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Et
hessahar et al. 1Vibrations of poroelasti
 plates: mixed displa
ement-pressure mod-elisation and experimentsManuel Et
hessahar1, Sohbi Sahraoui, Bruno Brouard2Laboratoire d'A
oustique de l'Université du Maine-UMR CNRS 6613Université du Maine, Avenue Olivier Messiaen72085 Le Mans Cedex 9, FRANCEDe
ember 2, 2009Running title: Vibrations of poroelasti
 platesAbstra
tThis paper presents the equations of motion of air saturated re
tangular poroelasti
 plates. Themodel is based on a mixed displa
ement-pressure formulation of Biot's theory. Two equations ofmotion are obtained and solved with the Galerkin method for any boundary 
onditions. Theseequations take into a

ount the solid-�uid 
oupling e�e
ts. Simulations of the bending vibra-tions of a re
tangular water saturated sandstone and air saturated a
ousti
 foam are performedfor studying the in�uen
e of the vis
ous damping through the permeability. Experiments on
lamped plates made of low density a
ousti
 materials (�brous and polyurethane foam) are usedto 
he
k the limits of this model. On these materials the stru
tural damping is predominant
ompared to vis
ous damping.PACS numbers: 43.40 Dx, 43.20 Tb [ANN℄1 Introdu
tionIn automobile and air
raft appli
ations, plates of porous materials are widely used for passivesound absorption, noise 
ontrol and vibration redu
tion. When these plates are bonded ontoa vibrating stru
ture or are ex
ited at strong sound levels, the skeleton of the porous material
annot be 
onsidered anymore as rigid and its a
ousti
al behaviour 
an be des
ribed by Biot'stheory [1℄. In the vi
inity of resonan
es of porous plates, relative �uid-stru
ture velo
ity 
anlead to high vis
ous damping [2℄ and simpli�ed models based on equivalent solid plate [3℄ or onequivalent �uid des
ription [4℄ 
annot be used anymore.Some analyti
al models 
onsisting in solving the general problem of the �exural vibrationsof a thin �uid saturated poroelasti
 plate in
luding Biot's theory are available in the literature.The �rst models [5℄[6℄, motivated by biomedi
al and geome
hani
al problems, are based on
lassi
al plate theory with Kir
hho�'s assumptions and the [u,U ℄ formulation of Biot's relations.More re
ently, Le
laire et al. [7℄ used a [u,u − U ℄ formulation of Biot's equations to derivetwo equations of equilibrium for the porous plate. The main advantages of this model are thesimpli
ity of the equations, and their 
apability to be solved under boundary 
onditions otherthan simply-supported edges. However, these equations were solved with the assumption of apredominant 
onstant transverse �uid-solid relative displa
ement whi
h in�uen
es dire
tly thevis
ous dissipation within the plate. The model has been validated by experiments on highdensity 
lamped porous plates [8℄.1Current address: PSA Peugeot Citroen, 78 943 Vélizy-Villa
oublay, Fran
e2Corresponding author, e-mail: bruno.brouard�univ-lemans.fr



Et
hessahar et al. 2In this paper, a [u, p℄ formulation of Biot's equations is used in asso
iation with the 
lassi
altheory of plates to derive two 
oupled equations of equilibrium of an homogeneous and isotropi
poroelasti
 plate [9℄. The use of this theory is valid in the 
ase of porous materials as longas the wavelength of the bending waves is mu
h greater than the size of the pores. The �uidloading is not 
onsidered and only solid-�uid intera
tions within the plate are modeled. Theplate is supposed to be ex
ited on its solid phase by a pun
tual for
e. The equations aresolved using the Galerkin method. The transverse solid displa
ement and the �uid pressure arede
omposed on a basis of eigenfun
tions 
hosen as a produ
t of beam fun
tions whi
h verifyall the boundary 
onditions. Hen
e, various boundary 
onditions 
an be investigated: simplysupported, 
lamped or free edges on the solid phase, permeable and impermeable on the �uidphase. The main advantages of this formulation are the simpli
ity of the two resulting equations,their easy physi
al interpretation and the fa
t that the 
hosen variables are the measurable ones.In the �rst part of this paper, [u, p℄ formulation of the equations of motion of a poroelasti
plate is derived and solved with the Galerkin method for any boundary 
onditions. In the se
ondpart, numeri
al simulations on a water saturated sandstone are produ
ed with this new modeland tenden
ies for variations of the permeability are observed. Some new numeri
al simulationsare made on a polymeri
 foam, 
lassi
ally used as sound absorbing material, for various valuesof the permeability. Finally, in the third part, some experiments made on 
lamped poroelasti
plates are 
ompared with numeri
al simulations resulting from this model. These experimentsare performed on light materials 
urrently used in automotive or air
raft sound absorbing ap-pli
ations. This new results are useful to 
he
k the limitations of su
h models.2 Theory2.1 The [u, p] formulation of Biot's equationsThe modeling of poroelasti
 materials is based on Biot's equations of poroelasti
ity [1℄, linkingthe solid and �uid displa
ements ve
tors, u and U respe
tively, to the stress tensors σs and φ∇pof the solid and �uid phases respe
tively. Assuming harmoni
 time dependen
e is ejωt, equationof motion of a poroelasti
 medium 
an be written in the [u,U ℄ form as follows [10℄:
div σs + ω2(ρ̃11u+ ρ̃12U) = 0 , (1)
−φ∇p+ ω2(ρ̃12u+ ρ̃22U) = 0 , (2)where φ is the porosity of the porous medium and where the e�e
tive densities

ρ̃11 = ρ11 +
b(ω)

jω
, ρ̃22 = ρ22 +

b(ω)

jω
, ρ̃12 = ρ12 −

b(ω)

jω
, (3)are related to the solid and �uid densities, ρ11 and ρ22 respe
tively, and to an inertial 
ouplingterm ρ12. The vis
ous e�e
ts are taken into a

ount in the b(ω) term whi
h 
an be written:

b(ω) = −φ2σG(ω) , (4)where σ is the �ow resistivity and G(ω) is the Johnson fun
tion [11℄. A detailed des
ription ofall these terms 
an be found in referen
e [10℄.Using the stress-strain relations de�ned by Biot [1℄, equations (1) and (2) 
an be rewritten in amixed [u,p℄ form as follows [12℄:
div σ̂s + ρ̃ω2u+ γ̃∇p = 0 , (5)

∆p+
ρ̃22

R̃
ω2p−

ρ̃22

φ2
γ̃ω2divu = 0 , (6)



Et
hessahar et al. 3where ρ̃ is a redu
ed e�e
tive density
ρ̃ = ρ̃11 −

ρ̃2
12

ρ̃22

, (7)and γ̃ is a 
omplex number de�ned bỹ
γ = φ

(

ρ̃12

ρ̃22

−
Q̃

R̃

)

, (8)where R̃ and Q̃ are elasti
 
oe�
ients. The stress tensor σ̂s, de�ned by the relation:
σs = σ̂s − φ

Q̃

R̃
p1 , (9)is linked to the solid phase strain by the elasti
 tensor of the skeleton. The elasti
 
onstant ofthe saturating �uid R̃ and the 
oupling elasti
 
oe�
ient Q̃ are related to the bulk modulus ofthe skeleton Kb, to the bulk modulus of the solid from whi
h the skeleton is made Ks and tothe bulk modulus of the saturating �uid Kf by relations:

R̃ =
φ2Ks

1 − φ−Kb/Ks + φKs/Kf

, (10)
Q̃ =

φKs(1 − φ−Kb/Ks)

1 − φ−Kb/Ks + φKs/Kf

. (11)Next, the mixed [u,p℄ formulation of Biot's equations of poroelasti
ity, represented by the set ofequations (5) and (6), is used to des
ribe the dynami
 behaviour of the porous medium.2.2 Coupled equations of motion of a poroelasti
 plate2.2.1 Geometri
 assumptions and boundary 
onditionsConsider a re
tangular, isotropi
, homogeneous poroelasti
 plate of lateral dimensions a × band of uniform thi
kness h. The system of 
oordinates is 
hosen in order to make the (~x,~y)plane 
oin
ide with the middle surfa
e of the poroelasti
 plate before deformation (Figure 1).By following Kir
hho�'s assumption [13℄, the solid displa
ement ve
tor u = (u, v,w) is then afun
tion of the transverse displa
ement w(x, y), and the in-plane displa
ements u and v 
an bewritten:
u = −z

∂w(x, y)

∂x
, v = −z

∂w(x, y)

∂y
. (12)By giving that form to the solid displa
ement, we assume that normal to the middle surfa
eremains straight and normal to the middle surfa
e after deformation. This implies that thesaturating �uid inside the pores has no e�e
ts on the 
ross se
tion of the plate.The poroelasti
 plate is supposed to be ex
ited on its solid phase by a pun
tual for
e F0 at 
oor-dinates (x0,y0). In the absen
e of external a
ousti
 sour
es and negle
ting the sound radiationof the plate, boundary 
onditions on upper and lower surfa
es are:

z =
h

2
, σ̂s

zz = F0δ(x− x0)δ(y − y0) , σ̂s
xz = σ̂s

yz = 0 (13)
z = −

h

2
, σ̂s

zz = 0 , σ̂s
xz = σ̂s

yz = 0 (14)where δ is the Dira
 fun
tion.



Et
hessahar et al. 42.2.2 EquilibriumThe three equations of equilibrium for the solid phase of the poroelasti
 plate are establishedfollowing the pro
edure used by Taber [5℄. To do so, the expression of the solid displa
ementve
tor u of the plate (12) is introdu
ed in the �rst equation of the mixed [u,p℄ formulationof Biot's equations of poroelasti
ity (5). The �rst two equations of equilibrium are obtainedby multiplying by z the modi�ed (5) along x and y axis and by integrating a
ross the platethi
kness:
−ρ̃ω2

∫ h

2

−
h

2

z2
∂w

∂x
dz + γ̃

∫ h

2

−
h

2

z
∂p

∂x
dz = Qxz −Mxx,x −Mxy,y , (15)

−ρ̃ω2

∫ h

2

−
h

2

z2
∂w

∂y
dz + γ̃

∫ h

2

−
h

2

z
∂p

∂y
dz = Qyz −Myx,x −Myy,y , (16)where the bending moments Mαβ and the shear resultants Qαz are given by [14℄:

Mαβ =

∫ h

2

−
h

2

σ̂s
αβzdz and Qαz =

∫ h

2

−
h

2

σ̂s
αzdz . (17)The third equation is obtained by integrating a
ross the plate thi
kness the modi�ed equation(5) along z axis:

−ρ̃ω2

∫ h

2

−
h

2

wdz + γ̃

∫ h

2

−
h

2

∂p

∂z
dz = −Qxz,x −Qyz,y −

[

σ̂s
zz

]

h

2

−
h

2

, (18)where the latter term is �xed by the boundary 
onditions on the solid phase of the poroelasti
plate (equations (13) and (14)).2.2.3 The poroelasti
 plate equationsBy negle
ting the rotary inertia of the plate (�rst terms of equations (15),(16)), the 
ombinationof equations (15), (16), (18) gives the equation of motion of the solid phase of the poroelasti
plate:
D̃∆2w(x, y) − ρ̃hω2w(x, y) − γ̃

∫ h

2

−
h

2

(

∂2

∂x2
+

∂2

∂y2

)

p(x, y, z)z dz = F0δ(x− x0)δ(y − y0), (19)where the 
omplex �exural modulus of the skeleton D̃ is related to the 
omplex Young modulus
Ẽ and to the Poisson's ratio ν by relation:

D̃ =
Ẽh3

12(1 − ν2)
. (20)The equation for the �uid pressure is obtained by introdu
ing expression (12) of the solid dis-pla
ement ve
tor u in (6)

∆p(x, y, z) +
ρ̃22

R̃
ω2p(x, y, z) +

ρ̃22

φ2
γ̃ω2z∆w(x, y) = 0 . (21)The set of equations (19) and (21) are the 
oupled equations of the poroelasti
 plate in [u,p℄formulation. One of the main advantages of this formulation is the easy understanding of theequations. The �rst two terms of the solid phase equation (19) are the elasti
 and inertial termsof the in va
uo 
lassi
al plate equation while the �rst two terms of the �uid pressure equation



Et
hessahar et al. 5(21) represent the �uid propagation inside the poroelasti
 plate. The third term of ea
h equationis a 
oupling term whi
h 
an be 
onsidered as a sour
e term.2.3 Modal resolution of the 
oupled equations2.3.1 Galerkin approximationThe system of 
oupled equations is solved using the Galerkin method [15℄. Dimensionless spa
evariables ζ, η and γ are used:
ζ =

x

a
, η =

y

b
and γ =

2z

h
. (22)Hen
e, solutions for the solid transverse displa
ement w(x, y) and for the �uid pressure p(x, y, z)are approximated respe
tively by the fun
tion w̃(ζ, η) and p̃(ζ, η, γ) su
h as:

w̃(ζ, η) = Amnwmn(ζ, η) and p̃(ζ, η, γ) = Bqrspqrs(ζ, η, γ) (23)where the test fun
tions wmn(ζ, η) and pqrs(ζ, η, γ) ful�ll all the boundary 
onditions and wherethe 
oe�
ients Amn and Bqrs are to be determined. Einstein's 
onvention is used for repeatedindi
es m,n,q,r,s varying respe
tively from 1 to m0,n0,q0,r0,s0. Applying Galerkin method [15℄on equations (19) and (21) yields to the following linear system of equations:
∫∫

(L11w̃+L12p̃)wijdζ dη =

∫∫

F0δ(ζ0, η0)wijdζ dη for (i, j) ∈ (1 · · ·m0)× (1 · · · n0) , (24)
∫∫∫

(L21w̃ + L22p̃)pijkdζ dη dγ = 0 for (i, j, k) ∈ (1 · · ·m0) × (1 · · · n0) × (1 · · · s0) . (25)where the Lαβ are the 
orresponding linear operators of equations (19) and (21). The resolutionof this system leads to the unknown Amn and Bqrs 
oe�
ients.2.3.2 Choi
e of the set of test fun
tionsThe transverse solid displa
ement test fun
tions wmn(ζ, η) were 
hosen as :
wmn(ζ, η) = φm(ζ)ψn(η). (26)where φm(ζ) and ψn(η) are the so-
alled beam eigenfun
tions verifying all the boundary 
on-ditions along ζ and η axis respe
tively [14℄. The literature on the mathemati
al form of thesebeam eigenfun
tions is abundant and 
ombinations of trigonometri
 and hyperboli
 fun
tions[16℄ or 
ombinations of trigonometri
 and polynomial fun
tions [17℄ 
an be found. More re-
ently, sets of orthogonal polynomial fun
tions [18℄ or hierar
hi
al sets based on polynomial [19℄or trigonometri
 [20℄ fun
tions were introdu
ed in order to improve the e�
ien
y of numeri
almethods. In this paper a 
lassi
al set based on trigonometri
 and hyperboli
 fun
tions is usedfor φm(ζ) and ψn(η).In addition to the solid displa
ement, the �uid pressure test fun
tions pqrs(ζ, η, γ) are writtenas:

pqrs(ζ, η, γ) = φq(ζ)ψr(η)θs(γ) (27)where φq(ζ) and ψr(η) are the beam fun
tions 
hosen for the solid displa
ement, and the fun
tion
θs(γ) is related to the transverse pressure slope. We suppose here that the pressure follows theform of wmn(ζ, η). Two types of boundary 
onditions on the upper and lower surfa
es, leading totwo sets of transverse slope eigenfun
tions, are explored: permeable and impermeable surfa
es.



Et
hessahar et al. 6Note that these two types of boundary 
onditions des
ribe perfe
tly poroelasti
 materials usedusually in sound absorbing appli
ations: ordinary foams and �brous materials 
an be 
onsideredpervious while a
ousti
 materials with surfa
e treatment (baked or �nished) 
an be 
onsideredimpervious. For a permeable plate, the pressure must vanish on the upper and lower surfa
esand on the neutral �ber, leading to the following form for θs(γ):
θs(γ) = sin(kszγ) with ksz = sπ and s = 1, 2, 3, ... , (28)while for an impermeable plate, θs(γ) takes the form:

θs(γ) = sin(
ksz

2
γ) with s = 1, 3, 5, ... . (29)The �uid pressure slope forms for both pervious and impervious 
onditions are like those 
om-puted by Taber [5℄.2.3.3 Solution of the 
oupled systemBy substituting displa
ement w̃(ζ, η) and pressure p̃(ζ, η, γ) by their expressions (23) in equations(24) and (25), and by taking into a

ount (26) and (27), one 
an obtain the following linearsystem of equations for the unknown Amn and Bqrs 
oe�
ients:

{

Kmnij − ω2Mmnij

}

Amn − CqrsijBqrs = Fij for (i, j) ∈ (1 · · ·m0) × (1 · · · n0) , (30)
{

Lqrsijk + ω2Nqrsijk

}

Bqrs+ω
2DmnijkAmn = 0 for (i, j, k) ∈ (1 · · ·m0)×(1 · · · n0)×(1 · · · s0) ,(31)where Kmnij and Lqrsijk are the sti�ness 
oe�
ients of the solid and �uid phases, Mmnij and

Nqrsijk are the mass 
oe�
ients, the Cqrsijk and Dmnij are related to the damping and mass
oupling between the two phases, and Fij are the imposed for
e 
oe�
ients. These 
oe�
ientsare de�ned by:
Kmnij = D̃ab

[

1

a4
I40

miI
00

nj +
1

b4
I00

miI
40

nj +
2

a2b2
I20

miI
20

nj

]

, (32)
Lqrsijk = R̃abh

[

1

a2
I20

qi I
00

rj I
00

sk +
1

b2
I00

qi I
20

rj I
00

sk +
1

h2
I00

qi I
00

rj I
20

sk

]

, (33)
Mmnij = ρ̃abhI00

miI
00

nj , (34)
Nqrsijk = ρ̃22abhI

00

qi I
00

rj I
00

sk , (35)
Cqrsij = γ̃abhts

[

1

a2
I20

qi I
00

rj +
1

b2
I00

qi I
20

rj

]

, (36)
Dmnijk = R̃

ρ̃22

φ2
γ̃abh2tk

[

1

a2
I20

miI
00

nj +
1

b2
I00

miI
20

nj

]

, (37)
Fij = F0φi(ζ0)ψj(η0) , (38)where the Iαβ

st and the tα are de�ned by:
Iαβ
st =

∫

1

0

∂α

∂ζα
φs(ζ)

∂β

∂ζβ
φt(ζ) dζ and tα =

∫

1

−1

θα(γ)γdγ . (39)The system 
omposed by equations (30) and (31) 
an be written as a matri
ial system and theneasily be solved numeri
ally.
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hessahar et al. 73 Numeri
al examplesThis se
tion presents various numeri
al simulations of simply supported poroelasti
 plates. Asobserved in previous works [6℄ [7℄, the permeability has a great in�uen
e on the �rst bendingmode of a water saturated sandstone. Then, attention is fo
used on the dynami
 behaviour ofsound absorbing materials. In fa
t, unlike the water saturated sandstone, these air-saturatedmaterials are highly porous, soft and highly damped su
h as inertial, elasti
 and vis
ous e�e
tsare weaker. Some numeri
al simulations are made on a representative foam usually used in soundabsorbing appli
ations. The in�uen
e of the permeability is spe
ially studied under the sameboundary 
onditions (simply supported edges). Results obtained for pervious and imperviousplates are 
ompared.3.1 Case of a water-saturated sandstoneA simply supported water-saturated sandstone plate (see properties in Table I), of dimensions4×4×0.2 m is ex
ited by a unit point for
e at 
oordinates (0.1 m, 0.15 m). In order to in
reasethe in�uen
e of vis
ous e�e
ts, the stru
tural damping of the material is supposed to be zero.Figure 2 presents the normalized displa
ement w/wstatic of the �rst bending mode at the 
enterof the plate for di�erent values of permeability.The in�uen
e of the permeability on the resonan
e is due to 
omplex 
oupling e�e
ts betweenskeleton and saturating �uid. In fa
t, two limit 
ases are rea
hed for high and low permeabilities.When the permeability is very high, the �uid is totally free and 
an go through the pores withoutany vis
ous dissipation. When the permeability is very low, the saturating �uid is totally holdso that skeleton and �uid motions are in phase and there is no vis
ous dissipation. Besides,when the �uid is totally hold, the e�e
tive mass and the e�e
tive sti�ness of the material are
hanged to ρ+ δρ and K + δK respe
tively depending on the properties of the saturating �uid(mass, 
ompressibility and vis
osity). As a 
onsequen
e, the frequen
y at resonan
e is shiftedeither to the right, if the sti�ness variation is greater than the mass variation, or to the lefton the opposite situation. These variations result from 
omplex �uid-stru
ture 
oupling e�e
ts.Obviously, in the 
ase of a water saturated sandstone this 
hange of behavior is mass-like andthe resonant frequen
y is shifted to lower frequen
ies. Between these two limits the magnituderea
hes through a minimum whi
h is the best 
ompromise of a low permeability and a high�uid-solid relative speed. In the next se
tion, simulations on air-saturated foams will show asmall in�uen
e of the vis
ous dissipation in 
omparison with the stru
tural damping.3.2 Case of an air-saturated polymeri
 foamCon
erning porous materials usually used in sound absorbing appli
ations, the porosity is fairlyhigher than 0.9 and the saturating �uid is air so that inertial, elasti
 and vis
ous 
oupling e�e
tsare weaker than in the 
ase of a water saturated sandstone. Furthermore, polymeri
 foams arehighly damped materials with a skeleton stru
tural loss fa
tor generally near 0.1 [21℄ so thatstru
tural losses 
an be
ome the predominant sour
e of dissipation. However, a study on thedissipation me
hanisms in a porous layer bonded onto a plate [3℄ showed that the vis
ous dis-sipation within the porous material 
an be important (up to 80% of the total dissipation) forsoft materials. In addition, Dau
hez et al. [3℄ 
on�rm that these vis
ous e�e
ts were mainlyrelated to permeability in the low frequen
y range. On these basis, some numeri
al simulationsof simply supported pervious and impervious poroelasti
 plates of dimensions 0.5×0.5×0.02mare presented. The material is an air-saturated polymeri
 foam, very similar to the one of ref-eren
e [3℄, used for sound absorbing appli
ations. Its properties are summarized in Table II. In
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hessahar et al. 8order to quantify the e�e
ts of vis
ous dissipation, the permeability is varied from 10−8 to 10−12.Figure 3 presents the normalized solid displa
ement at the 
enter of the plate of the �rstbending mode for various permeabilities. The frequen
y at resonan
e is the same for the twoboundary 
onditions. For a pervious plate, vis
ous dissipation is found to be negligible 
om-pared to the stru
tural dissipation for all the tested permeabilities. In the 
ase of an imperviousplate, the quality fa
tor de
reases signi�
antly for very low values of permeability, and remainsun
hanged for 
ommons permeabilities. On the basis of these observations, one 
an 
on
ludethat the stru
tural damping is the predominant dissipative phenomenon taking pla
e in the �rstbending mode of polymeri
 foam plate.Figure 4 presents the normalized solid displa
ement at the 
enter of the plate of a highermode (�fth for example) for various permeabilities. This �gure shows two tenden
ies. Firstly,the vis
ous dissipation is found to be more important leading to lower quality fa
tors. Thevis
ous e�e
ts are predominant on the impermeable plate like it happened in the �rst mode.In fa
t, impermeable surfa
es do not let the �uid go out of the plate whi
h in
reases the �uidstru
ture 
oupling e�e
ts. Se
ondly, a shift of frequen
y appears for the impermeable plate.Unlike water saturated sandstone, this shift drifts to higher frequen
ies. A physi
al explanationof this e�e
t is that, when the air is hold in the skeleton of the foam, the variation of density(density of air present in the material: 1.16 kg/m3, density of the skeleton: 39 kg/m3) is verylow 
ompared to the variation of sti�ness, the bulk modulus of the air being of the same orderthan the Young's modulus of the skeleton (bulk modulus of air: 1.4 105 Pa, Young's modulus ofthe skeleton: 2.06 105 Pa).4 ExperimentsIn this se
tion some experiments are performed on two air saturated poroelasti
 plates made ofmaterials used for passive sound absorption purposes. The �rst plate is made of �bers whilethe se
ond one is made of polymeri
 foam. Sin
e these materials present higher porosities andweaker Young's moduli (see properties in Table II) than the materials used by Le
laire et al.[8℄, the e�e
ts of the saturating �uid will be more important. The experimental set-up used forthe measurements of the frequen
y response of the plate is des
ribed �rst. In order to 
omputea good frequen
y response fun
tion (FRF) 
lassi
ally used in experimental modal testing, bothinput and output signals must be 
orre
tly measured. The measurement di�
ulties relevant tothe nature of su
h highly porous and weakly sti�ened materials are thus des
ribed, attentionbeing fo
used on the measurement of the input for
e. Finally, experimental results are 
omparedto numeri
al ones 
omputed with the present model.4.1 Experimental set-upThe experimental set-up is shown in Figure 5. The porous sample of lateral dimensions 0.25×0.22m is 
lamped at its four edges by the way of a steel jaw smoothly gripped on a small part ofthe surfa
es. The steel frame supporting the porous plate is supposed to be heavy enoughto be motionless during experiments. The sample is ex
ited by a pun
tual for
e produ
ed byan ele
trodynami
 shaker, the input for
e F and the a

eleration A signals being measuredby the way of an impedan
e head. The input signal is a sweep sine generated by an FFTanalyser. The transverse solid phase velo
ity V of the plate is measured by a laser vibrometer�xed onto a 2 dimensional robot allowing a 
omplete s
an of the plate surfa
e. By using anon-
onta
t te
hnique to measure the response of su
h light and �exible stru
tures we ensurethat the response of the plate is not disturbed by an additional pun
tual mass that 
ould be
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aused by an a

elerometer. Both the supporting frame and the shaker are freely supported asadvo
ated in referen
e [22℄.4.2 Measurements detailsThe main di�
ulty of testing su
h materials results from the measurement of the input for
e.Figure 6 shows the driving a

eleran
e A/Fc at point x0 = 0.174 m and y0 = 0.025 m of the0.25×0.22×0.009 m �brous 
lamped plate. The for
e Fc is the for
e a
tually applied to thestru
ture 
al
ulated a

ording to the pro
ess of �mass 
an
ellation� [22℄. This �gure shows apredominant weakly damped resonan
e near 200 Hz and several se
ondary resonan
es highlydamped from ea
h side of it. Keeping in mind these important di�eren
es in damping andnoting that the general appearan
e of the 
urve is like the one of a Single Degree of Freedoma

eleran
e, it is possible to think that the resonan
e near 200 Hz is not due to a bendingmode of the plate but to a mass-spring system-like mode. Sin
e the sti�ness of the plate islike the sti�ness of the ex
itator, the system ex
itator+plate forms a SDOF system having itsown natural frequen
y. This analysis has been 
on�rmed by the following experimental obser-vations: the resonan
e moves to lower frequen
ies when the driving point is near the 
enter ofthe plate (lower apparent sti�ness) and to upper frequen
ies when the driving point is near theedges (higher apparent sti�ness). Whatever the 
hosen point is, the mass-spring like resonan
eremains lo
ated near the �rst bending modes.4.3 Comparison between experimental and numeri
al resultsMeasurements were performed on the two 
lamped plates of dimensions 0.25×0.22×0.009 m.The solid transverse velo
ities ẇi were measured on 9 points established at the same distan
efrom one another on the plate(x = ±75mm and y = ±66 mm from its 
enter). The referen
esignal ẇr is the velo
ity measured at driving point and the 
hosen indi
ator is the mean quadrati
velo
ity of the plate de�ned by:
V =

1

n

n=9
∑

i=1

|ẇi|
2/|ẇr|

2. (40)The a
ousti
al and me
hani
al properties of the �brous material and of the polymeri
 foamused for these experiments are summarized in Table II. The stru
tural loss fa
tors were set to0.05 and 0.11 respe
tively a

ording to results found in the literature [23℄[24℄. The �rst resonantfrequen
y of numeri
al simulations mat
hes exa
tly the experimental one as a result of the wayboth Young's moduli were set.Figure 7 presents the numeri
al and experimental mean quadrati
 velo
ity of the air saturated�brous plate ex
ited at point x0 = 0.174m and y0 = 0.025m. Despite an over estimation ofmagnitude of the �rst mode, a good agreement is found between experimental and numeri
alresults spe
ially up to the third mode. For upper modes, a shift of experimental results to lowerfrequen
ies and magnitudes at resonan
e is observed.Figure 8 presents the numeri
al and experimental mean quadrati
 velo
ity of the air saturatedpolymeri
 foam plate ex
ited at point x0 = 0.178m and y0 = 0.078m. One 
an easily observethat the experimental 
urve is mu
h more dumped that the predi
ted one. In addition, theresonan
e frequen
ies are in
orre
tly predi
ted. As a 
onsequen
e, it seems that the developedmodel does not take into a

ount all the o

uring physi
al phenomenas.Works on the intera
tions between stru
tures and their �uid loading [25℄ have shown thattwo 
ases 
an be distinguished: stru
tures loaded by light �uid and stru
tures loaded by heavy
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hessahar et al. 10�uid. The light �uid assumption, a
tually made in this modelisation, is 
lassi
ally used whenthe density of the stru
ture is mu
h more greater than the density of the saturating �uid. In this
ase the presen
e of the �uid has no 
onsequen
es on the stru
ture vibrations and is generallynegle
ted. Otherwise, when the density of the stru
ture is of the same order than the densityof the loading �uid (assumption of heavy �uid), the presen
e of the �uid 
annot be negle
tedanymore. When taking into a

ount the radiation impedan
e of the stru
ture, added mass andadded loss terms appear in the plate equation. This leads to a shift to lower frequen
ies andmagnitudes at resonan
es. The observations made on the bending vibrations of the �brous plate,for whi
h the density ratio is near 140, 
an be explained by this pro
ess. Obviously, for verylight materials su
h as polymeri
 foams the density ratio is near 25 and the assumption of light�uid 
annot be made anymore. The loading �uid has a great in�uen
e on the vibration of theplate, parti
ularly on the damping. In fa
t, an analysis of all the phenomena taking pla
e inthis 
ase is even more 
ompli
ated sin
e the elasti
 
onstants of su
h materials are frequen
ydependent.5 Con
lusionsIn this paper, we derive a new set of equations for the bending vibrations of poroelasti
 platesbased on the [u, p℄ formulation of Biot's equations. The �rst equation governs the bendingvibrations of the skeleton while the se
ond one des
ribes the �uid propagation through the plate.These equations have been solved using the Galerkin method and any boundary 
onditions onthe solid phase 
an be simulated. Solutions for permeable and impermeable plates have alsobeen written. The [u, p℄ model has been qualitatively validated by reprodu
ing some numeri
alsimulations made by previous authors on a water-saturated sandstone. In addition, a numeri
alstudy on light porous materials, su
h as those usually used in sound absorbing appli
ations,shows that the stru
tural damping is predominant 
ompared to vis
ous dissipation for the �rstbending modes. Finally, an experimental validation of the model on these light materials wasmade. The present model seems well adapted to predi
t the �rst resonan
es of high densityporous materials. Nevertheless, the radiation impedan
e of the material must be integrated tothe model for a

urate predi
tions of soft porous materials like polymeri
 foams.
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Table I: Properties of sandstoneporosity Permeability tortuosity Young's mod. stru
. loss fa
t. Poisson's ratio solid density
φ K (m2) α∞ E (Pa) η ν ρ1 (kg.m−3)0.3 [10−4, 10−10] 1.02 7.3 109 0 0.3 2300
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Table II: A
ousti
al and me
hani
al properties of �brous F and of polyurethane foam Pporosity Permeability tortuosity Young's mod. stru
. loss fa
t. Poisson's ratio solid density
φ K (m2) α∞ E (Pa) η ν ρ1 (kg.m−3)F 0.95 2.13 10−10 1.12 29.9 106 0.05 0.3 3304P 0.97 1.53 10−10 1.6 169 103 0.11 0.3 998
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hessahar et al. 16Fig. 2 - |w|/|wstati
| of the �rst resonan
e of a simply supported water saturated sandstoneplate for di�erent values of permeability.
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hessahar et al. 17Fig. 3 - First bending mode of pervious and impervious plates (�gures left and rightrespe
tively) for di�erent values of permeability. The numbers i refers to the permeability su
has K = 10−i m2.
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hessahar et al. 18Fig. 4 - Fifth bending mode of pervious and impervious plates (�gures left and rightrespe
tively) for di�erent values of permeability. The numbers i refers to the permeability su
has K = 10−i m2.
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hessahar et al. 19Fig. 5 - Experimental set-up.
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hessahar et al. 20Fig. 6 - Transfert fun
tion (
omplex ratio a

eleration to applied for
e) at driving point
x0 = 0.174 m and y0 = 0.025 m of a 
lamped �brous plate.
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hessahar et al. 21Fig. 7 - Mean quadrati
 velo
ity of �brous plate. Comparison between experien
e andmodel.
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 velo
ity of a polyurethane foam plate. Comparison betweenexperien
e and model.
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