
LOCAL MATCHING INDICATORS FOR CONCAVE TRANSPORT

COSTS

JULIE DELON, JULIEN SALOMON, AND ANDREĬ SOBOLEVSKĬI

Résumé. In this note, we introduce a class of indicators that enable to com-
pute efficiently optimal transport plans associated to arbitrary distributions
of N demands and N supplies in R in the case where the cost function is
concave. The cost of these indicators is small and independent of N . Using
them recursively according to a particular algorithm allows to find an optimal
transport plan in less than N

2 evaluations of the cost function.

1. Introduction

It is well known that transport problems on the line involving convex cost func-
tions have explicit solutions, consisting in a monotone rearrangement. Recently, an
efficient method has been introduced to tackle this issue on the circle [4]. In this
note we introduce an algorithm that enables to tackle optimal transport problems
on the line (but actually also on the circle) with concave costs. Our algorithm
complements the method suggested by McCann [2]. McCann considers general real
values of supply and demand and shows how the problem can be reduced to convex
optimization somewhat similar to the simplex method in linear programming. Our
approach as presented here is developed for the case of unit masses and is closer to
the purely combinatorial approach of [1], but extends it to a general concave cost
function. The extension to integer masses will be presented in [3].
The method we propose is based on a class of local indicators, that allow to detect
consecutive points that are matched in an optimal transport plan. Thanks to the
low number of evaluations of the cost function required to apply the indicators, we
derive an algorithm that finds an optimal transport plan in n2 operations in the
worst case. In practice, the computational cost of this method appears to behave
linearly with respect to n.
Since the indicators apply locally, the algorithm can be massively parallelized and
also allows to treat optimal transport problems on the circle. In this way, it extends
the work of Aggarwal et al. [1] in which cost functions have a linear dependence in
the distance.

2. Setting of the problem

For N0 ∈ N∗, consider P = (pi)i=1,...,N0
and Q = (qi)i=1,...,N0

two sets of points
in R that represent respectively demand and supply locations. The problem we
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consider in this note consists in minimizing the transport cost

(1) C(σ) =
∑

i,j

c(pi, qσ(i)),

where σ is a permutation of {1, ..., N0}. This permutation forms a transport plan.
We focus on the case where the function c involves a concave function as stated in
the next definition.

Definition 1. The cost function in (1) is defined on R by c(p, q) = g(|p − q|)
with p, q ∈ R, where g(·) is a concave non-decreasing real-valued function of a real
positive variable such that g(0) := limx→0 g(x) ≥ −∞.

Some examples of such costs are given by g(x) = log(x) with g(0) = −∞, and
g(x) =

√
x or g(x) = |x| is with g(0) = 0.

Finally, we denote by σ⋆ the permutation associated to a given optimal transport
plan between P and Q : for all permutation σ of {1, ..., N0}, C(σ⋆) ≤ C(σ).

3. Chains

In this section, we present a way to build a particular partition of the set P ∪Q.
Consider two pairs of matched points (pi, qσ⋆(i)) and (pi′ , qσ⋆(i′)), say e.g. pi ≤ qσ⋆(i),
pi′ ≤ qσ⋆(i′). It is easy to prove that the following alternative holds :

(1) [pi, qσ⋆(i)] ∩ [pi′ , qσ⋆(i′))] = ∅,
(2) [pi, qσ⋆(i)] ⊂ [pi′ , qσ⋆(i′))] or [pi′ , qσ⋆(i′))] ⊂ [pi, qσ⋆(i)].

This remark is a direct consequence of the concavity of the cost function and is
often denominated as ”the non-crossing rule” [1, 2]. In the next section, we show
how it allows decompose the initial situation in sub-problems where supply and
demand points are alternated.
Because of the non-crossing rule in an optimal plan there are as many supply points
as demand points between any pair of matched points pi and qσ(i). For a given de-
mand point pi, define its left neighbor q′i as the nearest supply point on the left
of pi such that the numbers of supply and demand points between q′i and pi are
equal ; define the right neighbor q′′i of pi in a similar way. Then define a chain as a
maximal alternating sequence of supply and demand points (pi1 , qj1 , pi1 , ..., qjk

) or
(qj1 , pi2 , ..., pik+1

) such that each qil
is the right neighbor of pil

and the left neighbor
of pil+1

. An extension of the proof of Lemma 3 of [1] shows that the collection of
chains forms a partition of the set P ∪ Q. Note that construction of this collection
only depends on relative positions of supply and demand points and does not in-
volve any evaluation of the cost function. It can be done in O(N0) operations.
The non-crossing rule implies that all matched pairs of points in an optimal trans-
port plan must belong to the same chain. We therefore restrict ourselves in the
sequel, without loss of generality, to the case of a single chain

(2) p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN ,

for N ∈ N∗ and keep these last notations throughout the rest of this paper.

4. Local matching indicators

Thanks to the non-crossing rule, one knows that there exists at least two conse-
cutive points (pi, qi) or (qi, pi+1) that are matched in any optimal transport plan.
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Starting from this remark, we take advantage of the structure of a chain to introduce
a class of indicators that enable to detect a priori such pairs of points.

Definition 2 (Local Matching Indicators of order k). We define

I
p
k (i) = c(pi, qi+k) +

k−1∑

ℓ=0

c(pi+ℓ+1, qi+ℓ) −
k∑

ℓ=0

c(pi+ℓ, qi+ℓ),

where k, i are such that 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k, and

I
q
k(i) = c(pi+k+1, qi) +

k∑

ℓ=1

c(pi+ℓ, qi+ℓ) −
k∑

ℓ=0

c(pi+ℓ+1, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 2 and 1 ≤ i ≤ N − k − 1.

The interest of these functions lies in the next result.

Theorem 3 (Negative Local Matching Indicators of order k). Let k0 ∈ N with
1 ≤ k0 ≤ N − 1 and i0 ∈ N (resp. i′0 ∈ N), such that 1 ≤ i0 ≤ N − k0 (resp.
1 ≤ i′0 ≤ N − k0 − 1).
Assume that

(1) I
p
k (i) ≥ 0 for k = 1, ..., k0 − 1, 1 ≤ i ≤ N − k,

(2) I
q
k(i′) ≥ 0 for k = 1, ..., k0 − 1, 1 ≤ i′ ≤ N − k − 1,

(3) I
p
k0

(i0) < 0 (resp. I
q
k0

(i′0) < 0).

Then any permutation σ⋆ associated to an optimal transport plan satisfies σ⋆(i) =
i − 1 for i = i0 + 1, ..., i0 + k0 (resp. σ⋆(i) = i for i = i0 + 1, ..., i0 + k0).

In practice, these indicators allow to find pairs of neighbors that are matched in
an optimal transport plan.
Before giving the proof, we state a basic result.

Lemma 4. We keep the previous notations. Define

ϕ
p
k,i(x, y) = g(x+y+pi+k−qi)+

k−1∑

ℓ=0

c(pi+ℓ+1, qi+ℓ)−g(x)−g(y)−
k−1∑

ℓ=1

c(pi+ℓ, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k, and

ϕ
q
k,i(x, y) = g(x+y+pi+k+1−qi)+

k∑

ℓ=1

c(pi+ℓ, qi+ℓ)−g(x)−g(y)−
k−1∑

ℓ=1

c(pi+ℓ+1, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 2 and 1 ≤ i ≤ N − k − 1. Both functions
ϕ

p
k,i(x, y) and ϕ

q
k,i(x, y) are decreasing with respect to each of their two variables.

This lemma is a direct consequence of the concavity of the function g. We are
now in the position to give the sketch of the proof of Theorem 3.
Sketch of the proof : We consider the case where I

p
k0

(i0) < 0. The case I
q
k0

(i′0) < 0
can be treated the same way.
The proof consists in proving that Assumptions (1–3) imply that neither demand
nor supply points located between pi0 and pi0+k0+1 can be matched with points
located outside this interval, i.e. that the set Si0 = {pi, i0+1 ≤ i ≤ i0+k0}∪{qi, i0 ≤
i ≤ i0+k0−1} is stable by an optimal transport plan. In this case, the result follows
from Assumption (1–2).
Suppose that Si0 is not preserved by an optimal transport plan σ⋆. Three cases can
occur :
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a) There exists i1 ∈ N, such that 1 ≤ i1 ≤ i0 and i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and
there exists i′1 ∈ N, such that σ⋆(i1)+1 ≤ i′1 ≤ i0+k0 and i0+k0 ≤ σ⋆(i′1) ≤ N .

b) There exists i2 ∈ N, with i0 + 1 ≤ i2 ≤ i0 + k0 such that 1 ≤ σ⋆(i2) ≤ i0 − 1.

c) There exists i2 ∈ N, with i0 + k0 < i2 ≤ N such that i0 ≤ σ⋆(i2) < i0 + k0.

We only prove that Case a) cannot occur. The fact that Cases b) and c) contradict
the assumptions are actually not a consequence of the concavity of the cost, but of
its non-decreasing property. Details will be given in [3].
In Case a), one can assume without loss of generality that σ⋆(i1) is the largest index
such that 1 ≤ i1 ≤ i0, i0 ≤ σ⋆(i1) ≤ i0+k0−1 and that i′1 is the smallest index such
that σ⋆(i1) + 1 ≤ i′1 ≤ i0 + k0, i0 + k0 ≤ σ⋆(i′1) ≤ N . With such assumptions, the
(possibly empty) subset {pi, σ

⋆(i1) + 1 ≤ i ≤ i′1 − 1} ∪ {qi, σ
⋆(i1) + 1 ≤ i ≤ i′1 − 1}

is stable by σ⋆. Because of Assumptions (1–2), no nesting can occur in this subset,
and σ⋆(i) = i for i = σ⋆(i1) + 1, ..., i′1 − 1.
On the other hand, since σ⋆ is supposed to be optimal, one has :

c(pi1 , qσ⋆(i1))+c(pi′
1
, qσ⋆(i′

1
))+

i′1−1∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi1 , qσ⋆(i′
1
))+

i′1−1∑

i=σ⋆(i1)

c(pi+1, qi).

Thanks to Lemma 4, one deduces from this last inequality that :

c(pi0 , qσ⋆(i1))+c(pi′
1
, qi0+k0

)+

i′1−1∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi0 , qi0+k0
)+

i′1−1∑

i=σ⋆(i1)

c(pi+1, qi),

and then :

c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1∑

i=i0

c(pi+1, qi) + c(pi′
1
, qi0+k0

) +

i0+k0−1∑

i=i′
1

c(pi+1, qi) +

i′1−1∑

i=σ⋆(i1)+1

c(pi, qi)

≤ c(pi0 , qi0+k0
) +

i0+k0−1∑

i=i0

c(pi+1, qi).(3)

According to Assumption (1), I
p

σ⋆(i1)−i0
(i0) ≥ 0 and I

p

i0+k0−i′
1

(i′1) ≥ 0, so that :

σ⋆(i1)∑

i=i0

c(pi, qi) ≤ c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1∑

i=i0

c(pi+1, qi)

i0+k0∑

i=i′
1

c(pi, qi) ≤ c(pi′
1
, qi0+k0

) +

i0+k0−1∑

i=i′
1

c(pi+1, qi).

Combining these last inequalities with (3) one finds that :

i0+k0∑

i=i0

c(pi, qi) ≤ c(pi0 , qi0+k0
) +

i0+k0−1∑

i=i0

c(pi+1, qi),

which contradicts Assumption (3). �
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5. An algorithm for balanced chains

The recursive use of our indicators is on the basis of the next algorithm.
Algorithm : Set P = {p1, ..., pN , q1, ..., qN}, ℓp = (1, ..., N), ℓq = (1, ..., N), and
k = 1.
While P 6= ∅ and k ≤ N − 1 do

(1) Compute I
p
k (i) and I

q
k(i′) for i = 1, ..., N − k and i′ = 1, ..., N − k − 1.

(2) Define
Ip

k = {i0, 1 ≤ i0 ≤ N − k, I
p
k (i0) < 0},

Iq
k = {i0, 1 ≤ i0 ≤ N − k − 1, I

q
k(i0) < 0},

and do

(a) If Ip
k = ∅ and Iq

k = ∅, set k = k + 1.

(b) Else do
– for all i0 in Ip

k and for i = i0 + 1, ..., i0 + k, do
– define σ⋆(ℓp

i ) = ℓ
q
i−1,

– remove {pℓ
p

i
, qℓ

q

i−1
} from P ,

– remove ℓ
p
i and ℓ

q
i from ℓp and ℓq respectively.

– for all i′0 in Iq
k and for i = i′0 + 1, ..., i′0 + k, do

– define σ⋆(ℓp
i ) = ℓ

q
i ,

– remove {pi, qi} from P ,
– remove ℓ

p
i and ℓ

q
i from ℓp and ℓq respectively.

– set N = 1
2Card(P), and rename the points in P such that P =

{p1, ..., pN , q1, ..., qN},
p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN .

– set k = 1.

If k = N − 1, for i = 1, ..., N set σ⋆(ℓp
i ) = ℓ

q
i .

To test the efficiency of our algorithm, we have applied it to an increasing num-
ber N of pairs of points. For a fixed value of N , 100 samples of points have been
chosen randomly in [0, 1], and the mean of the number of evaluations of g has been
computed. The results are shown in Fig.1.
The best case consists in finding a negative indicator at each step, and the worst
corresponds to the case where all the indicators are positive. These two cases re-
quire respectively N − 1 and (N − 1)2 evaluations of g.
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Fig. 1. Number of in-line evaluations with respect to the number
of pairs, for various cost functions. The number α is the slope of
the log-log graphs.
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