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This article presents a new approach to use secure spreadspectrum watermarking in the Watermarked Only Attack (WOA) framework (the adversary owns several marked contents and wants to estimate the secret key). Because security of watermarking schemes relies on the distribution of marked contents in a private subspace, we use the transportation theory in order to derive a mapping that will minimize the global distortion of Natural Watermarking (NW) while keeping the same security level. Contrarily to another technique presented in [13], the embedding does not depend on computationally demanding pre-computed mapping. Moreover, we show that this method does not reduce the robustness of the classical NW scheme and enables to decrease the WCR by several dBs regarding former implementations. Tests are made on 2000 Gaussian signals.

INTRODUCTION

The transition from analog to numerical data have permitted a best storage and indexation of multimedia contents. However, the expansion of internet and sharing networks have accelerated the piracy on intellectual property. Watermarking is a mean to solve this problem. It consists in embedding information into a digital content (audio, image or video). This mark can be used to link a content to its owner, to allow or not copies of the content or to trace any running copies on illegal sharing networks. It is obvious that this mark must be imperceptible, nobody shall recognize that the content is watermarked. Another constraint is the robustness of the scheme. In the case of copyright protection, the mark must resist common media processing (for example a JPEG compression on images). The last constraint is the security of the scheme which has received more and more attention in the watermarking community [START_REF] Kalker | Considerations on watermarking security[END_REF][7] [START_REF] Cayre | Watermarking security: Theory and practice[END_REF][3] [START_REF] Bas | Practical security analysis of dirty paper trellis watermarking[END_REF]. Security respects the Kerckhoffs' principle: a key is the only unknown parameter of the embedding scheme to an adversary. Security attacks relate to estimation of a part or all the secret key. According to the degree of estimation, the adversary can delete the mark, make it unreadable, or guess an important part of the secret message.

This article deals with the WOA (Watermarked Only Attack) framework: an adversary has access to several marked (with the same private key) contents. The secret key we use are codewords location in a secret subspace [START_REF] Moulin | Data-hiding codes[END_REF]. To embed a content, its projection in the secret subspace must be moved to a decoding region which corresponds to the right message. Security in watermarking is linked with the conditional distribution of the marked contents given the secret key [START_REF] Cayre | Kerckhoffs-based embedding security classes for woa data hiding[END_REF]. We propose in this article an optimization of a secure spreadspectrum technique: Natural Watermarking (NW) [START_REF] Bas | Natural watermarking: a secure spread spectrum technique for woa[END_REF] from the distortion point of view. This new method uses results of transportation theory: it consists in computing the optimal way to match the distribution of host contents to a distribution of marked contents (given the secret key) by minimizing the global square euclidean distance. Section 2 recalls basics on spread-spectrum watermarking schemes and more particularly on the NW modulation. The link between security in the WOA framework and distributions of marked contents in the secret subspace is also presented. Section 3 details how we use results of transportation theory to minimize the distortion. Finally section 4 exhibits experiments on 2000 Gaussian signals to quantify the performance of this new method.

NATURAL WATERMARKING SPREAD-SPECTRUM

Notations

This section lists the different notations used in this article. Data are written in italic fonts, functions are noted in roman fonts and vectors and matrices are set in bold fonts. Vectors are written in small letters and matrices in capital ones. x(i) is the i-th component of a vector x and (x(0), x(1), x(2), . . . ) is the content of a vector x. P δ and f δ denote respectively the cumulative distribution function (cdf) and the probability density function (pdf) of a probability measure δ. σ 2

x denotes the variance of a signal x and .|. denotes the usual scalar product.

Spread-spectrum watermarking: assumptions and definitions

We consider a host Gaussian signal x ∈ R Nv and a binary message m ∈ F Nc 2 we want to hide into x. The secret key we use for the embedding are Nc carriers ui which are generated thanks to a pseudo random number generator (PRNG) seeded with K ∈ N. These carriers come as Gaussian vectors obtained with the PRNG and are further orthogonalized (using Gram-Schmidt procedure) with unit variance in order to provide a basis of the private subspace i.e. ∀i = j , ui|uj = 0. The marked signal y is obtained by adding the host signal with a watermark signal w and it is constructed as follows:

y = x + w = x + Nc-1 X i=0 s(m(i), x)ui, (1) 
where s : F2 × R Nv → R is a modulation. As a convention, we set s(1, x) < 0 and s(0, x) > 0. The W CR (Watermarkto-Content Ratio) measures the distortion embedding power and is defined as:

W CR [dB] = 10 log 10 " σ 2 w σ 2 x « . (2) 
Decoding is achieved by the normalized correlation z between each secret carrier and the marked signal:

zy,u i = 1 Nv y|ui = 1 Nv Nv-1 X j=0 y(j)ui(j). (3) 
The i-th estimated bit equals 1 if zy,u i < 0 and 0 if zy,u i > 0.

We also denote the normalized correlation vector z for a vector y: zy = `zy,u 0 , . . . , zy,u Nc -1 ´.

We measure the performance of decoding using Bit Error Rate (BER); if m denotes the estimated message we have:

BER = card ({i : m(i) = m(i)}) Nc . (5) 
If we use the terminology of [START_REF] Cayre | Kerckhoffs-based embedding security classes for woa data hiding[END_REF], we want to reach the "stegosecurity". It means that the distribution of the host contents and the marked contents is the same. We have DKL(X||Y) = 0, with DKL denotes the Kullback-Leibler divergence.

Natural Watermarking

Natural Watermarking (NW) [START_REF] Bas | Natural watermarking: a secure spread spectrum technique for woa[END_REF] is a spread-spectrum technique which enables to keep (possibly) scaled versions of the original zx,u i distributions. This distribution is supposed to have circular pdf, possibly scaled by a factor η ≥ 1 (in order to set distortion):

sNW (m(i), x) = " η(-1) m(i) sign (zx,u i ) -1 " zx,u i , (6) 
with:

W CR = 10 log 10 " Nc(1 + η 2 ) Nv -1 « . (7) 
If η = 1, NW belongs to the stego-security class [START_REF] Cayre | Kerckhoffs-based embedding security classes for woa data hiding[END_REF].

Carriers estimation and BSS problem

Our works focus on the WOA (Watermarked Only Attack) framework: the adversary has access to No contents (marked with different messages but with the same private key) and he/she knows the full source code of the watermarking algorithm (following Kerckhoffs' principle). The only parameter he/she does not know is the secret key (i.e. the carriers in spread-spectrum schemes). If we write the spread-spectrum formula considering the No contents, we have the matrix relation:

Y = X + W = X + US, (8) 
with:

Y ∈ MN v ,No (R) the watermarked signals, X ∈ MN v ,No (R) the host signals, W ∈ MN v ,No (R) the watermark signals, U ∈ MN v ,Nc (R) the carriers, S ∈ MN c,No (R) the modulations of embedded messages.
Security attacks in spread-spectrum schemes consist in obtaining as much information as possible about U. The problem of disclosing U is known as a Blind Source Separation (BSS) problem. Principal Component Analysis (PCA) allows for an adversary to estimate the Nc-dimensional private subspace spanned by the carriers U (the private key), if the embedding alters the covariance matrix of the contents. PCA involves the calculation of the eigenvalues of the covariance matrix of Y (taken column-wise). PCA aims at finding the optimal linear transformation for keeping the subspace that has the largest variance (message embedding increases the variance of the signal in the directions of the carriers). This technique deals with subspace-security and it allows an adversary to tamper with the hidden messages of the contents. We use the "normalized chordal distance" [6][16] to measure the precision of the estimation of the subspace spanned by the carriers. If Û denotes the estimated carriers (after orthogonalization), the normalized chordal distance between U and Û is defined by:

dc = 1 √ Nc Nc-1 X i=0 sin 2 (θi) ! 1/2 , (9) 
where θ0 . . . θN c -1 denote the principal angles between U and Û [START_REF] Pérez-Freire | Spread-spectrum watermarking security[END_REF]. The normalized chordal distance dc equals 0 when the subspaces spanned by the both matrices are the same and equals 1 (its maximum) when the matrices are orthogonal.

Previous works: minimization distortion via a pre-computed mapping

In order to guarantee security, we revisit the embedding as a way to push the host content into the right decoding regions while fitting the appropriate statistical model. We aim at using a model-based embedding which can ensure the level of security we want while minimizing the global distortion.

In [START_REF] Mathon | Distortion optimization of model-based secure embedding schemes for data-hiding[END_REF] we have proposed to use a matching M : X → Y between Nm host correlation vectors X and Nm marked correlation vectors Y (over the secret carriers) with a minimal square euclidean distance on average. This triplet (X , Y, M) is called an Nm-map. For each host signal x we want to watermark, we find the nearest neighbour of zx in X (for example zx i 0 ) and we compute zy = M(zx i 0 ), the correlations of the corresponding marked signal in Y. Fig. 1 shows an example of this process. This optimal matching (from the distortion point of view) was to be found by the O(Nm 3 ) Hungarian algorithm [START_REF] Kuhn | The Hungarian method of solving the assignment problem[END_REF]. The previous technique is more detailed in [START_REF] Mathon | Distortion optimization of model-based secure embedding schemes for data-hiding[END_REF] and was performed successfully for secure watermarking of white Gaussian signals, this optimization was enabled to reduce the W CR distortion by at least 2.6 dB while keeping the same security level. However, this method exhibits the following disadvantages:

• the Nm-map (host and marked correlations and optimal matching) must be stored somewhere, it is very restrictive because it depends on the number of bits Nc the user wants to hide,

• the cubic complexity of the Hungarian method can be a real problem in a practical case when Nm grows up.

We propose in the next section a new method for matching host and marked correlations in an optimal way based on transportation theory. Contrarily to the Hungarian method, we consider the probability measures of the host and the marked correlations for the computation of an optimal matching.

THE TRANSPORTATION THEORY AP-PLIED TO SECURE SPREAD-SPECTRUM WATERMARKING

The Monge-Kantorovich transportation problem

The transportation theory can be considered as an engineering problem, defined by Monge [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF] in 1781: we have piles of clay X ⊂ R Nc with distribution µ we want to move into holes Y ⊂ R Nc with distribution ν (µ and ν being probability measures). We consider a cost function c:

c : R Nc × R Nc → [0, +∞[ (x, y) → c(x, y), (10) 
where c(x, y) = h(xy) represents the cost for moving a unit mass of clay from x to y. The goal is to find a bijection T :

X → Y with ν = T µ = µ • T -1 (T pushes µ forward                    X Y          
Figure 1: Hungarian based watermarking (Nc = 2, Nm = 3): the correlations of the signal we want to watermark is zx, its nearest neighbour is zx 1 . Thanks to the optimal matching (from the square euclidean distance point of view), we find zy = zy 0 , the correlations of the marked signal.

to ν) which minimizes the total cost to move the clay to the holes. Formally we search a minimizer T for:

inf T Z R Nc c (x, T (x)) µ(x)dx | ν = T µ ff . (11) 
A solution T of this problem is called an optimal transport map. This problem is called the Monge-Kantorovitch problem because it was first formalized by Monge and principal contributions were done by Kantorovitch [10][11]. For Nc = 1, an optimal transport map T for a convex cost function h is given by:

T = P -1 ν • Pµ, (12) 
More generally, for any Nc, we have the following theorem [START_REF] Knott | On the optimal mapping of distributions[END_REF]: Theorem 1. Knott-Smith optimality criterion: if µ (resp. ν) represents the distribution of X (resp. Y), sufficient conditions that T minimizes the Monge-Kantorovitch transportation problem with c(x, y) = xy 2 are that: i) T(X ) has distribution ν, ii) the Jacobian matrix JT(x) of T is symmetric and positive semidefinite.

We have seen that security of spread-spectrum schemes relies on the distribution of the correlations z between the marked signals and the carriers. Moreover, we have the analytic expression of this distribution for NW [START_REF] Bas | Natural watermarking: a secure spread spectrum technique for woa[END_REF], we are now able to use the previous theorem in order to match the host correlations to the marked correlations minimizing distortion constraint.

Application to Natural Watermarking

One property of NW is that the distribution of the correlations over the secret carriers before and after watermarking can be modeled by Gaussian distributions (host signals are Gaussian distributed). From [START_REF] Bas | Natural watermarking: a secure spread spectrum technique for woa[END_REF], we have:

zx,u i ∼ N (0, σ 2 x Nv ) = µ. ( 13 
)
We consider we embed the constant message m = (0, . . . , 0) for each host content. We have:

zy,u i ∼ e N (0, η 2 σ 2 x Nv ) = ν, (14) 
where, if δ = N (0,

η 2 σ 2 x
Nv ), the distribution ν = e N (0,

η 2 σ 2 x
Nv ) is given by its cdf:

Pν (t) =  0 if t < 0, 2P δ (t) -1 if t ≥ 0. ( 15 
)
Then an application of the previous results about transportation theory is relevant, we want to find an optimal transport map T0 which matches the distribution of zx,u i to the distribution of zy,u i . The strategy is to use an optimal transport map for each dimension of the Nc dimensional private subspace thanks to Eq. 12. The computation of the optimal transport map T0 for embedding the message (0, . . . , 0) is given by:

T0 : R Nc → R Nc zx → zy = T0(zx), ( 16 
)
where

T0 0 B @ zx(0) . . . zx(Nc -1) 1 C A = 0 B @ P -1 ν • Pµ(zx(0)) . . . P -1 ν • Pµ(zx(Nc -1)) 1 C A . ( 17 
)
We have:

Pµ(t) = 1 2 " 1 + erf " t √ Nv σx √ 2 «« , (18) 
and

P -1 ν (t) = P -1 δ " t 2 + 1 2 « = ησx √ 2 √ Nv erf -1 " t - 1 2 « . (19) 
The constructed function T0 is an optimal transport map because it respects the conditions of Th. 1 (the proof is given in appendix). Thanks to the property of symmetry of spread-spectrum, to embed others message than (0, . . . , 0), sign changes must be made on the coefficients of zx in the indices that have undergone symmetries. Afterwards, inverse symmetry must be performed after watermarking in order to embed the correct message m. Formally, the corresponding optimal transport map Tm for any message m is given by:

Tm(zx) = R -1 (T0(Rzx)), (20) with: 
R ∈ MN c,Nc (R), R(i, j) =  0 if i = j, (-1) m(i) if i = j. (21) 
We can now define a new spread-spectrum technique based on transportation theory, namely Transportation Natural Watermarking (TNW), the corresponding modulation is given by: sTNW (m(i), x) = Tm(zx,u i )zx,u i .

(

) 22 
One can see that we have considerably reduced the complexity of the problem of optimal matching: instead of using O(N 3 m ) algorithm, the matching is directly given by Eq. 20. Fig. 2 shows the modulations sNW and sTNW functions of zx,u 0 (Nc = 1, Nv = 512, η = 2, σ 2

x = 1). Contrarily to NW, the modulation of TNW is not piecewise linear. x = 1). Contrarily to NW, the modulation of TNW is not piecewise linear.

EXPERIMENTS

In this section we generate several Gaussian signals and we watermark them with independent messages by using classical Natural Watermarking (NW), Hungarian Watermarking (HNW, see Sec. 2.5) and Transportation Natural Watermarking (TNW). On the one hand we want to show that TNW does not modify the security and the robustness of the classical NW. On the other hand, one shall keep in mind that we are targeting the same security level as with HNW but with significantly lower algorithmic complexity.

Assessments

We generate No = 2000 N (0, 1) Gaussian signals of Nv = 512 components. For HNW, we use an 10000-map constructed with different standardized Gaussian signals. We hide Nc = 10 bits into each signal. We model robustness attacks by adding a Gaussian noise n to y. Attack strength is assessed by means of the W CNR (Watermarked Contentto-Noise Ratio):

W CNR [dB] = 10 log 10 " σ 2 y σ 2 n « . (23) 

Security

Distribution of host and marked signals

Fig. 3 shows the distribution of the correlations of the host, NW and TNW signals over the two secret carriers for η = 1. Obviously, distributions of NW and TNW are identical to that of the host distribution. Therefore, we conclude that TNW does not impair the security of the scheme.

Principal Component Analysis

Principal Component Analysis can be used to estimate the subspace defined by the secret carriers. If an attacker can construct a basis of this subspace, he can make embedded messages unreadable (by nullifying the projections on the estimated subspace). More precisely, he recovers an orthogonal base with a PCA: Û of the subspace defined by the carriers U. This estimation depends on the strength of the embedding [START_REF] Pérez-Freire | Spread-spectrum watermarking security[END_REF]. Fig. 4 shows the normalized chordal distance between the secret and the estimated carriers by PCA functions of the parameter η by using NW and TNW.

As can be seen, the estimation of the carriers subspace for TNW closely follows that of NW. 

Robustness

Distortion

Tab. 1 quantify the distortion (by means of the W CR) of NW, HNW and TNW for two values of η = 1, 2). As expected, using an optimal transport map enables to reduce the original NW distortion by 3.76 dB when η = 1. Fig. 6 shows the W CR distortion of HNW and TNW functions of Nc. As can be seen the improvement regarding W CR distortion is better when we use TNW instead of HNW when Nc grows up. The reason is that even if the Hungarian method is optimal to find the matching which minimizes the total cost; HNW computes the embedding by looking for the nearest point registered in the pre-computed optimal mapping; the square euclidean distance between one point and the closest point recorded in the host correlations of the used Nm-map grows with respect to the dimension (Nc).

CONCLUSIONS

In this article we have developed an improvement of natural watermarking: transportation theory has been used in order to derive an optimal embedding formula for embedding Nc bits. This new mapping enables us to minimize the global distortion by keeping the same security and the same robustness as the classical scheme. Moreover this embedding method is better (regarding the distortion) and faster (regarding the complexity) than the Hungarian-based watermarking technique proposed in [START_REF] Mathon | Distortion optimization of model-based secure embedding schemes for data-hiding[END_REF]. As can be seen, the improvement of distortion is better for TNW than HNW when Nc grows up. For HNW, we lost optimality of Hungarian method by selecting nearest neighbours of our host correlations in the Nm-map, η = 1.
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Figure 2 :

 2 Figure 2: Modulations sNW and sTNW functions of zx,u 0 (Nc = 1, Nv = 512, η = 2, σ 2x = 1). Contrarily to NW, the modulation of TNW is not piecewise linear.

Figure 3 :

 3 Figure 3: Normalized correlations of host (a), NW (b) and TNW (c) over the first two secret carriers, No = 2000 observations.

Figure 4 :

 4 Figure 4: Normalized chordal distance between the secret and the estimated carriers by PCA functions of the parameter η for NW and TNW. As can be seen, the estimation of the carriers subspace for TNW closely follows that of NW, Nc = 10.

Fig. 5

 5 Fig. 5 depicts the BER (expectation on the 2000 marked signals) w.r.t. the W CNR. For two values of η = 1, 2 we can see that the robustness against AWGN attack is the same for NW and TNW.

Figure 5 :

 5 Figure 5: BER w.r.t. W CNR [dB] for NW and TNW with η = 1, 2, Nc = 10. η = 1 η = 2 NW -14.09 -10.06 HNW -16.74 -12.29 TNW -17.85 -12.79

Figure 6 :

 6 Figure 6: W CR w.r.t. Nc for HNW and TNW modulation.As can be seen, the improvement of distortion is better for TNW than HNW when Nc grows up. For HNW, we lost optimality of Hungarian method by selecting nearest neighbours of our host correlations in the Nm-map, η = 1.

Table 1 :

 1 W CR distortion for NW, HNW and TNW for η = 1, 2, Nc = 10.

	14.09 -10.06
	HNW -16.74 -12.29
	TNW -17.85 -12.79

APPENDIX

In this appendix, we consider µ = N (0, σ 2

x Nv ) and ν = e N (0,

Optimality of the transport map constructed in Eq. 17.

We want to show that T0 0 B @

x(0) . . .

x(n -1)

is an optimal transport map by applying the Th. 1. The condition i) is verified because a signal x is Gaussian iff each coordinate x(i) is Gaussian (we use the separability of the multidimensional Gaussian distribution). For the condition ii), we introduce the Jacobian matrix of T0:

(25) Show that this matrix is symmetric and positive semidefinite. The symmetry is trivial by construction of the transport map T0. A matrix J is positive semidefinite iff the eigenvalues of J are positive or null. So we must prove that `P-1 ν • Pµ

´ (t) ≥ 0. We have:

fµ(t) is positive (pdf) and P -1 ν (t) is a non-decreasing function so `P-1 ν ´ (t) ≥ 0. Then `P-1 ν • Pµ

´ (t) ≥ 0 and the Jacobian matrix of T0 is positive semidefinite. The conditions i) and ii) of the Th. 1 are verified: T0 is an optimal transport map.