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Running title: Vibrations of poroelastic plates

Abstract

This paper presents the equations of motion of air saturated rectangular poroelastic plates. The
model is based on a mixed displacement-pressure formulation of Biot’s theory. Two equations of
motion are obtained and solved with the Galerkin method for any boundary conditions. These
equations take into account the solid-fluid coupling effects. Simulations of the bending vibra-
tions of a rectangular water saturated sandstone and air saturated acoustic foam are performed
for studying the influence of the viscous damping through the permeability. Experiments on
clamped plates made of low density acoustic materials (fibrous and polyurethane foam) are used
to check the limits of this model. On these materials the structural damping is predominant
compared to viscous damping.

PACS numbers: 43.40 Dx, 43.20 Th [ANN]

1 Introduction

In automobile and aircraft applications, plates of porous materials are widely used for passive
sound absorption, noise control and vibration reduction. When these plates are bonded onto
a vibrating structure or are excited at strong sound levels, the skeleton of the porous material
cannot be considered anymore as rigid and its acoustical behaviour can be described by Biot’s
theory [1]. In the vicinity of resonances of porous plates, relative fluid-structure velocity can
lead to high viscous damping [2] and simplified models based on equivalent solid plate [3] or on
equivalent fluid description [4] cannot be used anymore.

Some analytical models consisting in solving the general problem of the flexural vibrations
of a thin fluid saturated poroelastic plate including Biot’s theory are available in the literature.
The first models [5][6], motivated by biomedical and geomechanical problems, are based on
classical plate theory with Kirchhoff’s assumptions and the [u,U] formulation of Biot’s relations.
More recently, Leclaire et al. [7] used a [u,u — U] formulation of Biot’s equations to derive
two equations of equilibrium for the porous plate. The main advantages of this model are the
simplicity of the equations, and their capability to be solved under boundary conditions other
than simply-supported edges. However, these equations were solved with the assumption of a
predominant constant transverse fluid-solid relative displacement which influences directly the
viscous dissipation within the plate. The model has been validated by experiments on high
density clamped porous plates [8].

!Current address: PSA Peugeot Citroen, 78 943 Vélizy-Villacoublay, France
2Corresponding author, e-mail: bruno.brouard@univ-lemans.fr
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In this paper, a [u, p|] formulation of Biot’s equations is used in association with the classical
theory of plates to derive two coupled equations of equilibrium of an homogeneous and isotropic
poroelastic plate [9]. The use of this theory is valid in the case of porous materials as long
as the wavelength of the bending waves is much greater than the size of the pores. The fluid
loading is not considered and only solid-fluid interactions within the plate are modeled. The
plate is supposed to be excited on its solid phase by a punctual force. The equations are
solved using the Galerkin method. The transverse solid displacement and the fluid pressure are
decomposed on a basis of eigenfunctions chosen as a product of beam functions which verify
all the boundary conditions. Hence, various boundary conditions can be investigated: simply
supported, clamped or free edges on the solid phase, permeable and impermeable on the fluid
phase. The main advantages of this formulation are the simplicity of the two resulting equations,
their easy physical interpretation and the fact that the chosen variables are the measurable ones.

In the first part of this paper, [u, p| formulation of the equations of motion of a poroelastic
plate is derived and solved with the Galerkin method for any boundary conditions. In the second
part, numerical simulations on a water saturated sandstone are produced with this new model
and tendencies for variations of the permeability are observed. Some new numerical simulations
are made on a polymeric foam, classically used as sound absorbing material, for various values
of the permeability. Finally, in the third part, some experiments made on clamped poroelastic
plates are compared with numerical simulations resulting from this model. These experiments
are performed on light materials currently used in automotive or aircraft sound absorbing ap-
plications. This new results are useful to check the limitations of such models.

2 Theory

2.1 The [u,p] formulation of Biot’s equations

The modeling of poroelastic materials is based on Biot’s equations of poroelasticity [1], linking
the solid and fluid displacements vectors, u and U respectively, to the stress tensors g’ and ¢Vp
of the solid and fluid phases respectively. Assuming harmonic time dependence is e/“*, equation
of motion of a poroelastic medium can be written in the [u,U] form as follows [10]:

div g® + W (priu+ p12U) =0 (1)
—¢Np + w?(prou+ pl) =0 (2)
where ¢ is the porosity of the porous medium and where the effective densities
. b(w _ b(w . b(w
P11=p11+g, p22=,022+g, p12=,012—ga (3)
Jw Jw Jw
are related to the solid and fluid densities, p11 and poo respectively, and to an inertial coupling
term p12. The viscous effects are taken into account in the b(w) term which can be written:

b(w) = —¢*0G(w), (4)

where ¢ is the flow resistivity and G(w) is the Johnson function [11]. A detailed description of
all these terms can be found in reference [10].

Using the stress-strain relations defined by Biot [1], equations (1) and (2) can be rewritten in a
mixed [u,p] form as follows [12]:

div ¢* + pw*u+7Vp =0, (5)

Ap + %w p— p—?%ﬂdivg =0, (6)
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where p is a reduced effective density

and 74 is a complex number defined by

S g(P2Q
7_¢<522 R)? (8)

where R and Q are elastic coefficients. The stress tensor &°, defined by the relation:

[

s

IS}
ISY

s_¢~pia (9)

is linked to the solid phase strain by the elastic tensor of the skeleton. The elastic constant of
the saturating fluid R and the coupling elastic coefficient Q are related to the bulk modulus of
the skeleton K3, to the bulk modulus of the solid from which the skeleton is made K, and to
the bulk modulus of the saturating fluid K by relations:

=

D __ ¢2Ks
=1 —¢— Ky/Ks + ¢K /Ky’ 10

1-¢—Ky/Ks + ¢Ks /Ky

Next, the mixed [u,p] formulation of Biot’s equations of poroelasticity, represented by the set of
equations (5) and (6), is used to describe the dynamic behaviour of the porous medium.

2.2 Coupled equations of motion of a poroelastic plate
2.2.1 Geometric assumptions and boundary conditions

Consider a rectangular, isotropic, homogeneous poroelastic plate of lateral dimensions a X b
and of uniform thickness h. The system of coordinates is chosen in order to make the (Z,)
plane coincide with the middle surface of the poroelastic plate before deformation (Figure 1).
By following Kirchhoff’s assumption [13], the solid displacement vector u = (u,v,w) is then a
function of the transverse displacement w(x,y), and the in-plane displacements u and v can be
written:

wwy)  owwy) ”

u=-—z—p —, U= 3y

By giving that form to the solid displacement, we assume that normal to the middle surface
remains straight and normal to the middle surface after deformation. This implies that the
saturating fluid inside the pores has no effects on the cross section of the plate.

The poroelastic plate is supposed to be excited on its solid phase by a punctual force Fy at coor-
dinates (xg,y0). In the absence of external acoustic sources and neglecting the sound radiation
of the plate, boundary conditions on upper and lower surfaces are:

, 03, = Fyd(x —w0)0(y —yo) , 0G,,=0,,=0 (13)

=0 (14)

S J—
, 0;,=0 , O

where § is the Dirac function.
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2.2.2 Equilibrium

The three equations of equilibrium for the solid phase of the poroelastic plate are established
following the procedure used by Taber [5]. To do so, the expression of the solid displacement
vector u of the plate (12) is introduced in the first equation of the mixed [u,p] formulation
of Biot’s equations of poroelasticity (5). The first two equations of equilibrium are obtained
by multiplying by z the modified (5) along = and y axis and by integrating across the plate
thickness:

3,0 5 0
52 2 OW ~ op ., _ B B
pw /gz alqalszw/gzaxalz Quz — Myz o — Myyy, (15)
h h
~ 2 (9w ~ 2 ap
_pw2 /h Z2a_yd2 + ’7/3 Za—ydz = Qyz — My:v,a: — My%y’ (16)

where the bending moments M, and the shear resultants (),. are given by [14]:

h
Mg = /2 552dz and  Qas = /2 &5 dz. (17)
h h
2 2

The third equation is obtained by integrating across the plate thickness the modified equation
(5) along z axis:

h h
2 2 0
—ﬁw2 wdz + 75 —de = —Quzo — Quzy — [‘}iz] ko (18)
_ _h Oz 5

2

N>

where the latter term is fixed by the boundary conditions on the solid phase of the poroelastic
plate (equations (13) and (14)).

2.2.3 The poroelastic plate equations

By neglecting the rotary inertia of the plate (first terms of equations (15),(16)), the combination
of equations (15), (16), (18) gives the equation of motion of the solid phase of the poroelastic
plate:

NS

~ L 2 2
DAMu(e.y) = htulen) <7 [ (G + gz ol )z ds = Fadlo = 20)dly = ). (19)
2

where the complex flexural modulus of the skeleton D is related to the complex Young modulus
FE and to the Poisson’s ratio v by relation:

N Eh3

= 0= (20)

The equation for the fluid pressure is obtained by introducing expression (12) of the solid dis-
placement vector u in (6)
P22 P22 -

Ap('l?,y,Z) + szp(xay’ Z) + FWWQZAU)('I’ZJ) =0. (2]‘)
The set of equations (19) and (21) are the coupled equations of the poroelastic plate in [u,p]
formulation. One of the main advantages of this formulation is the easy understanding of the
equations. The first two terms of the solid phase equation (19) are the elastic and inertial terms
of the in vacuo classical plate equation while the first two terms of the fluid pressure equation
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(21) represent the fluid propagation inside the poroelastic plate. The third term of each equation
is a coupling term which can be considered as a source term.

2.3 Modal resolution of the coupled equations
2.3.1 Galerkin approximation

The system of coupled equations is solved using the Galerkin method [15]. Dimensionless space
variables ¢, n and ~ are used:
T Y 2z
== =7 and y=22. 22
¢(=—, n=3 and y=— (22)
Hence, solutions for the solid transverse displacement w(z,y) and for the fluid pressure p(x, y, z)
are approximated respectively by the function w(¢,n) and p(¢,n,~y) such as:

W(¢,n) = AmnWmn(¢,n) and  H(¢,n,7) = BgrsPars(C;1,7) (23)

where the test functions wy,, (¢, n) and pgrs(¢, n, ) fulfill all the boundary conditions and where
the coefficients A, and By,s are to be determined. Einstein’s convention is used for repeated
indices m,n,q,r,s varying respectively from 1 to mg,n0,90,70,50. Applying Galerkin method [15]
on equations (19) and (21) yields to the following linear system of equations:

//(Llﬂf}—i-LlQﬁ)wiij d77 = // Fots(CQ, no)wiij dn fOI‘ (Z,j) c (1 s mo) X (1 s no) s (24)

///(Lgﬂf} + LQZﬁ)pijde d77 d")/ =0 for (i,j, k) S (1 cee mo) X (1 s no) X (1 s 80) . (25)

where the L,g are the corresponding linear operators of equations (19) and (21). The resolution
of this system leads to the unknown A,,, and By, coefficients.

2.3.2 Choice of the set of test functions

The transverse solid displacement test functions w,,({,n) were chosen as :

wmn((an) = ¢m(<)¢n(’r/) (26)

where ¢,,(¢) and 1, (n) are the so-called beam eigenfunctions verifying all the boundary con-
ditions along ¢ and 7 axis respectively [14]. The literature on the mathematical form of these
beam eigenfunctions is abundant and combinations of trigonometric and hyperbolic functions
[16] or combinations of trigonometric and polynomial functions [17] can be found. More re-
cently, sets of orthogonal polynomial functions [18] or hierarchical sets based on polynomial [19]
or trigonometric [20] functions were introduced in order to improve the efficiency of numerical
methods. In this paper a classical set based on trigonometric and hyperbolic functions is used
for ¢ () and 4 (n)-

In addition to the solid displacement, the fluid pressure test functions pg,s(¢,7,7) are written
as:

Pars(C:1,7) = &g (Q)r (m)0s(7) (27)

where ¢4 (¢) and 1, (1) are the beam functions chosen for the solid displacement, and the function
0s(y) is related to the transverse pressure slope. We suppose here that the pressure follows the
form of wy,, ((,n). Two types of boundary conditions on the upper and lower surfaces, leading to
two sets of transverse slope eigenfunctions, are explored: permeable and impermeable surfaces.
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Note that these two types of boundary conditions describe perfectly poroelastic materials used
usually in sound absorbing applications: ordinary foams and fibrous materials can be considered
pervious while acoustic materials with surface treatment (baked or finished) can be considered
impervious. For a permeable plate, the pressure must vanish on the upper and lower surfaces
and on the neutral fiber, leading to the following form for 64(y):

0s(y) = sin(ks,y) with kg, =sm and s=1,2,3,..., (28)

while for an impermeable plate, 05(v) takes the form:

ksz .
bs(7) = sin(7) with s=1,35,... (29)

The fluid pressure slope forms for both pervious and impervious conditions are like those com-
puted by Taber [5].

2.3.3 Solution of the coupled system

By substituting displacement w (¢, n) and pressure p(¢,n,y) by their expressions (23) in equations
(24) and (25), and by taking into account (26) and (27), one can obtain the following linear
system of equations for the unknown A,,, and By, coefficients:

{Kmnij - WQanij} Amn - qusiqurs = L4 for (ZaJ) € (1 o mO) X (1 U ’I’Lo) ) (30)

{Lqrsijk: + WZqusijk} qus+w2DmnijkAmn =0 for (Z.uja k) € (1 e mO) X (1 o nO) X (1 ce 30) 5

(31)
where K, and Ly, are the stiffness coefficients of the solid and fluid phases, M,,;; and
Nyrsiji are the mass coefficients, the Cygi51 and Dyppi; are related to the damping and mass
coupling between the two phases, and Fj; are the imposed force coefficients. These coefficients

are defined by:

_ 7 40 700 00 740 20 720
Kpnij = Dab[ T Lmilnj + b4I,mI,U + 2 Imzlw} , (32)

5 1 20700 00 4 00 720 00 700
Lyrsiji = Rabh [plqi 1079 + b—QIqZ 279 ﬁIql 0120 (33)
Mipnij = pabhI 1) (34)
Nrsiji = ﬁ22abh]00]0015k ; (35)
Cyrsij = Jabhts [ SIZ LY + b218?13]0} , (36)

/722~ 2 20 700 00 720
Dmnijk R¢2 abh”t |: Iszn] b_QIszn]:| ) (37)
Fij = Fogi(Co)vi(mo) (38)
where the I;ﬁ and the ¢, are defined by:
ﬂﬁ—3f¢@ﬁ%ﬁw<mdt—fewmw (39)
o 9C* T TagR T ) .

The system composed by equations (30) and (31) can be written as a matricial system and then
easily be solved numerically.
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3 Numerical examples

This section presents various numerical simulations of simply supported poroelastic plates. As
observed in previous works [6] [7], the permeability has a great influence on the first bending
mode of a water saturated sandstone. Then, attention is focused on the dynamic behaviour of
sound absorbing materials. In fact, unlike the water saturated sandstone, these air-saturated
materials are highly porous, soft and highly damped such as inertial, elastic and viscous effects
are weaker. Some numerical simulations are made on a representative foam usually used in sound
absorbing applications. The influence of the permeability is specially studied under the same
boundary conditions (simply supported edges). Results obtained for pervious and impervious
plates are compared.

3.1 Case of a water-saturated sandstone

A simply supported water-saturated sandstone plate (see properties in Table T), of dimensions
4x4x0.2 m is excited by a unit point force at coordinates (0.1 m, 0.15 m). In order to increase
the influence of viscous effects, the structural damping of the material is supposed to be zero.

Figure 2 presents the normalized displacement w/wsgatic 0f the first bending mode at the center
of the plate for different values of permeability.

The influence of the permeability on the resonance is due to complex coupling effects between
skeleton and saturating fluid. In fact, two limit cases are reached for high and low permeabilities.
When the permeability is very high, the fluid is totally free and can go through the pores without
any viscous dissipation. When the permeability is very low, the saturating fluid is totally hold
so that skeleton and fluid motions are in phase and there is no viscous dissipation. Besides,
when the fluid is totally hold, the effective mass and the effective stiffness of the material are
changed to p + dp and K + K respectively depending on the properties of the saturating fluid
(mass, compressibility and viscosity). As a consequence, the frequency at resonance is shifted
either to the right, if the stiffness variation is greater than the mass variation, or to the left
on the opposite situation. These variations result from complex fluid-structure coupling effects.
Obviously, in the case of a water saturated sandstone this change of behavior is mass-like and
the resonant frequency is shifted to lower frequencies. Between these two limits the magnitude
reaches through a minimum which is the best compromise of a low permeability and a high
fluid-solid relative speed. In the next section, simulations on air-saturated foams will show a
small influence of the viscous dissipation in comparison with the structural damping.

3.2 Case of an air-saturated polymeric foam

Concerning porous materials usually used in sound absorbing applications, the porosity is fairly
higher than 0.9 and the saturating fluid is air so that inertial, elastic and viscous coupling effects
are weaker than in the case of a water saturated sandstone. Furthermore, polymeric foams are
highly damped materials with a skeleton structural loss factor generally near 0.1 [21] so that
structural losses can become the predominant source of dissipation. However, a study on the
dissipation mechanisms in a porous layer bonded onto a plate [3] showed that the viscous dis-
sipation within the porous material can be important (up to 80% of the total dissipation) for
soft materials. In addition, Dauchez et al. [3] confirm that these viscous effects were mainly
related to permeability in the low frequency range. On these basis, some numerical simulations
of simply supported pervious and impervious poroelastic plates of dimensions 0.5x0.5x0.02m
are presented. The material is an air-saturated polymeric foam, very similar to the one of ref-
erence [3], used for sound absorbing applications. Its properties are summarized in Table II. In
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order to quantify the effects of viscous dissipation, the permeability is varied from 10~% to 10712.

Figure 3 presents the normalized solid displacement at the center of the plate of the first
bending mode for various permeabilities. The frequency at resonance is the same for the two
boundary conditions. For a pervious plate, viscous dissipation is found to be negligible com-
pared to the structural dissipation for all the tested permeabilities. In the case of an impervious
plate, the quality factor decreases significantly for very low values of permeability, and remains
unchanged for commons permeabilities. On the basis of these observations, one can conclude
that the structural damping is the predominant dissipative phenomenon taking place in the first
bending mode of polymeric foam plate.

Figure 4 presents the normalized solid displacement at the center of the plate of a higher
mode (fifth for example) for various permeabilities. This figure shows two tendencies. Firstly,
the viscous dissipation is found to be more important leading to lower quality factors. The
viscous effects are predominant on the impermeable plate like it happened in the first mode.
In fact, impermeable surfaces do not let the fluid go out of the plate which increases the fluid
structure coupling effects. Secondly, a shift of frequency appears for the impermeable plate.
Unlike water saturated sandstone, this shift drifts to higher frequencies. A physical explanation
of this effect is that, when the air is hold in the skeleton of the foam, the variation of density
(density of air present in the material: 1.16 kg/m?>, density of the skeleton: 39 kg/m?) is very
low compared to the variation of stiffness, the bulk modulus of the air being of the same order
than the Young’s modulus of the skeleton (bulk modulus of air: 1.410° Pa, Young’s modulus of
the skeleton: 2.06 10° Pa).

4 Experiments

In this section some experiments are performed on two air saturated poroelastic plates made of
materials used for passive sound absorption purposes. The first plate is made of fibers while
the second one is made of polymeric foam. Since these materials present higher porosities and
weaker Young’s moduli (see properties in Table IT) than the materials used by Leclaire et al.
[8], the effects of the saturating fluid will be more important. The experimental set-up used for
the measurements of the frequency response of the plate is described first. In order to compute
a good frequency response function (FRF) classically used in experimental modal testing, both
input and output signals must be correctly measured. The measurement difficulties relevant to
the nature of such highly porous and weakly stiffened materials are thus described, attention
being focused on the measurement of the input force. Finally, experimental results are compared
to numerical ones computed with the present model.

4.1 Experimental set-up

The experimental set-up is shown in Figure 5. The porous sample of lateral dimensions 0.25x0.22
m is clamped at its four edges by the way of a steel jaw smoothly gripped on a small part of
the surfaces. The steel frame supporting the porous plate is supposed to be heavy enough
to be motionless during experiments. The sample is excited by a punctual force produced by
an electrodynamic shaker, the input force F' and the acceleration A signals being measured
by the way of an impedance head. The input signal is a sweep sine generated by an FFT
analyser. The transverse solid phase velocity V' of the plate is measured by a laser vibrometer
fixed onto a 2 dimensional robot allowing a complete scan of the plate surface. By using a
non-contact technique to measure the response of such light and flexible structures we ensure
that the response of the plate is not disturbed by an additional punctual mass that could be
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caused by an accelerometer. Both the supporting frame and the shaker are freely supported as
advocated in reference [22].

4.2 Measurements details

The main difficulty of testing such materials results from the measurement of the input force.
Figure 6 shows the driving accelerance A/F, at point o = 0.174 m and yg = 0.025 m of the
0.25%0.22x0.009 m fibrous clamped plate. The force F, is the force actually applied to the
structure calculated according to the process of “mass cancellation” [22]. This figure shows a
predominant weakly damped resonance near 200 Hz and several secondary resonances highly
damped from each side of it. Keeping in mind these important differences in damping and
noting that the general appearance of the curve is like the one of a Single Degree of Freedom
accelerance, it is possible to think that the resonance near 200 Hz is not due to a bending
mode of the plate but to a mass-spring system-like mode. Since the stiffness of the plate is
like the stiffness of the excitator, the system excitator+plate forms a SDOF system having its
own natural frequency. This analysis has been confirmed by the following experimental obser-
vations: the resonance moves to lower frequencies when the driving point is near the center of
the plate (lower apparent stiffness) and to upper frequencies when the driving point is near the
edges (higher apparent stiffness). Whatever the chosen point is, the mass-spring like resonance
remains located near the first bending modes.

4.3 Comparison between experimental and numerical results

Measurements were performed on the two clamped plates of dimensions 0.25x0.22x0.009 m.
The solid transverse velocities w; were measured on 9 points established at the same distance
from one another on the plate(x = £75mm and y = £66 mm from its center). The reference
signal w, is the velocity measured at driving point and the chosen indicator is the mean quadratic
velocity of the plate defined by:

n=9
1 2 . 12
== Jug /i | 4
|14 niﬂlwl/lwl (40)

The acoustical and mechanical properties of the fibrous material and of the polymeric foam
used for these experiments are summarized in Table II. The structural loss factors were set to
0.05 and 0.11 respectively according to results found in the literature [23][24]. The first resonant
frequency of numerical simulations matches exactly the experimental one as a result of the way
both Young’s moduli were set.

Figure 7 presents the numerical and experimental mean quadratic velocity of the air saturated
fibrous plate excited at point zg = 0.174m and yo = 0.025m. Despite an over estimation of
magnitude of the first mode, a good agreement is found between experimental and numerical
results specially up to the third mode. For upper modes, a shift of experimental results to lower
frequencies and magnitudes at resonance is observed.

Figure 8 presents the numerical and experimental mean quadratic velocity of the air saturated
polymeric foam plate excited at point g = 0.178m and yo = 0.078m. One can easily observe
that the experimental curve is much more dumped that the predicted one. In addition, the
resonance frequencies are incorrectly predicted. As a consequence, it seems that the developed
model does not take into account all the occuring physical phenomenas.

Works on the interactions between structures and their fluid loading [25] have shown that
two cases can be distinguished: structures loaded by light fluid and structures loaded by heavy
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fluid. The light fluid assumption, actually made in this modelisation, is classically used when
the density of the structure is much more greater than the density of the saturating fluid. In this
case the presence of the fluid has no consequences on the structure vibrations and is generally
neglected. Otherwise, when the density of the structure is of the same order than the density
of the loading fluid (assumption of heavy fluid), the presence of the fluid cannot be neglected
anymore. When taking into account the radiation impedance of the structure, added mass and
added loss terms appear in the plate equation. This leads to a shift to lower frequencies and
magnitudes at resonances. The observations made on the bending vibrations of the fibrous plate,
for which the density ratio is near 140, can be explained by this process. Obviously, for very
light materials such as polymeric foams the density ratio is near 25 and the assumption of light
fluid cannot be made anymore. The loading fluid has a great influence on the vibration of the
plate, particularly on the damping. In fact, an analysis of all the phenomena taking place in
this case is even more complicated since the elastic constants of such materials are frequency
dependent.

5 Conclusions

In this paper, we derive a new set of equations for the bending vibrations of poroelastic plates
based on the [u,p| formulation of Biot’s equations. The first equation governs the bending
vibrations of the skeleton while the second one describes the fluid propagation through the plate.
These equations have been solved using the Galerkin method and any boundary conditions on
the solid phase can be simulated. Solutions for permeable and impermeable plates have also
been written. The [u, p| model has been qualitatively validated by reproducing some numerical
simulations made by previous authors on a water-saturated sandstone. In addition, a numerical
study on light porous materials, such as those usually used in sound absorbing applications,
shows that the structural damping is predominant compared to viscous dissipation for the first
bending modes. Finally, an experimental validation of the model on these light materials was
made. The present model seems well adapted to predict the first resonances of high density
porous materials. Nevertheless, the radiation impedance of the material must be integrated to
the model for accurate predictions of soft porous materials like polymeric foams.
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Table I: Properties of sandstone

porosity | Permeability | tortuosity || Young’s mod. | struc. loss fact. | Poisson’s ratio | solid density
) K (m?) o E (Pa) n v p1 (kg.m™3)
03 [[po%10 "] 102 [ 73109 | 0 0.3 | 2300

‘Te 30 IeTessotoI]
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Table II: Acoustical and mechanical properties of fibrous F and of polyurethane foam P

porosity | Permeability | tortuosity || Young’s mod. | struc. loss fact. | Poisson’s ratio | solid density

¢ K (m?) Qg E (Pa) U v p1 (kg.m™?)
0.95 21310710 1.12 29.9 10° 0.05 0.3 3304
0.97 1.53 10710 1.6 169 103 0.11 0.3 998

‘Te 30 IeTessotoI]
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F1a. 1 - System of coordinates of the plate.
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F1a. 2 - |w|/|wstatic| of the first resonance of a simply supported water saturated sandstone
plate for different values of permeability.
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FiGg. 3 - First bending mode of pervious and impervious plates (figures left and right
respectively) for different values of permeability. The numbers i refers to the permeability such
as K = 107" m?.
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FiGg. 4 - Fifth bending mode of pervious and impervious plates (figures left and right
respectively) for different values of permeability. The numbers i refers to the permeability such
as K = 107" m?.

8,9, 10 8,9, 10

-10 I I I I -10 I I I
24 26 28 30 32 34 24 26 28 30 32 34

frequency (Hz) frequency (Hz)

Figure 4:



FEtchessahar et al.

FiG. 5 - Experimental set-up.
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F1G. 6 - Transfert function (complex ratio acceleration to applied force) at driving point
zo = 0.174 m and yo = 0.025 m of a clamped fibrous plate.
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Fic. 7 - Mean quadratic velocity of fibrous plate. Comparison between experience and
model.
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Fic. 8 - Mean quadratic velocity of a polyurethane foam plate.
experience and model.
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