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Summary

Maximum likelihood parameter estimation is frequently replaced by various tech-
niques because of its intractable normalizing constant. In the same way, the literature
displays various alternatives for distributions involving such unreachable constants.

In this paper, we consider a Gibbs distribution π and present a recurrence formula
allowing a recursive calculus of the marginals of π and in the same time its normalizing
constant.

The numerical performance of this algorithm is evaluated for several examples,
particularly for an Ising model on a lattice.
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1 Introduction

Usually, the normalizing constant of a discrete probability π distribution involves high

dimensional summation such that the direct evaluation of these sums becomes quickly

infeasible in practice. For example, the direct calculation of the normalizing constant of the

Ising model on a 10×10 grid involves summation over 2100 terms. The problem is bypassed

for instance by evicting the distribution of interest by an alternative as, for example in

spatial statistics, replacing the likelihood for the conditional pseudo likelihood (see Besag

(1974)). Another solution consists of estimating the normalizing constant; a number of

techniques have been proposed for this approximate evaluation, see for example Pettitt et

al. (2003) and Moeller et al. (2006) for efficient Monte Carlo methods. Bartolucci and

Besag (2002) present a recursive algorithm computing the likelihood of a Markov random

field in the form of a product of conditional probabilities. Reeves (2004) propose efficient

computation of the normalizing constant for a factorisable model, that is when π can be

written as a product of factors.

In this paper we give more specific results when we specify π as a Gibbs distribution.

We derive some results of Khaled (see Khaled 1 (2008), Khaled 2 (2008)) giving an orig-

inal linear recursive calculation of the marginal distributions in the case of a particular

distribution π of Z = (Z1, Z2, · · · , ZT ) used in econometrics for the modelling of a hidden

regime (see Lovinson (2006)). An interesting consequence is to ease the calculation of the

normalizing constant of π. We generalize Khaled’s results, noticing that if π is a Gibbs

distribution on T = {1, 2, · · · , T}, therefore π is a Markov field on T and it is easy to

manipulate its conditional distributions. This approach allows to extend the recurrences

given by Khaled to general Gibbs distribution π (either spatial or temporal) on a general

finite state space E; those recursions yield exact calculation of the marginal distributions

πt of (Z1, Z2, · · · , Zt), 1 ≤ t ≤ T as well as the normalization constant C of π.

First, we recall in section 1 some basic properties about Gibbs and Markov fields for Z =

(Z1, Z2, · · · , ZT ), a sequence of joint distribution π on ET where E is a finite state space.

The main result of this paper is presented in section 2, where we give forward recursion

for the marginal distributions and the application to the calculation of the normalization

constant. We present some simple examples and give the computing times for carrying out

the normalizing constant. In section 3, we extend the results to general Gibbs fields, in

the sense of temporal Gibbs fields as well as spatial Gibbs fields. Finally we evaluate the

numerical performance of our method to compute the normalizing constant for a spatial

Ising model on a lattice m× T .
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2 Markov chain and Markov field properties for a Gibbs field

Let T > 0 be a fix positive integer, E = {e1, e2, · · · , eN} a finite state space with N

elements, Z = (Z1, Z2, · · · , ZT ) a temporal sequence with joint distribution π on ET .

We assume that π is a Gibbs distribution with an energy UT described by singletons

potentials (θs)s=1,T and pairs potentials (Ψs)s=2,T , that is, denoting z(t) = (z1, z2, · · · , zt)

for 1 ≤ t ≤ T ,

π(z(T )) = C exp UT (z(T )) with C−1 =
∑

z(T )∈ET

exp UT (z(T )) where (2·1)

Ut(z(t)) =
∑
s=1,t

θs(zs) +
∑
s=2,t

Ψs(zs−1, zs) for 2 ≤ t ≤ T , and U1(z1) = θ1(z1).

2·1 Markov field property

The neighbourhood graph on T = {1, 2, · · · , T} associated to π is the so-called 2 nearest

neighbours system. Moreover, we consider π as a bilateral Markov random field equipped

with the 2 nearest neighbours system (see Kindermann and Snell (1980), Guyon (1995)):

if 1 < t < T ,

π(zt | zs, 1 ≤ s ≤ T and s 6= t) = π(zt | zt−1, zt+1) (2·2)

Indeed:

π(zt | zs, 1 ≤ s ≤ T and s 6= t) =
π(z1, z2, · · · , zT )∑

u∈E π(z1, z2, · · · , zt−1, u, zt+1, ..zT )

=
exp{θt(zt) + Ψt(zt−1, zt) + Ψt+1(zt, zt+1)}∑
u∈E exp{θt(u) + Ψt(zt−1, u) + Ψt+1(u, zt+1)} = π(zt | zt−1, zt+1).

Therefore, the non causal conditional distribution π(zt | zt−1, zt+1) can be easily computed

as soon as N , the cardinal of E, remains rather small.

2·2 Markov chain property

Proposition 1 Z is a Markov chain: π(zt | zs, s ≤ t− 1) = π(zt | zt−1) if 1 < t ≤ T .

Proof : π(zt | zs, s ≤ t − 1) = πt(z1,z2,··· ,zt)
πt−1(z1,z2,··· ,zt−1)

. Let’s identify πt(z1, z2, · · · , zt). For

1 ≤ s < t ≤ T , and using the notation ut
s = (us, us+1, · · · , ut), we write:

πt(z1, z2, · · · , zt) =
∑

uT
t+1∈ET−t

π(z1, z2, · · · , zt, u
T
t+1) (2·3)

= C exp{
∑
s=1,t

θs(zs) +
∑
s=2,t

Ψs(zs−1, zs)} × exp{θ∗t (zt)} where
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exp{θ∗t (zt)} =
∑

uT
t+1

exp{
T∑

s=t+1

θs(us) + Ψt+1(zt, ut+1) +
T∑

t+2

Ψs(us−1, us)}. (2·4)

We deduce that the conditional (to the past) distribution of zt is given by:

π(zt | zs, s ≤ t−1) = exp{θt(zt)+θ∗t (zt)−θ∗t−1(zt−1)+Ψt(zt−1, zt)} = π(zt | zt−1). (2·5)

¥

Remarks:

1. Following the proof above, we write again the marginal distribution πt(z1, z2, · · · , zt)

as

πt(z(t)) = C exp{
∑

s=1,t−1

θs(zs) + [θt(zt) + θ∗t (zt)] +
∑
s=2,t

Ψs(zs−1, zs)}.

Therefore, the marginal field (Z1, · · · , Zt) is also a Gibbs field with the 2 nearest

neighbours system, associated to the same potentials, except for the last singleton

potential which equals θ̃t(zt) = θt(zt) + θ∗t (zt).

2. An important difference appears between formula (2·5) and (2·2): indeed, (2·2) is

computationally feasible, when (2·5) is not, because of the summation over uT
t+1 which

is of complexity NT−t.

3 Recursion over marginal distributions

3·1 Future-conditional contribution Γt(z(t))

For t ≤ T−1, the distribution conditionally to the future π(z1, z2, · · · , zt | zt+1, zt+2, · · · , zT ),

depends only on zt+1:

π(z1, z2, · · · , zt | zt+1, zt+2, · · · , zT ) =
π(z1, z2, · · · , zT )∑

ut
1∈Et π(ut

1, zt+1, ..zT )

=
exp {Ut(z1, ..., zt) + Ψt+1(zt, zt+1)}∑

ut
1∈Et exp

{∑
s=1,t θs(us) + Ψt+1(ut, zt+1) +

∑
s=2,t Ψs(us−1, us)

}

= π(z1, z2, · · · , zt | zt+1).

We can write this conditional distribution on the following feature:

π(z1, z2, · · · , zt | zt+1) =
exp {Ut(z1, ..., zt) + Ψt+1(zt, zt+1)}∑

ut
1∈Et exp {Ut(u1, ..., ut) + Ψt+1(ut, zt+1)} , i.e.

π(z1, z2, · · · , zt | zt+1) = Ct(zt+1) exp U∗
t (z1, z2, · · · , zt; zt+1)
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where U∗
t is the future-conditional energy defined by:

U∗
t (z1, z2, · · · , zt; zt+1) = Ut(z1, z2, · · · , zt) + Ψt+1(zt, zt+1), (3·1)

and Ct+1(zt+1)
−1 =

∑
ut
1∈Et exp {U∗

t (u1, ..., ut; zt+1)}. Then, for i = 1, N :

π(z1, z2, · · · , zt | zt+1 = ei) = Ct(ei)γt(z1, z2, · · · , zt; ei) where γt(z(t); ei) = exp U∗
t (z(t); ei).

Thus, we define γt(z(t); ei) as the contribution to the distribution πt of Z(t) conditionally

to the future zt+1 = ei.

Definition 1 For t ≤ T − 1, the vector Γt(z(t)) of the future-conditional contributions is

defined by the vector of RN with i-th component, 1 ≤ i ≤ N :

(Γt(z(t)))i = γt(z(t); ei).

For t = T , there is no conditional future and ΓT (z(T )) is the constant vector of com-

ponents γT (z(T )) = exp UT (z(T )). The definition of ΓT (z(T )) is analogous to the one of

Γt for t ≤ T − 1 with the convention ΨT+1 ≡ 0. Still with this convention, we define for

1 ≤ t ≤ T the matrix At of size N ×N with general term:

At(i, j) = exp{θt(ej) + Ψt+1(ej, ei)}, et i, j = 1, N. (3·2)

Let us note that AT has constant columns AT (i, j) = exp θT (ej) for i, j = 1 to N . Then

we get the fundamental recurrence:

Proposition 2 For all 2 ≤ t ≤ T , z(t) = (z1, z2, · · · , zt) ∈ Et and ei ∈ E, we have:

γt(z(t− 1), ej; ei) = At(i, j)× γt−1(z(t− 1); ej) , (3·3)

and
∑
zt∈E

Γt(z(t− 1), zt) = AtΓt−1(z(t− 1)). (3·4)

Proof : (i) Let us consider the case 2 ≤ t ≤ T − 1. The energy Ut verifies Ut(z(t− 1), zt) =

Ut−1(z(t− 1)) + θt(zt) + Ψt(zt−1, zt) ; therefore (3·1) ensures for all (zt, zt+1) = (a, b) ∈ E2

:

U∗
t (z(t− 1), a; b) = Ut−1(z(t− 1)) + θt(a) + Ψt(zt−1, a) + Ψt+1(a, b)

= U∗
t−1(z(t− 1); a) + {θt(a) + Ψt+1(a, b)}.

This implies the recurrence (3·3), with (ej, ei) = (a, b) = (zt, zt+1). The summation over

zt = ej gives the component i on the left hand side of (3·4). That ensures the result.

(ii) For t = T , since ΨT+1 ≡ 0, then U∗
T (z(T − 1), a) = U∗

T−1(z(T − 1); a) + θT (a).

Therefore we obtain (3·4) for AT (i, j) = exp θT (ej). ¥
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3·2 Forward recursion for marginal distributions and normalization constant

Let us define the following row vectors 1×N : E1 = BT = (1, 0, · · · , 0), and (Bt)t=T,2 the

sequence specified by the forward recursion:

Bt−1 = BtAt if t ≤ T.

We also denote K1 =
∑

z1∈E Γ1(z1) ∈ RN . The evaluation of K1 is easy if N is not too

large, since its i-th component is K1i =
∑

z1∈E exp{θ1(z1) + Ψ2(z1, ei)}. We give below the

main result of this paper.

Proposition 3 Marginal distributions πt and calculation of the normalization constant C.

(1) For 1 ≤ t ≤ T :

πt(z(t)) = C ×BtΓt(z(t)). (3·5)

(2) The normalization constant C of the joint distribution π verifies:

C−1 = E1AT AT−1 · · ·A2K1. (3·6)

Proof :

(1) Let us prove (3·5) by descending recurrence. For t = T , the equality is verified

since,

π(z1, z2, · · · , zT ) = πT (z(T )) = C exp UT (z(T )) = C × E1ΓT (z(T )).

Let us assume that (3·5) is verified for t, 2 ≤ t ≤ T . We use (3·4) which gives:

πt−1(z(t− 1)) =
∑
zt∈E

πt(z(t− 1), zt) = C ×Bt{
∑
zt∈E

Γt(z(t− 1), zt)}

= C ×BtAtΓt−1(z(t− 1)) = C ×Bt−1Γt−1(z(t− 1)).

(2) Refering to (3·5), we have π1(z1) = C×B1 Γ1(z1). The summation over z1 gives C×
B1K1 = 1. The result ensures from the equality B1 = E1AT AT−1 · · ·A2. ¥

Remarks :

1 - The formula (3·6) allowing the calculus of C reduces in the case of time invariant

potentials. In that case, we have At ≡ A for 1 ≤ t ≤ T − 1, with A(i, j) = exp{θ(ej) +

Ψ(ej, ei)}, AT (i, j) = exp θ(ej) and

C−1 = E1AT AT−2K1. (3·7)
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Therefore, if the size N of E allows the diagonalization of the matrix A, we can achieve

the calculus of the constant C independently of the temporal dimension T .

We give below two examples to illustrate our method. In each example, we consider

Gibbs models with time independent potentials. For increasing values of T and various

methods, we compare the times necessary for the computation of the normalizing constant

C−1. When possible, we also give the computing times for the ordinary summation method.

In all examples, we have used the Matlab software and times are given in seconds.

Example 1 : binary temporal model

The state space is E = {0, 1} = {e1, e2} with N = 2 states, θt(zt) = αzt and Ψt+1(zt, zt+1) =

βztzt+1 for t ≤ T − 1. We have :

At = A =

(
1 eα

1 eα+β

)
for t = 1, T − 1, AT =

(
1 eα

1 eα

)
, E1 =

(
1 0

)
, K1 =

(
1 + eα

1 + eα+β

)
.

We present in Table 1 the times for the computation of C−1 for various values of T and

the following methods : (1) calculation of C−1 = E1AT AT−2K1; (2) C−1 is obtained by

direct summation on ET using a simple loop, or using a bitmap dodge which computes

simultaneously the 2T elements of ET (2 bis). We stopped computing C−1 by summation

for T > 25.

Meth. 1 Meth. 2 Meth. 2 bis Value C−1

T = 10 0 0.4690 0.0150 3.3441e+004

T = 20 0 744.6570 33.8120 8.6756e+008

T = 25 0 ∼ 6 hours 1315.0 1.3974e+011

T = 690 0 4.7610e+304

T ≥ 700 0 ∞
Table 1 : Computing times of C−1 for the binary temporal Gibbs distribution with

parameters α = 1, β = −0.8.

We see that the computing times of C−1 = E1AT AT−2K1 are negligible for T < 700 while

the summation method becomes quickly infeasible.

Example 2 : bivariate binary temporal model

E = {0, 1}2 (N = 4 states), and Z(T ) is the anisotropic Ising model:

π2((x1, y1), (x2, y2)) = C exp{αx1 +βy1 + γx1y1 +αx2 +βy2 + γx2y2 + δ(x1x2 + y1y2)}.

7



E1AT = AT (1, ·) is AT ’s first row with AT (1, j) = exp{αxj +βyj +γxjyj}; A is of size 4×4

defined by A(i, j) = exp{αxj + βyj + γxjyj + δ(xixj + yiyj)}, and K1’s i−th component

equals
∑

z=(x,y)∈E exp{αx + βy + γxy + δ(xxi + yyi)}. We computed C−1 in two ways,

first using the the powers of A i.e. C−1 = E1AT AT−2K1, then using its diagonalization

C−1 = E1AT PDT−2P−1K1. We took parameters α = 1, β = −0.8, γ = −0.5, δ = 0.04.

We were able to calculate C−1 = 9.9491e + 006 for T = 430 and then stopped for larger

T since the software treats C−1 as equals infinity. The computing times are null for both

methods, which means that we get instantaneously C−1’s value, and the size of A is still

too small to distinguish computations using power or diagonalization of A.

4 General Gibbs fields

4·1 Temporal Gibbs fields

The previous results can be extended to general temporal Gibbs models. As an illustration,

let us consider the following model, characterized by the energy:

UT (z(T )) =
∑

s=1,T

θs(zs) +
∑

s=2,T

Ψ1,s(zs−1, zs) +
∑

s=3,T

Ψ2,s(zs−2, zs).

The joint distribution π defines a bilateral Markov field with the 4 nearest neighbours

system, and conditional distributions:

π(zt | zs, 1 ≤ s ≤ T et s 6= t) =

=
exp{θt(zt) + Ψ1,t(zt−1, zt) + Ψ1,t+1(zt, zt+1) + Ψ2,t(zt−2, zt) + Ψ2,t+2(zt, zt+2)}∑
u∈E exp{θt(u) + Ψ1,t(zt−1, u) + Ψ1,t+1(u, zt+1) + Ψ2,t(zt−2, u) + Ψ2,t+2(u, zt+2)}

= π(zt | zt−1, zt+1, zt−2, zt+2).

Z is also a Markov chain of order 2 with:

π(zt | zs, s ≤ t− 1)

= exp{θt(zt) + θ∗t (zt)− θ∗t−1(zt−1) + Ψ1,t(zt−1, zt) + Ψ2,t(zt−2, zt)

+ θ∗∗t (zt−1, zt)− θ∗∗t−1(zt−2, zt−1)}
= π(zt | zt−1, zt−2)

where θ∗t (zt) is given by (2·4) and

θ∗∗t (zt−1) =
∑

uT
t+1

exp{Ψ2,t+1(zt−1,ut+1) + Ψ2,t+2(zt, ut+2) +
T∑

t+3

Ψ2,s(us−2,us)}.
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For t ≤ T − 2, the conditional distribution π(z(t) | zt+1, zt+2, · · · , zT ) depends only on

(zt+1, zt+2):

π(z(t) | zt+1, zt+2) = Ct(zt+1, zt+2) exp U∗
t (z(t); zt+1, zt+2),

where we name U∗
t (z(t); zt+1, zt+2) the future conditional energy :

U∗
t (z(t); zt+1, zt+2) = Ut(z(t)) + Ψ1,t+1(zt, zt+1) + Ψ2,t+1(zt−1, zt+1) + Ψ2,t+2(zt, zt+2),

and Ct(zt+1, zt+2)
−1 =

∑

ut
1∈Et

exp U∗
t (u1, .., ut; zt+1, zt+2).

For a, b and c ∈ E, it is easy to verify that:

U∗
t (z(t− 1), a; (b, c)) = U∗

t−1(z(t− 1); (a, b)) + θt(a) + Ψ1,t+1(a, b) + Ψ2,t+2(a, c).

With the convention Ψ1,s ≡ Ψ2,s ≡ 0 for s > T , we define:

• for t ≤ T − 2, the vector Γt(z(t)) of the conditional contributions, conditionally to

the future (zt+1, zt+2) = (ei, ej), i, j = 1, N, by the N2×1 vector of components (i, j):

γt(z(t); (ei, ej)) = exp U∗
t (z(t); ei, ej);

• ΓT−1(z(T − 1)), the vector of the contributions conditionally to the future zT = ei :

(ΓT−1(z(T − 1))i = exp{UT−1(z(T − 1)) + Ψ1,T (zT−1, ei) + Ψ2,T (zT−1, ei)};

• ΓT (z(T )) the constant vector of components exp{UT (z(T )}.

In the same way, we define the matrix A of size N2 ×N2 whose non zero components

are:

At((i, j), (k, i)) = exp{θt(ek) + Ψ1,t+1(ek, ei) + Ψ2,t+2(ek, ej)}

Like in section 3·2, we obtain a recurrence formula on the γt :

γt(z(t− 1), ek; (ei, ej)) = At((i, j), (k, i))× γt−1(z(t− 1); (ek, ei))

together with the statement (3·4) on the contributions Γt(z(t)). In this context, (Zt, t =

1, T ) is a Markovian process with memory 2 and Yt = (Zt, Zt+1) a bivariate Markov chain

for which we get the results (3·5) and (3·6).
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4·2 Spatial Gibbs fields

Let us consider Zt = (Z(t,i), i ∈ I), where I = {1, 2, · · · ,m}, and Z(t,i) ∈ F (Zt ∈ E =

Fm). Then Z = (Zs, s = (t, i) ∈ S) is a spatial field on S = T × I. We note again

zt = (z(t,i), i ∈ I), z(t) = (z1, .., zt) and z = z(T ).

Without loss of generality, we suppose that the distribution π of Z is a Gibbs distri-

bution with translation invariant potentials ΦAk
(•), k = 1, K associated to a family of

subsets {Ak, k = 1, K} of S, ΦAk
(z) depending only on zAk

, the layout of z over Ak. Then

π is characterized by the energy:

U(z) =
∑

k=1,K

∑

s∈S(k)

ΦAk+s(z), with S(k) = {s ∈ S s.t. Ak + s ⊆ S}.

For A ⊆ S, we define the height of A by H(A) = sup{|u− v| ,∃(u, i) and (v, j) ∈ A},
and H = sup{H(Ak), k = 1, K} the biggest height of the potentials. With this notation,

we write the energy U as the following:

U(z) =
H∑

h=0

T∑

t=h+1

Ψ(zt−h, · · · , zt) with Ψ(zt−h, · · · , zt) =
∑

k:H(Ak)=h

∑

s∈St(k)

ΦAk+s(z)

where St(k) = {s = (u, i) : Ak + s ⊆ S and t−H(Ak) ≤ u ≤ t}.

(Zt) is a Markov field with the 2H-nearest neighbours system but also a Markov process

with memory H; Yt = (Zt−H , Zt−H+1, · · ·Zt), t > H, is a Markov chain on EH for which

we get the results (3·5) and (3·6).

4·3 Computing the normalization constant for the Ising model

We specify here the calculus of C−1 in the case of a translation invariant potentials Ising

model (Kindermann and Snell (1980), Guyon (1995)). Let S = T × I ={1, 2, · · · , T} ×
{1, 2, · · · ,m} be the set of sites, and F = {−1, +1} the state space. We consider Z =

(Z(t,i), (t, i) ∈ S) a Markov field on S with the four nearest neighbours system, a site

(t, i) being a neighbour of (s, j) if ‖(t, i)− (s, j)‖1 = 1. The joint distribution π of Z is

characterized by the singletons and pairs potentials:

Φt,i(z) = α z(t,i) for (t, i) ∈ S,

Φ{(t,i),(t,i+1)}(z) = β z(t,i)z(t,i+1) for 1 ≤ i ≤ m− 1,

and Φ{(t−1,i),(t,i)}(z) = δ z(t−1,i)z(t,i) for 2 ≤ t ≤ T.
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Forgetting the spatial dimension, we consider the state zt = (z(t,i), i = 1, m) ∈ E =

{−1, +1}m. Then Z is a temporal Gibbs field with the following translation invariant

potentials:

θt(zt) = θ(zt) = α
∑

i=1,m

z(t,i) + β
∑

i=1,m−1

z(t,i)z(t,i+1),

Ψt(zt−1, zt) = Ψ(zt−1, zt) = δ
∑

i=1,m

z(t−1,i)z(t,i), 2 ≤ t ≤ T.

Let us give some notations associated to c = (ci, i = 1,m) and d = (di, i = 1,m),

two states of E = {−1, +1}m; we first introduce n+(c) = ]{i ∈ I : ci = +1} and n−(c) =

]{i ∈ I : ci = −1} (n+(c) + n−(c) = m), then v+(c) = ]{i = 1,m − 1 : ci = ci+1} and

v−(c) = ]{i = 1,m − 1 : ci 6= ci+1} (v+(c) + v+(c) = m − 1), and finally n+(c, d) = ]{i ∈
I : ci = di}, n−(c, d) = ]{i ∈ I : ci 6= di} (n+(c, d) + n+(c, d) = m).

Since the potentials are invariant, the matrix At given by (3·2) does not depend on t,

we have At = A, t ≤ T − 1, the 2m × 2m matrix whose general term is,

A(a, b) = exp{α(n+(b)− n−(b)) + β(v+(b)− v−(b)) + δ(n+(a, b)− n−(a, b))}, a, b ∈ E.

Moreover, for t = T, AT (a, b) = exp{α(n+(b)− n−(b)) + β(v+(b)− v−(b))}. Therefore, the

normalization constant of π is C−1 = E1AT AT−2K1.

Since K1 is given by a summation over E = {−1, +1}m, and the size A is 2m× 2m, this

formula is practically useful for m not too big.

Example 3

Table 2 gives computing times for the normalizing constant for the Ising model above with

parameters α = 0.15, β = 0.05, δ = −0.08. In the case T = m = 2, the model is the one

given in example 2 with F = {0, 1}. We consider varying values of T and m = 10, that is

we work with vectors and square matrices of size 210 but without theoretical constraints

on the size of T = {1, 2, · · · , T}. We compute C−1 using the powers of matrix A or its

diagonalization.

m = 10 C−1 = E1AT AT−2K1 C−1 = E1AT PDT−2P−1K1 Value C−1

T = 2 0.3130 32.4850 1.3855e+006

T = 10 8.9220 40.8290 5.4083e+030

T = 50 15.4380 47.4060 4.8989e+153

T = 100 19.3600 51.0950 2.4344e+307

Table 2: Computing times of C−1 for an Ising model on a lattice 10× T for various T.
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We observe that it’s computationally more efficient to compute the powers AT−2 rather than

to use the diagonalization of A. Indeed, the diagonalization procedure itself is expensive

for large size matrices.

4·4 Other generalizations

First, we presented the forward recursion for Gibbs distributions with singletons and pairs

potentials. The results can be extended to larger potentials (triple or more).

Another extension is to consider variable state spaces. The recurrence (3·4) and prop-

erties (3·5), (3·6) hold for different state spaces Et of the components Zt; in this case, the

associated matrices At involved in (3·6)are not necessarly square.

Finally, we can extend the results to embedded sets T ; for instance let us consider the de-

creasing sequence T = SQ ⊃ SQ−1 ⊃ · · · ⊃ S1 of parts of T = {1, 2, · · · , T}; similarly to the

former future-conditional contributions, we define the contributions γq(z(Sq); z(T�Sq)),

conditionally to the outer layout z(T�Sq). Let us give the following example: we assume

Sq = Sq−1 ∪ ∂Sq−1 for q = 1, Q− 1. Then, we obtain the conditional energy

U∗
q (z(Sq); z(∂Sq)) = U∗

q−1(z(Sq−1); z(∂Sq−1)) + ∆q(z(∂Sq−1)); z(∂Sq))

with ∆q(z(∂Sq−1)); z(∂Sq)) =
∑

u∈∂Sq−1
θu(zu)+

∑
u∈∂Sq−1,v∈∂Sq ,<u,v> Ψ{u,v}(zu, zv). then

we define the matrices Aq by

Aq(∂Sq; ∂Sq−1) = exp ∆q(z(∂Sq−1); z(∂Sq)).

As an illustration let us set the following decreasing sequence T = ST−1 = {1, 2, · · · , T},
ST−2 = {1, 2, · · · , T − 1}, · · · , S2 = {1, 2, 3} and S1 = {2}. For q = T − 1, · · · , 3, the

conditional contributions and the matrices A are defined in the usual way (3·1) and (3·2),

while for q = 2, A2 is a N × N2 matrix with A2(z4, (z1, z3)) = exp{θ1(z1) + θ3(z3) +

Ψ4(z3, z4)}.

5 Conclusion

The technique proposed in this paper to evaluate marginals and normalisation constant is

applicable to Markov chains, Markov fields. It overcomes the need to resort to approximate

alternatives when one wants to evaluate the likelihood or the normalizing constant of a

Gibbs field. It makes feasible the exact evaluation of the normalizing constant for moderate

set of sites, eliminating any Monte Carlo procedure, variational scheme, or (approximate)

12



Bayesian computations steps. As a statistical consequence, it is therefore possible to per-

form true maximum likelihood estimation for such Gibbs field. Another application is to

allow exact simulation.

We gave several illustrations of computing times for the normalizing constant. For one

dimensional two states Gibbs fields, we are able to compute instantaneously the normalizing

constant for a sequence of length 700, as well as for a sequence with four states and of

length 400. We could keep computing for bigger lengths using another software. However,

our main goal here is to provide a new method and we let the users choose their way of

programming.

For spatial processes, we have computed the normalizing constant for an Ising model on

a lattice 10× 100 in 20 seconds. Following the discussion above, we could increase T, one

of the side of the lattice; the limitation of the procedure ensures from the manipulation of

Nm×Nm matrices. So the method seems to fail for large square lattices. As a comparison,

Pettitt et al. (2003) compute the normalizing constant for an autologistic model defined

on a cylinder lattice for which the smallest row or column is not greater than 10. They

suggest to split a large lattice into smaller sublattices along the smallest row or column.

A similar idea could apply here.
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