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Reliable Steganalysis Using a Minimum Set of Samples and Features

This paper proposes to determine a sufficient number of images for reliable classification, and to use feature selection to select most relevant features for achieving reliable steganalysis. First dimensionality issues in the context of classification are outlined and the impact of the different parameters of a steganalysis scheme (the number of samples, the number of features, the steganography method and the embedding rate) is studied. On one hand, it is shown that using Bootstrap simulations, the standard deviation of the classifications results can be very important if too small training sets are used; moreover a minimum of 5000 images is needed in order to perform reliable steganalysis. On the other hand, we show how the feature selection process using the OP-ELM classifier enables both to reduce the dimensionality of the data and to highlight weaknesses and advantages of the six most popular steganographic algorithms.

I. INTRODUCTION

Steganography has been known and used for a very long time, as a way to exchange information in an unnoticeable manner between parties, by embedding it in another, apparently innocuous, document.

Nowadays steganographic techniques are mostly used on digital content. The online newspaper Wired News, reported in one of its articles [START_REF] Mccullagh | Secret Messages Come in[END_REF] on steganography that several steganographic contents have been found on web sites with very large image database such as eBay. Niels Provos [START_REF] Provos | Detecting steganographic content on the internet[END_REF] has somewhat refuted these facts by analyzing and classifying two million images from eBay and one million from USENet network and not finding any steganographic content embedded in these images. This could be due to many reasons, such as very low payloads, making the steganographic images less detectable to steganalysis and hence more secure.

In practice the concept of security for steganography is difficult to define, but Cachin in [START_REF] Cachin | An information-theoretic model for steganography[END_REF] mentions a theoretic way to do so, based on the Kullback-Leibler divergence. A stego process is thus defined as ǫ-secure if the Kullback-Leibler divergence δ between the probability density functions of the cover content p cover and of this very same content embedding a message p stego (that is, stego), is less than ǫ: δ(p cover , p stego ) ≤ ǫ.
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Fortunately, such high performance for a steganographic algorithm is not achievable when the payload (the embedded information) is important enough; also, several schemes have weaknesses.

One way of mesuring the payload is the embedding rate, defined as follows:

Let S be a steganographic algorithm and M be a cover medium. S, by its design, claims that it can embed at most T Max information bits within M ; T Max is called the capacity of the medium and highly depends on the steganographic (stego) algorithm as well as the cover medium itself. The embedding rate T is then defined as the part of T Max used by the information to embed.

For T i bits to embed in the cover medium, the embedding rate is then T = T i /T Max , usually expressed as percentage. There are other ways to measure the payload and the relationship between the amount of information embedded and the cover medium, such as the number of bits per non zero coefficient. Meanwhile, the embedding rate has the advantage of taking into account the stego algorithm properties and is not directly based on the cover medium properties -since it uses the stego algorithm estimation of the maximum capacity. Hence it has been chosen for this analysis of stego schemes. This paper is focused onto classical feature-based steganalysis. Such steganalysis typically uses a certain amount of images for training a classifier: features are extracted from the images and fed to a binary classifier (usually Support Vector Machines) for training. The output of this classifier is "stego" (modified using a steganographic algorithm) or "cover" (genuine). This classical process is illustrated on Fig. 1 for the part without parenthesis.

The emphasis in this paper is more specifically on the issues related to the increasing number of features, linked to the universal steganalyzers. Indeed, the very first examples of LSB-based steganalysis made use of less than ten features, with an adapted and specific methodology for each stego algorithm. The idea of "universal steganalyzers" then became popular. In 1999, Westfeld proposes a χ 2 -based method, on the LSB of DCT coefficients [START_REF] Westfeld | Attacks on steganographic systems[END_REF]. Five years after, Fridrich in [START_REF] Fridrich | Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes[END_REF] uses a set of 23 features obtained by normalizations of a much larger set, whilst Farid et al. already proposed in 2002 a set of 72 features [START_REF] Lyu | Detecting hidden messages using higher-order statistics and support vector machines[END_REF]. Some feature sets [START_REF] Agaian | New multilevel dct, feature vectors, and universal blind steganalysis[END_REF] also have variable size depending on the DCT block sizes. Since then, an increasing number of research works are using supervised learning based Fig. 1. Overview of the typical global processing for an analyzed image: features are first extracted from the image and then processed through a classifier to decide whether the image is cover or stego. In the proposed processing is added an extra step aimed at reducing the features number and having an additional interpretability of the steganalysis results, by doing a feature selection. classifiers in very high dimensional spaces. The recent work of Y. Q. Shi et al. [START_REF] Shi | A markov process based approach to effective attacking jpeg steganography[END_REF] is an example of an efficient result but using 324 features based on JPEG blocks differences modeled by Markov processes. This short survey of some feature sets for steganalysis is by no means exhaustive.

All these results do achieve better and better performance in terms of detection rate and enable to detect most stego algorithm for most embedding rates. Meanwhile, there are some side-effects to this growing number of features. It has been shown for example in [START_REF] Franc ¸ois | High-dimensional data analysis: optimal metrics and feature selection[END_REF] that the feature space dimensionality in which the considered classifier is trained, can have a significant impact on its performances: a too small amount of images regarding dimensionality (the number of features) might lead to an improper training of the classifier and thus to results with a possibly high statistical variance.

Comparison of steganalysis methods has been recently proposed by Ker [START_REF] Ker | The ultimate steganalysis benchmark?[END_REF], by focusing on the pdf of one output of the classifier. In this paper is addressed the idea of a practical way of comparing steganographic schemes, which requires a study on multiple parameters that can influence the performance:

1) the number of images used during the training of the classifier: How to determine a sufficient number of images for an efficient and reliable classification (meaning that final results have acceptable variance)? 2) the number of features used: What are the sufficient and most relevant features for the actual classification problem? 3) the steganography method: Is there an important influence of the stego algorithm on the general methodology? 4) the embedding rate used: Does the embedding rate used for the steganography modifies the variance of the results and the retained best features (by feature selection)?

The next section details some of the problems related to the number of features used (dimensionality issues) and commonly encountered in steganalysis: the empty space and the distance concentration phenomena, the important variance of the results obtained by the classifier whenever the number of images used for training is not sufficient regarding the number of features, and finally, the lack of interpretability of the results because of the high number of features. In order to address these issues, the methodology sketched on Fig. 1 is used and more thoroughly detailed: a sufficient number of images regarding the number of features is first established so that the classifier's training is "reliable" in terms of variance of its results; then, using feature selection the interpretability of the results is improved.

The methodology is finally tested in section IV with six differents stego algorithms, each using four different embedding rates. Results are finally interpreted thanks to the most relevant selected features for each stego algorithm. A quantitative study of selected features combinations is then provided.

II. DIMENSIONALITY ISSUES AND METHODOLOGY

The common term "curse of dimensionality" [START_REF] Bellman | Adaptive control processes: a guided tour[END_REF] refers to a wide range of problems related to a high number of features. Some of these dimensionality problems are considered in the following, in relation with the number of images and features.

A. Issues related to the number of images

1) The need for data samples: In order to illustrate this problem in a low-dimensional case, one can consider four samples in a two dimensional space (corresponding to four images out of which two features have been extracted); the underlying structure leading to the distribution of these four samples seems impossible to infer, and so is the creation of a model for it. Any model claiming it can properly explain the distribution of these samples will behave erratically (because it will extrapolate) when a new sample is introduced. On the contrary, with hundreds to thousands of samples it becomes possible to see clusters and relationships between dimensions.

More generally, in order for any tool to be able to analyze and find a structure within the data, the number of needed samples is growing exponentially with the dimensionality. Indeed, consider a d-dimensional unit side hypercube, the number of samples needed to fill the Cartesian grid of step ǫ inside of it is growing as O((1/ǫ) d ). Thus using a common grid of step 1/10 in dimension 10, it requires 10 10 samples to fill the grid.

In practice, most data sets in steganalysis use at least 10 to 20 dimensions, implying a "needed" number of samples impossible to achieve: storing and processing such number of images is currently impossible. As a consequence, the feature space is not filled with enough data samples to estimate the density with reliable accuracy; which can give wrong or high variance models when building classifiers, having to extrapolate for the missing samples: results obtained can have rather high confidence interval and hence be statistically irrelevant. A claim of performance improvement of 2% using a specific classifier/steganalyzer/steganographic scheme with a variance of 2% is rather meaningless.

2) The increasing variance of the results: The construction of a proper and reliable model for steganalysis is also related to the variance of the results it obtains. Only experimental results are provided to support this claim: with a low number of images regarding the number of features (a few hundreds of images for 200 features), the variance of the classifier's results can be very important.

When the number of images increases, this variance decreases toward proper values for classical steganalysis and performances comparisons. These claims are verified in the next section with the experiments.

3) Proposed solution to the lack of images: Overall, these two problems lead to the same conclusion: the number of images has to be important, regarding dimensionality. Theory states that this number is exponential with the number of features, which is impossible to reach for classical steganalysis. Hence, the first step of the proposed methodology is to find a "sufficient" number of images for the number of features used, according to a criterion on the variance of the results.

A Bootstrap [START_REF] Efron | An Introduction to the Bootstrap[END_REF] is proposed for that task: the number of images used for the training of the classifier is increased and for each different number of images, the variance of the results of the classifier is assessed. Once the variance of the classifier is below a certain threshold, a sufficient number of images has been found (regarding the classifier and the feature set used).

B. Issues related to the number of features

1) The empty space phenomenon: This phenomenon was first introduced by Scott and Thompson [START_REF] Scott | Probability density estimation in higher dimensions[END_REF] can be explained with the following example: draw samples from a normal distribution (zero mean and unit variance) in dimension d and consider the probability to have a sample at distance r from the mean of the distribution (zero). It is given by the probability density function:

f (r, d) = r d-1 2 d/2-1 . e -r 2 /2 Γ(d/2) (2) 
having its maximum at r = √ d -1. Thus, when dimension increases, samples are getting farther from the mean of the distribution. A direct consequence of this is that for the previously mentionned hypercube in dimension d, the "center" of it will tend to be empty, since samples are getting concentrated in the borders and corners of the cube.

Therefore, whatever model is used in such a feature space will be trained on scattered samples which are not filling the feature space at all. The model will then not be proper for any sample falling in an area of the space where the classifier had no information about during the training. It will have to extrapolate its behavior for these empty areas and will have unstable performances.

2) Lack of interpretability for possible "reverseengineering":

The interpretability (and its applications) is an important motivation for feature selection and dimensionality reduction: high performances can indeed be reached using the whole 193 features set used in this paper for classification.

Meanwhile, if looking for the weaknesses and reasons why these features react vividly to a specific algorithm, it seems rather impossible on this important set.

Reducing the required number of features to a small amount through feature selection enables to understand better why a steganographic model is weak on these particular details, highlighted by the selected features. Such analysis is performed in section IV-C for all six steganographic process. Through the analysis of these selected features, one can consider a "reverse-engineering" of the stego algorithm as illustrated on Fig. 2. By the identification of the most relevant features, the main characteristics of the embedding method can be inferred and the steganographic algorithm be identified if known, or simply understood.

3) Proposed solution to the high number of features: These two issues motivate the feature selection process: if one can reduce the number of features (and hence the dimensionality), the empty space phenomena will have a reduced impact on the classifier used. Also, the set of features obtained by the feature selection process will give insights on the stego scheme and its possible weaknesses.

For this matter, a classical feature selection technique has been used as the second step of the proposed methodology.

The following methodology is different from the one presented previously in [START_REF] Miche | Extracting relevant features of steganographic schemes by feature selection techniques[END_REF], [START_REF] Miche | A feature selection methodology for steganalysis[END_REF]. Indeed, in this article, the goal is set toward statistically reliable results. Also, feature selection has the advantage of reducing the dimensionality of the data (the jumber of features), making the classifier's training much easier. The interpretation of the selected features is also an important advantage (compared to having only the classifier's performance) in that it gives insights on the weaknesses of the stego algorithm.

III. METHODOLOGY FOR BENCHMARKING OF STEGANOGRAPHIC SCHEMES

Addressed problems

The number of data points to be used for building a model and classification is clearly an issue and in the practical case, how many points are needed in order to obtain accurate results -meaning results with small standard deviation.

Reduction of complexity is another main addressed concern in this framework. Then for the selected number of points to be used for classification, and also the initial dimensionality given by the features set, two main steps remain:

• Choosing the feature selection technique. Since analysis and computation can hardly be done on the whole set of features, the technique used to reduce the dimensionality has to be selected.

• Building a classifier; this implies choosing it, selecting its parameters, training and validating the chosen model. The following paragraphs presents the solutions for these two major issues, leading to a methodology combining them, presented on Fig. 3.

A. Presentation of the classifier used: OP-ELM

The Optimally-Pruned Extreme Learning Machine (OP-ELM [START_REF] Miche | A methodology for building regression models using extreme learning machine: OP-ELM[END_REF], [START_REF] Sorjamaa | Long-term prediction of time series using nne-based projection and op-elm[END_REF]) is a classifier based on the original Extreme Learning Machine (ELM) of Huang [START_REF] Huang | Extreme learning machine: Theory and applications[END_REF]. This classifier makes use of single hidden layer feedforward neural networks (SLFN) for which the weights and biases are randomly initialized. The goal of the ELM is to reduce the length of the learning process for the neural network, usually very long (for example if using classical back-propagation algorithms). The two main theorems on which ELM is based will not be discussed here but can be found in [START_REF] Huang | Extreme learning machine: Theory and applications[END_REF]. Fig. 4 illustrates the typical structure of a SLFN (simplified to a few neurons in here). Supposing the neural network is approximating the output Y = (y 1 , . . . , y N ) perfectly, we would have:

M i=1 β i f (w i x j + b i ) = y j , j ∈ 1, N , (3) 
with N the number of inputs X = (x 1 , . . . , x N ) (number of images in our case) and M the number of neurons in the hidden layer.

As said, the novelty introduced by the ELM is to initialize the weights W and biases B randomly. OP-ELM, in comparison to ELM, brings a greater robustness to data with possibly dependent/correlated features. Also, the use of other functions f (activation functions of the neural network) makes it possible to use OP-ELM for case where linear components have an important contribution in the classifier's model, for example.

The validation step of this classifier is performed using classical Leave-One-Out cross-validation, much more precise than a k-fold cross-validation and hence not requiring any test step [START_REF] Efron | An Introduction to the Bootstrap[END_REF]. It has been shown on many experiments [START_REF] Miche | A methodology for building regression models using extreme learning machine: OP-ELM[END_REF], [START_REF] Sorjamaa | Long-term prediction of time series using nne-based projection and op-elm[END_REF], that the OP-ELM classifier has results very close to the ones of a Support Vector Machine (SVM) while having computational times much smaller (usually from 10 to 100 times).

B. Determination of a sufficient number of images

A proper number of images, regarding the number of features, has to be determined. Since theoretical values for that number are not reachable, a sufficient number regarding a low enough value of the variance of the results is taken instead (standard deviation will be used instead of variance, in the following).

The OP-ELM classifier is hence used along with a Bootstrap algorithm [START_REF] Efron | An Introduction to the Bootstrap[END_REF] over 100 repetitions; a subset of the complete dataset (10000 images, 193 features) is randomly drawn (with possible repetitions). The classifier is trained with that specific subset. This process is repeated 100 times (100 random drawings of the subset) to obtain a statistically reliable estimation of the standard deviation of the results. The size of the subset drawn from the complete dataset is then increased, and the 100 iterations are repeated for this new subset size.

The criterion to stop this process is a threshold on the value of the standard deviation of the results. Once the standard deviation of the results gets lower than 1%, it is decided that the subset size S giving such low standard deviation of the classifier's results, is sufficient. S is then used for the rest of the experiments as a sufficient number of images regarding the number of features in the feature set.

C. Dimensionality reduction: feature selection by Forward with OP-ELM

Given the sufficient number of images for reliable training of the classifier, S, feature selection can be performed. The second step of the methodology, a Forward algorithm with OP-ELM (Fig. 3) is used.

1) The Forward algorithm: The forward selection algorithm is a greedy algorithm [START_REF] Rossi | Mutual information for the selection of relevant variables in spectrometric nonlinear modelling[END_REF]; it selects one by one the dimensions, trying to find the one that combines best with the already selected ones. The algorithm is (with x i denoting the i-th dimension of the data set)

Algorithm 1 Forward R = {x i , i ∈ 1, d } S = ∅ while R = ∅ do for x j ∈ R do Evaluate performance with S ∪ x j end for Set S = S ∪ {x k }, R = R -x k with x k the

dimension giving the best result in the loop end while

This algorithm requires d(d -1) 2 instances to terminate (to be compared to the 2 d -1 instances for an exhaustivesearch), which might reach the computational limits, depending on the number of dimensions and time to evaluate the performance with one set. With the OP-ELM as a classifier, computational times are not much of an issue. Even if its capacity to isolate efficient features is clear, the forward technique has some drawbacks. First, if two features present good results when put together but poor results if only Bootstrap Fig. 3. Schematic view of the proposed methodology: (1) An appropriate number of data samples to work with is determined using a Bootstrap method for statistical stability; (2) The forward selection is performed using an OP-ELM classifier to find a good features set. Follows a possible interpretation of the features or the typical classification for steganalysis. one of them is selected, forward might not take these into account in the selection process.

Second, it does not allow to "go back" in the process, meaning that if performances are decreasing along the selection process, and that the addition of another feature makes performances increase again, combinations of previously selected features with this last one are not possible anymore.

The Forward selection is probably not the best possible feature selection technique, and recent contribution to these techniques such as Sequential Floating Forward Selection (SFFS) [START_REF] Ververidis | Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition[END_REF] and improvements of it [START_REF]Fast Sequential Floating Forward Selection applied to Emotional Speech Features estimated on DES and SUSAS Data Collections[END_REF] have shown that the number of computations required for feature selection can be reduced drastically. Nevertheless, the feature selection using Forward has been showing very good results and seems to perform well on the feature set used in this paper. It is not used here in the goal of obtaining the best possible combination of features, but more to reduce the dimensionality and obtain some meaning out of the selected features. Improvements of this methodology could make use of such more efficient techniques of feature selection.

D. General Methodology

To summarize, the general methodology on Fig. 3 uses first a Bootstrap with 100 iterations on varying subsets sizes, to obtain a sufficient subset size and statistically reliable classifiers' results, regarding the number of features used. With this number of images, feature selection is performed using a Forward selection algorithm; this enables to highlight possible weaknesses of the stego algorithm. This methodology has been applied to six popular stego algorithms for testing. Experiments and results, as well as a discussion on the analysis of the selected features are given in the next section.

IV. EXPERIMENTS AND RESULTS

A. Experiments setup 1) Steganographic algorithms used:

Six different steganographic algorithms have been used: F5 [START_REF] Westfeld | F5-a steganographic algorithm[END_REF], Model-Based (MBSteg) [START_REF] Sallee | Model-based steganography[END_REF], MMx [START_REF] Kim | Modified matrix encoding technique for minimal distortion steganography[END_REF] (in these experiments, MM3 has been used), JP Hide and Seek [12], OutGuess [START_REF] Provos | Defending against statistical steganalysis[END_REF], StegHide [START_REF] Hetzl | A graph-theoretic approach to steganography[END_REF]; all of them with four different embedding rates: 5, 10, 15 and 20%.

2) Generation of image database: The image base was constituted of 10000 images from the BOWS2 Challenge [START_REF]Watermarking Virtual Laboratory (Wavila) of the European Network of Excellence ECRYPT[END_REF] database (hosted by Andreas Westfeld [START_REF] Westfeld | Reproducible signal processing (bows2 challenge image database[END_REF]). These images are 512 × 512 PGM greyscale (also available in color).

While the steganographic processes and the proposed methodology for dimensionality reduction and steganalysis are only performed on these 512 × 512 images, any size of image would work just as well.

3) Extraction of the features:

In the end, the whole set of images is separated in two equal parts: one is kept as untouched cover while the other one is stego with the six steganographic algorithms at four different embedding rates: 5%, 10%, 15% and 20%. Fridrich's 193 DCT features [START_REF] Pevny | Merging markov and dct features for multi-class jpeg steganalysis[END_REF] have been used for the steganalysis.

B. Results

Results are presented following the methodology steps. A discussion over the selected features and the possible interpretability of it are developed afterward. In the following, the term "detection rate" stands for the performance of the classifier on a scale from 0 to 100% of classification rate. It is a measure of the performance instead of a measure of error.

1) Determination of sufficient number of samples:

Presented first is the result of the evaluation of a sufficient number of images, as explained in the previous methodology, on Fig. 5. The Bootstrap (100 rounds) is used on randomly taken subsets of 200 up to 9000 images out of the whole 10000 from the BOWS2 challenge.

It can be seen on Fig. 5 that the standard deviation behaves as expected when increasing the number of images, for the cases of JPHS, MBSteg, MMx, OutGuess and StegHide: its value decreases and tends to below 1% of the best performance when the number of images is 5000 (even if for MBSteg with embedding rate of 5% it is a bit above 1%). This sufficient number of samples is kept as the reference and sufficient number. Another important point is that with very low number of images (100 in these cases), the standard deviation is between 1 and about 6.5% of the average classifier's performance; meaning that results computed with as small number of images have at most a ±6.5% confidence interval. While the plots decrease very quickly when increasing the number of images, values of the standard deviation remain very high until 2000 (f) StegHide Fig. 5. Standard deviation in percentage of the average classification result versus the number of images, for all six steganographic algorithms, for the four embedding rates: black circles ( ) for 20%, green squares (2) for 15%, red crosses (×) for 10% and blue triangles ( ) for 5%. These estimations have been performed with the Bootstrap runs (100 iterations). Plots do not have the same scale, vertically.

images; these results have to take into account the embedding rate, which tends to make the standard deviation higher as it decreases.

Indeed, while differences between 15 and 20% embedding rates are not very important on the four previously mentioned stego algorithms, there is a gap between the 5 -10% plots and the 20% ones. This is expected when looking at the performances of the steganalysis process: low embedding rates tend to be harder to detect, leading to a range of possible performances wider than with high embedding rates. Fig. 6 illustrates this idea on the cases of JPHS, MMx, MBSteg StegHide and OutGuess (the F5 results are behaving differently on these plots; this is discussed below).

Finally, the F5 algorithm have "erratic" behaviour, on Fig. 5. This can be explained by the very high performance of the classifier (close to 100%) and hence, the very small possible standard deviation: it ranges between 0.25% and 0.05%. It is then no surprise that the plots have such an erratic behaviour.

The final "sufficient" number of samples retained for the second step of the methodology -the feature selectionis 5000, for two reasons: first, the computational times are acceptable for the following computations (feature selection step with training of classifier for each step); second, the standard deviation is small enough to consider that the final classification results are given with at most 1% of standard deviation (in the case of MBSteg at 5% of embedding rate).

2) Forward feature selection: Features have first been ranked, using the Forward feature selection algorithm, and detection rates are plotted with increasing number of features (using the ranking provided by the Forward selection) on Fig. 6.

F5 case is different again: whatever the embedding rate used, steganalysis is surprisingly easy: using as low as 1 feature for all embedding rates, detection rate is 100% even with only 5% embedding rate.

The five other analyzed stego algorithms give rather different results:

• JPHS reaches a plateau in performance (within the standard deviation of 1%) for all embedding rates with 41 features and remains around that performance, even though performances are quite "unstable"

• OutGuess has this same plateau at 25 features and performances are not increasing anymore above that number of features (stll within the standard deviation of the results)

• StegHide can be considered to have reached the maximum result (within the standard deviation interval) at 60 features, even if for 5% embedding rate, performances keep on increasing while adding features. . .

• In the MM3 case, performances for embedding rates 10, 15 and 20% are very similar as are selected features. Performances stable at 40 features.

• Performances for MBSteg are stable using 70 features for embedding rates 15 and 20%. Only 30 are enough for embedding rate 5%. The case of embedding rate 10% has the classifier's performances increasing with the addition of features. Interestingly, the features retained by the forward selection for each embedding rate differ slightly, within one steganographic algorithm. Details about the features ranked as first by the Forward algorithm are discussed afterward.

C. Discussion

First, the global performances when using the reduced and sufficient feature sets mentioned in the results section above, are assessed. Note that feature selection for performing reverse-engineering of a steganographic algorithm is theoretically efficient only if the features are carrying different information (if two features represent the same information, the feature selection will select only one of them).

1) Reduced features sets: Based on the ranking of the features obtained by the Forward algorithm, it has been decided that once performances were within 1% of the best performance obtained (among all Forward tryouts for all different sets of features), the number of features obtained was retained as a "sufficient" feature set. Performances using reduced feature sets (proper to each algorithm and embedding rate) are first compared in Table I It should be noted that since the aim of the feature selection is to reduce as much as possible the feature set while keeping overall same performance, it is expected that within the standard deviation interval, the performance with the lowest possible number of features is behind the "maximum" one.

It remains possible, for the studied algorithms, as Fig. 6 shows, to find a higher number of features for which the performance is closer or equal to the maximum one -even though this is very disputable, considering the maximal 1% standard deviation interval when using 5000 images. But this is not the goal of the feature selection step of the methodology.

D. Feature sets analysis for reverse-engineering

Common feature sets have been selected according to the following rule: take the first common ten features (in the order ranked by the Forward algorithm) to each feature set obtained for each embedding rate (within one algorithm). It (f) StegHide Fig. 6. Performance in detection for all six stego algorithms versus the number of features, for the four embedding rates: black circles ( ) for 20%, green squares (2) for 15%, red crosses (×) for 10% and blue triangles ( ) for 5%. Features are ranked using the Forward selection algorithm. These plots are the result of a single run of the Forward algorithm. Plots do not have the same scale, vertically.

is hoped that through this selection, the obtained features will be generic regarding the embedding rate.

The F5 case is discarded, since only one feature makes it possible to achieve 99% of detection rate, that is the Global Histogram of coefficient 3: H(3) in the following notation.

Notations for the feature set used [START_REF] Pevny | Merging markov and dct features for multi-class jpeg steganalysis[END_REF] are first given for the original 23 features set, in Table II This set of 23 features is expanded up to a set of 193, by removing the L 1 norm used previously and keep all the values of the matrices and vectors. This results in the following 193 features set:

• A global histogram of 11 dimensions H(i), i = -5, 5

• 5 low frequency DCT histograms each of 11 dimensions h 21 (i) . . . h 31 (i), i = -5, 5

• 11 dual histograms each of 9 dimensions g -5 (i) . . . g 5 (i), i = 1, 9

• Variation of dimension 1 V • 2 blockinesses of dimension 1 B 1 , B 2 • Co-occurrence matrix of dimensions 5 × 5 C i,j , i = -2, 2 , j = -2, 2
Follows a discussion on the selected features for each steganographic algorithm.

Tables of selected feature sets are presented below, with an analysis of it for each algorithm. Fridrich's DCT features are not the only ones having a possible physical interpretation. They have been chosen here because it is believed that most of the features can be interpreted. The proposed short analysis of the weaknesses of stego algorithms is using this interpretation. 1) MM3: MM3 tends to be very sensitive to coefficients histograms features, which they do not preserve. Low DCT coefficients values (-1, +1) are found for MM3. Interestingly, co-occurrence coefficients react for MM3, as well as for JPHS (in the following) but only these two stego algorithms. 2) JPHS: JPHS seems not to preserve the low and medium frequencies coefficients and also not the frequency coherence (from the co-occurrence matrix). Also, DCT coefficients histograms are not preserved. 3) MBSteg: The features used (Table V) include global histograms with values 0,-2 and 2, which happens only because of the calibration in the feature extraction process. MBSteg preserves the coefficients' histograms but does not take into account a possible calibration. Hence, the unpreserved histograms are due to the calibration process in the feature extraction. Information leaks through the calibration process. and for low values (between -1 and +1).

h 21 (1) h 21 (2) h 12 (0) h 12 (2) h 22 (1) g -5 (1) C -2,-1 C -1,+1 C -1,+2 C +0,-2
h 12 (2) h 12 (3) h 13 (1) h 22 (1) h 31 (1) h 12 (2) C -2,-1 C -1,+1 C -1,+2 C +0,+1
From a general point of view, we can notice that all the analysed algorithms are very sensitive to statistics of low-pass calibrated DCT coefficients, which are represented by features h 21 and h 12 . This is not surprising since these coefficients contain a large part of the information of a natural image, their associated densities are likely to be modified by the embedding process. Note that fooling this process by embedding only inside the high-frequency coefficients is possible but reduces considerably the embedding payload.

V. CONCLUSIONS This paper has presented a methodology for the estimation of a sufficient number of images for a specific feature set using the standard deviation of the detection rate obtained by the classifier as a criterion (a Bootstrap technique is used for that purpose); the general methodology presented can nonetheless be extended and applied to other feature sets. The second step of the methodology aims at reducing the dimensionality of the data set, by selecting the most relevant features, according to a Forward selection algorithm; along with the positive effects of a lower dimensionality, analysis of the selected features is possible and gives insights on the steganographic algorithm studied. Three conclusions can be drawn from the methodology and experiments in this paper:

• Results on standard deviation for almost all studied steganographic algorithms have proved that the featurebased steganalysis is reliable and accurate only if a sufficient number of images is used for the actual training of the classifier used. Indeed, from most of the results obtained concerning standard deviation values (and therefore statistical stability of the results), it is rather irrelevant to possibly increase detection performance by 2% while working with a standard deviation for these same results of 2%.

• Through the second step of the methodology, the required number of features for steganalysis can be decreased. This with three main advantages: (a) performances remain the same if the reduced feature set is properly constructed; (b) the selected features from the reduced set are relevant and meaningful (the selected set can possibly vary, according to the feature selection technique used) and make reverse-engineering possible; (c) the weaknesses of the stego algorithm also appear from the selection; this can lead for example to improvements of the stego algorithm.

• The analysis on the reduced common feature sets obtained between embedding rates of the same stego algorithm, shows that the algorithms are sensitive to roughly the same features, as a basis. Meanwhile, when embedding rates get as low as 5%, or for very efficient algorithms, some very specific features appear.

Hence, the first step of the methodology is a requirement for any new stego algorithm, but also new feature sets/steganalyzers, willing to present its performances: a sufficient number of images for the stego algorithm and the steganalyzer used to test it has to be assessed in order to have stable results (that is, with a small enough standard deviation of its results to make the comparison with current state of the art techniques meaningful).

Also, from the second step of the methodology, the most relevant features can be obtained and make possible a further analysis of the stego algorithm considered, additionally to the detection rate obtained by the steganalyzer.

APPENDIX: FEATURES RANKED BY THE FORWARD ALGORITHM

As appendix are given the first 40 features obtained by the Forward ranking for each stego algorithm with 5% embedding rate. Only one embedding rate result is given for space reasons. 5% embedding rate results have been chosen since they tend to be different (in terms of ranked features by the Forward algorithm) from the other embedding rates and also because 5% embedding rate is a difficult challenge in terms of steganalysis; these features are meaningful for this kind of difficult steganalysis with these six algorithms. 5) H(4) g 2 (1) g 0 (1) g -3 (5) g 0 (9) g -3 (8) g -3 (3) g -5 (4) g -5 (5) C -2,-2 g -1 (6) g -2 (6) 

g 4 (3) C -1,-1 C -1,0 g -2 (7) C -1,1

Fig. 2 .

 2 Fig.2. Scheme of the possible reverse-engineering on an unknown stego algorithm, by using feature selection for identification of the specific weaknesses.

Fig. 4 .

 4 Fig. 4. Structure of a classical Single Layer Feedforward Neural Network (SLFN). The input values (the data) X = (x 1 , . . . , x N ) are weighted by the W coefficients. A possible bias B (not on the figure) can be added to the weighted inputs w i x i . An activation function f taking this weighted inputs (plus bias) as input is finally weighted by output coefficients β to obtain the output Y = (y 1 , . . . , y N ).
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		5%	#	10%	#
	F5	100.0	1	100.0	1
	JPHS	90.7	41	92.1	21
	MBSteg	63.3	57	70.9	93
	MM3	78.00	81	86.2	49
	OutGuess	81.2	65	93.2	49
	Steghide	82.3	149	91.2	89
		15%	#	20%	#
	F5	100.0	1	100.0	1
	JPHS	93.7	41	97.3	25
	MBSteg	83.5	73	88.5	69
	MM3	86.6	57	86.6	73
	OutGuess	98.8	33	100.0	29
	Steghide	96.4	73	99	73

TABLE I PERFORMANCES

 I FOR OP-ELM LOO FOR THE BEST FEATURES SET ALONG WITH THE SIZE OF THE REDUCED FEATURE SET (#). PERFORMANCES USING THE REDUCED SET ARE WITHIN THE 1% RANGE OF STANDARD DEVIATION OF THE BEST RESULTS. THE SIZE OF THE SET HAS BE DETERMINED TO BE THE SMALLEST POSSIBLE ONE GIVING THISPERFORMANCE.

  : 21 /||h 21 ||,h 12 /||h 12 ||,h 13 /||h 13 ||, for 5 DCT Modes h 22 /||h 22 ||,h 31 /||h 31 || Dual histogram for g -5 /||g -5 ||,g -4 /||g -4 ||,. . . , 11 DCT values g 4 /||g 4 ||,g 5 /||g 5 ||

	Functional/Feature	Functional F
	Global histogram	H/||H||
	Individual histogram h Variation V
	L1 and L2 blockiness	B 1 , B 2
	Co-occurrence	N 00 , N 01 , N 11

TABLE IV COMMON

 IV FEATURE SET FOR JPHS.

  Extreme values histograms are mostly used (values -2, -1) in the feature set for OutGuess (TableVI) and a clear weak point. The calibration process has indeed been of importance since the histogram of value 0 has been taken into account.

		TABLE VI		
	COMMON FEATURE SET FOR OUTGUESS.
	4) OutGuess: h 21 (-1) h 21 (0) h 12 (1)	h 12 (3)	h 13 (-1)
	h 13 (0)	h 13 (1) h 22 (1)	h 31 (-1)	h 31 (0)

  TABLE VIII THE 40 FIRST FEATURES RANKED BY THE FORWARD ALGORITHM FOR THE F5 ALGORITHM AT 5% EMBEDDING RATE.

	H(3)	g 5 (1)	H(-3)	g -2 (7)	h 13 (0)	C -2,-1	H(4)	h 12 (-3)	g 2 (4)	g -1 (4)
	g 3 (1)	g0(3)	h 21 (-3)	g -4 (2)	g 5 (6)	g -3 (2)	g 2 (7)	h 13 (-3)	H(-1)	H(-4)
	H(-2)	g 5 (2)	H(1)	h 12 (-2)	h 31 (-1)	h 12 (5)	h 12 (-4)	h 13 (-2)	H(5)	H(2)
	h 21 (5)	h 12 (4)	h 13 (-5)	g -2 (1)	h 21 (0)	h 21 (-5)	g 1 (3)	h 21 (3)	h 22 (-1)	h 21 (2)
	g 0 (4)	h 22 (0)	C 1,0	B1	H(1)	h 21 (0)	g 1 (4)	g 0 (8)	g -2 (9)	g -2 (5)
	g 4 (5)	g 0 (5)	g 1 (9)	g -1 (2)	B2	g 2 (8)	C 0,0	h 31 (5)	g 0 (9)	h 22 (1)
	g -2 (2)	g -1 (7)	g -3 (8)	g 0 (1)	h 31 (-3) h 21 (-1)	h 22 (-1)	g -4 (6) C -1,-2	g 5 (7)
	h 12 (-5)	g -5 (8)	h 21 (2)	g 0 (7)	h 12 (-2) h 22 (-4)	h 31 (0)	C 0,2	H(2)	g 5 (5)

TABLE IX THE

 IX 40 FIRST FEATURES RANKED BY THE FORWARD ALGORITHM FOR THE JPHS ALGORITHM AT 5% EMBEDDING RATE.

	g -2 (1)	H(2)	g -4 (7)	h 13 (1)	h 22 (1)	C 2,-2	C -1,-1	h 31 (1)	g 4 (7)	g -2 (4)
	h 21 (0)	h 31 (-4) h 21 (-4)	C 0,2	C 1 2	h 31 (-1)	H(0)	h 21 (3)	g -5 (6)	h 22 (-3)
	h 13 (-1)	C 2,0	C 1,2	g 5 (6)	C -2,-1	g -3 (6)	g 5 (4)	g -2 (7)	g -1 (7)	g -4 (8)
	h 22 (-1)	g 2 (1)	g 0 (8)	h 22 (-5)	H(-2)	h 12 (-4)	g 5 (5)	h 12 (-2)	g 2 (4)	h 21 (-3)

TABLE X THE

 X 40 FIRST FEATURES RANKED BY THE FORWARD ALGORITHM FOR THE MBSTEG ALGORITHM AT 5% EMBEDDING RATE.

	C -1,-1	h 13 (-1)	C 0,-2	C 1,1	g 0 (9)	C 2,0	h 21 (-1)	h 13 (1)	g -3 (2)	C 1 0
	H(-2)	g 4 (4)	g 2 (2)	C -2,0	C 0,-1	C -1,-2	g -2 (3)	h 22 (-3)	g 2 (3)	h 13 (3)
	h 31 (-1)	g -1 (9)	g -2 (8)	g 0 (7)	h 21 (-5)	h 21 (3)	C -1,1	g -1 (3)	g 5 (3)	h 31 (1)
	g 0 (3)	B1	C -2,1	B2	g -4 (6)	C 0,2	H(-1)	g 2 (5)	h 13 (0)	g 2 (7)

TABLE XI THE

 XI 40 FIRST FEATURES RANKED BY THE FORWARD ALGORITHM FOR THE MM3 ALGORITHM AT 5% EMBEDDING RATE.

	h 13 (0)	C 0,-1	C -2,0	H(-2)	B1	C 0,-2	g 0 (7)	h 31 (-3)	C -2,-1	g 0 (2)
	B2	H(-1)	g -2 (2)	h 13 (-1) h 22 (-1)	h 22 (0)	h 12 (-3)	g -2 (5)	g 1 (8)	h 21 (-2)
	g -2 (9)	g 1 (1)	H(							

TABLE XII THE

 XII 40 FIRST FEATURES RANKED BY THE FORWARD ALGORITHM FOR THE OUTGUESS ALGORITHM AT 5% EMBEDDING RATE.TABLE XIII THE 40 FIRST FEATURES RANKED BY THE FORWARD ALGORITHM FOR THE STEGHIDE ALGORITHM AT 5% EMBEDDING RATE.

	C 0,-1	g 0 (2)	C 0,2	C 2,-2	B1	B2	C 1,1	C 0,-2	C -2,2	h 13 (-1)
	g -5 (3)	h 21 (-3)	C 0,1	h 13 (0)	C 1,-1	h 31 (-1) g -3 (3)	g 3 (6)	h 31 (-2)	g 1 (3)
	h 22 (1)	C -2,-2	g -4 (4)	h 13 (1)	C -2,0	g 1 (4)	C 2,1	H(-1)	C 2,2	h 22 (5)
	g 2 (5)	C -1,-1	g 1 (9)	C 2,0	g 2 (7)	g -1 (1)	h 31 (5)	H(-2)	h 21 (1)	g -2 (9)
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