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Reliable Steganalysis Using a Minimum Set of
Samples and Features

Yoan Miche , Patrick Bas , Amaury Lendasse , Christian Judiah Olli Simula

Abstract—This paper proposes to determine a sufficient num- the embedding of the message. Steganalysis would then be
ber of images for reliable classification, and to use feature impossible.
selection to select most relevant features for achieving liable Fortunately, such high performance for a steganographic

steganalysis. First dimensionality issues in the contextf @lassi- . . .
fication are outlined and the impact of the different parameters algorithm is not achievable when the payload (the embedded

of a steganalysis scheme (the number of samples, the number o information) is important enough; also, several schemes ha
features, the steganography method and the embedding rate) weaknesses.

is studied. On one hand, it is shown that using Bootstrap One way of mesuring the payload is teenbedding rate
simulations, the standard deviation of the classificationsesults defined as follows:

can be very important if too small training sets are used; . .
moreover a minimum of 5000 images is needed in order to Let .S be a steganographic algorithm add be a cover

perform reliable steganalysis. On the other hand, we show Medium.S, by its design, claims that it can embed at most
how the feature selection process using the OP-ELM classifie Tuax information bits within M; Tyax is called thecapacity

e_nab_les both to reduce the dimensionality of the data and to of the medium and highly depends on the steganographic
highlight Weﬁ'.‘”elsses. ha”d advantages of the six most popular staqe) algorithm as well as the cover medium itself. The
steganographic algorithms. embedding ratel’ is then defined as the part Giyax used
by the information to embed.
. INTRODUCTION For 7T} bits to embed in the cover medium, the embedding
rate is thenT = T;/Twax, Usually expressed as percentage.

Steganography has been known and used for a very | fere are other ways to measure the payload and the

time, as a way to exphange mforma’luon_m. an unnoficea glationship between the amount of information embedded
manner between parties, by embedding it in another, aPPRLy the cover medium. such as the number bik per
ently innocuous, document. !

N d ; hic techni " OInon zero coefficientMeanwhile, the embedding rate has
owadays steganographic techniques are mostly used,gg advantage of taking into account the stego algorithm

pligital contgnt. The online newspaper Wired News, report% operties and is not directly based on the cover medium
in one of its articles [14] on steganography that sever operties — since it uses the stego algorithm estimation of

steganographic contents have been found on web sites maximum capacity. Hence it has been chosen for this
very large image database such as eBay. Niels Provos [ lysis of stego schemes

has somewhat refuted these facts by analyzing and clasgifyi
two million images from eBay and one million from USENet
network and not finding any steganographic content embed

in these images. This could be due to many reasons, St

as very low payloads, making the steganographic images I‘tnﬁg’ images and fed to a binary classifier (usually Support

detectable to steganalysis and hence more secure. Vector Machines) for training. The output of this classifier

In practice the concept of security for steganography f§ “steqo” o : ; :

e . L : . go” (modified using a steganographic algorithm) or
difficult to define, but Cachin in [3] mentions a theoretic way.ouer (genuine). This classical process is illustratedrig. 1
to do so, based on the Kullback-Leibler divergence. A steggr the part without parenthesis
process s thus defined assecure i the_KuIIbac_k-Leibler The emphasis in this paper is more specifically on the
divergence’ between the probability density functions of the?ssues related to the increasing number of features, linged

cover contenpeover an_d of this very same content embedding,e niversal steganalyzers. Indeed, the very first examyfle
a messag@siego (that is, stego), is less than LSB-based steganalysis made use of less than ten features,
with an adapted and specific methodology for each stego
3 (Peover, Pstego) < €. (1) algorithm. The idea of “universal steganalyzers” then beza

The process is callesecureif ¢ = 0, and in this case, the POPUlar. INL999, Westfeld proposes g’-based method, on the

steganography is perfect, creating no statistical diffees by LSB of DCT coefficients [301. Five years aﬁer, _Fridrich in [6
uses a set di3 features obtained by normalizations of a much
Y.M., A. L and O.S are from Helsinki University of TechnologyLabo- larger set, whilst Fariét al. already proposed i2002 a set of
ratory of Computer and Information Science P.O. Box 540002015 HUT, 79 features [13]_ Some feature sets [1] also have variable size
FINLAND ; . he DCT block si Si h . .
Y.M., P.B and C.J are from GIPSA-lab Images and Signal Depant depending on the OCK sizes. Since then, an increasing

CNRS, INPG, UJF, Grenoble, France number of research works are using supervised learninglbase

his paper is focused onto classical feature-based stegana
. Such steganalysis typically uses a certain amount of
ges for training a classifier: features are extractednfro
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Fig. 1. Overview of the typical global processing for an gmatl image: features are first extracted from the image & fthocessed through a classifier to
decide whether the image is cover or stego. In the proposszbgsing is added an extra step aimed at reducing the featureber and having an additional
interpretability of the steganalysis results, by doing atdee selection.

Feature
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classifiers in very high dimensional spaces. The recent workThe methodology is finally tested in section IV with six dif-
of Y. Q. Shiet al.[25] is an example of an efficient result butferents stego algorithms, each using four different emimedd
using324 features based on JPEG blocks differences modeledes. Results are finally interpreted thanks to the mosvaal
by Markov processes. This short survey of some feature setdected features for each stego algorithm. A quantitativay
for steganalysis is by no means exhaustive. of selected features combinations is then provided.

All these results do achieve better and better performance
in terms of detection rate and enable to detect most stego ||
algorithm for most embedding rates. Meanwhile, there are
some side-effects to this growing number of features. It The common term “curse of dimensionality” [2] refers to a
has been shown for example in [5] that the feature spadéde range of problems related to a high number of features.
dimensionality in which the considered classifier is traine Some of these dimensionality problems are considered in the
can have a significant impact on its performances: a too sm@llowing, in relation with the number of images and feature
amount of images regarding dimensionality (the number of
features) might lead to an improper training of the classifi%\
and thus to results with a possibly high statistical varsanc = _ _

Comparison of steganalysis methods has been recently prot) The need for data samplesn order to illustrate this
posed by Ker [10], by focusing on the pdf of one output of theroblem in a Iow-dl_men5|_onal case, one can con_5|der four
classifier. In this paper is addressed the idea of a practiapl Samples in a two dimensional space (corresponding to four
of comparing steganographic schemes, which requires g stif§29es out of which two features have been extracted); the

on multiple parameters that can influence the performancetnderlying structure leading to the distribution of theserf
samples seems impossible to infer, and so is the creation of a

1) the number of images used during the training of thgqqe| for it. Any model claiming it can properly explain the
classifier: How to determine a sufficient number of iMgisiripution of these samples will behave erratically @ese
ages for an efficient and reliable classification (meaningyii| extrapolate) when a new sample is introduced. On the
that final results have acceptable variance)? ~_contrary, with hundreds to thousands of samples it becomes

2) the number of features used: What are the sufficiegfssiple to see clusters and relationships between dioresi
and most relevant features for the actual classification;, e generally, in order for any tool to be able to analyze

problem? and find a structure within the data, the number of needed

3) the steganography mgthod: Is there an important imclé‘élmples is growing exponentially with the dimensionality.
ence of the stego algorithm on the general methodologytieed, consider al-dimensional unit side hypercube, the

4) the embedding rate used: Does the embedding rate usGthher of samples needed to fill the Cartesian grid of step
for the stegapography modifies the variance of the_ resultS side of it is growing a)((1/€)?). Thus using a common
and the retained best features (by feature selectlon)?grid of stepl/10 in dimension 10, it requires0'® samples to

The next section details some of the problems relatétl the grid.
to the number of features used (dimensionality issues) andn practice, most data sets in steganalysis use at lgnst
commonly encountered in steganalysis: the empty space @aod0 dimensions, implying a “needed” number of samples
the distance concentration phenomena, the importantn@iaimpossible to achieve: storing and processing such numnfber o
of the results obtained by the classifier whenever the numbeages is currently impossible. As a consequence, therieatu
of images used for training is not sufficient regarding thgpace is not filled with enough data samples to estimate
number of features, and finally, the lack of interpretapitif the density with reliable accuracy; which can give wrong
the results because of the high number of features. In oraer high variance models when building classifiers, having
to address these issues, the methodology sketched on Figo Extrapolate for the missing samples: results obtained ca
is used and more thoroughly detailed: a sufficient number béve rather high confidence interval and hence be statigtica
images regarding the number of features is first establisbedirrelevant. A claim of performance improvementf using
that the classifier's training is “reliable” in terms of vanice a specific classifier/steganalyzer/steganographic scheithe
of its results; then, using feature selection the integlidity a variance oR% is rather meaningless.
of the results is improved.

DIMENSIONALITY ISSUES AND METHODOLOGY

Issues related to the number of images



2) The increasing variance of the result§he construction Meanwhile, if looking for the weaknesses and reasons why
of a proper and reliable model for steganalysis is also@dlatthese features react vividly to a specific algorithm, it seem
to the variance of the results it obtains. Only experimentedther impossible on this important set.
results are provided to support this claim: with a low number Reducing the required number of features to a small amount
of images regarding the number of features (a few hundredstefough feature selection enables to understand betteravhy
images for200 features), the variance of the classifier’s resulsteganographic model is weak on these particular detadjs; h
can be very important. lighted by the selected features. Such analysis is perfdime

When the number of images increases, this variansection IV-C for all six steganographic process.
decreases toward proper values for classical steganalysis
performances comparisons. These claims are verified in the
next section with the experiments.

Feature Analysis /
Selection % Reverse Engineering

3) Proposed solution to the lack of image®verall, these
two problems lead to the same conclusion: the number ©§. 2. Scheme of the possible reverse-engineering on anownk stego
images has to be important, regarding dimensionality. -N]e(fllgorlthm, by using feature selection for identificationtbé specific weak-

states that this number is exponential with the number of fea o

tures, which _is impossible to reach for classical stegeaiﬁaly_ Through the analysis of these selected features, one can
Hence, the first step of the proposed methodology is 10 finflsider a "reverse-engineering” of the stego algorithm as
a "sufficient” number of images for the number of featureg,srated on Fig. 2. By the identification of the most relav

used, according to a criterion on the variance of the resultgeayres the main characteristics of the embedding method

) A Bootstrap [9] is pr‘?Posed for that tf"‘_Sk: .th_e number CE(an be inferred and the steganographic algorithm be idedhtifi
images used for the training of the classifier is increasetl ag . own. or simply understood.

for each different number of images, the variance of theltgsu
of the classifier is assessed. Once the variance of thefaassi
is below a certain threshold, a sufficient number of images

been found (regarding the classifier and the feature sei).usq.

3) Proposed solution to the high number of featurébese
0 issues motivate the feature selection process: if ome ca
duce the number of features (and hence the dimensionality
the empty space phenomena will have a reduced impact on the
B. Issues related to the number of features classifier used. Also, the set of features obtained by thefea
1) The empty space phenomendrhis phenomenon was Selection process will give insights on the stego scheme and
first introduced by Scott and Thompson [24] can be explainéd possible weaknesses.
with the following example: draw samples from a normal For this matter, a classical feature selection technique ha
distribution (zero mean and unit variance) in dimensicand been used as the second step of the proposed methodology.
consider the probability to have a sample at distanitem the
mean of the distribution (zero). It is given by the probdpili  The following methodology is different from the one pre-
density function: sented previously in [16], [17]. Indeed, in this articlegth
goal is set toward statistically reliable results. Alsoattee
F(rd) = e ) selection has the advantage of reducing the dimensionality
’ 24/2=1"1(d/2) of the data (the jumber of features), making the classifier's

L . — . . training much easier. The interpretation of the selectatlifes
having its maximum at = v/d — 1. Thus, when dimension ; also an important advantage (compared to having only

'dnictrsgsﬁs;] szrgﬁlest arcre] gettmg fart?tehri frio nt]htr:?‘ rrntehan-of { & classifier's performance) in that it gives insights oa th
stribution. ect consequence ot this 15 that Tor IeWT -, o 51 nesses of the stego algorithm.

ously mentionned hypercube in dimensigrthe “center” of it

will tend to be empty, since samples are getting concermtrate

in the borders and corners of the cube. I1l. M ETHODOLOGY FOR BENCHMARKING OF
Therefore, whatever model is used in such a feature space STEGANOGRAPHIC SCHEMES

will be trained on scattered sample_s which are not filling thgyyressed problems

feature space at all. The model will then not be proper for ) o

any sample falling in an area of the space where the classified N number of data points to be used for building a model

had no information about during the training. It will have t&nd classification is clearly an issue and in the practics¢ca

extrapolate its behavior for these empty areas and will ha}@W many points are needed in order to obtain accurate sesult
unstable performances. — meaning results with small standard deviation.

Reduction of complexity is another main addressed concern
2) Lack of interpretability for possible “reverse-in this framework. Then for the selected number of points to
engineering”: The interpretability (and its applications) is arP® used for classification, and also the initial dimensional
important motivation for feature selection and dimensiiopa 9iven by the features set, two main steps remain:
reduction: high performances can indeed be reached using the Choosing the feature selection technique. Since analysis
whole 193 features set used in this paper for classification. and computation can hardly be done on the whole set of

2
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features, the technique used to reduce the dimensionabty Determination of a sufficient number of images

has to be selected. A proper number of images, regarding the number of
« Building a classifier; this implies choosing it, selectingeatyres, has to be determined. Since theoretical values fo
its parameters, training and validating the chosen modgia: humber are not reachable, a sufficient number regarding
The following paragraphs presents the solutions for thegejow enough value of the variance of the results is taken
two major issues, leading to a methodology combining thefstead (standard deviation will be used instead of vaganc
presented on Fig. 3. in the following).
. - The OP-ELM classifier is hence used along with a Bootstrap
A. Presentation of the classifier used: OP-ELM algorithm [9] over100 repetitions; a subset of the complete
The Optimally-Pruned Extreme Learning Machine (OPdataset {0000 images,193 features) is randomly drawn (with
ELM [15], [26]) is a classifier based on the original Expossible repetitions). The classifier is trained with thmcific
treme Learning Machine (ELM) of Huang [8]. This classifiesubset. This process is repeat@d times (100 random draw-
makes use of single hidden layer feedforward neural netsvoiiisgs of the subset) to obtain a statistically reliable eation
(SLFN) for which the weights and biases are randomly ingf the standard deviation of the results. The size of theetubs
tialized. The goal of the ELM is to reduce the length of th@rawn from the complete dataset is then increased, and the
learning process for the neural network, usually very long) iterations are repeated for this new subset size.
(for example if using classical back-propagation algon#.  The criterion to stop this process is a threshold on the value
The two main theorems on which ELM is based will not bgf the standard deviation of the results. Once the standard
discussed here but can be found in [8]. Fig. 4 illustrates tiyeviation of the results gets lower thaf%, it is decided that
typical structure of a SLFN (simplified to a few neurons ifhe subset siz& giving such low standard deviation of the

here). classifier’s results, is sufficienf is then used for the rest of
W the experiments as a sufficient number of images regarding
X, B v the number of features in the feature set.
" C. Dimensionality reduction: feature selection by Forward
? Y2 with OP-ELM
« : Given the sufficient number of images for reliable training
N yN

of the classifier,S, feature selection can be performed. The
second step of the methodology, a Forward algorithm with
Fig. 4. Structure of a classical Single Layer FeedforwardirleNetwork OP-ELM (Fig. 3) is used.

(SLFN). The input values (the dat® = (x1,...,xy) are weighted by the ; . ; _
‘W coefficients. A possible biaB (not on the figure) can be added to the 1) The Forward algorlthm. The forward selection algo

weighted inputsw,x;. An activation function taking this weighted inputs thm is a greedy algorithm [22]; it selects one by one the
(plus bias) as input is finally weighted by output coefficietto obtain the dimensions, trying to find the one that combines best with the
outputY' = (y1,...,¥yn)- already selected ones. The algorithm is (withdenoting the

Supposing the neural network is approximating the outplu-'E[h dimension of the data set)

Y = (y1,...,yn~) perfectly, we would have:

Algorithm 1 Forward

M R={z',i € [1,d]}
> Bif(wix; +b;) =y;,j € [1,N], ® s=g
i=1 while R # @ do
with N the number of inputX = (x1,...,xy) (number for 27 € R do
of images in our case) antl the number of neurons in the Evaluate performance wit U x/
hidden layer. end for
As said, the novelty introduced by the ELM is to initialize SetS = SU{z*},R = R — 2" with 2* the dimension
the weightsW and biase8 randomly. OP-ELM, in compar- giving the best result in the loop

ison to ELM, brings a greater robustness to data with possibl end while

dependent/correlated features. Also, the use of othetiturs

f (activation functions of the neural network) makes it pbkesi ) ) _d(d—1) . .

to use OP-ELM for case where linear components have an!Nis algorithm requires——— instances to terminate (to

important contribution in the classifier's model, for exdmp be compared to the? — 1 instances for an exhaustivesearch),
The validation step of this classifier is performed usinghich might reach the computational limits, depending an th

classical Leave-One-Out cross-validation, much moreipgecnumber of dimensions and time to evaluate the performance

than ak-fold cross-validation and hence not requiring any testith one set. With the OP-ELM as a classifier, computational

step [9]. It has been shown on many experiments [15], [2G]mes are not much of an issue.

that the OP-ELM classifier has results very close to the ohes o Even if its capacity to isolate efficient features is clebe t

a Support Vector Machine (SVM) while having computationdbrward technique has some drawbacks. First, if two feature

times much smaller (usually frort0 to 100 times). present good results when put together but poor resultdyf on
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standard deviation of results

Fig. 3. Schematic view of the proposed methodology: (1) Aprapriate number of data samples to work with is determingdgua Bootstrap method for
statistical stability; (2) The forward selection is perfied using an OP-ELM classifier to find a good features setoWwslla possible interpretation of the
features or the typical classification for steganalysis.

one of them is selected, forward might not take these into2) Generation of image databaserhe image base was

account in the selection process. constituted ofl0000 images from the BOWS2 Challenge [18]
Second, it does not allow to “go back” in the process, meadatabase (hosted by Andreas Westfeld [28]). These images ar

ing that if performances are decreasing along the selecti®i2 x 512 PGM greyscale (also available in color).

process, and that the addition of another feature makes pewWhile the steganographic processes and the proposed

formances increase again, combinations of previouslycssle methodology for dimensionality reduction and steganalysi

features with this last one are not possible anymore. are only performed on thesel2 x 512 images, any size of
The Forward selection is probably not the best possibimage would work just as well.

feature selection technique, and recent contribution &seh

techniques such as Sequential Floating Forward Selectior8) Extraction of the featuresin the end, the whole set

(SFFS) [27] and improvements of it [4] have shown that thef images is separated in two equal parts: one is kept as

number of computations required for feature selection @an bntouched cover while the other one is stego with the six

reduced drastically. Nevertheless, the feature seleating steganographic algorithms at four different embeddingsiat

Forward has been showing very good results and seems5%, 10%, 15% and 20%. Fridrich’s 193 DCT features [19]

perform well on the feature set used in this paper. It is netlushave been used for the steganalysis.

here in the goal of obtaining the best possible combinatfon o

features, but more to reduce the dimensionality and obtaé'n

some meaning out of the selected features. Improvements .
of this methodology could make use of such more efficient Results are presented following the methodology steps.
techniques of feature selection. A discussion over the selected features and the possible

interpretability of it are developed afterward. In the éoling,
the term "detection rate” stands for the performance of the
D. General Methodology classifier on a scale from to 100% of classification rate.
To summarize, the general methodology on Fig. 3 us#sis a measure of the performance instead of a measure of
first a Bootstrap withl00 iterations on varying subsets sizeserror.
to obtain a sufficient subset size and statistically rediabl
classifiers’ results, regarding the number of features .used1l) Determination of sufficient number of sampleBre-
With this number of images, feature selection is performexnted first is the result of the evaluation of a sufficient bem
using a Forward selection algorithm; this enables to higttli of images, as explained in the previous methodology, ongig.
possible weaknesses of the stego algorithm. The Bootstrap {00 rounds) is used on randomly taken subsets
of 200 up to 9000 images out of the whal6000 from the
This methodology has been applied to six popular stegWS2 challenge.
algorithms for testing. Experiments and results, as welhas It can be seen on Fig. 5 that the standard deviation behaves
discussion on the analysis of the selected features ar@ gigs expected when increasing the number of images, for the

Results

in the next section. cases of JPHS, MBSteg, MMx, OutGuess and StegHide: its
value decreases and tends to beldwof the best performance
IV. EXPERIMENTS AND RESULTS when the number of images 5900 (even if for MBSteg with

embedding rate 05% it is a bit abovel%). This sufficient
number of samples is kept as the reference and sufficient num-
1) Steganographic algorithms used:Six different ber. Another important point is that with very low number of
steganographic algorithms have been used: F5 [29], Modehages (00 in these cases), the standard deviation is between
Based (MBSteg) [23], MMx [11] (in these experiments] and about6.5% of the average classifier's performance;
MM3 has been used), JP Hide and Seek [12], OutGuess [2@jganing that results computed with as small number of images
StegHide [7]; all of them with four different embedding reite have at most at6.5% confidence interval. While the plots
5,10,15 and20%. decrease very quickly when increasing the number of images,
values of the standard deviation remain very high w20

A. Experiments setup
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images; these results have to take into account the emlzpddor each embedding rate differ slightly, within one stegano
rate, which tends to make the standard deviation higher agigaphic algorithm. Details about the features ranked as firs
decreases. by the Forward algorithm are discussed afterward.

Indeed, while differences betwedi and 20% embedding
rates are not very important on the four previously mentibng:  piscussion

stego algogthms, therg 'S agap between she 10% plots First, the global performances when using the reduced
and the20% ones. This is expected when looking at the - . . :

erformances of the steaanalvsis process: low embeddi ré':md sufficient feature sets mentioned in the results section
P g9 ysisp ' Y téove, are assessed. Note that feature selection for penfpr

tend to be harder to detect, leading to a range of possik?]

: : : : . reverse-engineering of a steganographic algorithm is-theo
performances wider than with high embedding rates. I:'g'rgtically efficient only if the features are carrying diféat

illustrates this idea on the cases of JPHS, MMx, MBSte . . . .
: . Jaformation (if two features represent the same infornrgtio
StegHide and OutGuess (the F5 results are behaving diffgr- . .
e e feature selection will select only one of them).

ently on these plots; this is discussed below).

Finally, the F5 algorithm have "erratic” behaviour, on Fig 1) Reduced features setBased on the ranking of the
. Y 9 ) ' " features obtained by the Forward algorithm, it has been
This can be explained by the very high performance of trae . .
o . decided that once performances were withiid of the best
classifier (close td00%) and hence, the very small possible

standard deviation: it ranges betwe@85% and0.05%. It is performance obtained (among all Forward tryouts for all

. ‘ T . different sets of features), the number of features obthine
then no surprise that the plots have such an erratic behaviou . e .
The final “sufficient” number of samples retained for the’@s retained as a "sufficient” feature set. I_Derformancengusy
second step of the methodology — the feature selectionre—duced fe_ature Sets (prqper to each algorithm and embgddin
is 5000, for two reasons: first, the computational times arreate) are first compared in Table I.

acceptable for the following computations (feature s@ect | 5% | # || 10% | #
step with training of classifier for each step); second, the E5 10001 1 10001 1
standard deviation is small enough to consider that the final JPHS 90.7 | 41 || 921 | 21

P ; ; MBSteg 63.3 | 57 || 709 | 93
cIaS.S|f_|cat|(.)n results are given with at mast of _standard MM3 7800 81 |l 862 | 29
deviation (in the case of MBSteg &t of embedding rate). outGuess|l 812 | 65 || 932 | 49

Steghide || 82.3 | 149 || 91.2 | 89
2) Forward feature selection:Features have first been

. . . 15% | # 20% | #
ranked, using the Forward feature selection algorithm, and = 100‘;' T I 100(;)| T
det_ection rates are plotte_d with increasing number of_featu JPHS 037 | a1 || 973 | 25
(using the ranking provided by the Forward selection) on MBSteg 835 | 73 || 885 | 69
Fig. 6 MM3 86.6 | 57 || 866 | 73
F. ) is diff in' wh h beddi OutGuess|| 98.8 | 33 || 100.0 | 29
5 case is di erent again: whatever the embedding rate Steghide || 96.4 | 73 99 | 73
used, steganalysis is surprisingly easy: using as lowl as TABLE |
feature for all embedding rates, detection ratd 18% even PERFORMANCES FOROP-ELM LOOEOR THE BEST FEATURES SET
with only 5% embedding rate. ALONG WITH THE SIZE OF THE REDUCED FEATURE SET#).
The ﬁve Other analyzed Stego algorithms give rather diﬁ:er_PERFORMANCES USING THE REDUCED SET ARE WITHIN THE% RANGE
X OF STANDARD DEVIATION OF THE BEST RESULTSTHE SIZE OF THE SET
ent results: HAS BE DETERMINED TO BE THE SMALLEST POSSIBLE ONE GIVING THIS
o JPHS reaches a plateau in performance (within the stan- PERFORMANCE

dard deviation of1%) for all embedding rates with

41 features and remains around that performance, even houl hat si he aim of the f lecti
though performances are quite "unstable” It should be noted that since the aim of the feature selection

. OutGuess has this same platea@ffeatures and perfor- is to reduce as much as possible the feature set while keeping

mances are not increasing anymore above that numbeyfrall same performance, it is expected that within the
features (stll within the standard deviation of the res)ult§tanqard deviation interval, the performange W',th th“?, iwe

. StegHide can be considered to have reached the mdgssible number of features is behind the “maximum” one.
mum result (within the standard deviation intervalsat It remains pOSS|b_Ie, for the studied algorithms, as Fig. 6
features, even if for;% embedding rate, performanceéhows' to find a higher number of features for which the
keep on increasing while adding features performance is closer or equal to the maximum one — even

o In the MM3 case, performances for embedding ratégough this i§ \{ery.disputable, con_sideriw the maxirr%!
10,15 and20% are very similar as are selected feature§.tandard deviation interval when usifg00 images. But this
Pérformances stable 46 features is not the goal of the feature selection step of the methapolo

o Performances for MBSteg are stable usirg features
for embedding rates5 and20%. Only 30 are enough for D. Feature sets analysis for reverse-engineering
embedding rat6%. The case of embedding rat8% has ~ Common feature sets have been selected according to the
the classifier's performances increasing with the additigollowing rule: take the first common ten features (in the
of features. order ranked by the Forward algorithm) to each feature set
Interestingly, the features retained by the forward s&lact obtained for each embedding rate (within one algorithm). It
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Fig. 6. Performance in detection for all six stego algorishmersus the number of features, for the four embedding:ratask circles () for 20%, green

squares (1) for 15%, red crossesx) for 10% and blue triangles /) for 5%. Features are ranked using the Forward selection algarifiivese plots are the
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is hoped that through this selection, the obtained featwits  2) JPHS: JPHS seems not to preserve the low and medium

be generic regarding the embedding rate. frequencies coefficients and also not the frequency coberen
The F5 case is discarded, since only one feature makegfiom the co-occurrence matrix). Also, DCT coefficients-his

possible to achiev9% of detection rate, that is the Globaltograms are not preserved.

Histogram of coefficien8: H(3) in the following notation.
Notations for the feature set used [19] are first given for the

original 23 features set, in Table Il

H(-1) H(1) H(3) h2'(0) h2(1)
h21(3) h12(71) th(o) h12(1) h12(75)
TABLE V
COMMON FEATURE SET FORMBSTEG.

Functional/Feature Functional F
Global histogram H/IH||
Individual histogram | h2T/[|h2L[|,h12/]|hT2[|,h 13 /]|h 3], )
for 5 DCT Modes h22/||h22||,h31 /||h31]| 3) MBSteg: The features used (Table V) include global
Dual histogram for g;5/|Lg*51\,g*f/\\9*4\\,..., histograms with value®),—2 and 2, which happens only
t;rgt?;]"a'“es ?// lg"1l.o°/11g”] because of the calibration in the feature extraction pmces
T1 and L2 biockiness | By, B, MBSteg preserves the co_efficient_s’ hi_stograms but does not
Co-occurrence Noo, No1, N11 take into account a possible calibration. Hence, the unpre-
TABLE Il served histograms are due to the calibration process in the
THE 23 FEATURES PREVIOUSLY DETAILED feature extraction. Information leaks through the catibra
process.
This set of23 features is expanded up to a setloB, by h?'(-1) h¥(0) h?'(2) hZ(=1) h(0)
. . h13(_1) hlS(O) hlS(l) h22(_1) h22(1)
removing thel.; norm used previously and keep all the values
of the matrices and vectors. This results in the followl9g TABLE VI

features set: COMMON FEATURE SET FOROUTGUESS

« A global histogram of 11 dimensiorH (i), = [—5, 5]
« 5 low frequency DCT histograms each of 11 dimensions 4) OutGuess:Extreme values histograms are mostly used

h2(i)...h3'(i),i = [-5,5] (values—2, —1) in the feature set for OutGuess (Table VI) and

« 11 dual histograms each of 9 dimensiong clear weak point. The calibration process has indeed been
g 5%(i)...g%@),i =[1,9] of importance since the histogram of valdenas been taken

« Variation of dimension IV into account.

o 2 blockinesses of dimensionB;, By

R _ . . . = s h21(71) h21(0) h12(1) h12(3) h13(71)
Co-occurrence matrix of dimensiorisx 5 C; j,i = I ORI e O R TSV e e N s )

[[727 2]]7.7 = [[727 2]]
. . TABLE VI

Follows a discussion on the selected features for each COMMON FEATURE SET FORSTEGHDE.
steganographic algorithm.

Tables of selected feature sets are presented below, with
an analysis of it for each algorithm. Fridrich’s DCT featsire 5) StegHide: For StegHide (Table VII), histograms are
are not the only ones having a possible physical interpogtat mostly used, with high frequencies coefficientd (13, 22)
They have been chosen here because it is believed that mosiraf for low values (between1 and +1).
the features can be interpreted. The proposed short asaliysi
the weaknesses of stego algorithms is using this intefpzata ~ From a general point of view, we can notice that all the

analysed algorithms are very sensitive to statistics ofpass

hf15(1) h*'(2) W0 h'F@E) b0 calibrated DCT coefficients, which are represented by featu
g’1) Co21 Coar Coagr Cyo h2' and h!2. This is not surprising since these coefficients
TABLE Il contain a large part of the information of a natural imageirth

COMMON FEATURE SET FORMMS. associated densities are likely to be modified by the emieddi

process. Note that fooling this process by embedding only

] . .. ___inside the high-frequency coefficients is possible but cegu
1) MM3: MM3 tends to be very sensitive to coefficients nsiderably the embedding payload.

histograms features, which they do not preserve. Low DCCIo
coefficients values<1, +1) are found for MM3. Interestingly,

_ V. CONCLUSIONS
co-occurrence coefficients react for MM3, as well as for JPHS

(in the following) but only these two stego algorithms. This paper has presenteq a methodology fo_r_the estimation
of a sufficient number of images for a specific feature set

22 BZ@) BP0 BE0) W) using the standard deviation of the detection rate obtained
h'?’2) C_51 C_141 C-ii2 Ciom by the classifier as a criterion (a Bootstrap technique isl use

TABLE IV for that purpose); the general methodology presented can

COMMON FEATURE SET FORJPHS. nonetheless be extended and applied to other feature sets.

The second step of the methodology aims at reducing the



dimensionality of the data set, by selecting the most releva
features, according to a Forward selection algorithm; @lon
with the positive effects of a lower dimensionality, andys
of the selected features is possible and gives insights en th
steganographic algorithm studied. 2]

(1]

Three conclusions can be drawn from the methodology aridl
experiments in this paper:

« Results on standard deviation for almost all studied™
steganographic algorithms have proved that the feature-
based steganalysis is reliable and accurate only if &l
sufficient number of images is used for the actual training
of the classifier used. Indeed, from most of the resultg)
obtained concerning standard deviation values (and
therefore statistical stability of the results), it is rmth
irrelevant to possibly increase detection performance by
2% while working with a standard deviation for these
same results 02%. i8]

« Through the second step of the methodology, the required
number of features for steganalysis can be decreased.
This with three main advantages: (a) performances)
remain the same if the reduced feature set is properly
constructed; (b) the selected features from the reducéy
set are relevant and meaningful (the selected set can
possibly vary, according to the feature selection techmiqi2]
used) and make reverse-engineering possible; (c)
weaknesses of the stego algorithm also appear from the
selection; this can lead for example to improvements of
the stego algorithm. (14]

o The analysis on the reduced common feature sét§]
obtained between embedding rates of the same stego
algorithm, shows that the algorithms are sensitive to
roughly the same features, as a basis. Meanwhile, whigéi
embedding rates get as low 8%, or for very efficient

algorithms, some very specific features appeatr. [17]

Hence, the first step of the methodology is a require-
ment for any new stego algorithm, but also new feature
sets/steganalyzers, willing to present its performanaesuf-
ficient number of images for the stego algorithm and the
steganalyzer used to test it has to be assessed in ordereo el
stable results (that is, with a small enough standard dewiat
of its results to make the comparison with current state ef th
art techniques meaningful). [20]

Also, from the second step of the methodology, the mogh;
relevant features can be obtained and make possible a ffurthe
analysis of the stego algorithm considered, additionallthe

detection rate obtained by the steganalyzer. [22]

[23]
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APPENDIX. FEATURES RANKED BY THEFORWARD
ALGORITHM

As appendix are given the firdt) features obtained by the
Forward ranking for each stego algorithm wii$t embedding
rate. Only one embedding rate result is given for space
reasons5% embedding rate results have been chosen since
they tend to be different (in terms of ranked features by the
Forward algorithm) from the other embedding rates and also
because5% embedding rate is a difficult challenge in terms
of steganalysis; these features are meaningful for thid kin
difficult steganalysis with these six algorithms.



H(3)  ¢°(1) H(=3) ¢7>(1) hP(0) C-3-1 H (=3

9’1 g0(3)  h*(=3) ¢~ *(2) 9°(6) 9°(2) 9>(7)  h(=3) H(-1) H(-4)

H(=2) g°(2) HA)  r%(=2) »7(=1) h'2() RrZ(=4) h(=2) H() H(2)

RPI(5) R AP(=5)  ¢*(1)  RPO0)  KPI(=5)  ¢'(3) R21(3) k(=1  h*(2)
TABLE VIII

THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEF5 ALGORITHM AT 5% EMBEDDING RATE.

) hP(=3) W) g4

g°(4) h?2(0) Ci,0 Bl H(1) h21(0) g'(4) °®) 9 %09 g %05
g*(5) PG ¢d'O® ¢ '@ B2 g>(8) Co,0 RIG)  ¢°(9) AP
g %2 g X7 g 3B  ¢°(Q) m(=3) AI(=1) KZE(=1) g *6) Ci1_2 g°(7)
R2(=5) ¢ 5(8) h*(@) ()  h(=2) hr*(-4) »3(0) Co,2 H(2) g°(5)

TABLE IX
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEJPHSALGORITHM AT 5% EMBEDDING RATE.

g *(1) H(2) g (1) R (1) h?2(1) Cy 2 Co11 B3 g*(7) g *(4)

hZt (0) h31 (—4) h2t (—4) Co,2 C12 h3T(—1) H(0) h2t (3) g P (6) h?2(-3)

A3 (1) C2,0 Ci,2 9°6) Co g6 @) g2(0) ¢ (0 ¢ '@

h*(—1) g°(1) g°(8) R*Z(=5) H(=2) h3(-4) ¢°6) hr'3(=2) 4°4) r*(=3)
TABLE X

THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEMBSTEG ALGORITHM AT 5% EMBEDDING RATE.

C_1,1 hlg’(—l) Co,—2 Ci,1 go(g) Ca.,0 hﬂ(—l) hlg’(l) g75(2) C10
H(-2) 9’4 g°2) Cao0 Co_1  C_1_o g 2B3) RrZ(=3) ¢°@B) hr'3@3)
R =1 979 978 4¢°() k(=5 R¥E) Coia 93 ¢°B3)  rIA)
9°(3) B1 C_21 B2 g~*(6) Co.2 H(=1) 9°(5) R13(0)  g*(7)
TABLE XI
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEMM3 ALGORITHM AT 5% EMBEDDING RATE.
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TABLE XII

THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEOUTGUESS ALGORITHM AT5% EMBEDDING RATE.
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TABLE XIII

THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THESTEGHIDE ALGORITHM AT 5% EMBEDDING RATE.
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