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Ethessahar et al. 1Vibrations of poroelasti plates: mixed displaement-pressure mod-elisation and experimentsManuel Ethessahar1, Sohbi Sahraoui, Bruno Brouard2Laboratoire d'Aoustique de l'Université du Maine-UMR CNRS 6613Université du Maine, Avenue Olivier Messiaen72085 Le Mans Cedex 9, FRANCEDeember 2, 2009Running title: Vibrations of poroelasti platesAbstratThis paper presents the equations of motion of air saturated retangular poroelasti plates. Themodel is based on a mixed displaement-pressure formulation of Biot's theory. Two equations ofmotion are obtained and solved with the Galerkin method for any boundary onditions. Theseequations take into aount the solid-�uid oupling e�ets. Simulations of the bending vibra-tions of a retangular water saturated sandstone and air saturated aousti foam are performedfor studying the in�uene of the visous damping through the permeability. Experiments onlamped plates made of low density aousti materials (�brous and polyurethane foam) are usedto hek the limits of this model. On these materials the strutural damping is predominantompared to visous damping.PACS numbers: 43.40 Dx, 43.20 Tb [ANN℄1 IntrodutionIn automobile and airraft appliations, plates of porous materials are widely used for passivesound absorption, noise ontrol and vibration redution. When these plates are bonded ontoa vibrating struture or are exited at strong sound levels, the skeleton of the porous materialannot be onsidered anymore as rigid and its aoustial behaviour an be desribed by Biot'stheory [1℄. In the viinity of resonanes of porous plates, relative �uid-struture veloity anlead to high visous damping [2℄ and simpli�ed models based on equivalent solid plate [3℄ or onequivalent �uid desription [4℄ annot be used anymore.Some analytial models onsisting in solving the general problem of the �exural vibrationsof a thin �uid saturated poroelasti plate inluding Biot's theory are available in the literature.The �rst models [5℄[6℄, motivated by biomedial and geomehanial problems, are based onlassial plate theory with Kirhho�'s assumptions and the [u,U ℄ formulation of Biot's relations.More reently, Lelaire et al. [7℄ used a [u,u − U ℄ formulation of Biot's equations to derivetwo equations of equilibrium for the porous plate. The main advantages of this model are thesimpliity of the equations, and their apability to be solved under boundary onditions otherthan simply-supported edges. However, these equations were solved with the assumption of apredominant onstant transverse �uid-solid relative displaement whih in�uenes diretly thevisous dissipation within the plate. The model has been validated by experiments on highdensity lamped porous plates [8℄.1Current address: PSA Peugeot Citroen, 78 943 Vélizy-Villaoublay, Frane2Corresponding author, e-mail: bruno.brouard�univ-lemans.fr



Ethessahar et al. 2In this paper, a [u, p℄ formulation of Biot's equations is used in assoiation with the lassialtheory of plates to derive two oupled equations of equilibrium of an homogeneous and isotropiporoelasti plate [9℄. The use of this theory is valid in the ase of porous materials as longas the wavelength of the bending waves is muh greater than the size of the pores. The �uidloading is not onsidered and only solid-�uid interations within the plate are modeled. Theplate is supposed to be exited on its solid phase by a puntual fore. The equations aresolved using the Galerkin method. The transverse solid displaement and the �uid pressure aredeomposed on a basis of eigenfuntions hosen as a produt of beam funtions whih verifyall the boundary onditions. Hene, various boundary onditions an be investigated: simplysupported, lamped or free edges on the solid phase, permeable and impermeable on the �uidphase. The main advantages of this formulation are the simpliity of the two resulting equations,their easy physial interpretation and the fat that the hosen variables are the measurable ones.In the �rst part of this paper, [u, p℄ formulation of the equations of motion of a poroelastiplate is derived and solved with the Galerkin method for any boundary onditions. In the seondpart, numerial simulations on a water saturated sandstone are produed with this new modeland tendenies for variations of the permeability are observed. Some new numerial simulationsare made on a polymeri foam, lassially used as sound absorbing material, for various valuesof the permeability. Finally, in the third part, some experiments made on lamped poroelastiplates are ompared with numerial simulations resulting from this model. These experimentsare performed on light materials urrently used in automotive or airraft sound absorbing ap-pliations. This new results are useful to hek the limitations of suh models.2 Theory2.1 The [u, p] formulation of Biot's equationsThe modeling of poroelasti materials is based on Biot's equations of poroelastiity [1℄, linkingthe solid and �uid displaements vetors, u and U respetively, to the stress tensors σs and φ∇pof the solid and �uid phases respetively. Assuming harmoni time dependene is ejωt, equationof motion of a poroelasti medium an be written in the [u,U ℄ form as follows [10℄:
div σs + ω2(ρ̃11u+ ρ̃12U) = 0 , (1)
−φ∇p+ ω2(ρ̃12u+ ρ̃22U) = 0 , (2)where φ is the porosity of the porous medium and where the e�etive densities

ρ̃11 = ρ11 +
b(ω)

jω
, ρ̃22 = ρ22 +

b(ω)

jω
, ρ̃12 = ρ12 −

b(ω)

jω
, (3)are related to the solid and �uid densities, ρ11 and ρ22 respetively, and to an inertial ouplingterm ρ12. The visous e�ets are taken into aount in the b(ω) term whih an be written:

b(ω) = −φ2σG(ω) , (4)where σ is the �ow resistivity and G(ω) is the Johnson funtion [11℄. A detailed desription ofall these terms an be found in referene [10℄.Using the stress-strain relations de�ned by Biot [1℄, equations (1) and (2) an be rewritten in amixed [u,p℄ form as follows [12℄:
div σ̂s + ρ̃ω2u+ γ̃∇p = 0 , (5)

∆p+
ρ̃22

R̃
ω2p−

ρ̃22

φ2
γ̃ω2divu = 0 , (6)



Ethessahar et al. 3where ρ̃ is a redued e�etive density
ρ̃ = ρ̃11 −

ρ̃2
12

ρ̃22

, (7)and γ̃ is a omplex number de�ned bỹ
γ = φ

(

ρ̃12

ρ̃22

−
Q̃

R̃

)

, (8)where R̃ and Q̃ are elasti oe�ients. The stress tensor σ̂s, de�ned by the relation:
σs = σ̂s − φ

Q̃

R̃
p1 , (9)is linked to the solid phase strain by the elasti tensor of the skeleton. The elasti onstant ofthe saturating �uid R̃ and the oupling elasti oe�ient Q̃ are related to the bulk modulus ofthe skeleton Kb, to the bulk modulus of the solid from whih the skeleton is made Ks and tothe bulk modulus of the saturating �uid Kf by relations:

R̃ =
φ2Ks

1 − φ−Kb/Ks + φKs/Kf

, (10)
Q̃ =

φKs(1 − φ−Kb/Ks)

1 − φ−Kb/Ks + φKs/Kf

. (11)Next, the mixed [u,p℄ formulation of Biot's equations of poroelastiity, represented by the set ofequations (5) and (6), is used to desribe the dynami behaviour of the porous medium.2.2 Coupled equations of motion of a poroelasti plate2.2.1 Geometri assumptions and boundary onditionsConsider a retangular, isotropi, homogeneous poroelasti plate of lateral dimensions a × band of uniform thikness h. The system of oordinates is hosen in order to make the (~x,~y)plane oinide with the middle surfae of the poroelasti plate before deformation (Figure 1).By following Kirhho�'s assumption [13℄, the solid displaement vetor u = (u, v,w) is then afuntion of the transverse displaement w(x, y), and the in-plane displaements u and v an bewritten:
u = −z

∂w(x, y)

∂x
, v = −z

∂w(x, y)

∂y
. (12)By giving that form to the solid displaement, we assume that normal to the middle surfaeremains straight and normal to the middle surfae after deformation. This implies that thesaturating �uid inside the pores has no e�ets on the ross setion of the plate.The poroelasti plate is supposed to be exited on its solid phase by a puntual fore F0 at oor-dinates (x0,y0). In the absene of external aousti soures and negleting the sound radiationof the plate, boundary onditions on upper and lower surfaes are:

z =
h

2
, σ̂s

zz = F0δ(x− x0)δ(y − y0) , σ̂s
xz = σ̂s

yz = 0 (13)
z = −

h

2
, σ̂s

zz = 0 , σ̂s
xz = σ̂s

yz = 0 (14)where δ is the Dira funtion.



Ethessahar et al. 42.2.2 EquilibriumThe three equations of equilibrium for the solid phase of the poroelasti plate are establishedfollowing the proedure used by Taber [5℄. To do so, the expression of the solid displaementvetor u of the plate (12) is introdued in the �rst equation of the mixed [u,p℄ formulationof Biot's equations of poroelastiity (5). The �rst two equations of equilibrium are obtainedby multiplying by z the modi�ed (5) along x and y axis and by integrating aross the platethikness:
−ρ̃ω2

∫ h

2

−
h

2

z2
∂w

∂x
dz + γ̃

∫ h

2

−
h

2

z
∂p

∂x
dz = Qxz −Mxx,x −Mxy,y , (15)

−ρ̃ω2

∫ h

2

−
h

2

z2
∂w

∂y
dz + γ̃

∫ h

2

−
h

2

z
∂p

∂y
dz = Qyz −Myx,x −Myy,y , (16)where the bending moments Mαβ and the shear resultants Qαz are given by [14℄:

Mαβ =

∫ h

2

−
h

2

σ̂s
αβzdz and Qαz =

∫ h

2

−
h

2

σ̂s
αzdz . (17)The third equation is obtained by integrating aross the plate thikness the modi�ed equation(5) along z axis:

−ρ̃ω2

∫ h

2

−
h

2

wdz + γ̃

∫ h

2

−
h

2

∂p

∂z
dz = −Qxz,x −Qyz,y −

[

σ̂s
zz

]

h

2

−
h

2

, (18)where the latter term is �xed by the boundary onditions on the solid phase of the poroelastiplate (equations (13) and (14)).2.2.3 The poroelasti plate equationsBy negleting the rotary inertia of the plate (�rst terms of equations (15),(16)), the ombinationof equations (15), (16), (18) gives the equation of motion of the solid phase of the poroelastiplate:
D̃∆2w(x, y) − ρ̃hω2w(x, y) − γ̃

∫ h

2

−
h

2

(

∂2

∂x2
+

∂2

∂y2

)

p(x, y, z)z dz = F0δ(x− x0)δ(y − y0), (19)where the omplex �exural modulus of the skeleton D̃ is related to the omplex Young modulus
Ẽ and to the Poisson's ratio ν by relation:

D̃ =
Ẽh3

12(1 − ν2)
. (20)The equation for the �uid pressure is obtained by introduing expression (12) of the solid dis-plaement vetor u in (6)

∆p(x, y, z) +
ρ̃22

R̃
ω2p(x, y, z) +

ρ̃22

φ2
γ̃ω2z∆w(x, y) = 0 . (21)The set of equations (19) and (21) are the oupled equations of the poroelasti plate in [u,p℄formulation. One of the main advantages of this formulation is the easy understanding of theequations. The �rst two terms of the solid phase equation (19) are the elasti and inertial termsof the in vauo lassial plate equation while the �rst two terms of the �uid pressure equation



Ethessahar et al. 5(21) represent the �uid propagation inside the poroelasti plate. The third term of eah equationis a oupling term whih an be onsidered as a soure term.2.3 Modal resolution of the oupled equations2.3.1 Galerkin approximationThe system of oupled equations is solved using the Galerkin method [15℄. Dimensionless spaevariables ζ, η and γ are used:
ζ =

x

a
, η =

y

b
and γ =

2z

h
. (22)Hene, solutions for the solid transverse displaement w(x, y) and for the �uid pressure p(x, y, z)are approximated respetively by the funtion w̃(ζ, η) and p̃(ζ, η, γ) suh as:

w̃(ζ, η) = Amnwmn(ζ, η) and p̃(ζ, η, γ) = Bqrspqrs(ζ, η, γ) (23)where the test funtions wmn(ζ, η) and pqrs(ζ, η, γ) ful�ll all the boundary onditions and wherethe oe�ients Amn and Bqrs are to be determined. Einstein's onvention is used for repeatedindies m,n,q,r,s varying respetively from 1 to m0,n0,q0,r0,s0. Applying Galerkin method [15℄on equations (19) and (21) yields to the following linear system of equations:
∫∫

(L11w̃+L12p̃)wijdζ dη =

∫∫

F0δ(ζ0, η0)wijdζ dη for (i, j) ∈ (1 · · ·m0)× (1 · · · n0) , (24)
∫∫∫

(L21w̃ + L22p̃)pijkdζ dη dγ = 0 for (i, j, k) ∈ (1 · · ·m0) × (1 · · · n0) × (1 · · · s0) . (25)where the Lαβ are the orresponding linear operators of equations (19) and (21). The resolutionof this system leads to the unknown Amn and Bqrs oe�ients.2.3.2 Choie of the set of test funtionsThe transverse solid displaement test funtions wmn(ζ, η) were hosen as :
wmn(ζ, η) = φm(ζ)ψn(η). (26)where φm(ζ) and ψn(η) are the so-alled beam eigenfuntions verifying all the boundary on-ditions along ζ and η axis respetively [14℄. The literature on the mathematial form of thesebeam eigenfuntions is abundant and ombinations of trigonometri and hyperboli funtions[16℄ or ombinations of trigonometri and polynomial funtions [17℄ an be found. More re-ently, sets of orthogonal polynomial funtions [18℄ or hierarhial sets based on polynomial [19℄or trigonometri [20℄ funtions were introdued in order to improve the e�ieny of numerialmethods. In this paper a lassial set based on trigonometri and hyperboli funtions is usedfor φm(ζ) and ψn(η).In addition to the solid displaement, the �uid pressure test funtions pqrs(ζ, η, γ) are writtenas:

pqrs(ζ, η, γ) = φq(ζ)ψr(η)θs(γ) (27)where φq(ζ) and ψr(η) are the beam funtions hosen for the solid displaement, and the funtion
θs(γ) is related to the transverse pressure slope. We suppose here that the pressure follows theform of wmn(ζ, η). Two types of boundary onditions on the upper and lower surfaes, leading totwo sets of transverse slope eigenfuntions, are explored: permeable and impermeable surfaes.



Ethessahar et al. 6Note that these two types of boundary onditions desribe perfetly poroelasti materials usedusually in sound absorbing appliations: ordinary foams and �brous materials an be onsideredpervious while aousti materials with surfae treatment (baked or �nished) an be onsideredimpervious. For a permeable plate, the pressure must vanish on the upper and lower surfaesand on the neutral �ber, leading to the following form for θs(γ):
θs(γ) = sin(kszγ) with ksz = sπ and s = 1, 2, 3, ... , (28)while for an impermeable plate, θs(γ) takes the form:

θs(γ) = sin(
ksz

2
γ) with s = 1, 3, 5, ... . (29)The �uid pressure slope forms for both pervious and impervious onditions are like those om-puted by Taber [5℄.2.3.3 Solution of the oupled systemBy substituting displaement w̃(ζ, η) and pressure p̃(ζ, η, γ) by their expressions (23) in equations(24) and (25), and by taking into aount (26) and (27), one an obtain the following linearsystem of equations for the unknown Amn and Bqrs oe�ients:

{

Kmnij − ω2Mmnij

}

Amn − CqrsijBqrs = Fij for (i, j) ∈ (1 · · ·m0) × (1 · · · n0) , (30)
{

Lqrsijk + ω2Nqrsijk

}

Bqrs+ω
2DmnijkAmn = 0 for (i, j, k) ∈ (1 · · ·m0)×(1 · · · n0)×(1 · · · s0) ,(31)where Kmnij and Lqrsijk are the sti�ness oe�ients of the solid and �uid phases, Mmnij and

Nqrsijk are the mass oe�ients, the Cqrsijk and Dmnij are related to the damping and massoupling between the two phases, and Fij are the imposed fore oe�ients. These oe�ientsare de�ned by:
Kmnij = D̃ab

[

1

a4
I40

miI
00

nj +
1

b4
I00

miI
40

nj +
2

a2b2
I20

miI
20

nj

]

, (32)
Lqrsijk = R̃abh

[

1

a2
I20

qi I
00

rj I
00

sk +
1

b2
I00

qi I
20

rj I
00

sk +
1

h2
I00

qi I
00

rj I
20

sk

]

, (33)
Mmnij = ρ̃abhI00

miI
00

nj , (34)
Nqrsijk = ρ̃22abhI

00

qi I
00

rj I
00

sk , (35)
Cqrsij = γ̃abhts

[

1

a2
I20

qi I
00

rj +
1

b2
I00

qi I
20

rj

]

, (36)
Dmnijk = R̃

ρ̃22

φ2
γ̃abh2tk

[

1

a2
I20

miI
00

nj +
1

b2
I00

miI
20

nj

]

, (37)
Fij = F0φi(ζ0)ψj(η0) , (38)where the Iαβ

st and the tα are de�ned by:
Iαβ
st =

∫

1

0

∂α

∂ζα
φs(ζ)

∂β

∂ζβ
φt(ζ) dζ and tα =

∫

1

−1

θα(γ)γdγ . (39)The system omposed by equations (30) and (31) an be written as a matriial system and theneasily be solved numerially.



Ethessahar et al. 73 Numerial examplesThis setion presents various numerial simulations of simply supported poroelasti plates. Asobserved in previous works [6℄ [7℄, the permeability has a great in�uene on the �rst bendingmode of a water saturated sandstone. Then, attention is foused on the dynami behaviour ofsound absorbing materials. In fat, unlike the water saturated sandstone, these air-saturatedmaterials are highly porous, soft and highly damped suh as inertial, elasti and visous e�etsare weaker. Some numerial simulations are made on a representative foam usually used in soundabsorbing appliations. The in�uene of the permeability is speially studied under the sameboundary onditions (simply supported edges). Results obtained for pervious and imperviousplates are ompared.3.1 Case of a water-saturated sandstoneA simply supported water-saturated sandstone plate (see properties in Table I), of dimensions4×4×0.2 m is exited by a unit point fore at oordinates (0.1 m, 0.15 m). In order to inreasethe in�uene of visous e�ets, the strutural damping of the material is supposed to be zero.Figure 2 presents the normalized displaement w/wstatic of the �rst bending mode at the enterof the plate for di�erent values of permeability.The in�uene of the permeability on the resonane is due to omplex oupling e�ets betweenskeleton and saturating �uid. In fat, two limit ases are reahed for high and low permeabilities.When the permeability is very high, the �uid is totally free and an go through the pores withoutany visous dissipation. When the permeability is very low, the saturating �uid is totally holdso that skeleton and �uid motions are in phase and there is no visous dissipation. Besides,when the �uid is totally hold, the e�etive mass and the e�etive sti�ness of the material arehanged to ρ+ δρ and K + δK respetively depending on the properties of the saturating �uid(mass, ompressibility and visosity). As a onsequene, the frequeny at resonane is shiftedeither to the right, if the sti�ness variation is greater than the mass variation, or to the lefton the opposite situation. These variations result from omplex �uid-struture oupling e�ets.Obviously, in the ase of a water saturated sandstone this hange of behavior is mass-like andthe resonant frequeny is shifted to lower frequenies. Between these two limits the magnitudereahes through a minimum whih is the best ompromise of a low permeability and a high�uid-solid relative speed. In the next setion, simulations on air-saturated foams will show asmall in�uene of the visous dissipation in omparison with the strutural damping.3.2 Case of an air-saturated polymeri foamConerning porous materials usually used in sound absorbing appliations, the porosity is fairlyhigher than 0.9 and the saturating �uid is air so that inertial, elasti and visous oupling e�etsare weaker than in the ase of a water saturated sandstone. Furthermore, polymeri foams arehighly damped materials with a skeleton strutural loss fator generally near 0.1 [21℄ so thatstrutural losses an beome the predominant soure of dissipation. However, a study on thedissipation mehanisms in a porous layer bonded onto a plate [3℄ showed that the visous dis-sipation within the porous material an be important (up to 80% of the total dissipation) forsoft materials. In addition, Dauhez et al. [3℄ on�rm that these visous e�ets were mainlyrelated to permeability in the low frequeny range. On these basis, some numerial simulationsof simply supported pervious and impervious poroelasti plates of dimensions 0.5×0.5×0.02mare presented. The material is an air-saturated polymeri foam, very similar to the one of ref-erene [3℄, used for sound absorbing appliations. Its properties are summarized in Table II. In



Ethessahar et al. 8order to quantify the e�ets of visous dissipation, the permeability is varied from 10−8 to 10−12.Figure 3 presents the normalized solid displaement at the enter of the plate of the �rstbending mode for various permeabilities. The frequeny at resonane is the same for the twoboundary onditions. For a pervious plate, visous dissipation is found to be negligible om-pared to the strutural dissipation for all the tested permeabilities. In the ase of an imperviousplate, the quality fator dereases signi�antly for very low values of permeability, and remainsunhanged for ommons permeabilities. On the basis of these observations, one an onludethat the strutural damping is the predominant dissipative phenomenon taking plae in the �rstbending mode of polymeri foam plate.Figure 4 presents the normalized solid displaement at the enter of the plate of a highermode (�fth for example) for various permeabilities. This �gure shows two tendenies. Firstly,the visous dissipation is found to be more important leading to lower quality fators. Thevisous e�ets are predominant on the impermeable plate like it happened in the �rst mode.In fat, impermeable surfaes do not let the �uid go out of the plate whih inreases the �uidstruture oupling e�ets. Seondly, a shift of frequeny appears for the impermeable plate.Unlike water saturated sandstone, this shift drifts to higher frequenies. A physial explanationof this e�et is that, when the air is hold in the skeleton of the foam, the variation of density(density of air present in the material: 1.16 kg/m3, density of the skeleton: 39 kg/m3) is verylow ompared to the variation of sti�ness, the bulk modulus of the air being of the same orderthan the Young's modulus of the skeleton (bulk modulus of air: 1.4 105 Pa, Young's modulus ofthe skeleton: 2.06 105 Pa).4 ExperimentsIn this setion some experiments are performed on two air saturated poroelasti plates made ofmaterials used for passive sound absorption purposes. The �rst plate is made of �bers whilethe seond one is made of polymeri foam. Sine these materials present higher porosities andweaker Young's moduli (see properties in Table II) than the materials used by Lelaire et al.[8℄, the e�ets of the saturating �uid will be more important. The experimental set-up used forthe measurements of the frequeny response of the plate is desribed �rst. In order to omputea good frequeny response funtion (FRF) lassially used in experimental modal testing, bothinput and output signals must be orretly measured. The measurement di�ulties relevant tothe nature of suh highly porous and weakly sti�ened materials are thus desribed, attentionbeing foused on the measurement of the input fore. Finally, experimental results are omparedto numerial ones omputed with the present model.4.1 Experimental set-upThe experimental set-up is shown in Figure 5. The porous sample of lateral dimensions 0.25×0.22m is lamped at its four edges by the way of a steel jaw smoothly gripped on a small part ofthe surfaes. The steel frame supporting the porous plate is supposed to be heavy enoughto be motionless during experiments. The sample is exited by a puntual fore produed byan eletrodynami shaker, the input fore F and the aeleration A signals being measuredby the way of an impedane head. The input signal is a sweep sine generated by an FFTanalyser. The transverse solid phase veloity V of the plate is measured by a laser vibrometer�xed onto a 2 dimensional robot allowing a omplete san of the plate surfae. By using anon-ontat tehnique to measure the response of suh light and �exible strutures we ensurethat the response of the plate is not disturbed by an additional puntual mass that ould be



Ethessahar et al. 9aused by an aelerometer. Both the supporting frame and the shaker are freely supported asadvoated in referene [22℄.4.2 Measurements detailsThe main di�ulty of testing suh materials results from the measurement of the input fore.Figure 6 shows the driving aelerane A/Fc at point x0 = 0.174 m and y0 = 0.025 m of the0.25×0.22×0.009 m �brous lamped plate. The fore Fc is the fore atually applied to thestruture alulated aording to the proess of �mass anellation� [22℄. This �gure shows apredominant weakly damped resonane near 200 Hz and several seondary resonanes highlydamped from eah side of it. Keeping in mind these important di�erenes in damping andnoting that the general appearane of the urve is like the one of a Single Degree of Freedomaelerane, it is possible to think that the resonane near 200 Hz is not due to a bendingmode of the plate but to a mass-spring system-like mode. Sine the sti�ness of the plate islike the sti�ness of the exitator, the system exitator+plate forms a SDOF system having itsown natural frequeny. This analysis has been on�rmed by the following experimental obser-vations: the resonane moves to lower frequenies when the driving point is near the enter ofthe plate (lower apparent sti�ness) and to upper frequenies when the driving point is near theedges (higher apparent sti�ness). Whatever the hosen point is, the mass-spring like resonaneremains loated near the �rst bending modes.4.3 Comparison between experimental and numerial resultsMeasurements were performed on the two lamped plates of dimensions 0.25×0.22×0.009 m.The solid transverse veloities ẇi were measured on 9 points established at the same distanefrom one another on the plate(x = ±75mm and y = ±66 mm from its enter). The referenesignal ẇr is the veloity measured at driving point and the hosen indiator is the mean quadrativeloity of the plate de�ned by:
V =

1

n

n=9
∑

i=1

|ẇi|
2/|ẇr|

2. (40)The aoustial and mehanial properties of the �brous material and of the polymeri foamused for these experiments are summarized in Table II. The strutural loss fators were set to0.05 and 0.11 respetively aording to results found in the literature [23℄[24℄. The �rst resonantfrequeny of numerial simulations mathes exatly the experimental one as a result of the wayboth Young's moduli were set.Figure 7 presents the numerial and experimental mean quadrati veloity of the air saturated�brous plate exited at point x0 = 0.174m and y0 = 0.025m. Despite an over estimation ofmagnitude of the �rst mode, a good agreement is found between experimental and numerialresults speially up to the third mode. For upper modes, a shift of experimental results to lowerfrequenies and magnitudes at resonane is observed.Figure 8 presents the numerial and experimental mean quadrati veloity of the air saturatedpolymeri foam plate exited at point x0 = 0.178m and y0 = 0.078m. One an easily observethat the experimental urve is muh more dumped that the predited one. In addition, theresonane frequenies are inorretly predited. As a onsequene, it seems that the developedmodel does not take into aount all the ouring physial phenomenas.Works on the interations between strutures and their �uid loading [25℄ have shown thattwo ases an be distinguished: strutures loaded by light �uid and strutures loaded by heavy



Ethessahar et al. 10�uid. The light �uid assumption, atually made in this modelisation, is lassially used whenthe density of the struture is muh more greater than the density of the saturating �uid. In thisase the presene of the �uid has no onsequenes on the struture vibrations and is generallynegleted. Otherwise, when the density of the struture is of the same order than the densityof the loading �uid (assumption of heavy �uid), the presene of the �uid annot be negletedanymore. When taking into aount the radiation impedane of the struture, added mass andadded loss terms appear in the plate equation. This leads to a shift to lower frequenies andmagnitudes at resonanes. The observations made on the bending vibrations of the �brous plate,for whih the density ratio is near 140, an be explained by this proess. Obviously, for verylight materials suh as polymeri foams the density ratio is near 25 and the assumption of light�uid annot be made anymore. The loading �uid has a great in�uene on the vibration of theplate, partiularly on the damping. In fat, an analysis of all the phenomena taking plae inthis ase is even more ompliated sine the elasti onstants of suh materials are frequenydependent.5 ConlusionsIn this paper, we derive a new set of equations for the bending vibrations of poroelasti platesbased on the [u, p℄ formulation of Biot's equations. The �rst equation governs the bendingvibrations of the skeleton while the seond one desribes the �uid propagation through the plate.These equations have been solved using the Galerkin method and any boundary onditions onthe solid phase an be simulated. Solutions for permeable and impermeable plates have alsobeen written. The [u, p℄ model has been qualitatively validated by reproduing some numerialsimulations made by previous authors on a water-saturated sandstone. In addition, a numerialstudy on light porous materials, suh as those usually used in sound absorbing appliations,shows that the strutural damping is predominant ompared to visous dissipation for the �rstbending modes. Finally, an experimental validation of the model on these light materials wasmade. The present model seems well adapted to predit the �rst resonanes of high densityporous materials. Nevertheless, the radiation impedane of the material must be integrated tothe model for aurate preditions of soft porous materials like polymeri foams.
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Table I: Properties of sandstoneporosity Permeability tortuosity Young's mod. stru. loss fat. Poisson's ratio solid density
φ K (m2) α∞ E (Pa) η ν ρ1 (kg.m−3)0.3 [10−4, 10−10] 1.02 7.3 109 0 0.3 2300
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Table II: Aoustial and mehanial properties of �brous F and of polyurethane foam Pporosity Permeability tortuosity Young's mod. stru. loss fat. Poisson's ratio solid density
φ K (m2) α∞ E (Pa) η ν ρ1 (kg.m−3)F 0.95 2.13 10−10 1.12 29.9 106 0.05 0.3 3304P 0.97 1.53 10−10 1.6 169 103 0.11 0.3 998



Ethessahar et al. 15Fig. 1 - System of oordinates of the plate.
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Ethessahar et al. 16Fig. 2 - |w|/|wstati| of the �rst resonane of a simply supported water saturated sandstoneplate for di�erent values of permeability.
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Ethessahar et al. 17Fig. 3 - First bending mode of pervious and impervious plates (�gures left and rightrespetively) for di�erent values of permeability. The numbers i refers to the permeability suhas K = 10−i m2.
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Ethessahar et al. 18Fig. 4 - Fifth bending mode of pervious and impervious plates (�gures left and rightrespetively) for di�erent values of permeability. The numbers i refers to the permeability suhas K = 10−i m2.
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Ethessahar et al. 19Fig. 5 - Experimental set-up.
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Ethessahar et al. 20Fig. 6 - Transfert funtion (omplex ratio aeleration to applied fore) at driving point
x0 = 0.174 m and y0 = 0.025 m of a lamped �brous plate.
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Ethessahar et al. 21Fig. 7 - Mean quadrati veloity of �brous plate. Comparison between experiene andmodel.
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Ethessahar et al. 22Fig. 8 - Mean quadrati veloity of a polyurethane foam plate. Comparison betweenexperiene and model.
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