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Abstract—This paper presents a communication/coordination/ with autonomousmobile sensors and designindistributed
processing architecture for distributed adaptive observéion of a systems brings new challenges. Due to the dynamic nature
spatial field using a fleet of autonomous mobile sensors. Oné o ¢ the network, full-connectivity can no longer be guaraate
the key difficulties in this context is to design scalable algrithms kina traditi | dat lection/di inati h d
for incremental fusion of information across platforms robust ma 'ng_ radiuonal data ,CO ec.lon Issemination sc E_mB
to what is known as the “rumor prob|em”_ Incremental fusion Centl‘allzed path COI’]tI’Ol InfeaSIble. To date thel’e haS b&m
is in general based on a Bayesian approach, and algorithms work on adaptive collaborative sensing using mobile sensor
(e.g. the Covariance Intersection, Cl) which propagate cosistent  Rahimini et al. propose an algorithm for adaptive sampling
chara_ctenzatlons of the estimation error under this chalkenging using Networked Info-Mechanical System (NIMS) [3] but they
situation have been proposed. In this paper, we propose to trict to the ind dent trol of h dd t
base inter-sensor fusion on a deterministic approach which res ”_C 0 the Indepenaent control o e_acl sensor aQ 0, no
considers that bounds to the observation errors are known, wgh  take into account energy and communication constraintesin
is intrinsically robust to the rumor problem. We present the NIMS are power supplied and use a wired communication
equations that enable the determination of the ellipsoidatiomain  medium. In the framework of underwater applications, the
of uncertainty that covers the intersection of the individual sets concept of adaptive sampling using a fleet of autonomous

describing sensor’s uncertainty, and show that they solveosne has b d ted f by th b
pathologies associated to Cl. The results presented corrobate Sensors has been advocaled 1or some years by the members

a previous claim of the robustness of our control strategy fie ©Of the ASAP (Autonomous Sampling and Prediction) project,
criterion used for adaptively choosing the nodes positionswith ~ see for instance [4]. However, this project considers araént
respect to the conservativeness of fusion methods able toriile  jzed control of the underwater fleet, eliminating most of the
rumor-. problems and difficulties that we address in this paper.

The ultimate goal of an autonomous sensing network is
to gather data which collectively allows the estimation of a

Over the last few years, sensor networks have been pgiven spatial field over an area of interegt, this estimate
gressively recognized as providing an efficient solution fdeing obtained once data gathering is finished, by globally
real-world applications in the context of environmentalmo fusing the data sets collected by the nodes. The key point
itoring, enabling rapid and focused observation of spstialof such an architecture is the collaboration between nodes
extended fields such as temperature or humidity insidet@determine the sensing points where the measurements will
given region of interest. Recent advances in the areas joihtly bring the most information, which requires that esd
wireless communications and robotic sensors have made ghare their knowledge about the field. In [5], [6], we presdnt
design of autonomous mobile distributed sensing systemms architecture integrating communication, control arfdrin
possible. An example of such networks are fleets of undenation processing algorithms that implements a distribute
water vehicles with embedded sensors, micro-processars amd decentralized strategy for acquiring an estimate of a
wireless communication devices. They enable more powerggatially extended field, based on a probabilistic Bayesian
and autonomous applications in the sense that, contraryftamework, under strong communication constraints. While
fixed sensors, this kind of networks do not rely on prelinynaiiterative integration of additional sensor measuremeaishe
computation for sensor placement, allowing proper obsienva easily done in the context of Bayesian estimation theomy, th
of dynamic environments, and adapting the network geomefusion of local estimates is prone to themor problem: there
to the characteristics of the measured field. Also, increasiis no simple way to distinguish fresh information conveyed
computational power available at each node makes decenttl a distinct node from re-circulation, through the network
ized and distributed path control and data fusion possiblef. a node’s information back to itself. In these conditions a
Finally, wireless communications allow collaborative heior naive application of the Bayesian recursion would lead &rov
and dynamic data exchange making sampling more efficiemionfident error characterizations. This problem is overom

So far, most of the research on sensor networks has focubgdaccepting some degree of information loss, and using
on sensor placemenand data processingfor static sensor fusion methods that propagate upper bounds on uncertainty
networks with one or moréata fusion centergl], [2]. Dealing (conservative error estimates), like the Covariance satetion

I. INTRODUCTION



(CI) algorithm [7]. In [5] we presented a new criterion which « error-free fixed radius communications: two nodes can
prevents fresh measurements from being discarded by CI communicate with each other without errors provided that
by choosing sensing positions that correspond to different the distance between them is lower than the communica-
observation structures, and we compared the performance of tion rangeRomn,.
our distributed sensing architecture using Cl and naiveeBay e present below the major components of our distributed
Our analysis shows the superiority of Cl and that our citeri sensing architecture [5]. Our solution involves three main
is well adapted to CI. stages that are executed in a cyclic manr@rsensing (ii)

The entire issue of “rumor propagation” is eliminated if @ommunicating and datéusion and (iii) collaborating to
deterministic, error-bounded [8] approach to the fusioobpr decide on the next network deployment.
lem, which propagates upper bounds to the sets of parameters
values compatible with the acquired observations, is useg@umw 4 } llllllll ‘H o Mdemmmi

Bounded-error methods have been popular in control and €s-
timation problems, mostly for recursive state estimatioobp teachnode_ 1+ lomtly ooy
lems, and update equations for the set dilation and intéosec
steps have been published. The problendisfributed fusion
requires th?t two or moremcertamty. domainsoe directly Figure 1. Coarse Block-based overview of execution cycheDistributed
fused. In this paper we present equations that allow th@mMusiajgorithm for Collaborative Adaptive Sensing
of two ellipsoids that are a special case of the general probl
solved in [9]. Besides providing a better solution to thedns  While sensing is performed independently at each node,
problem, as we show in section VI, the use of a boundedhoosing the next sensing position can be drastically ingmo
error based methodology for fusion, based on a completdly sharing information across nodes. The second task is thus
geometric characterization of the uncertainty domainctifig denoted byfusioninsofar as it consists in fusing the estimates
the current estimates at each node, is a natural match to stared at each node to compute a more informative one while
adaptive sensing criterion, giving a stronger coherenayuto the third one is callecdaptive collaborative observatioin
overall architecture. the sense that the nodes rely on the exchanged information to
The paper is organized as follows. Section Il outlines thietermine the set of future sensing points which jointlynori
problem of distributed collaborative sensing and preseants the most additional information about the observed field.
overview of the global architecture proposed. In Section&/ wNetwork partitioning
briefly present and justify the adaptive sensing criterisads Obviously, the larger the number of nodes that collaborate t
Sections Il and IV are dedicated to recursive estimatioth aselect the future sensing positions, the more their indizid
fusion, focusing in the presentation of the update equation decisions will reflect the global state of knowledge of the
the bounded-error methods, and pointing out their anasagie network. However, under low spatial node density and lichite
Gauss-based Bayesian methodologies. In Sections VI and ¥®immunication range, effective network connectivity may b
we present simulation results and summarize our conclasiorery limited. In particular, the communication graph may be

and some ideas for future work. disconnected, with communication being impossible betwee
some network nodes. Our architecture is based on the dynamic
Il. PROBLEM STATEMENT. GENERAL ARCHITECTURE definition of logical groups of collaborating nodeslesigned

to allow easy information exchange amongst their members.
Logical groups ¢lusterg are defined at the beginning of each

controlling the sensors positions{* = {X; }, _, , such e b - irtual ber t h robot and
that the information collectively gathered by the networ ycle, by assigning a virtual group numoer o €ach robot an
then restricting collaboration to nodes belonging to theea

optimizes some aggregated statistic functional of theoferr

) luster.
of the) reconstructed fieldf(x; X* cluster. -
) o (w3 X7) Distributed clustering is a well-known problem and has been

b . ot addressed under the single-hop structural constraint By]
C(X")=E {//Ag (f(:v, ), flo,y; X )) dxdy} 1) imposing direct communication between cluster membees, th
nodes of our network are released from the communication

Our goal is to implement adecentralized strategyor

whereE denotes the (ensemble) expectation operator. problems and requirements characteristics of Mobile Ad-Ho
We consider a set of working assumptions, which reflegfetworks (MANET) such as intermittent connectivity and
constraints typical of ocean-observation problems: delay tolerant routing. A “Distributed Clustering Algdrin”

« the observed field'(z) is scalar and assumestiaticdur- (DCA) which dynamically creates and destroys these claster
ing the time interval required to perform its observationsing onlygossip messagdsas been proposed in [5]
inside a known regiond C R2. Distributed data fusion

« the robots are able to localize themselves (GPS, netwddkta fusion consists in updating the estimate of the obsderve
of acoustic beacons, distributed location algorithm,.. . .field at each node using either new measurements (we call this
Their speed is upper-bounded< v,,,, and they can operationupdatg or estimates received from other nodes (that
(and must, to perform a measurement) station-keep. we designate bjusion). Thus, clustering must be immediately



followed by data sharing and fusion, that need to occur leefaa given observed data® = {zi}le is a sufficient statistic
the sensing positions are chosen in order to ensure camsjstefor the estimation of the fieldf, and it can be recursively
of this last operation. updated [11] using the Bayes relation. For finite-dimension
In [6], [5] we compared two Bayesian methods for updateear models,
and fusion (“naive Bayes” and “Covariance Intersectionijia T T
demonstrated the superiority of Cl. The fusion operaticthés f(z,ysa) = aTf(z,y), fz,y) = [filz,y),.... (@],
main new contribution of this paper, which proposes to a&sseghere {fi}f:1 are a set of known functions, and Gaussian
it in a distinct uncertainty modeling framework (deterrsiié, distributions (both prior and observation noise), the gost

bounded-error methods), see Section lll. densities are normalq|zk ~ N(ug, %), and closed-form
Choice of future positions expressions can be obtained for their means and variances:
Selection of the sensing points is the core problem of adapti 1

field observation. Its potential impact is evident, sincéheiit Sih = S+ —5 ft1 fr1” 2
collaboration nearby nodes will have a similar local “view” e 1

of the observed field, and_ will most Iik_ely_ decide to sense at Eﬁilﬂkﬂ = E;luk + ;zkﬂfkﬂ 3)
the same or nearby locations. The criterion presented in [6] €

[5] to choose the next set of sensing points tries to reachrathis equations? is the variance of the observation noise.
balance betweefi) maximizing the new informatiofointly This version of the Bayes equations are known as the “in-
brought by the measurements at the target sensing poirts; &armation form” of the least-squares estimator, and allow
(i) imposing geographic dispersion of the nodes, to increaasynchronous integration of new measures. The statistics
the probability they establish communication with nodesrfr 7, = (2!, %, 'u,) maintained at each node all have the
distinct clusters. same form, and their size does not grow with the number
Search of the best set of sensing points is performed withofh measurements. Since matrix addition is associative and
a bounded region around the nodes, calietion zoneusing commutative, the fusion equations presented above can be
a greedy distributed approactsensing points are determineckasily extended to several measures.
one-by-one, taking into account the previously selectegson Note that under the linear-Gauss assumption, the covarianc
Thus, the computational power required to determine timeatrix of the posterior density does not depend on the mea-
sensing points grows linearly with the number of nodes Burement itself4;) but only on the local observation operator
the clusters and so does the available computational pow#tzy, yx)). Since the amount of information conveyed &y
Once the set of the sensing positions has been chosen, edtubuta is a function of:, the impact of future measurements
of them is assigned to one node such that the the total amoantthe quality of the estimate can be predicted.
of energy (this can be replaced by a different crlterlon)dug%_ Bounded-error

by the robots to reach them is minimized, see [5] for details. T )
The estimation method presented above relies on knowledge

I1l. RECURSIVEESTIMATION of the statistical properties of the noise, which is a ratitemg

As we stated in the Introduction, scalability constraint8SSumption. Fogel and Huang proposed in their seminal paper
forbid storing the entire set of raw data acquired by eadfil @ deterministic approach to parameter estimation under
node. In this section we briefly presef#t) the fundamental @ bounded errorassumption. The key idea is that, assuming
equations of Bayesian estimation theory that propagateO'éserV"_"t'()n noise is bounded, gach mqasurement d.efllnes a set
sufficient statistic summarizing all relevant informatianout ©f feasible parameters values (i.e., which are consistetit w
the estimated field contained in the past observed data, las W& measurement, the model and the bound). The actual value
as (B) a deterministic estimation method based on feasibl@f the parameter lies in the intersection of the sets astzatta
parameter set outer-bounding, both allowing recursiveatead the measures. Several representations for the so-dalisible

We assume that the sensor observations are noisy versiBAg@meter setave been proposed, including parallelotopes

of the field’s values, such that [12], polytopes [13] and ellipsoids [8]. Using polytopeseg
the optimal solution but the state maintained at each noge ma
zr = flz,y) +ex, (x,y) € A, potentially grow as the number of measurements, violatieg t

. L scalability requirement. On the contrary, using ellipsdigads

A. Bayesian estimation to a scalable solution (the size of the estimate does not grow
In the context of the probabilistic Bayesian estimation, w&ith k£ and is O(12)) and is directly comparable to the the

assume that a parametric model for the field is known,  statistical Bayesian approach with Gaussian posteriarthé

following we use ellipsoids to describe the feasible patame

sets:

wherep, is the prior distribution ofa, such that the task of o _ {a: (a—as)” Prl(a—af) < 1} anday, = a (4)

estimating the field is formally equivalent to the estimatio

of a. If the noise components affecting distinct measures afssume the measurement erroes are bounded byr:

statistically independenthen the posterior densipy(a|z*) of |ex(z,y)| < r. Then, each new measurementdefines two

f(z,y) = f(z,y;a), a ~ pa: unknown parameter



" unknown correlation, and illustrate its performance onpgéem
examples. Also, we highlight pathological behaviors of @l o
some special cases. Based on purely geometric considesatio
we extend the bounded-error estimation to a fusion method

& which does not suffer from pathologic cases aforementioned

My

A. Covariance Intersection (ClI)

Figure 2. Minimum-determinant ellipse of the forfig 1 (q) (5) For linear-Gaussian problems, fusion is a linear operation
Imposing unbiasedness of the estimator resulting of thierfius
hyperplanes that bound the set of feasible parameters:  of unbiased estimates implies that the linear combinatien b
convex, and finding the fusion operator consists in choosing
} an element in a2-dimensional space. In their original paper
[7], Julier and Uhlmann proposed Cl which reduces the

and ) aforementioned problem to a one-dimensional optimization
M, = {a: - (Zk o ank) > _1} problem, using a convex linear combination:
o' o= Wi+ (1 -w)EE (10)
The updated feasible parameter §gt; must be of the form y-1 e, -1
. = +(1-w)X 11
(4) and enclos&y, N'H;,; N H;, . A simple one-parameter c He “Ea Ba ( _ “)Xp He D
family of sets verifying these properties is [8]: Cl has been proved to provide consistent estimates Xie >
E [(1 — a)(p — a)”]) for anyw € [0, 1] meaning that the free
_ ) T p—1/, ¢ parametets can be chosen to optimize some criterion.
Eria(a) = {a' (a—aj)” P (a—ap)+ The consistency of the estimator resulting from CI can be

o2 interpreted as a conservativeness property since thenfusio
32 (Zk —a fk) <1+ ‘1} » 20 (5)  method never “creates” virtual information — as the Bayesia
) o ) ) ) method may do — when fusing correlated estimates. How-
This ellipsoid can be rewritten in the form (4) using th@yer, C| may discard fresh information, considering them as
following recursive updating rules: redundant. This is revealed by the fact that the centers of
P _ 7 ) the ellipsoids are not taken into account in the determonati
k+1 = CuZk (6) .
of the covarianceX: suppose that two nodes have two

c _ —1_c¢c —2
ay = Ze(Blaptar Z’“ff) (7)  estimates with the same covariance matrix but differenteren
Zp = (Pkfl 4 qT—kafkT)_ (8) asillustrated in Figure 3. Then, Cl returns the same coneeia
) matrix for any value ofv leaving thhe center (i.e., the estimate
_ qr 2 a of a) indetermined.
=1 - 9
Ck +4q 1+qr_2erk ( )
wheree;, = z, — apTf, G = fkTPkfk, andg > 0. The A
value ofg is chosen to minimize some optimization criterion.
In the traditional case of volume minimization (minimizing '
det Py41), the optimal valuey; of ¢ is the — positive if any, "
or zero otherwise — root of a second order polynomial and can @) (b)

be expressed in closed form. Finalgj, 1 = Ex+1(q}).

Contrary to the Bayesian approach, the bounded-error (Bl'E'gure 3. Fusion of two estimates with the same covarianaegyU(s) Naive
method enables optimization of the feasible parameter Seres (NE,‘) (b) Covariance Intersection (C1) .
(e, the ellipsoid) according to any criterion — such as tHe- Feasible Parameters Set Intersection
determinant, the trace or the radial spectrumBaf— while Although CI behaves strangely in some particular cases
integrating new measurements. On the other hand, due toagl ignores the precious information conveyed by the center
deterministic nature, a new measurement may not convey @fythe ellipsoids, its core idea of intersecting uncertaint
additional information. This case occurs when the hypemlaellipsoids can be adapted to a deterministic context:£let
H;t., and H,,, do not intersect the ellipsoidy. In the and&; be two estimates od, then any set enclosing N &,
case where only one hyperplane intersects the ellipsoidc@ntains the actual value ef, and is thus a valid feasible
correction has been proposed so that the one-parametdy farpfirameter set. To be directly and fairly comparable to ClI, we
of ellipsoids (5) encloses more tightly the intersectioh [8 parametrize our search space with only one parameterréaspi

by both (5) and (11), we naturally define the search space as:
IV. DISTRIBUTED DATA FUSION

The fusion step is the weak link of collaborative sampling E(w) = {a : (1-w)(a—af)” Pt (a—af)+
architectures. In this section we present Covariance dater T p—1 c
tion (CI), the most frequently used fusion algorithm under wla—ag) Py (a—ag) < 1}’ Osws=1 (12)



yielding a set of ellipsoids given by [9] (see [6] for a detdil orthogonal to the observation vector leads to the largest
proof): possible reduction of the uncertainty volume and deforomati
Based on a different line of reasoning,sttuctural algo-

Boo= (1-0)% (13)  tithm was proposed for choosing the sensing positions. The
aj = Zy((1-w)P['aj+wP;'af) (14) algorithm uses a orthonormal bas® which is iteratively
Zy = ((1 _ w)Pfl n wpgl)_l (15) up_date_zd starting withlB = B,. At _egch stage tr_\e new sensing
. T 1 e . point is determined by maximizing the projection Bfon
G = (I-w)(af—ap)" P (af —ap) - (16) Span(B)" and B is updated by a Gramm-Schmidt iterative
w(a$ —ag)" Pyt (ag — af) orthonormalization algorithm:

Figure 4 shows an example of the minimum-determinant {a',y'} = argmax||(I — B;—1B{_)f(z,y)|,
ellipsoid enclosing the intersection of two uncertaintysse ©ye g

(Figure 4(a)) and in the case where the uncertainty sets arel . o

the same (Figure 4(b)). One may notice that contrary to the B _ B (I = Bi-1Bi_,)f(=",y")

Cl method, the estimates are taken into account yielding a coe (1 = Bi—1 BE )f(2t, i)’
smaller volume of uncertainty and a unique new estimate.

The choice o3, determines the places where the nodes should
not go and is chosen with two goals:

& & « impose motion to a different position:

i iy
\ ' By = {f(xk’yk)}izl
« avoiding the directions along which is best known:
(@ (b)

B"y ={v1,...,vr-an}
Figure 4. (a) Sample minimum-determinant ellipse of theféi(w) (12), (b) . . . .
fusion of two estimates with the same covariance usingsalip intersection wherev; is the eigenvector associated to thén smallest
eigenvalue (shortest axis of the uncertainty ellipse).of
V. COLLABORATIVE ADAPTIVE SENSING The initial basis is obtained by combinirigf, with B”.

As stated in [6], the key points of distributed estimation
are (i) collaboration between nodes afifj adaptation to the
sensed field. The first aims at maximizing the joint informiati  In this section, we study the performance of the estimation
conveyed by the measurements performed by the nodes whiggnework presented in this paper using computer simulatio
the latter uses a model for field so as to determine the poirtge field to be estimated is composed of 20 Gaussian shaped
that will bring the most information, taking into accounfasis functions with unit amplitude, and random scale and
the current state of knowledge. In both the deterministigcalization. The coefficients; are drawn from a uniform
and probabilistic frameworks, the confidence associateahto distribution. We consider a network of 6 robots, initially
estimate is described by an ellipsoid. For vector estimgtesdeployed at random inside a small launching zone in the
is not a scalar) the uncertainty set obtained by integrati6®gion of interestA (of size 10,000x 10,000) — reflecting
of additional data sampled does not allow the definition of & realistic deployment scenario. The communication radius
complete order relation ovet that can be used to select wher@nd the diameter of the action zone are respectively 2,000
the next measures should be made. The use of a scalar funciBfl 2,500. We conducted a Monte-Carlo study, performing
of the matrix M/ describing the uncertainty set (the positivéwo sets of 25 independent simulations of the architecture
definite matricesP or X depending on whether Cl or BE iskeeping both the field and the Iaunching zone fixed. One set
used) — such as trace, determinant or spectral radius — carHpes Bayesian estimation together with Cl for the fusiop,ste
used to define a total order relation on which the choice 8nd the other uses a deterministic approach to both estimati
the next measuring points can be based. These metrics ha@®@ fusion.
direct geometric interpretation, making the analysis ofsiiey We use two related criteria to evaluate the performance of
points determination method easier to apprehend. our architecture(i) the error on the field estimatg and (ii)

The most common criterion idet (M) which is a increas- the error on the globally reconstructed parameter itseff.e.,
ing function of the uncertainty volume of the uncertaintyhe fusion of the set of estimates over the whole network):
ellipsoid. It can be shown that maximizing the volume is
equivalent to maximizing” M £, which can be interpreted as
choosing the sensing point whef@s closest to the direction where the fusion of the estimates is performed iteratively.
along whichay, is the most uncertain. In the deterministic case, The first is motivated by the original goal of providing a
choosing the observation direction collinear to the lohgas global picture of the field, as mentioned in the Introduction
(eigenvector associated to the largest eigenvalué)/ds the We use distortion as a metric to evaluate the quality of the
optimal choice, since “cutting” the ellipsoid with hypeapke field estimates using equation (1) together with thenorm.

VI. RESULTS

a=fuse(as,...,ay) and f(z,y)=af(z,y)



However, this criterion does not directly reflect the prieeis compared to the traditional Bayesian estimation with Cl as
of the estimate along each componentagfwhich may — in fusion method, as the computer simulations demonstrated.
the underwater framework — be related to interesting nhtura More generally, design of efficient distributed fusion meth
phenomena. In fact, the strategy that drives the network (tbds, together with robust criteria for sampling site sédegt
determination of the sensing points) has been designedate critical steps for being able to fully exploit the potaht
reduce the deformation of the uncertainty ellipsoid asdedi advantages of the flexible and powerful framework of mobile
to a (trying to avoid that some of its components be muckensor networks, providing effective answers to the difiiesi
better known than other). We plot these two criteria as rasulting from the stringent constraints of these systems.
function of time, observing the rates of convergence and theSince our architecture is built at the application level,
asymptotic behaviors of the two different estimation/fusi the communication aspects are idealized (fixed radius and
frameworks. The performance improvement of the collabefror-free communications with unlimited bandwidth). For
rative architecture with respect to independent node dpera real-world implementation, these aspects must be taken int

has already been demonstrated in [5]. account, especially in underwater environment where theco
munication conditions are harsh.
E 30 - . . .
" B epiation e ) = B e )~ Our work can be improved in several aspects. The final fu-

250

sion is doneoff-line with no computational power limitation or
time restrictions, and thus may be performed more effigientl
than simply fusing iteratively (pairwise) the node estiezat
The same problem affects fusion inside each cluster, bugrund

: stronger constraints in terms of memory and computational
5 P 0 o power. Designing a fusion method that directly assesses the

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

tne step time sep problem of fusing multiple ellipsoids is a point for future

(@ (b) study. Also, looking for thesubspacehat results in the largest
Figure 5. Metrics on fusion of the collection of network esdies over time: Ot,)sel,’vatlon rank instead of |terat!vgly optimizing a gemme
@) lla— a2 ; (b) £ norm. criterion should lead to a more efficient set of sampling f®in
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