
HAL Id: hal-00437868
https://hal.science/hal-00437868

Submitted on 2 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliable Steganalysis Using a Minimum Set of Samples
and Features

Yoan Miche, Patrick Bas, Christian Jutten, Amaury Lendasse, Olli Simula

To cite this version:
Yoan Miche, Patrick Bas, Christian Jutten, Amaury Lendasse, Olli Simula. Reliable Steganalysis
Using a Minimum Set of Samples and Features. EURASIP Journal on Information Security, 2009,
2009, pp.ID 901381. �10.1155/2009/901381�. �hal-00437868�

https://hal.science/hal-00437868
https://hal.archives-ouvertes.fr


1

1



2

Reliable Steganalysis Using a Minimum Set of
Samples and Features

Yoan Miche , Patrick Bas , Amaury Lendasse , Christian Juttenand Olli Simula

Abstract—This paper proposes to determine a sufficient num-
ber of images for reliable classification, and to use feature
selection to select most relevant features for achieving reliable
steganalysis. First dimensionality issues in the context of classi-
fication are outlined and the impact of the different parameters
of a steganalysis scheme (the number of samples, the number of
features, the steganography method and the embedding rate)
is studied. On one hand, it is shown that using Bootstrap
simulations, the standard deviation of the classificationsresults
can be very important if too small training sets are used;
moreover a minimum of 5000 images is needed in order to
perform reliable steganalysis. On the other hand, we show
how the feature selection process using the OP-ELM classifier
enables both to reduce the dimensionality of the data and to
highlight weaknesses and advantages of the six most popular
steganographic algorithms.

I. I NTRODUCTION

Steganography has been known and used for a very long
time, as a way to exchange information in an unnoticeable
manner between parties, by embedding it in another, appar-
ently innocuous, document.

Nowadays steganographic techniques are mostly used on
digital content. The online newspaper Wired News, reported
in one of its articles [14] on steganography that several
steganographic contents have been found on web sites with
very large image database such as eBay. Niels Provos [21]
has somewhat refuted these facts by analyzing and classifying
two million images from eBay and one million from USENet
network and not finding any steganographic content embedded
in these images. This could be due to many reasons, such
as very low payloads, making the steganographic images less
detectable to steganalysis and hence more secure.

In practice the concept of security for steganography is
difficult to define, but Cachin in [3] mentions a theoretic way
to do so, based on the Kullback-Leibler divergence. A stego
process is thus defined asǫ-secure if the Kullback-Leibler
divergenceδ between the probability density functions of the
cover contentpcover and of this very same content embedding
a messagepstego (that is, stego), is less thanǫ:

δ(pcover, pstego) ≤ ǫ. (1)

The process is calledsecureif ǫ = 0, and in this case, the
steganography is perfect, creating no statistical differences by
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the embedding of the message. Steganalysis would then be
impossible.

Fortunately, such high performance for a steganographic
algorithm is not achievable when the payload (the embedded
information) is important enough; also, several schemes have
weaknesses.

One way of mesuring the payload is theembedding rate,
defined as follows:

Let S be a steganographic algorithm andM be a cover
medium.S, by its design, claims that it can embed at most
TMax information bits withinM ; TMax is called thecapacity
of the medium and highly depends on the steganographic
(stego) algorithm as well as the cover medium itself. The
embedding rateT is then defined as the part ofTMax used
by the information to embed.

For Ti bits to embed in the cover medium, the embedding
rate is thenT = Ti/TMax, usually expressed as percentage.
There are other ways to measure the payload and the
relationship between the amount of information embedded
and the cover medium, such as the number ofbits per
non zero coefficient. Meanwhile, the embedding rate has
the advantage of taking into account the stego algorithm
properties and is not directly based on the cover medium
properties – since it uses the stego algorithm estimation of
the maximum capacity. Hence it has been chosen for this
analysis of stego schemes.

This paper is focused onto classical feature-based steganal-
ysis. Such steganalysis typically uses a certain amount of
images for training a classifier: features are extracted from
the images and fed to a binary classifier (usually Support
Vector Machines) for training. The output of this classifier
is “stego” (modified using a steganographic algorithm) or
“cover” (genuine). This classical process is illustrated on Fig. 1
for the part without parenthesis.

The emphasis in this paper is more specifically on the
issues related to the increasing number of features, linkedto
the universal steganalyzers. Indeed, the very first examples of
LSB-based steganalysis made use of less than ten features,
with an adapted and specific methodology for each stego
algorithm. The idea of “universal steganalyzers” then became
popular. In1999, Westfeld proposes aχ2-based method, on the
LSB of DCT coefficients [30]. Five years after, Fridrich in [6]
uses a set of23 features obtained by normalizations of a much
larger set, whilst Faridet al. already proposed in2002 a set of
72 features [13]. Some feature sets [1] also have variable size
depending on the DCT block sizes. Since then, an increasing
number of research works are using supervised learning based
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Fig. 1. Overview of the typical global processing for an analyzed image: features are first extracted from the image and then processed through a classifier to
decide whether the image is cover or stego. In the proposed processing is added an extra step aimed at reducing the features number and having an additional
interpretability of the steganalysis results, by doing a feature selection.

classifiers in very high dimensional spaces. The recent work
of Y. Q. Shiet al. [25] is an example of an efficient result but
using324 features based on JPEG blocks differences modeled
by Markov processes. This short survey of some feature sets
for steganalysis is by no means exhaustive.

All these results do achieve better and better performance
in terms of detection rate and enable to detect most stego
algorithm for most embedding rates. Meanwhile, there are
some side-effects to this growing number of features. It
has been shown for example in [5] that the feature space
dimensionality in which the considered classifier is trained,
can have a significant impact on its performances: a too small
amount of images regarding dimensionality (the number of
features) might lead to an improper training of the classifier
and thus to results with a possibly high statistical variance.

Comparison of steganalysis methods has been recently pro-
posed by Ker [10], by focusing on the pdf of one output of the
classifier. In this paper is addressed the idea of a practicalway
of comparing steganographic schemes, which requires a study
on multiple parameters that can influence the performance:

1) the number of images used during the training of the
classifier: How to determine a sufficient number of im-
ages for an efficient and reliable classification (meaning
that final results have acceptable variance)?

2) the number of features used: What are the sufficient
and most relevant features for the actual classification
problem?

3) the steganography method: Is there an important influ-
ence of the stego algorithm on the general methodology?

4) the embedding rate used: Does the embedding rate used
for the steganography modifies the variance of the results
and the retained best features (by feature selection)?

The next section details some of the problems related
to the number of features used (dimensionality issues) and
commonly encountered in steganalysis: the empty space and
the distance concentration phenomena, the important variance
of the results obtained by the classifier whenever the number
of images used for training is not sufficient regarding the
number of features, and finally, the lack of interpretability of
the results because of the high number of features. In order
to address these issues, the methodology sketched on Fig. 1
is used and more thoroughly detailed: a sufficient number of
images regarding the number of features is first establishedso
that the classifier’s training is “reliable” in terms of variance
of its results; then, using feature selection the interpretability
of the results is improved.

The methodology is finally tested in section IV with six dif-
ferents stego algorithms, each using four different embedding
rates. Results are finally interpreted thanks to the most relevant
selected features for each stego algorithm. A quantitativestudy
of selected features combinations is then provided.

II. D IMENSIONALITY ISSUES AND METHODOLOGY

The common term “curse of dimensionality” [2] refers to a
wide range of problems related to a high number of features.
Some of these dimensionality problems are considered in the
following, in relation with the number of images and features.

A. Issues related to the number of images

1) The need for data samples:In order to illustrate this
problem in a low-dimensional case, one can consider four
samples in a two dimensional space (corresponding to four
images out of which two features have been extracted); the
underlying structure leading to the distribution of these four
samples seems impossible to infer, and so is the creation of a
model for it. Any model claiming it can properly explain the
distribution of these samples will behave erratically (because
it will extrapolate) when a new sample is introduced. On the
contrary, with hundreds to thousands of samples it becomes
possible to see clusters and relationships between dimensions.

More generally, in order for any tool to be able to analyze
and find a structure within the data, the number of needed
samples is growing exponentially with the dimensionality.
Indeed, consider ad-dimensional unit side hypercube, the
number of samples needed to fill the Cartesian grid of step
ǫ inside of it is growing asO((1/ǫ)d). Thus using a common
grid of step1/10 in dimension 10, it requires1010 samples to
fill the grid.

In practice, most data sets in steganalysis use at least10
to 20 dimensions, implying a “needed” number of samples
impossible to achieve: storing and processing such number of
images is currently impossible. As a consequence, the feature
space is not filled with enough data samples to estimate
the density with reliable accuracy; which can give wrong
or high variance models when building classifiers, having
to extrapolate for the missing samples: results obtained can
have rather high confidence interval and hence be statistically
irrelevant. A claim of performance improvement of2% using
a specific classifier/steganalyzer/steganographic schemewith
a variance of2% is rather meaningless.
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2) The increasing variance of the results:The construction
of a proper and reliable model for steganalysis is also related
to the variance of the results it obtains. Only experimental
results are provided to support this claim: with a low number
of images regarding the number of features (a few hundreds of
images for200 features), the variance of the classifier’s results
can be very important.

When the number of images increases, this variance
decreases toward proper values for classical steganalysisand
performances comparisons. These claims are verified in the
next section with the experiments.

3) Proposed solution to the lack of images:Overall, these
two problems lead to the same conclusion: the number of
images has to be important, regarding dimensionality. Theory
states that this number is exponential with the number of fea-
tures, which is impossible to reach for classical steganalysis.
Hence, the first step of the proposed methodology is to find
a ”sufficient” number of images for the number of features
used, according to a criterion on the variance of the results.

A Bootstrap [9] is proposed for that task: the number of
images used for the training of the classifier is increased and
for each different number of images, the variance of the results
of the classifier is assessed. Once the variance of the classifier
is below a certain threshold, a sufficient number of images has
been found (regarding the classifier and the feature set used).

B. Issues related to the number of features

1) The empty space phenomenon:This phenomenon was
first introduced by Scott and Thompson [24] can be explained
with the following example: draw samples from a normal
distribution (zero mean and unit variance) in dimensiond and
consider the probability to have a sample at distancer from the
mean of the distribution (zero). It is given by the probability
density function:

f(r, d) =
rd−1

2d/2−1
.
e−r2/2

Γ(d/2)
(2)

having its maximum atr =
√

d − 1. Thus, when dimension
increases, samples are getting farther from the mean of the
distribution. A direct consequence of this is that for the previ-
ously mentionned hypercube in dimensiond, the “center” of it
will tend to be empty, since samples are getting concentrated
in the borders and corners of the cube.

Therefore, whatever model is used in such a feature space
will be trained on scattered samples which are not filling the
feature space at all. The model will then not be proper for
any sample falling in an area of the space where the classifier
had no information about during the training. It will have to
extrapolate its behavior for these empty areas and will have
unstable performances.

2) Lack of interpretability for possible ”reverse-
engineering”: The interpretability (and its applications) is an
important motivation for feature selection and dimensionality
reduction: high performances can indeed be reached using the
whole 193 features set used in this paper for classification.

Meanwhile, if looking for the weaknesses and reasons why
these features react vividly to a specific algorithm, it seems
rather impossible on this important set.

Reducing the required number of features to a small amount
through feature selection enables to understand better whya
steganographic model is weak on these particular details, high-
lighted by the selected features. Such analysis is performed in
section IV-C for all six steganographic process.

Fig. 2. Scheme of the possible reverse-engineering on an unknown stego
algorithm, by using feature selection for identification ofthe specific weak-
nesses.

Through the analysis of these selected features, one can
consider a ”reverse-engineering” of the stego algorithm as
illustrated on Fig. 2. By the identification of the most relevant
features, the main characteristics of the embedding method
can be inferred and the steganographic algorithm be identified
if known, or simply understood.

3) Proposed solution to the high number of features:These
two issues motivate the feature selection process: if one can
reduce the number of features (and hence the dimensionality),
the empty space phenomena will have a reduced impact on the
classifier used. Also, the set of features obtained by the feature
selection process will give insights on the stego scheme and
its possible weaknesses.

For this matter, a classical feature selection technique has
been used as the second step of the proposed methodology.

The following methodology is different from the one pre-
sented previously in [16], [17]. Indeed, in this article, the
goal is set toward statistically reliable results. Also, feature
selection has the advantage of reducing the dimensionality
of the data (the jumber of features), making the classifier’s
training much easier. The interpretation of the selected features
is also an important advantage (compared to having only
the classifier’s performance) in that it gives insights on the
weaknesses of the stego algorithm.

III. M ETHODOLOGY FOR BENCHMARKING OF

STEGANOGRAPHIC SCHEMES

Addressed problems

The number of data points to be used for building a model
and classification is clearly an issue and in the practical case,
how many points are needed in order to obtain accurate results
– meaning results with small standard deviation.

Reduction of complexity is another main addressed concern
in this framework. Then for the selected number of points to
be used for classification, and also the initial dimensionality
given by the features set, two main steps remain:

• Choosing the feature selection technique. Since analysis
and computation can hardly be done on the whole set of
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features, the technique used to reduce the dimensionality
has to be selected.

• Building a classifier; this implies choosing it, selecting
its parameters, training and validating the chosen model.

The following paragraphs presents the solutions for these
two major issues, leading to a methodology combining them,
presented on Fig. 3.

A. Presentation of the classifier used: OP-ELM

The Optimally-Pruned Extreme Learning Machine (OP-
ELM [15], [26]) is a classifier based on the original Ex-
treme Learning Machine (ELM) of Huang [8]. This classifier
makes use of single hidden layer feedforward neural networks
(SLFN) for which the weights and biases are randomly ini-
tialized. The goal of the ELM is to reduce the length of the
learning process for the neural network, usually very long
(for example if using classical back-propagation algorithms).
The two main theorems on which ELM is based will not be
discussed here but can be found in [8]. Fig. 4 illustrates the
typical structure of a SLFN (simplified to a few neurons in
here).

Fig. 4. Structure of a classical Single Layer Feedforward Neural Network
(SLFN). The input values (the data)X = (x1, . . . ,xN ) are weighted by the
W coefficients. A possible biasB (not on the figure) can be added to the
weighted inputswixi. An activation functionf taking this weighted inputs
(plus bias) as input is finally weighted by output coefficients β to obtain the
outputY = (y1, . . . ,yN ).

Supposing the neural network is approximating the output
Y = (y1, . . . ,yN ) perfectly, we would have:

M∑

i=1

βif(wixj + bi) = yj , j ∈ J1, NK, (3)

with N the number of inputsX = (x1, . . . ,xN ) (number
of images in our case) andM the number of neurons in the
hidden layer.

As said, the novelty introduced by the ELM is to initialize
the weightsW and biasesB randomly. OP-ELM, in compar-
ison to ELM, brings a greater robustness to data with possibly
dependent/correlated features. Also, the use of other functions
f (activation functions of the neural network) makes it possible
to use OP-ELM for case where linear components have an
important contribution in the classifier’s model, for example.

The validation step of this classifier is performed using
classical Leave-One-Out cross-validation, much more precise
than ak-fold cross-validation and hence not requiring any test
step [9]. It has been shown on many experiments [15], [26],
that the OP-ELM classifier has results very close to the ones of
a Support Vector Machine (SVM) while having computational
times much smaller (usually from10 to 100 times).

B. Determination of a sufficient number of images

A proper number of images, regarding the number of
features, has to be determined. Since theoretical values for
that number are not reachable, a sufficient number regarding
a low enough value of the variance of the results is taken
instead (standard deviation will be used instead of variance,
in the following).

The OP-ELM classifier is hence used along with a Bootstrap
algorithm [9] over100 repetitions; a subset of the complete
dataset (10000 images,193 features) is randomly drawn (with
possible repetitions). The classifier is trained with that specific
subset. This process is repeated100 times (100 random draw-
ings of the subset) to obtain a statistically reliable estimation
of the standard deviation of the results. The size of the subset
drawn from the complete dataset is then increased, and the
100 iterations are repeated for this new subset size.

The criterion to stop this process is a threshold on the value
of the standard deviation of the results. Once the standard
deviation of the results gets lower than1%, it is decided that
the subset sizeS giving such low standard deviation of the
classifier’s results, is sufficient.S is then used for the rest of
the experiments as a sufficient number of images regarding
the number of features in the feature set.

C. Dimensionality reduction: feature selection by Forward
with OP-ELM

Given the sufficient number of images for reliable training
of the classifier,S, feature selection can be performed. The
second step of the methodology, a Forward algorithm with
OP-ELM (Fig. 3) is used.

1) The Forward algorithm: The forward selection algo-
rithm is a greedy algorithm [22]; it selects one by one the
dimensions, trying to find the one that combines best with the
already selected ones. The algorithm is (withxi denoting the
i-th dimension of the data set)

Algorithm 1 Forward

R = {xi, i ∈ J1, dK}
S = ∅

while R 6= ∅ do
for xj ∈ R do

Evaluate performance withS ∪ xj

end for
SetS = S∪{xk},R = R−xk with xk the dimension
giving the best result in the loop

end while

This algorithm requires
d(d − 1)

2
instances to terminate (to

be compared to the2d − 1 instances for an exhaustivesearch),
which might reach the computational limits, depending on the
number of dimensions and time to evaluate the performance
with one set. With the OP-ELM as a classifier, computational
times are not much of an issue.

Even if its capacity to isolate efficient features is clear, the
forward technique has some drawbacks. First, if two features
present good results when put together but poor results if only



6

Bootstrap

Fig. 3. Schematic view of the proposed methodology: (1) An appropriate number of data samples to work with is determined using a Bootstrap method for
statistical stability; (2) The forward selection is performed using an OP-ELM classifier to find a good features set. Follows a possible interpretation of the
features or the typical classification for steganalysis.

one of them is selected, forward might not take these into
account in the selection process.

Second, it does not allow to “go back” in the process, mean-
ing that if performances are decreasing along the selection
process, and that the addition of another feature makes per-
formances increase again, combinations of previously selected
features with this last one are not possible anymore.

The Forward selection is probably not the best possible
feature selection technique, and recent contribution to these
techniques such as Sequential Floating Forward Selection
(SFFS) [27] and improvements of it [4] have shown that the
number of computations required for feature selection can be
reduced drastically. Nevertheless, the feature selectionusing
Forward has been showing very good results and seems to
perform well on the feature set used in this paper. It is not used
here in the goal of obtaining the best possible combination of
features, but more to reduce the dimensionality and obtain
some meaning out of the selected features. Improvements
of this methodology could make use of such more efficient
techniques of feature selection.

D. General Methodology

To summarize, the general methodology on Fig. 3 uses
first a Bootstrap with100 iterations on varying subsets sizes,
to obtain a sufficient subset size and statistically reliable
classifiers’ results, regarding the number of features used.
With this number of images, feature selection is performed
using a Forward selection algorithm; this enables to highlight
possible weaknesses of the stego algorithm.

This methodology has been applied to six popular stego
algorithms for testing. Experiments and results, as well asa
discussion on the analysis of the selected features are given
in the next section.

IV. EXPERIMENTS AND RESULTS

A. Experiments setup

1) Steganographic algorithms used: Six different
steganographic algorithms have been used: F5 [29], Model-
Based (MBSteg) [23], MMx [11] (in these experiments,
MM3 has been used), JP Hide and Seek [12], OutGuess [20],
StegHide [7]; all of them with four different embedding rates:
5, 10, 15 and20%.

2) Generation of image database:The image base was
constituted of10000 images from the BOWS2 Challenge [18]
database (hosted by Andreas Westfeld [28]). These images are
512 × 512 PGM greyscale (also available in color).

While the steganographic processes and the proposed
methodology for dimensionality reduction and steganalysis
are only performed on these512 × 512 images, any size of
image would work just as well.

3) Extraction of the features:In the end, the whole set
of images is separated in two equal parts: one is kept as
untouched cover while the other one is stego with the six
steganographic algorithms at four different embedding rates:
5%, 10%, 15% and 20%. Fridrich’s 193 DCT features [19]
have been used for the steganalysis.

B. Results

Results are presented following the methodology steps.
A discussion over the selected features and the possible
interpretability of it are developed afterward. In the following,
the term ”detection rate” stands for the performance of the
classifier on a scale from0 to 100% of classification rate.
It is a measure of the performance instead of a measure of
error.

1) Determination of sufficient number of samples:Pre-
sented first is the result of the evaluation of a sufficient number
of images, as explained in the previous methodology, on Fig.5.
The Bootstrap (100 rounds) is used on randomly taken subsets
of 200 up to 9000 images out of the whole10000 from the
BOWS2 challenge.

It can be seen on Fig. 5 that the standard deviation behaves
as expected when increasing the number of images, for the
cases of JPHS, MBSteg, MMx, OutGuess and StegHide: its
value decreases and tends to below1% of the best performance
when the number of images is5000 (even if for MBSteg with
embedding rate of5% it is a bit above1%). This sufficient
number of samples is kept as the reference and sufficient num-
ber. Another important point is that with very low number of
images (100 in these cases), the standard deviation is between
1 and about6.5% of the average classifier’s performance;
meaning that results computed with as small number of images
have at most a±6.5% confidence interval. While the plots
decrease very quickly when increasing the number of images,
values of the standard deviation remain very high until2000
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(b) JPHS
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(c) MBSTEG
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(d) MM3
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(e) OutGuess
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(f) StegHide

Fig. 5. Standard deviation in percentage of the average classification result versus the number of images, for all six steganographic algorithms, for the four
embedding rates: black circles (©) for 20%, green squares (2) for 15%, red crosses (×) for 10% and blue triangles (

a
) for 5%. These estimations have

been performed with the Bootstrap runs (100 iterations). Plots do not have the same scale, vertically.
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images; these results have to take into account the embedding
rate, which tends to make the standard deviation higher as it
decreases.

Indeed, while differences between15 and20% embedding
rates are not very important on the four previously mentioned
stego algorithms, there is a gap between the5 − 10% plots
and the20% ones. This is expected when looking at the
performances of the steganalysis process: low embedding rates
tend to be harder to detect, leading to a range of possible
performances wider than with high embedding rates. Fig. 6
illustrates this idea on the cases of JPHS, MMx, MBSteg
StegHide and OutGuess (the F5 results are behaving differ-
ently on these plots; this is discussed below).

Finally, the F5 algorithm have ”erratic” behaviour, on Fig.5.
This can be explained by the very high performance of the
classifier (close to100%) and hence, the very small possible
standard deviation: it ranges between0.25% and0.05%. It is
then no surprise that the plots have such an erratic behaviour.

The final “sufficient” number of samples retained for the
second step of the methodology – the feature selection –
is 5000, for two reasons: first, the computational times are
acceptable for the following computations (feature selection
step with training of classifier for each step); second, the
standard deviation is small enough to consider that the final
classification results are given with at most1% of standard
deviation (in the case of MBSteg at5% of embedding rate).

2) Forward feature selection:Features have first been
ranked, using the Forward feature selection algorithm, and
detection rates are plotted with increasing number of features
(using the ranking provided by the Forward selection) on
Fig. 6.

F5 case is different again: whatever the embedding rate
used, steganalysis is surprisingly easy: using as low as1
feature for all embedding rates, detection rate is100% even
with only 5% embedding rate.

The five other analyzed stego algorithms give rather differ-
ent results:

• JPHS reaches a plateau in performance (within the stan-
dard deviation of1%) for all embedding rates with
41 features and remains around that performance, even
though performances are quite ”unstable”

• OutGuess has this same plateau at25 features and perfor-
mances are not increasing anymore above that number of
features (stll within the standard deviation of the results)

• StegHide can be considered to have reached the maxi-
mum result (within the standard deviation interval) at60
features, even if for5% embedding rate, performances
keep on increasing while adding features. . .

• In the MM3 case, performances for embedding rates
10, 15 and20% are very similar as are selected features.
Performances stable at40 features.

• Performances for MBSteg are stable using70 features
for embedding rates15 and20%. Only 30 are enough for
embedding rate5%. The case of embedding rate10% has
the classifier’s performances increasing with the addition
of features.

Interestingly, the features retained by the forward selection

for each embedding rate differ slightly, within one stegano-
graphic algorithm. Details about the features ranked as first
by the Forward algorithm are discussed afterward.

C. Discussion

First, the global performances when using the reduced
and sufficient feature sets mentioned in the results section
above, are assessed. Note that feature selection for performing
reverse-engineering of a steganographic algorithm is theo-
retically efficient only if the features are carrying different
information (if two features represent the same information,
the feature selection will select only one of them).

1) Reduced features sets:Based on the ranking of the
features obtained by the Forward algorithm, it has been
decided that once performances were within1% of the best
performance obtained (among all Forward tryouts for all
different sets of features), the number of features obtained
was retained as a ”sufficient” feature set. Performances using
reduced feature sets (proper to each algorithm and embedding
rate) are first compared in Table I.

5% # 10% #

F5 100.0 1 100.0 1
JPHS 90.7 41 92.1 21
MBSteg 63.3 57 70.9 93
MM3 78.00 81 86.2 49
OutGuess 81.2 65 93.2 49
Steghide 82.3 149 91.2 89

15% # 20% #

F5 100.0 1 100.0 1
JPHS 93.7 41 97.3 25
MBSteg 83.5 73 88.5 69
MM3 86.6 57 86.6 73
OutGuess 98.8 33 100.0 29
Steghide 96.4 73 99 73

TABLE I
PERFORMANCES FOROP-ELM LOOFOR THE BEST FEATURES SET

ALONG WITH THE SIZE OF THE REDUCED FEATURE SET(#).
PERFORMANCES USING THE REDUCED SET ARE WITHIN THE1% RANGE
OF STANDARD DEVIATION OF THE BEST RESULTS. THE SIZE OF THE SET

HAS BE DETERMINED TO BE THE SMALLEST POSSIBLE ONE GIVING THIS

PERFORMANCE.

It should be noted that since the aim of the feature selection
is to reduce as much as possible the feature set while keeping
overall same performance, it is expected that within the
standard deviation interval, the performance with the lowest
possible number of features is behind the “maximum” one.

It remains possible, for the studied algorithms, as Fig. 6
shows, to find a higher number of features for which the
performance is closer or equal to the maximum one – even
though this is very disputable, considering the maximal1%
standard deviation interval when using5000 images. But this
is not the goal of the feature selection step of the methodology.

D. Feature sets analysis for reverse-engineering

Common feature sets have been selected according to the
following rule: take the first common ten features (in the
order ranked by the Forward algorithm) to each feature set
obtained for each embedding rate (within one algorithm). It
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(b) JPHS
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(c) MBSTEG
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(d) MM3
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(e) OutGuess
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(f) StegHide

Fig. 6. Performance in detection for all six stego algorithms versus the number of features, for the four embedding rates: black circles (©) for 20%, green
squares (2) for 15%, red crosses (×) for 10% and blue triangles (

a
) for 5%. Features are ranked using the Forward selection algorithm. These plots are the

result of a single run of the Forward algorithm. Plots do not have the same scale, vertically.
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is hoped that through this selection, the obtained featureswill
be generic regarding the embedding rate.

The F5 case is discarded, since only one feature makes it
possible to achieve99% of detection rate, that is the Global
Histogram of coefficient3: H(3) in the following notation.

Notations for the feature set used [19] are first given for the
original 23 features set, in Table II:

Functional/Feature FunctionalF
Global histogram H/||H||
Individual histogram h21/||h21||,h12/||h12||,h13/||h13||,
for 5 DCT Modes h22/||h22||,h31/||h31||
Dual histogram for g−5/||g−5||,g−4/||g−4||,. . . ,
11 DCT values g4/||g4||,g5/||g5||
Variation V
L1 andL2 blockiness B1, B2

Co-occurrence N00, N01, N11

TABLE II
THE 23 FEATURES PREVIOUSLY DETAILED.

This set of23 features is expanded up to a set of193, by
removing theL1 norm used previously and keep all the values
of the matrices and vectors. This results in the following193
features set:

• A global histogram of 11 dimensionsH(i), i = J−5, 5K
• 5 low frequency DCT histograms each of 11 dimensions

h21(i) . . .h31(i), i = J−5, 5K
• 11 dual histograms each of 9 dimensions

g−5(i) . . .g5(i), i = J1, 9K
• Variation of dimension 1V
• 2 blockinesses of dimension 1B1,B2

• Co-occurrence matrix of dimensions5 × 5 Ci,j , i =
J−2, 2K, j = J−2, 2K

Follows a discussion on the selected features for each
steganographic algorithm.

Tables of selected feature sets are presented below, with
an analysis of it for each algorithm. Fridrich’s DCT features
are not the only ones having a possible physical interpretation.
They have been chosen here because it is believed that most of
the features can be interpreted. The proposed short analysis of
the weaknesses of stego algorithms is using this interpretation.

h21(1) h21(2) h12(0) h12(2) h22(1)
g−5(1) C

−2,−1 C
−1,+1 C

−1,+2 C+0,−2

TABLE III
COMMON FEATURE SET FORMM3.

1) MM3: MM3 tends to be very sensitive to coefficients
histograms features, which they do not preserve. Low DCT
coefficients values (−1, +1) are found for MM3. Interestingly,
co-occurrence coefficients react for MM3, as well as for JPHS
(in the following) but only these two stego algorithms.

h12(2) h12(3) h13(1) h22(1) h31(1)
h12(2) C

−2,−1 C
−1,+1 C

−1,+2 C+0,+1

TABLE IV
COMMON FEATURE SET FORJPHS.

2) JPHS: JPHS seems not to preserve the low and medium
frequencies coefficients and also not the frequency coherence
(from the co-occurrence matrix). Also, DCT coefficients his-
tograms are not preserved.

H(−1) H(1) H(3) h21(0) h21(1)
h21(3) h12(−1) h12(0) h12(1) h12(−5)

TABLE V
COMMON FEATURE SET FORMBSTEG.

3) MBSteg: The features used (Table V) include global
histograms with values0,−2 and 2, which happens only
because of the calibration in the feature extraction process.
MBSteg preserves the coefficients’ histograms but does not
take into account a possible calibration. Hence, the unpre-
served histograms are due to the calibration process in the
feature extraction. Information leaks through the calibration
process.

h21(−1) h21(0) h21(2) h12(−1) h12(0)
h13(−1) h13(0) h13(1) h22(−1) h22(1)

TABLE VI
COMMON FEATURE SET FOROUTGUESS.

4) OutGuess:Extreme values histograms are mostly used
(values−2,−1) in the feature set for OutGuess (Table VI) and
a clear weak point. The calibration process has indeed been
of importance since the histogram of value0 has been taken
into account.

h21(−1) h21(0) h12(1) h12(3) h13(−1)
h13(0) h13(1) h22(1) h31(−1) h31(0)

TABLE VII
COMMON FEATURE SET FORSTEGHIDE.

5) StegHide: For StegHide (Table VII), histograms are
mostly used, with high frequencies coefficients (31, 13, 22)
and for low values (between−1 and+1).

From a general point of view, we can notice that all the
analysed algorithms are very sensitive to statistics of low-pass
calibrated DCT coefficients, which are represented by features
h21 and h12. This is not surprising since these coefficients
contain a large part of the information of a natural image, their
associated densities are likely to be modified by the embedding
process. Note that fooling this process by embedding only
inside the high-frequency coefficients is possible but reduces
considerably the embedding payload.

V. CONCLUSIONS

This paper has presented a methodology for the estimation
of a sufficient number of images for a specific feature set
using the standard deviation of the detection rate obtained
by the classifier as a criterion (a Bootstrap technique is used
for that purpose); the general methodology presented can
nonetheless be extended and applied to other feature sets.
The second step of the methodology aims at reducing the
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dimensionality of the data set, by selecting the most relevant
features, according to a Forward selection algorithm; along
with the positive effects of a lower dimensionality, analysis
of the selected features is possible and gives insights on the
steganographic algorithm studied.

Three conclusions can be drawn from the methodology and
experiments in this paper:

• Results on standard deviation for almost all studied
steganographic algorithms have proved that the feature-
based steganalysis is reliable and accurate only if a
sufficient number of images is used for the actual training
of the classifier used. Indeed, from most of the results
obtained concerning standard deviation values (and
therefore statistical stability of the results), it is rather
irrelevant to possibly increase detection performance by
2% while working with a standard deviation for these
same results of2%.

• Through the second step of the methodology, the required
number of features for steganalysis can be decreased.
This with three main advantages: (a) performances
remain the same if the reduced feature set is properly
constructed; (b) the selected features from the reduced
set are relevant and meaningful (the selected set can
possibly vary, according to the feature selection technique
used) and make reverse-engineering possible; (c) the
weaknesses of the stego algorithm also appear from the
selection; this can lead for example to improvements of
the stego algorithm.

• The analysis on the reduced common feature sets
obtained between embedding rates of the same stego
algorithm, shows that the algorithms are sensitive to
roughly the same features, as a basis. Meanwhile, when
embedding rates get as low as5%, or for very efficient
algorithms, some very specific features appear.

Hence, the first step of the methodology is a require-
ment for any new stego algorithm, but also new feature
sets/steganalyzers, willing to present its performances:a suf-
ficient number of images for the stego algorithm and the
steganalyzer used to test it has to be assessed in order to have
stable results (that is, with a small enough standard deviation
of its results to make the comparison with current state of the
art techniques meaningful).

Also, from the second step of the methodology, the most
relevant features can be obtained and make possible a further
analysis of the stego algorithm considered, additionally to the
detection rate obtained by the steganalyzer.
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2006.

[6] J. Fridrich. Feature-based steganalysis for jpeg images and its impli-
cations for future design of steganographic schemes. InInformation
Hiding: 6th International Workshop, volume 3200 ofLecture Notes in
Computer Science, pages 67–81, May 23-25 2004.

[7] S. Hetzl and P. Mutzel. A graph-theoretic approach to steganography. In
Dittmann J., Katzenbeisser S., and Uhl A., editors,CMS 2005, Lecture
Notes in Computer Science 3677, pages 119–128. Springer-Verlag, 2005.

[8] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learningmachine:
Theory and applications.Neurocomputing, 70(1–3):489–501, December
2006.

[9] B. Efron R. J. and Tibshirani.An Introduction to the Bootstrap. Chapman
et al., Londres, 1994.

[10] A. D. Ker. The ultimate steganalysis benchmark? In9th ACM
Multimedia and Security Workshop, 2007.

[11] Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding technique
for minimal distortion steganography. InInformation Hiding 2007,
volume 4437/2007, pages 314–327, 2007.

[12] A. Latham. Jphide&seek, August 1999.
http://linux01.gwdg.de/ alatham/stego.html.

[13] S. Lyu and H. Farid. Detecting hidden messages using higher-order
statistics and support vector machines. In5th International Workshop
on Information Hiding, Noordwijkerhout, The Netherlands, 2002.

[14] D. McCullagh. Secret Messages Come in .Wavs. Online Newspaper:
Wired News, February 2001. http://www.wired.com-/news/politics/
0,1283,41861,00.html.

[15] Y. Miche, P. Bas, C. Jutten, O. Simula, and A. Lendasse. Amethodology
for building regression models using extreme learning machine: OP-
ELM. In ESANN 2008, European Symposium on Artificial Neural
Networks, Bruges, Belgium, April 23-25 2008. to be published.

[16] Y. Miche, P. Bas, A. Lendasse, C. Jutten, and O. Simula. Extracting rele-
vant features of steganographic schemes by feature selection techniques.
In Wacha’07: Third Wavilla Challenge, June 14 2007.

[17] Y. Miche, B. Roue, P. Bas, and A. Lendasse. A feature selection
methodology for steganalysis. InMRCS06, International Workshop
on Multimedia Content Representation, Classification and Security,
Istanbul (Turkey), Lecture Notes in Computer Science. Springer-Verlag,
September 11-13 2006.

[18] Watermarking Virtual Laboratory (Wavila) of the European Network of
Excellence ECRYPT. The 2nd bows contest (break our watermarking
system), 2007.

[19] T. Pevny and J. Fridrich. Merging markov and dct features for
multi-class jpeg steganalysis. InIS&T/SPIE 19th Annual Symposium
Electronic Imaging Science and Technology, volume 6505 ofLecture
Notes in Computer Science, January 29th - February 1st 2007.

[20] N. Provos. Defending against statistical steganalysis. In 10th USENIX
Security Symposium, pages 323–335, 13-17 April 2001.

[21] N. Provos and P. Honeyman. Detecting steganographic content on the
internet. InNetwork and Distributed System Security Symposium. The
Internet Society, 2002.

[22] F. Rossi, A. Lendasse, D. François, V. Wertz, and M. Verleysen. Mutual
information for the selection of relevant variables in spectrometric
nonlinear modelling.Chemometrics and Intelligent Laboratory Systems,
80:215–226, 2006.

[23] P. Sallee. Model-based steganography. InDigital Watermarking, volume
2939/2004 of Lecture Notes in Computer Science, pages 154–167.
Springer Berlin / Heidelberg, 2004.

[24] D. Scott and J. Thompson. Probability density estimation in higher
dimensions. In S.R. Douglas, editor,Computer Science and Statistics:
Proceedings of the fifteenth symposium on the interface, pages 173–179,
The Netherlands, 1983. North-Holland Elsevier.



12

[25] Y. Q. Shi, C. Chen, and W. Chen. A markov process based approach
to effective attacking jpeg steganography. InICME’06 : Internation
Conference on Multimedia and Expo, Lecture Notes in Computer
Science, 9-12 July 2006.

[26] A. Sorjamaa, Y. Miche, and A. Lendasse. Long-term prediction of
time series using nne-based projection and op-elm. InIJCNN2008:
International Joint Conference on Neural Networks, June 2008. to be
published.

[27] D. Ververidis and C. Kotropoulos. Fast and accurate sequential floating
forward feature selection with the bayes classifier appliedto speech
emotion recognition.Signal Processing, 88(12):2956–2970, December
2008.

[28] A. Westfeld. Reproducible signal processing (bows2 challenge image
database, public).

[29] A. Westfeld. F5-a steganographic algorithm. InInformation Hiding:
4th International Workshop, volume 2137, pages 289–302, 25-27 Avril
2001.

[30] A. Westfeld and A. Pfitzmann. Attacks on steganographicsystems. In
IH ’99: Proceedings of the Third International Workshop on Information
Hiding, pages 61–76, London, UK, 2000. Springer-Verlag.

APPENDIX: FEATURES RANKED BY THEFORWARD

ALGORITHM

As appendix are given the first40 features obtained by the
Forward ranking for each stego algorithm with5% embedding
rate. Only one embedding rate result is given for space
reasons.5% embedding rate results have been chosen since
they tend to be different (in terms of ranked features by the
Forward algorithm) from the other embedding rates and also
because5% embedding rate is a difficult challenge in terms
of steganalysis; these features are meaningful for this kind of
difficult steganalysis with these six algorithms.
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H(3) g5(1) H(−3) g−2(7) h13(0) C
−2,−1 H(4) h12(−3) g2(4) g−1(4)

g3(1) g0(3) h21(−3) g−4(2) g5(6) g−3(2) g2(7) h13(−3) H(−1) H(−4)
H(−2) g5(2) H(1) h12(−2) h31(−1) h12(5) h12(−4) h13(−2) H(5) H(2)
h21(5) h12(4) h13(−5) g−2(1) h21(0) h21(−5) g1(3) h21(3) h22(−1) h21(2)

TABLE VIII
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEF5 ALGORITHM AT 5% EMBEDDING RATE.

g0(4) h22(0) C1,0 B1 H(1) h21(0) g1(4) g0(8) g−2(9) g−2(5)
g4(5) g0(5) g1(9) g−1(2) B2 g2(8) C0,0 h31(5) g0(9) h22(1)

g−2(2) g−1(7) g−3(8) g0(1) h31(−3) h21(−1) h22(−1) g−4(6) C
−1,−2 g5(7)

h12(−5) g−5(8) h21(2) g0(7) h12(−2) h22(−4) h31(0) C0,2 H(2) g5(5)

TABLE IX
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEJPHSALGORITHM AT 5% EMBEDDING RATE.

g−2(1) H(2) g−4(7) h13(1) h22(1) C2,−2 C
−1,−1 h31(1) g4(7) g−2(4)

h21(0) h31(−4) h21(−4) C0,2 C12 h31(−1) H(0) h21(3) g−5(6) h22(−3)
h13(−1) C2,0 C1,2 g5(6) C

−2,−1 g−3(6) g5(4) g−2(7) g−1(7) g−4(8)
h22(−1) g2(1) g0(8) h22(−5) H(−2) h12(−4) g5(5) h12(−2) g2(4) h21(−3)

TABLE X
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEMBSTEG ALGORITHM AT 5% EMBEDDING RATE.

C
−1,−1 h13(−1) C0,−2 C1,1 g0(9) C2,0 h21(−1) h13(1) g−3(2) C10

H(−2) g4(4) g2(2) C
−2,0 C0,−1 C

−1,−2 g−2(3) h22(−3) g2(3) h13(3)
h31(−1) g−1(9) g−2(8) g0(7) h21(−5) h21(3) C

−1,1 g−1(3) g5(3) h31(1)
g0(3) B1 C

−2,1 B2 g−4(6) C0,2 H(−1) g2(5) h13(0) g2(7)

TABLE XI
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEMM3 ALGORITHM AT 5% EMBEDDING RATE.

h13(0) C0,−1 C
−2,0 H(−2) B1 C0,−2 g0(7) h31(−3) C

−2,−1 g0(2)
B2 H(−1) g−2(2) h13(−1) h22(−1) h22(0) h12(−3) g−2(5) g1(8) h21(−2)

g−2(9) g1(1) H(5) H(4) g2(1) g0(1) g−3(5) g0(9) g−3(8) g−3(3)
g−5(4) g−5(5) C

−2,−2 g−1(6) g−2(6) g4(3) C
−1,−1 C

−1,0 g−2(7) C
−1,1

TABLE XII
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THEOUTGUESS ALGORITHM AT5% EMBEDDING RATE.

C0,−1 g0(2) C0,2 C2,−2 B1 B2 C1,1 C0,−2 C
−2,2 h13(−1)

g−5(3) h21(−3) C0,1 h13(0) C1,−1 h31(−1) g−3(3) g3(6) h31(−2) g1(3)
h22(1) C

−2,−2 g−4(4) h13(1) C
−2,0 g1(4) C2,1 H(−1) C2,2 h22(5)

g2(5) C
−1,−1 g1(9) C2,0 g2(7) g−1(1) h31(5) H(−2) h21(1) g−2(9)

TABLE XIII
THE 40 FIRST FEATURES RANKED BY THEFORWARD ALGORITHM FOR THESTEGHIDE ALGORITHM AT 5% EMBEDDING RATE.


