistic logic to intuitionistic logic which amounts to
forget about the modality ! and the usages and to regard the affine implication
as an ordinary intuitionistic implication. Thus, for instance, the translation of
types goes as follows: 14 = A and A —o B = A — B; while the translation of
terms is: IM = M and letle = M in N = (Az.N)M. In Table E, we lift this
translation from the stratified affine-intuitionistic type and effect system into a
stratified intuitionistic type and effect system defined in [m]

The translation assumes a decoration phase where the (free or bound) vari-
ables with a region type of the shape Reg, A are labelled with the region r.
Intuitively, the intuitionistic system abstracts an address x related to the region
r to the region r itself so that a decorated variable x” translates into a constant
r. In the intuitionistic language, a region r is a term of region type Reg, A,
for some A and all stores are persistent. The full definition of the language is
recalled in Appendix @

It turns out that a reduction in the affine-intuitionistic system is mapped to
exactly a reduction in the intuitionistic system. Then the termination of the in-
tuitionistic system proved in [ﬂ] entails the termination of the affine-intuitionistic
one.

Theorem 2 (termination). Programs typable in the stratified affine-intuitionistic
type and effect system terminate.

6 Conclusion

We have presented an affine-intuitionistic system of types and effects for a
functional-concurrent programming language. The main contribution over [EI]
is that the functional core of the system is based on Barber-Plotkin affine-
intuitionistic logic which distinguishes between affine and intuitionistic hypothe-
ses. The ‘non-logical’ part of the language, with operators to read and write dy-
namically generated addresses of a ‘store’, has been refined to take into account
the process of data duplication. In the type system, addresses are abstracted

16

into a finite number of regions. We have introduced a suitable discipline of
region usage and shown that it combines with region stratification in the affine-
intuitionistic setting to regain confluence and termination, respectively.

Future Work Beyond these crucial properties, we hope to show that other
interesting properties of the functional core can be extended to the considered
framework. We think in particular of the construction of denotational mod-
els (see, e.g, @) and of bounds on the computational complexity of typable
programs (see, e.g., [[L1]).

We also recall that more work would be required to get an operational pro-
gramming language, as with the introduction of inductive types and the ex-
tension to a synchronous/timed framework (cf. [fl, f]) where determinism and
termination are useful properties.

7 Acknowledgements

The first author was partially supported by ANR-06-SETIT-010-02 and the sec-
ond and third authors by ANR-08-BLANC-0211-01.

17

References

1]

2]

R.M. Amadio. On stratified regions. In Proc. APLAS, Springer LNCS,
2009. Extended version available as arXiv:0904.2076v2.

A. Barber. Dual intuitionistic linear logic. University of Edinburgh, Tech-
nical report ECS-LFCS-96-347, 1996.

N. Benton, G. Bierman, V. de Paiva and M. Hyland. A term calculus for
intuitionistic linear logic. In Proc. Typed Lambda Calculi and Applications,
Springer LNCS 664:75-90, 2003.

N. Benton. A mixed linear and non-linear logic; proofs, terms and models.
In Proc. Computer Science Logic, Springer LNCS 933:121-135, 2004.

G. Bierman. What is a categorical model of intuitionistic linear logic? In
Proc. Typed Lambda-Calculi and Applications, Springer LNCS 902:78-93,
1995.

G. Boudol. Typing termination in a higher-order concurrent imperative
language. In Proc. CONCUR, Springer LNCS 4703:272-286, 2007.

M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In
Proc. ESOP, Springer LNCS 3924: 7-21, 2006.

A. Giacalone, P. Mishra, and S. Prasad. FACILE: A symmetric integration
of concurrent and functional programming. In Proc. TAPSOFT, Springer
LNCS 352:184-209, 1989.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1-102,
1987.

J.-Y. Girard. On the unity of logic. Ann. Pure Appl. Logic, 59(3):201-217,
1993.

J.-Y. Girard. Light linear logic. Information and Computation, 143(2):
175-204, 1998.

A. Tgarashi and N. Kobayashi. Resource usage analysis. ACM Trans.
Program. Lang. Syst. 27(2): 264-313, 2005.

N. Kobayashi. Type systems for concurrent programs. In Proc. 10th An-
niversary Colloquium of UNU/IIST, Springer LNCS 2757:439-453, 2003.

N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus.
ACM Trans. on Program. Lang. and Systems, 21(5):914-947, 1999.

J. Lucassen and D. Gifford. Polymorphic effect systems. In Proc. ACM-
POPL, pp 47-57, 1988.

18

[16]

[17]

[18]

J. Maraist, M. Odersky, D. Turner, and Ph. Wadler. Call-by-name, call-by-
value, call-by-need, and the linear lambda calculus. In Proc. Mathematical
Foundations of Programming Semantics, Elect. Notes in Comp. Sci. 1(1),
Elsevier, 1995.

G. Plotkin. Type theory and recursion. In Proc. IEEE-LICS, Abstract,
1993.

J. Reppy. CML: A higher-order concurrent language. In Proc. ACM-
SIGPLAN Conf. on Prog. Language Design and Implementation, pp 293-
305, 1991.

D. Sangiorgi. Termination of processes. Math. Struct. in Comp. Sci., 16:1-
39, 2006.

M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 132(2): 109-176, 1997.

Ph. Wadler. A Taste of Linear Logic. In Proc. Mathematical Foundations
of Computer Science, Springer LNCS 711:185-210, 1993.

D. Walker. Substructural type systems. Chapter 1 of Advanced topics in
types and programming languages, B. Pierce (ed.), MIT Press, 2002.

D. Walker and K.Watkins. On Regions and Linear Types. In Proc. Int.
Conf. on Fun. Prog., pp 181-192,2001.

N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the -
calculus. Information and Computation, 191(2):145-202, 2004.

19

A Proofs

A.1 Proof of Theorem [I]

Lemma 3 (weakening). If R;T' + P:«a and ROR' +TWI then ROR ;T WI' I
P:a.

Proof. By induction on the typing of P. Following Table E, there are 14 rules
to be considered of which we highlight 3.
P =MN We have:
Ry FM:A—-oa Ry I'oFN:A
RiW Ry T W MN : «

We notice that the composition operation W on contexts is associative and
commutative (when it is defined) and that (R W Ry W R') F (T W W)
entails that (Ry W R') F (I'y WI7). Hence, by induction hypothesis, we get
RiYR;TMWI'F M : A —o «, from which we derive:

RRYR;THMWI'FM:A—oa Ro;IoFN:A
RlL‘HRQLﬂRI;FlL‘HFQLﬂF/I—MN:a

P =M We have:
RYR'"-FTwI”

saff (R";T")

—aff(R;T) RTHFM:A

RURTWI" - IM:1A
We can always decompose R’ as R} W R, and T as T} W I so that
—aff (RL,;TY) and saff (R};T%). By induction hypothesis, we have R &
RL;TWI. F M : A We notice that —aff (RYR.; TWI) and saff (R} &
R";T}, WI) (remember that 1 W oo is undefined). Hence we derive:

(RYRLWR{WR") F (TWI WI|wI")
saff (R, & R";T, w ")
~aff (RER.;TWT.) RWR. _:TWI FM:A
ROR WR' TWl'wI”FIM: A

P =set(z, V) We have:
I'=x:(u,Reg, A)WwI”
R=r:(v,v],A)WR" wv#0
RET R:THV: A
R;TFset(z,V): 1

By induction hypothesis, we have R” W R;T" WI” + V : A, from which we

derive:
FWI’=z: (u,Reg, A) W (I W)

RYR =r: (v,],A)W(R'WR) v#0
RYR FTWI" R'WR;T"WUI'FV:A
RYR;TWI'I set(x,V):1

20

We notice that this argument still holds when introducing the restriction
v’ # oo in order to guarantee confluence (cf. Table [f). Indeed, the restric-
tion v’ # oo is equivalent to require that the usage of the region r ranges
in the family of usages {[1, 1], [1, 0], [0, 1], [0, 0]}.

O

Lemma 4 (affine substitution lemma). If Ri;Ty,2: (1,A) F P : «, Ro;T2
VA and RiW Ry FT1 Wy then Ry W Ry; Ty Wha F [V/2]P : a.

Proof. By induction on the typing of P. We highlight 4 cases out of 14.
P =MN We have:

Rg;T5-M:C—oa RyuT)EN:C
RgL‘UR4;F/3L‘HF2|—MN:a

Because x : (1, A) is an affine hypothesis, it can occur exclusively either
in I'; or in I'j. We consider both cases.

1. T4 =T3,2 : (1,A) and Ty = T'y with ¢ dom(T'4). By induction
hypothesis we have Ry W R3;To W T = [V/2]M : C — «. Plus
x ¢ FV(N) so [V/z]N = N, hence Ry;Ty [V/2]N : C. Then we
derive:
RQ H’JRg;FQ H’JFg F [V/:L']M :C —o«
R4;F4 F [V/ac]N . C
RoWRsWRy;; oW sy [V/:L'](MN) e

2. T4 =T3 with x ¢ dom(T's) and T} =Ty, 2 : (1, A).
By induction hypothesis we have Ro W Ry;To W Ty - [V/2]N : C.
Plus « ¢ FV(M) so [V/x]M = M, hence R3;T's - [V/z]M : C —o .
Then we derive:
Rg;Ts b [V/2]M : C — «
Ro W Ry:Tow Ty b [V/2]N : C
RoWR3 W Ry;To W3 Wy b [V/2](MN) : «

P =!M We have:
RIWR (Fl H (I",x : (1,14)))
saff (RGT, 0 : (1, A))
Rl;l—‘l I_MA ﬁaﬂ'(Rl;Fl)
RiIWR;Thw (I x:(1,A)FIM:1A

We deduce that © ¢ FV(IM), hence [V/z](!M) =M and RyWR';T1wI" -
[V/z](\M) : 'A. By lemma }, we get RiWR'WRy; Ty W' Wy - [V/2](\M) :
1A.

21

P =let!ly =M in N Renaming y so that y # z, we have:

Rs;T5 =M :1C RyTh,y:(00,C)FN:a
RsWRyTHWI Fletly=Min N : «

As in the case of application, we distinguish two cases.

1. I =Tg,2:(1,A) and Iy =Ty with x ¢ dom(T'4).
By induction hypothesis, we have Ry W R3;To W T's b [V/a]M : IC.
Plusz ¢ FV(N)so [V/x]N = N, hence Ry; T4,y : (00,C) = [V/z]N :
a. Then we derive:
Ry WR3; oWy - [V/ac]M e
Ry;Ty,y: (00,C) F [V/2]N : «
RiTowlswly k- [V/z](letly=MinN): «
where R = R2] Rg (] R4.
2. T4, =T3 with « ¢ dom(T'3) and ') =Ty, 2 : (1, A).
By induction hypothesis we have Ro W Ry;T9,y @ (00,C) W Ty F
[V/z]N : a. Plus @ ¢ FV(M) so [V/x]M = M, hence R3;T3
[V/x]M :!C. Then we derive:
Rg;rg - [V/.T]M 1C
Ry W Ry;To,y: (00,C) W Ty F [V/2]N @ «
RiTowIlswly - [V/z](letly=MinN): «

where R = Ro W R3 W Ry.

P =set(y, V') We distinguish two cases.

1. If y # = we have:

I,z:(1,4) =y: (u,Reg,C) W}

Ry =r:([v,v],C)¥ R} v#0

Ri+Ty,z:(1,A) RiTIEV:C
Ry;Ty,2: (1, A) Fset(y,V'): 1

We deduce that T} =T/ Wx : (1, A), and by induction hypothesis we
get Ri W Ry; T Wy F [V/z]V': C, from which we derive:
't =y: (u,Reg,C)WTY
Ry =r:([v,v],C)W R} v#0
R1FF1 R/IH'JRQ;F/{H'JFQF[V/:C]V/:C
Ry;Tq F [V/a]set(y, V') : 1

By lemma H, we obtain

RiWRy; MWy [V/ac]set(y, VI) 01

22

2. If y = x then [V/x]set(y, V') = set(V,V’), A = Reg,C, and u = 1.
Moreover V' must be a variable, thus we can derive:
't =V :(1,Reg,C) WY
Ry=r:(v,v],C)WR; v#0
R FTy R/ EV . C
Ry;Ty F [V/z]set(y, V') : 1 ’

and by lemma E we get

RiWRy; MWy [V/ac]set(y, VI) 01

O

Lemma 5 (intuitionistic substitution lemma). If
Ry;Tq,z : (00,A) B P :a, R;To 1V : 1A and Ry W Ry - I’y WDy then
R1 H’JRQ;Fl L‘!‘JFQ - [V/:C]P Q.

Proof. By induction on the typing of P. We highlight 4 cases out of 14.

P =MN We have:

Ry;ThFM:C—oa RyT)EN:C
Rs W Ry T 0Ty F MN @«

We distinguish 3 cases.
1. T =Tg,2: (00, A) and Iy = T'y with = ¢ dom(T'y).
By induction hypothesis we have RoW R3; oWl - [V/z]M : C —o .
Plus 2 ¢ FV(N) so [V/x]N = N, hence Ry;Ty [V/2]N : C. Then
we derive:
RQ H’JRg;FQ H’JFg F [V/:L']M :C —o«
R4;F4 F [V/ac]N . C
RoWRsWRy; Towlswly [V/:L'](MN) e

2. T4 =T3 with 2 ¢ dom(T's) and I') =Ty, z : (00, A).
By induction hypothesis we have Ry W Ry;To W Ty F [V/z]N : C.
Plus ¢ ¢ FV(M) so [V/x]M = M, hence R3;T's - [V/z]M : C —o .
Then we derive:
R3;TsH [V/z]M : C — «
RoW Ry;To Wy b [V/2]N : C
RoWRsWRy; oW sy [V/:L'](MN) e

23

3. T, =T3,2: (00, A) and I') =Ty, x : (00, A).
By induction hypothesis we have Ro W Rs; ToWs - [V/2]M : C — «
and RoW Ry;To Wy - [V/z]N : C. Moreover we have:

RsWR FT5;WI saff (R;TY)
R5;F5FV:A ﬁaﬁ(R5;F5)
Ro:To F IV 1A ’

where Ry = Rs W R’ and I'y = I's W I. Hence we know that all the
hypotheses of R’ and I are of weakened regions and variables. Thus
we also have R3WRs; TsWl's - [V/2]M : C' — avand RyWR5; TyWls H
[V/z]N : C. Plus from —aff(R5;T5) we get Rs W Rs = R5 and
I's wI's =15, and we can derive:

R3WR5; s s - [V/x]MC—oa
Rat Ry: T4 WTs b [V/a]N : C
R3WR,WRs; syl - [V/x](MN)a

By lemma [] we obtain Ry W Ry Ry; Tow T3 Wy - [V/2](MN) : a.
P =!M Suppose:

RsWR F (Ts,2: (00, A)WTY saff (R;T7)
R5;T5,2: (00, A) - M : B
ﬁaﬁ(R5;l"5,x . (OO,A))

Rs W R; (T5,2: (00, A)) I’ M : B

And also:
ReW R, FIgwI'y Saﬁ(R7; F7)
aﬁ(Rﬁ;Ff;) RG;FGI—V:A
Ro;To IV 1A ’

with Ry = Rg W Ry and I's = I's W I'7. Hence we know that all the
hypotheses of R7 and I'; are of weakened regions and variables, such that
Rg;Tg H !V : 1A, By induction hypothesis we get R; W Rg;'s W g
[V/x]M : B and we can derive:

(R5 (] RG) [(R7 [RI) H (F5 [Fs) [(F7 [F/)
saff (Rr W R;T7 W TY)
ﬁaﬁ(Rga W Rg; ' L‘HF(;)
R5 H‘JRG;FE) H’JFS F [V/:C]M : B
Rs W Ry W RI;F5 Wy wI' - [V/ac]'M : 1B

P=let!ly =M in N We have:

Rg;ThEM:IC RyT,y:(00,C)FN:a
RsWRy;THWI Fletly=Min N : «

with y # x. We just spell out the case where I'; = I's,z : (00, A) and
Iy =Ty, 2 : (00, A). By induction hypothesis, we have Ro W R3; o W' F

24

[V/x]M :1C and Ry W Ry; (T, y : (00,C)) Wy F [V/2]N : a. Moreover

we have:

Rs W R FT5 0TV saff(R;T)
R5;F5|‘V:A ﬁaﬁ(R5;F5)
Ro;To IV 1A ’

where I'y = I's W IV and Ry = Rs W R’. Hence we know that all the
hypotheses of R’ and I are of weakened regions and variables. Thus we
also have R3WRs; DsWls F [V/a]M : 1C and RyWRs; (T'4,y : (00, C))Wls -
[V/2]N : «. Plus from —aff (R5;T'5) we get ['swWl's = I's and RsWRs = Ry,
and we can derive:

Rg L‘!‘JR5;F3 L‘!‘JFE, - [V/:C]M :1C
Ry W Rs5; (T4,y: (00,C)) W5 - [V/z]N @«
R3sW R, WRs; syl - [V/x](let ly =M in N) e

By lemma [}, we obtain RoWR3WRy; ToWlsWly - [V/z](let ly = M in N) :
Q.

P =set(y, V') We just look at the case y # x. We have:

I,z : (00, A) =y : (u,Reg,C) W T}

Ry =7:([v,v'],C)WR] v #£0

RiFTy,2: (00, A) LT EVC
Ry;Ty,2: (00, A) Fset(y, V') : 1

We deduce that Ty =T/ Wz : (00, A), and by induction hypothesis we get
Rl W Ry; T/ Wlg F [V/x]V' : C, from which we derive:
'y =y: (u,Reg, C)WTY
Ry =r:([v,v'],C)W R} v #0
R T4 RllL‘HRQ;F/{L'UFQ'—[V/w]V/ZC
RiWRy; T Wy [V/x]set(y, V/) 01

O

Lemma 6 (structural equivalence preserves typing). If R;T'+ P : « and P = P’
then R:T'+ P’ : a.

Proof. Recall that structural equivalence is the least equivalence relation in-
duced by the equations stated in Table E and closed under static contexts.
Then we proceed by induction on the proof of structural equivalence. This is is
mainly a matter of reordering the pieces of the typing proof of P so as to obtain
a typing proof of P’. O

Lemma 7 (evaluation contexts and typing). Suppose that in the proof of R;T
E[M] : « we prove R';T' = M : A. Then replacing M with a M’ such that
R;T' M. A, we can still derive R;T'+ E[M'] : «.

Proof. By induction on the structure of F. |

25

Lemma 8 (functional redexes). If R;T" = E[A] : a where A has the shape
(Ax. M)V orletlx =V in M then R;T = E[[V/z]M] : .

Proof. If A = (Ax.M)V we appeal to the affine substitution lemma E and if
A =let!lz =V in M we rely on the intuitionistic lemma E This settles the
case where the evaluation context E is trivial. If it is complex then we also need
lemma ﬂ O

Lemma 9 (side-effects redexes). If R;T'F A : « where A is one of the programs
on the left-hand side then R;T'+ A’ : a where A’ is the corresponding program
on the right-hand side:

(1) El[set(z, V)] E¥] | (z« V)
(2) Elpset(z, V)] E¥]|(z<V)
(3) Elget(z)] | (z < V) ElV]

(4) Elget(z)] | (x <= V) E[WV]|(z < V)

Proof. We proceed by case analysis.

1. Suppose we derive R;T' + E[set(z,V)] : a from Ry;Ty F set(z, V) : 1.
By the typing rule for set(z, V) we know that Ry = r : ([v,0'], A) W Rs,
V(r), T = z : (u,Reg,A) W T3, and R3;Ts F V : A. Tt follows that
Ro;Ty (z < V) : B. We can decompose Ro;T'y into an additive part
(R2;T5)° and a multiplicative one (R2;T'3)'. Then from (Rg;T2)? b % : 1,
we can derive Ry; Ty F E[#] : o, where (Ry;T1) W (Re;T2)! = R; T

2. Suppose we derive R;T' + Elpset(z,V)] : a from Ry;T9 b pset(x, V) : 1.
By the typing rule for pset(z, V) we know that Ry = r: ([v,v'],!4) W Rs,
P(r), T's = x : (u,Reg,!A) W T3, and Rs;Ts - V : 1A, Tt follows that
Ro;To F (2 < V) : B. Then we reason as in the previous case.

3. Suppose Ry;T1 F Elget(x)] : « is derived from Ro;T's F get(z) : A, that
Rs;Ts b (z < V) : B, and that R;T" = (Ry;T'1)W(R3;T'3). Then (Rg;T'2)W
(R3;T3) F V : A, by weakening. Also, let r be the region associated with
the address z. We know that V(r) and that Rs must have a reading
usage on r. It follows that aff (R2;T'2) and therefore the context E cannot
contain a . Thus from (Rg;T2) W (R3;T3) F V : A we can derive R;T
E[V]: a.

4. Suppose Ry;T'y F Elget(z)] : « is derived from Ro;T's - get(z) : 1A, that
R3;Ts F (z < V) : B, and that R;T" = (Ry;T1) W (R3;T'3). By the
promotion rule, R3;T's is a weakening of R4; Ty such that —aff (R4;T4)
and R4;Ty =V 1 A, Then from Ry; Ty F 'V : A we can derive R; IV
E['V] : a where R;T is a weakening of (R;T") W (R3;T'3).

O

Theorem 3 (subject reduction). If R;T' + P:«a and P — P' then R;T - P’ : .

26

Proof. We recall that P — P’ means that P is structurally equivalent to a
program C[A] where C' is a static context, A is one of the programs on the
left-hand side of the rewriting rules specified in Table E, A’ is the respective
program on the right-hand side, and P’ is syntactically equal to C[A].

By lemma E, we know that R;T'+ C[A] : . This entails that R'; TV = A : o
for suitable R',T,o/. By lemmas E and E, we derive that R;T" = A’ : /. Then
by induction on the structure of C' we argue that R;T' + C[A'] : a. O

A.2 Proof of Theorem

Table @ summarizes the main syntactic categories and the reduction rules of the
intuitionistic system. It is important to notice that in the intuitionistic system
regions are terms and that the operations that manipulate the store operate
directly on the regions so that we write: get(r), pset(r,V), and (r < V') rather
than get(z), pset(z, V), and (x < V).

Table é summarizes the typing rules for the stratified type and effect system.

Proviso To avoid confusion, in the following we write F4; for provability in
the affine-intuitionistic system and F; for provability in the intuitionistic system.

The translation acts on typable programs. In order to define it, it is useful
to go through a phase of decoration which amounts to label each occurrence
(either free or bound) of a variable x of region type Reg, A with the region 7.
For instance, suppose R = 11 : (U1, A1),...,74 : (Us, Ay) and suppose we have
a provable judgement:

R;xy @ (u1,Reg, A) Far
xy |let lzg = ... inxo | Az3.x3 | vy x40 (B,0)

Further suppose in the proof the variable z; relates to the region r; for i =
1,...,4. Then the decorated term is:

‘s H T T T
it [letlzg = ... in 2p? | Awg.xy® | vay)t .

The idea is that the translation of a decorated variable =" is simply the region
r so that in the previous case we obtain the following term of the intuitionistic
system:

r1 | (Aza.ra)(...) | Axsrs [g .

Note that in the translation the v’s disappear while the \’s and let’s are simu-
lated by the intuitionistic \’s.

Assuming the decoration phase, the forgetful translation (_) is defined in
Table @

Lemma 10. The forgetful translation preserves provability in the following
sense:

1. IfR I—A] thenﬁl—;.

27

If RFa7 a then REr .

If RFar (o, e) then REp (a,e).

IfRFa;a<a then RFra<d.

If Rbar (a,e) < (o, €) then REp (a,e) < (o, ¢€).

If REa7 T then R4 L.

7. If R;T Fa; P: (a,e) (and P has been decorated) then R;T - P : (a,e).

S

Proof. By induction on the provability relation 47 .

Concerning the rules for types and region contexts formation and for sub-
typing, the forgetful translation provides a one-to-one mapping from the rules
of the affine-intuitionistic system to the rules of the intuitionistic one (the only
exception are the rules for !A which become trivial in the intuitionistic frame-
work). Also note that dom(R) = dom(R). With these remarks in mind, the
proof of (1-5) is straightforward.

The proof of (6) follows directly from (2). We just notice that the forgetful
translation of a context I' eliminates all the variable associated with region types.
The point is that if these variables occur in the program they will decorated
and therefore in the translation they will be replaced by regions, i.e., constants.

In the proof of (7), it is useful to make a few preliminary remarks. First,
weakening is a derived rule for the intuitionistic system, so that if we can prove
R;TF; P: (a,e) and R, R+ I',T” then we can prove R, R';T', TV F; P : (a,€)
too. Second, if Ry W Ry is defined then R; = Ry = Ry W Ry. The proof is then a
rather direct induction on the provability relation -47. When we discharge an
assumption and when we introduce a formal parameter with A or with let we
must distinguish the situation where the variable under consideration has region
type, say, Reg,A. In this case the variable does not occur in the translation of
the related context I and it is replaced in the term by the region 7. O

Next we want to relate the reduction of a program and of its translation. As
already mentioned, in the intuitionistic system all stores are persistent. Conse-
quently, a reduction such as:

get(z") | (2" + V)=V
might be simulated by
get(r) | (r<V) =V |(r<V).

In other terms, the translated program may contain more values in the store than
the source program. To account for this, we introduce a ‘simulation’ relation S
indexed on a pair R;I" such that R+ T" and I' is just composed of variables of
region type:

SR;F = {(Pa Q) |R3F FAI P (04,6),
E;—FI Q : (Q,e);
Q= (2|95}

28

Lemma 11 (simulation). If (P,Q) € Sgr and P — P’ then Q@ — Q' and
(P/,Q/) c SR;F~

Proof. Suppose (P,Q) € Sg,r. Then (P,P) € Sgr. Also if P — P’ then
R;T k41 P’ by subject reduction of the affine-intuitionistic system (incidentally,
subject reduction holds for the intuitionistic system too [f]]).

By definition P — P’ means that P is structurally equivalent to a process
P; which can be decomposed in a static context C' and a redex A of the shape
described in Table E

We notice that the forgetful translation preserves structural equivalence,
namely if P = P, then P = P;. Indeed, the commutativity and associativity
rules of the affine-intuitionistic system match those of the intuitionistic system
while the rules for commuting the v’s are ‘absorbed’ by the translation. For
instance, v P | P’ =P | P/ = vz (P | P') with x not free in P’.

We also remark that the forgetful translation can be extended to static
and evaluation contexts simply by defining [] = [|. Then we note that the
translation of a static (evaluation) context is an intuitionistic static (evaluation)
context. In particular, this holds because the translation of a value is still a
value.

Following these remarks, we can derive that Q@ = C[A] | S. Thus it is
enough to focus on the redexes A and show that each reduction in the affine-
intuitionistic system is mapped to a reduction in the intuitionistic one and that
the resulting program is still related to the program P’ via the relation Sg;r.

To this end, we notice that the translation commutes with the substitution
so that [V/z]M = [V /z]M. This is a standard argument, modulo the fact that
the variable of region type have to be given a special treatment. For instance,
we have:

' /a"la" =y =r=[r/a"]r =[y"/2"]2"
Then one proceeds by case analysis on the redex A. Let us look at two cases in

some detail. If
A =Elletlz =V in M] — E[[V/x]M]

then

A let lx =V in M]
M. M)V
V /x| M]
[V/z]M]
[V/x]M

| (z" + V) then

[
[
[
[
E[[V/z]M

md4
tq Itq Itq oy |t

On the other hand if A = F[get(x

3
L

A = Elget(r)] | (r<V)
- E[V]|(r<Y)
= EV]|(r<V).

Notice that in this case we have an additional store (r <= V) which is the reason
why in the definition of the relation & we relate a program to its translation in
parallel with some additional store. |

Theorem 4 ([[]). If R;- 1 P : (a,e) then all reductions starting from P
terminate.

Corollary 1 (termination). If R;T Fa; P : («,e) then all reductions starting
from P terminate.

Proof. By contradiction. We have (P, P) € Sg,;r and R; -t P : (a,e). If there
is an infinite reduction starting from P then the simulation lemma [L1] entails
that there is an infinite reduction starting form P. And this contradicts the
termination of the intuitionistic system (Theorem [f). O

30

R-FT z:(u,A) el RET
R;TFxz:(A,0) R;TFx:(1,0)

RyTibM:(Aoa,e)
RT,x:(1,A) F M : (aye) Ry;To N :(A4,¢")
R;FFAx.M:(AiDOA,@) RiWRy; Iy WIl'g - MN : (a,eUe’Ue”)

RWR F (Wl saff (R;I) Ri;T1 - M: (14,¢)
R;TFM:(Ae) —aff(RT) Ro;To, 2 : (00, A) F (N,€) : «
RYR;TWI'EIM: (1A e) RiW Ry T WTgFletle =M in N : (o,eUe)
RET z:(u,Reg,A) el
R;T,x: (u,Reg, A) - P: (o, e) r:(jv,v],A)e R v #0
R;TFvx P:(a,e) R;T F get(z) : (A,{r})
I'=2z:(u,Reg, A) W' V(r) I'=x:(u,Reg !A)WI" P(r)
R=r:(v,v],A)W R v#0 R=r:(v,v],JA)UR v#0
RFT R.I'FV:(A0) RFT R.T'FV:(A0D)
R;TFset(z, V) : (1, {r} R;T F pset(z, V) : (1,{r})
I'=xz:(u,Reg, A)WwT" V(r) I'=xz:(u,Reg lA)WT" P(r)
R=r:(v,v],A)WR v#0 R=r:(v,v],JA)WR v#0
RFT R.I'FV:(A0) RFT R:T'FV:(A0)
R;T - (z + V) :(B,0) RiTH(x<=V): (B,
Rl;I‘ll—P:(a,e) RZ,szpz(Oé“ez)
Ry;To =S : (B,0) P; not a store i = 1,2
RiW Ry Ty Wl - (P | S) : (a,e) RiW Ry T Wy - (Pl | PQ) : (B,61 Ueg)

Table 7: An affine-intuitionistic type and effect system

REA<A
RFa<a REIA <A

e Ce Cdom(R)
RFA <A RFa<d

’

RF(ASa) < (A Soa)

e Ce Cdom(R) R,iTHM: (a,e)
RFa<d RE (a,e) < (o, €)
Rt (aye) < (o,€) R;THM: (d,€)

Table 8: Subtyping induced by effect containment

31

R+A r¢dom(R)

0F R (U, A)F
_RE _RE
RE1 R-B

e C dom(R)
REA RFA Ria
R4 RF (A5)
R+ r:(UA)ER REa eC dom(R)
R Reg, A R& (a,e)

Table 9: Formation of types and contexts (stratified)

Tli(Ul,Al),...,Tn (Un;An)—Tl Al, .,TnZAn
) [x: AL if A# Reg,.B
M_{ T otherwise

=z, z" = , M =X e M, MN=MN

M=M, letla=MinN=_MNe.N)M, vaM=M,

get(a”) = get(r), set(z",V) =set(r,V), pset(az”, V)= pset(r,V),

(@ V)=(r<V), @ <V)=@r<«V), P|P=P|P

Table 10: Forgetful translation

32

SYNTAX: TERMS

x,y, (Variables)
T8, ... (Regions)
Viao=ua|x|r| e M (Values)
M=V |MM |get(V) | pset(V,V)| (M| M) (Terms)
Su=(r<wv)|(S]95) (Stores)
P:=M|S|(P|P) (Programs)
E:=[]|EM|VE (Evaluation Contexts)
C==[]|(C|P)P|C) (Static Contexts)
OPERATIONAL SEMANTICS
PP = PP (Commutativity)
(P|P)|pP" = P|(P|P" (Associativity)

E[(Ax.M)V] — E[|V/z|M]
Elget(r)],(r<V) — E[V],(r<V)
Elpset(r, V)] — E[,(r<V)

SYNTAX: TYPES AND CONTEXTS

ax=A|B (Types)
Az=1](A5 a)|Reg, A (Value-types)
Dui=ax:A,...,2,: A, (Contexts)
Ru=mr1:Aq,...,rn: Ay (Region contexts)

Table 11: Intuitionistic system: syntactic categories and operational semantics

33

STRATIFIED REGION CONTEXTS AND TYPES

R+A r¢ dom(R) RF R+
0+ R,r: Ak RE1 R-B
RFA RFa eCdom(R) R- r:A€eRr Rta eCdom(R)
RF(AS) RF Reg, A RF (ae)

SUBTYPING RULES
RFA <A RFEa<d
RFa e Ce Cdom(R)

RFa<a - =
RE(A=a) <(A —d)

RFa<d
e Ce' Cdom(R)
RE (a,e) < (¢, €)

R;TE M : (a,e) RE (aye) < (d,€)
R;T'F M: (d,€)

TERMS, STORES, AND PROGRAMS

RET z:A€el RET r:AeRr RET
R;THux:(A4,0) R;T Fr: (Reg,A,0) R;TF x:(1,0)
R;l,x: AF M : (a,e) RTFM: (A% a,e1) RTFN:(Aes)

RiTFXe.M: (A5 a,0) R;TFMN : (a,e; Uey Ues)
R;THV :(Reg,A,0) R;THV :(Reg, A, 0) R;THV':(AD)
R;T+ get(V): (A, {r}) R;TF pset(V, V') : (1,{r})
R,THP: (aye)

e
RT+S: (B,0)
R;TE(P|S): (a,e€)

r:AeR R THV:(A0)
RTH(r<V):(B,0

P; not a store R;T'F P;: (a;,e;), i=1,2
R;FF(P1|P2)Z(B,€1 U€2)

Table 12: Intuitionistic system: stratified types and effects

34

