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Abstract—This paper presents a communication/coordination/
processing architecture for distributed adaptive observation of a
spatial field using a fleet of autonomous mobile sensors. One of
the key difficulties in this context is to design scalable algorithms
for incremental fusion of information across platforms robust
to what is known as the “rumor problem”. Incremental fusion
is in general based on a Bayesian approach, and algorithms
(e.g. the Covariance Intersection, CI) which propagate consistent
characterizations of the estimation error under this challenging
situation have been proposed. In this paper, we propose to
base inter-sensor fusion on a deterministic approach which
considers that bounds to the observation errors are known, wich
is intrinsically robust to the rumor problem. We present the
equations that enable the determination of the ellipsoidaldomain
of uncertainty that covers the intersection of the individual sets
describing sensor’s uncertainty, and show that they solve some
pathologies associated to CI. The results presented corroborate
a previous claim of the robustness of our control strategy (the
criterion used for adaptively choosing the nodes positions) with
respect to the conservativeness of fusion methods able to handle
rumor .

I. I NTRODUCTION

Over the last few years, sensor networks have been pro-
gressively recognized as providing an efficient solution for
real-world applications in the context of environmental mon-
itoring, enabling rapid and focused observation of spatially
extended fields such as temperature or humidity inside a
given region of interest. Recent advances in the areas of
wireless communications and robotic sensors have made the
design of autonomous mobile distributed sensing systems
possible. An example of such networks are fleets of under-
water vehicles with embedded sensors, micro-processors and
wireless communication devices. They enable more powerful
and autonomous applications in the sense that, contrary to
fixed sensors, this kind of networks do not rely on preliminary
computation for sensor placement, allowing proper observation
of dynamic environments, and adapting the network geometry
to the characteristics of the measured field. Also, increasing
computational power available at each node makes decentral-
ized and distributed path control and data fusion possible.
Finally, wireless communications allow collaborative behavior
and dynamic data exchange making sampling more efficient.

So far, most of the research on sensor networks has focused
on sensor placementand data processingfor static sensor
networks with one or moredata fusion centers[1], [2]. Dealing

with autonomousmobile sensors and designingdistributed
systems brings new challenges. Due to the dynamic nature
of the network, full-connectivity can no longer be guaranteed,
making traditional data collection/dissemination schemes and
centralized path control infeasible. To date there has beenlittle
work on adaptive collaborative sensing using mobile sensors.
Rahimini et al. propose an algorithm for adaptive sampling
using Networked Info-Mechanical System (NIMS) [3] but they
restrict to the independent control of each sensor and do not
take into account energy and communication constraints since
NIMS are power supplied and use a wired communication
medium. In the framework of underwater applications, the
concept of adaptive sampling using a fleet of autonomous
sensors has been advocated for some years by the members
of the ASAP (Autonomous Sampling and Prediction) project,
see for instance [4]. However, this project considers a central-
ized control of the underwater fleet, eliminating most of the
problems and difficulties that we address in this paper.

The ultimate goal of an autonomous sensing network is
to gather data which collectively allows the estimation of a
given spatial field over an area of interestA, this estimate
being obtained once data gathering is finished, by globally
fusing the data sets collected by the nodes. The key point
of such an architecture is the collaboration between nodes
to determine the sensing points where the measurements will
jointly bring the most information, which requires that nodes
share their knowledge about the field. In [5], [6], we presented
an architecture integrating communication, control and infor-
mation processing algorithms that implements a distributed
and decentralized strategy for acquiring an estimate of a
spatially extended field, based on a probabilistic Bayesian
framework, under strong communication constraints. While
iterative integration of additional sensor measurements can be
easily done in the context of Bayesian estimation theory, the
fusion of local estimates is prone to therumor problem: there
is no simple way to distinguish fresh information conveyed
by a distinct node from re-circulation, through the network,
of a node’s information back to itself. In these conditions a
naive application of the Bayesian recursion would lead to over-
confident error characterizations. This problem is overcome
by accepting some degree of information loss, and using
fusion methods that propagate upper bounds on uncertainty
(conservative error estimates), like the Covariance Intersection



(CI) algorithm [7]. In [5] we presented a new criterion which
prevents fresh measurements from being discarded by CI
by choosing sensing positions that correspond to different
observation structures, and we compared the performance of
our distributed sensing architecture using CI and naive Bayes.
Our analysis shows the superiority of CI and that our criterion
is well adapted to CI.

The entire issue of “rumor propagation” is eliminated if a
deterministic, error-bounded [8] approach to the fusion prob-
lem, which propagates upper bounds to the sets of parameters
values compatible with the acquired observations, is used.
Bounded-error methods have been popular in control and es-
timation problems, mostly for recursive state estimation prob-
lems, and update equations for the set dilation and intersection
steps have been published. The problem ofdistributed fusion
requires that two or moreuncertainty domainsbe directly
fused. In this paper we present equations that allow the fusion
of two ellipsoids that are a special case of the general problem
solved in [9]. Besides providing a better solution to the fusion
problem, as we show in section VI, the use of a bounded-
error based methodology for fusion, based on a completely
geometric characterization of the uncertainty domain affecting
the current estimates at each node, is a natural match to our
adaptive sensing criterion, giving a stronger coherency toour
overall architecture.

The paper is organized as follows. Section II outlines the
problem of distributed collaborative sensing and presentsan
overview of the global architecture proposed. In Section V we
briefly present and justify the adaptive sensing criterion used.
Sections III and IV are dedicated to recursive estimation and
fusion, focusing in the presentation of the update equations for
the bounded-error methods, and pointing out their analogies to
Gauss-based Bayesian methodologies. In Sections VI and VII
we present simulation results and summarize our conclusions
and some ideas for future work.

II. PROBLEM STATEMENT: GENERAL ARCHITECTURE

Our goal is to implement adecentralized strategyfor
controlling the sensors positionsXt = {Xtc

}t0≤tc≤t such
that the information collectively gathered by the network
optimizes some aggregated statistic functional of the (error
of the) reconstructed field,̂f(x; Xt)

C(Xt) = E

{
∫∫

A

g
(

f(x, y), f̂(x, y; Xt)
)

dxdy

}

(1)

whereE denotes the (ensemble) expectation operator.
We consider a set of working assumptions, which reflect

constraints typical of ocean-observation problems:

• the observed fieldf(z) is scalar and assumedstatic dur-
ing the time interval required to perform its observation
inside a known region,A ⊂ R

2.
• the robots are able to localize themselves (GPS, network

of acoustic beacons, distributed location algorithm, . . . ).
Their speed is upper-boundedv ≤ vmax and they can
(and must, to perform a measurement) station-keep.

• error-free fixed radius communications: two nodes can
communicate with each other without errors provided that
the distance between them is lower than the communica-
tion rangeRcom.

We present below the major components of our distributed
sensing architecture [5]. Our solution involves three main
stages that are executed in a cyclic manner:(i) sensing, (ii)
communicating and datafusion, and (iii) collaborating to
decide on the next network deployment.

sensor deployment
(x0

i , y
0
i )
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each node

(i)

zk
i

communicate

jointly

(ii)

fuse
f̂k

i determine next
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Figure 1. Coarse Block-based overview of execution cycle ofthe Distributed
Algorithm for Collaborative Adaptive Sensing

While sensing is performed independently at each node,
choosing the next sensing position can be drastically improved
by sharing information across nodes. The second task is thus
denoted byfusion insofar as it consists in fusing the estimates
stored at each node to compute a more informative one while
the third one is calledadaptive collaborative observationin
the sense that the nodes rely on the exchanged information to
determine the set of future sensing points which jointly bring
the most additional information about the observed field.
Network partitioning
Obviously, the larger the number of nodes that collaborate to
select the future sensing positions, the more their individual
decisions will reflect the global state of knowledge of the
network. However, under low spatial node density and limited
communication range, effective network connectivity may be
very limited. In particular, the communication graph may be
disconnected, with communication being impossible between
some network nodes. Our architecture is based on the dynamic
definition of logical groups of collaborating nodes, designed
to allow easy information exchange amongst their members.
Logical groups (clusters) are defined at the beginning of each
cycle, by assigning a virtual group number to each robot and
then restricting collaboration to nodes belonging to the same
cluster.

Distributed clustering is a well-known problem and has been
addressed under the single-hop structural constraint [10]. By
imposing direct communication between cluster members, the
nodes of our network are released from the communication
problems and requirements characteristics of Mobile Ad-Hoc
Networks (MANET) such as intermittent connectivity and
delay tolerant routing. A “Distributed Clustering Algorithm”
(DCA) which dynamically creates and destroys these clusters
using onlygossip messageshas been proposed in [5]
Distributed data fusion
Data fusion consists in updating the estimate of the observed
field at each node using either new measurements (we call this
operationupdate) or estimates received from other nodes (that
we designate byfusion). Thus, clustering must be immediately



followed by data sharing and fusion, that need to occur before
the sensing positions are chosen in order to ensure consistency
of this last operation.

In [6], [5] we compared two Bayesian methods for update
and fusion (“naive Bayes” and “Covariance Intersection”) and
demonstrated the superiority of CI. The fusion operation isthe
main new contribution of this paper, which proposes to assess
it in a distinct uncertainty modeling framework (deterministic,
bounded-error methods), see Section III.
Choice of future positions
Selection of the sensing points is the core problem of adaptive
field observation. Its potential impact is evident, since without
collaboration nearby nodes will have a similar local “view”
of the observed field, and will most likely decide to sense at
the same or nearby locations. The criterion presented in [6],
[5] to choose the next set of sensing points tries to reach a
balance between(i) maximizing the new informationjointly
brought by the measurements at the target sensing points; and
(ii) imposing geographic dispersion of the nodes, to increase
the probability they establish communication with nodes from
distinct clusters.

Search of the best set of sensing points is performed within
a bounded region around the nodes, calledaction zoneusing
a greedy distributed approach: sensing points are determined
one-by-one, taking into account the previously selected ones.
Thus, the computational power required to determine the
sensing points grows linearly with the number of nodes in
the clusters and so does the available computational power.
Once the set of the sensing positions has been chosen, each
of them is assigned to one node such that the the total amount
of energy (this can be replaced by a different criterion) used
by the robots to reach them is minimized, see [5] for details.

III. R ECURSIVE ESTIMATION

As we stated in the Introduction, scalability constraints
forbid storing the entire set of raw data acquired by each
node. In this section we briefly present(A) the fundamental
equations of Bayesian estimation theory that propagate a
sufficient statistic summarizing all relevant informationabout
the estimated field contained in the past observed data, as well
as (B) a deterministic estimation method based on feasible-
parameter set outer-bounding, both allowing recursive update.

We assume that the sensor observations are noisy versions
of the field’s values, such that

zk = f(x, y) + εk, (x, y) ∈ A,

A. Bayesian estimation

In the context of the probabilistic Bayesian estimation, we
assume that a parametric model for the field is known,

f(x, y) = f(x, y;a), a ∼ pa: unknown parameter,

wherepa is the prior distribution ofa, such that the task of
estimating the field is formally equivalent to the estimation
of a. If the noise components affecting distinct measures are
statistically independent, then the posterior densityp(a|zk) of

a given observed datazk = {zi}
k

i=1
is a sufficient statistic

for the estimation of the fieldf , and it can be recursively
updated [11] using the Bayes relation. For finite-dimension
linear models,

f(x, y;a) = a
T
f(x, y), f(x, y) = [f1(x, y), . . . , fI(x, y)]

T
,

where {fi}
I
i=1

are a set of known functions, and Gaussian
distributions (both prior and observation noise), the posterior
densities are normal,a|zk ∼ N (µk, Σk), and closed-form
expressions can be obtained for their means and variances:

Σ−1

k+1
= Σ−1

k +
1

σ2
ε

fk+1fk+1
T (2)

Σ−1

k+1
µk+1 = Σ−1

k µk +
1

σ2
ε

zk+1fk+1 (3)

In this equationσ2
ε is the variance of the observation noise.

This version of the Bayes equations are known as the “in-
formation form” of the least-squares estimator, and allow
asynchronous integration of new measures. The statistics
ηk = (Σ−1

k , Σ−1

k µk) maintained at each node all have the
same form, and their size does not grow with the number
of measurements. Since matrix addition is associative and
commutative, the fusion equations presented above can be
easily extended to several measures.

Note that under the linear-Gauss assumption, the covariance
matrix of the posterior density does not depend on the mea-
surement itself (zk) but only on the local observation operator
(f(xk, yk)). Since the amount of information conveyed byz

k

abouta is a function ofΣk, the impact of future measurements
on the quality of the estimate can be predicted.

B. Bounded-error

The estimation method presented above relies on knowledge
of the statistical properties of the noise, which is a ratherstrong
assumption. Fogel and Huang proposed in their seminal paper
[8] a deterministic approach to parameter estimation under
a bounded errorassumption. The key idea is that, assuming
observation noise is bounded, each measurement defines a set
of feasible parameters values (i.e., which are consistent with
the measurement, the model and the bound). The actual value
of the parameter lies in the intersection of the sets associated to
the measures. Several representations for the so-calledfeasible
parameter sethave been proposed, including parallelotopes
[12], polytopes [13] and ellipsoids [8]. Using polytopes gives
the optimal solution but the state maintained at each node may
potentially grow as the number of measurements, violating the
scalability requirement. On the contrary, using ellipsoids leads
to a scalable solution (the size of the estimate does not grow
with k and isO(I2)) and is directly comparable to the the
statistical Bayesian approach with Gaussian posteriors. In the
following we use ellipsoids to describe the feasible parameter
sets:

Ek =
{

a : (a − a
c
k)

T
P−1

k (a− a
c
k) ≤ 1

}

and âk = a
c
k (4)

Assume the measurement errorsεk are bounded byr:
|εk(x, y)| ≤ r. Then, each new measurementzk defines two
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Figure 2. Minimum-determinant ellipse of the formEk+1(q) (5)

hyperplanes that bound the set of feasible parameters:

H+

k =

{

a :
1

r

(

zk − a
T
fk

)

≤ 1

}

and

H−
k =

{

a :
1

r

(

zk − a
T
fk

)

≥ −1

}

The updated feasible parameter setEk+1 must be of the form
(4) and encloseEk ∩H+

k+1
∩ H−

k+1
. A simple one-parameter

family of sets verifying these properties is [8]:

Ek+1(q) =

{

a : (a − a
c
k)

T
P−1

k (a − a
c
k) +

q
1

r2

(

zk − a
T
fk

)2
≤ 1 + q

}

, q ≥ 0 (5)

This ellipsoid can be rewritten in the form (4) using the
following recursive updating rules:

Pk+1 = ζkZk (6)

a
c
k+1 = Zk

(

P−1

k a
c
k + qr−2zkfk

)

(7)

Zk =
(

P−1

k + qr−2
fkfk

T
)−1

(8)

ζk = 1 + q −
qr−2

1 + qr−2Gk

e2
k (9)

where ek = zk − ak
T
fk, Gk = fk

T Pkfk, and q ≥ 0. The
value ofq is chosen to minimize some optimization criterion.
In the traditional case of volume minimization (minimizing
detPk+1), the optimal valueq?

k of q is the – positive if any,
or zero otherwise – root of a second order polynomial and can
be expressed in closed form. Finally,Ek+1 = Ek+1(q

?
k).

Contrary to the Bayesian approach, the bounded-error (BE)
method enables optimization of the feasible parameter set
(i.e, the ellipsoid) according to any criterion – such as the
determinant, the trace or the radial spectrum ofPk – while
integrating new measurements. On the other hand, due to its
deterministic nature, a new measurement may not convey any
additional information. This case occurs when the hyperplane
H+

k+1
and H−

k+1
do not intersect the ellipsoidEk. In the

case where only one hyperplane intersects the ellipsoid, a
correction has been proposed so that the one-parameter family
of ellipsoids (5) encloses more tightly the intersection [8].

IV. D ISTRIBUTED DATA FUSION

The fusion step is the weak link of collaborative sampling
architectures. In this section we present Covariance Intersec-
tion (CI), the most frequently used fusion algorithm under

unknown correlation, and illustrate its performance on simple
examples. Also, we highlight pathological behaviors of CI on
some special cases. Based on purely geometric considerations,
we extend the bounded-error estimation to a fusion method
which does not suffer from pathologic cases aforementioned.

A. Covariance Intersection (CI)

For linear-Gaussian problems, fusion is a linear operation.
Imposing unbiasedness of the estimator resulting of the fusion
of unbiased estimates implies that the linear combination be
convex, and finding the fusion operator consists in choosing
an element in aI2-dimensional space. In their original paper
[7], Julier and Uhlmann proposed CI which reduces the
aforementioned problem to a one-dimensional optimization
problem, using a convex linear combination:

Σ−1

C = ωΣ−1

A + (1 − ω)Σ−1

B (10)

Σ−1

C µC = ωΣ−1

A µA + (1 − ω)Σ−1

B µB (11)

CI has been proved to provide consistent estimates (i.e.,ΣC ≥
E

[

(µ − a)(µ − a)T
]

) for anyω ∈ [0, 1] meaning that the free
parameterω can be chosen to optimize some criterion.

The consistency of the estimator resulting from CI can be
interpreted as a conservativeness property since the fusion
method never “creates” virtual information – as the Bayesian
method may do – when fusing correlated estimates. How-
ever, CI may discard fresh information, considering them as
redundant. This is revealed by the fact that the centers of
the ellipsoids are not taken into account in the determination
of the covarianceΣC : suppose that two nodes have two
estimates with the same covariance matrix but different centers
as illustrated in Figure 3. Then, CI returns the same covariance
matrix for any value ofω leaving thhe center (i.e., the estimate
â of a) indetermined.

+

µA µBµC

(a)

ω

µA µBµC(ω)

(b)

Figure 3. Fusion of two estimates with the same covariance using (a) Naïve
Bayes (NB) (b) Covariance Intersection (CI)

B. Feasible Parameters Set Intersection

Although CI behaves strangely in some particular cases
and ignores the precious information conveyed by the centers
of the ellipsoids, its core idea of intersecting uncertainty
ellipsoids can be adapted to a deterministic context: letE1

andE2 be two estimates ofa, then any set enclosingE1 ∩ E2

contains the actual value ofa, and is thus a valid feasible
parameter set. To be directly and fairly comparable to CI, we
parametrize our search space with only one parameter. Inspired
by both (5) and (11), we naturally define the search space as:

E(ω) =
{

a : (1 − ω) (a − a
c
1)

T
P−1

1 (a − a
c
1)+

ω (a − a
c
2)

T
P−1

2 (a − a
c
2) ≤ 1

}

, 0 ≤ ω ≤ 1 (12)



yielding a set of ellipsoids given by [9] (see [6] for a detailed
proof):

P0 = (1 − ζ0)Z0 (13)

a
c
0 = Z0

(

(1 − ω)P−1

1
a

c
1 + ωP−1

2
a

c
2

)

(14)

Z0 =
(

(1 − ω)P−1

1 + ωP−1

2

)−1
(15)

ζ0 = (1 − ω) (ac
1 − a

c
0)

T
P−1

1 (ac
1 − a

c
0) − (16)

ω (ac
2 − a

c
0)

T
P−1

2 (ac
2 − a

c
0)

Figure 4 shows an example of the minimum-determinant
ellipsoid enclosing the intersection of two uncertainty sets
(Figure 4(a)) and in the case where the uncertainty sets are
the same (Figure 4(b)). One may notice that contrary to the
CI method, the estimateŝa are taken into account yielding a
smaller volume of uncertainty and a unique new estimate.

E1
E2

E0

(a)

+
a

c
1 a

c
2a

c
0

(b)

Figure 4. (a) Sample minimum-determinant ellipse of the form E(ω) (12), (b)
fusion of two estimates with the same covariance using ellipsoid intersection

V. COLLABORATIVE ADAPTIVE SENSING

As stated in [6], the key points of distributed estimation
are (i) collaboration between nodes and(ii) adaptation to the
sensed field. The first aims at maximizing the joint information
conveyed by the measurements performed by the nodes while
the latter uses a model for field so as to determine the points
that will bring the most information, taking into account
the current state of knowledge. In both the deterministic
and probabilistic frameworks, the confidence associated toan
estimate is described by an ellipsoid. For vector estimates(a
is not a scalar) the uncertainty set obtained by integration
of additional data sampled does not allow the definition of a
complete order relation overA that can be used to select where
the next measures should be made. The use of a scalar function
of the matrixM describing the uncertainty set (the positive
definite matricesP or Σ depending on whether CI or BE is
used) – such as trace, determinant or spectral radius – can be
used to define a total order relation on which the choice of
the next measuring points can be based. These metrics have a
direct geometric interpretation, making the analysis of sensing
points determination method easier to apprehend.

The most common criterion isdet (M) which is a increas-
ing function of the uncertainty volume of the uncertainty
ellipsoid. It can be shown that maximizing the volume is
equivalent to maximizingfT M f , which can be interpreted as
choosing the sensing point wheref is closest to the direction
along whichâk is the most uncertain. In the deterministic case,
choosing the observation direction collinear to the longest axis
(eigenvector associated to the largest eigenvalue) ofM is the
optimal choice, since “cutting” the ellipsoid with hyperplane

orthogonal to the observation vector leads to the largest
possible reduction of the uncertainty volume and deformation.

Based on a different line of reasoning, astructural algo-
rithm was proposed for choosing the sensing positions. The
algorithm uses a orthonormal basisB, which is iteratively
updated starting withB = B0. At each stage the new sensing
point is determined by maximizing the projection off on
Span(B)

⊥ and B is updated by a Gramm-Schmidt iterative
orthonormalization algorithm:

{

xi, yi
}

= argmax
x,y∈ G

∥

∥(I − Bi−1B
T
i−1)f(x, y)

∥

∥,

and

Bi = Bi−1 ∪
(I − Bi−1B

T
i−1)f(x

i, yi)
∥

∥(I − Bi−1B
T
i−1

)f(xi, yi)
∥

∥

.

The choice ofB0 determines the places where the nodes should
not go and is chosen with two goals:

• impose motion to a different position:

B′
0 =

{

f(xi
k, yi

k)
}N

i=1

• avoiding the directions along whicha is best known:

B′′
0 = {v1, . . . , vI−2N}

wherevi is the eigenvector associated to thei-th smallest
eigenvalue (shortest axis of the uncertainty ellipse) ofΣ.

The initial basis is obtained by combiningB′
0 with B′′

0.

VI. RESULTS

In this section, we study the performance of the estimation
framework presented in this paper using computer simulations.
The field to be estimated is composed of 20 Gaussian shaped
basis functions with unit amplitude, and random scale and
localization. The coefficientsαi are drawn from a uniform
distribution. We consider a network of 6 robots, initially
deployed at random inside a small launching zone in the
region of interestA (of size 10,000× 10,000) – reflecting
a realistic deployment scenario. The communication radius
and the diameter of the action zone are respectively 2,000
and 2,500. We conducted a Monte-Carlo study, performing
two sets of 25 independent simulations of the architecture
keeping both the field and the launching zone fixed. One set
uses Bayesian estimation together with CI for the fusion step,
and the other uses a deterministic approach to both estimation
and fusion.

We use two related criteria to evaluate the performance of
our architecture:(i) the error on the field estimatêf and (ii)
the error on the globally reconstructed parameter itself,â (i.e.,
the fusion of the set of estimates over the whole network):

â = fuse (â1, . . . , âN ) and f̂(x, y) = â
T
f(x, y)

where the fusion of the estimates is performed iteratively.
The first is motivated by the original goal of providing a

global picture of the field, as mentioned in the Introduction.
We use distortion as a metric to evaluate the quality of the
field estimates using equation (1) together with theL1 norm.



However, this criterion does not directly reflect the precision
of the estimate along each component ofa, which may – in
the underwater framework – be related to interesting natural
phenomena. In fact, the strategy that drives the network (the
determination of the sensing points) has been designed to
reduce the deformation of the uncertainty ellipsoid associated
to a (trying to avoid that some of its components be much
better known than other). We plot these two criteria as a
function of time, observing the rates of convergence and the
asymptotic behaviors of the two different estimation/fusion
frameworks. The performance improvement of the collabo-
rative architecture with respect to independent node operation
has already been demonstrated in [5].
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Figure 5. Metrics on fusion of the collection of network estimates over time:
(a) ‖a − â‖2 ; (b) L1 norm.

Figure 5 presents the mean square-error on the estimate ofa

together with the distortion of the field globally reconstructed
over time. These plots support our two major conclusions:(i)
the BE fusion method is superior to CI leading to better esti-
mates ofa (see 5).(ii) the network control strategy based on
the geometric criterion is robust to poor error characterization
of the fusion methods, as the comparable overall performance
of the CI and BE demonstrates. In our architecture, what
determines the network dynamics is the subspace generated
by the directions of current smallest uncertainty, irrespective
of the detailed amount of uncertainty along each one of them.
This means that many different matrices will lead to the same
orthonormal basisB, and thus to the same set of chosen
sampling points which explains the similar performances for
the different fusion methods observed in Figure 5(b).

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we extended the overall distributed algorithm
for collaborative adaptive sensing proposed in [5] proposing a
deterministic approach to parameter estimation and fusion. As-
suming bounded-errors, and bounding the uncertainty domains
by ellipsoids, provided a comprehensive geometric view of the
information processing aspects of the architecture (estimation,
fusion and adaptive determination of the sensing points). All
blocks of the architecture now rely on the same formalism,
becoming matched to each other, and improving the architec-
ture consistency and coherency. Besides this overall coherency,
the deterministic setting provided an inherent robustnesswith
respect to one of the difficult problems affecting distributed
fusion (the rumor problem). It also improved estimation when

compared to the traditional Bayesian estimation with CI as
fusion method, as the computer simulations demonstrated.

More generally, design of efficient distributed fusion meth-
ods, together with robust criteria for sampling site selection,
are critical steps for being able to fully exploit the potential
advantages of the flexible and powerful framework of mobile
sensor networks, providing effective answers to the difficulties
resulting from the stringent constraints of these systems.

Since our architecture is built at the application level,
the communication aspects are idealized (fixed radius and
error-free communications with unlimited bandwidth). For
real-world implementation, these aspects must be taken into
account, especially in underwater environment where the com-
munication conditions are harsh.

Our work can be improved in several aspects. The final fu-
sion is doneoff-linewith no computational power limitation or
time restrictions, and thus may be performed more efficiently
than simply fusing iteratively (pairwise) the node estimates.
The same problem affects fusion inside each cluster, but under
stronger constraints in terms of memory and computational
power. Designing a fusion method that directly assesses the
problem of fusing multiple ellipsoids is a point for future
study. Also, looking for thesubspacethat results in the largest
observation rank instead of iteratively optimizing a geometric
criterion should lead to a more efficient set of sampling points.

REFERENCES

[1] T. Arici and Y. Altunbasak, “Adaptive Sensing for Environment Monitor-
ing using Wireless Sensor Networks,”IEEE Wireless Communications
and Networking Conference, vol. 4, pp. 2347–2352, March 2004.

[2] M. Rabbat and al., “Decentralized Compression and Predistribution
via Randomized Gossiping,” inIPSN ’06: Proc. of the Conference on
Information Processing in Sensor Networks, April 2006, pp. 51–59.

[3] M. Rahimi and al., “Adaptive Sampling for EnvironmentalField Esti-
mation using Robotic Sensors,” inIROS ’05: Proc. of the Conference
on Intelligent Robots and Systems, August 2005, pp. 3692–3698.

[4] N. E. Leonard and al., “Collective Motion, Sensor Networks and Ocean
Sampling,” Proc. of the IEEE, Special Issue on Networked Control
Systems, vol. 95, pp. 48–74, 2007.

[5] K. Huguenin, “An Architecture for Distributed Collaborative Adaptive
Sensing,” inUUST’07: Proc. of the International Symposium on Un-
manned Untethered Submersibles Technology, 2007.

[6] ——, “An Architecture for Distributed Collaborative Adaptive Sensing,”
Master’s thesis, ENS Cachan/UNSA, I3S Lab., Sophia Antipolis, France,
June 2007.

[7] S. Julier and J. Uhlmann, “A Non-divergent Estimation Algorithm in the
Presence of Unknown Correlations,” inProc. of the American Control
Conference, June 1997.

[8] E. Fogel and Y. F. Huang, “On the Value of Information in System
Estimation–Bounded Noise Case,”Automatica, vol. 18, no. 2, pp. 229–
238, 1982.

[9] L. Ros, A. Sabater, and F. Thomas, “An ellipsoidal calculus based on
propagation and fusion.”IEEE Trans. on Systems, Man, and Cybernetics,
Part B, vol. 32, no. 4, pp. 430–442, 2002.

[10] S. Basagni, “Distributed Clustering for Ad Hoc Networks,” in ISPAN
’99: Proc. of the International Symposium on Parallel Architectures,
Algorithms and Networks, 1999, p. 310.

[11] H. L. V. Trees,Detection, Estimation, and Modulation Theory, Part I.
New York: John Wiley and Sons, 1968.

[12] A. Vicino and G. Zappa, “Sequential Approximation of Feasible Param-
eters for Identification with Set Membership Uncertainty,”IEEE Trans.
on Automatic Control, vol. 41, no. 9, pp. 774–786, June 1996.

[13] E. Walter and H. Piet-Lahanier, “Exact Recursive Polyhedral Description
of the Feasible Parameter Set for Bounded-Error Models,”IEEE Trans.
on Automatic Control, vol. 34, no. 8, pp. 911–915, August 1989.


