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Some applications of duality

for Lévy processes in a half-line

Jean Bertoin∗ Mladen Savov †

Abstract

The central result of this paper is an analytic duality relation for real-valued Lévy

processes killed upon exiting a half-line. By Nagasawa’s theorem, this yields a remarkable

time-reversal identity involving the Lévy process conditioned to stay positive. As examples

of applications, we construct a version of the Lévy process indexed by the entire real line

and started from −∞ which enjoys a natural spatial-stationarity property, and point out

that the latter leads to a natural Lamperti-type representation for self-similar Markov

processes in (0,∞) started from the entrance point 0+.

1 Introduction

A celebrated result due to David Williams (cf. Theorem 3.4 in [20]) can be stated as follows.

Consider a real Brownian motion (Bx
t )t≥0 started from some level x > 0 and T = inf{t ≥

0 : Bx
t ≤ 0} its first exit-time from (0,∞). Then the process (Bx

T−t)0≤t<T obtained by time-

reversing the Brownian path at time T , has the same distribution as a three-dimensional Bessel

process started from 0 and killed at the time of its last-passage at level x. This relation

should be viewed as the probabilistic counterpart of an analytic duality between the transition

probabilities qt(x, dy) of the Brownian motion killed upon exiting (0,∞) and p↑t (x, dy) of the

three-dimensional Bessel process. Specifically, there is the identity

qt(x, dy)xdx = p↑t (y, dx)ydy , x, y ∈ (0,∞). (1)

One further observes that the duality measure xdx on (0,∞) coincides with the potential

measure U↑(0, dx) =
∫∞

0
dtp↑t (0, dx) of the three-dimensional Bessel process started from 0,
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and the time-reversal identity of Williams then follows from a general result of Nagasawa [17]

for Markov processes in duality. We also refer to Azéma [1] and Chung and Walsh [9] for further

seminal contributions in this area.

It has been observed in Theorem VII.18 in [2] that similar arguments can be applied to Lévy

processes with no positive jumps, and yield an extension of Williams’ time-reversal identity in

that setting. More precisely, consider a Lévy process ξ with no positive jumps; the role of the

Brownian motion is now played by ξ̂ = −ξ, and that of the three-dimensional Bessel process by

ξ↑, which should be thought of as ξ conditioned to stay positive (in general such a conditioning

is singular and has to be understood in terms of Doob’s h-transform). Of course, the absence of

positive jumps of ξ is crucial as it ensures that the downwards passages for ξ̂ occur continuously.

The central result of the present work is that a duality identity extending (1) holds for general

Lévy processes (possibly with positive jumps), and as a consequence so does the remarkable

time-reversal identity for Lévy processes which do not tend to −∞. A fundamental feature of

this extension is the possibility of downwards crossings by a jump for ξ̂, so in general the Lévy

process ξ̂ and the version of ξ conditioned to stay positive, ξ↑, have to start from appropriate

random locations in [0,∞).

This duality relation has a number of applications, some of which have already been observed

in the literature. In particular, it enables us to construct a process (ξt)t∈R indexed by the real

line that fulfills a spatial invariance property and which may be thought of as a version of the

Lévy process ξ started from −∞. More precisely, it appears as the limit in distribution as

x → −∞ of the Lévy process started at time 0 from x and shifted in time at the instant of

its first entrance in (0,∞). In this vein, we point at a remarkable representation of positive

self-similar Markov processes (Xt)t≥0 in (0,∞) started from the boundary point 0+ as a time-

change of exp(ξ), which extends the classical construction due to Lamperti [16] when X starts

from a strictly positive position.

This paper is organized as follows. In the next section we first recall some useful elements of

fluctuation theory for Lévy processes, and then present the key duality relation. After discussing

the classical weak convergence of the under and over shoots in the framework of renewal theory

applied to the ladder height process, we finally use Nagasawa’s theorem to establish an identity

involving time-reversed processes which provides the probabilistic counterpart of the duality

relation. Section 3 is devoted to applications to limit theorems. We first observe that there is

a natural version of the Lévy process indexed by the entire real line which enjoys a remarkable

spatial-stationarity property. Then we show that this process appears as the limit as z → −∞

of the genuine Lévy process started from z and shifted in time at its first entrance in (0,∞).

This weak limit theorem encompasses the classical convergence of the under and over shoots,

and the combination with Lamperti’s transformation points at a simple approach for studying

the entrance boundary of positive self-similar Markov processes.
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2 Duality and time-reversal in a half-line

2.1 Some notation and preliminaries

We introduce some background on Lévy processes and fluctuation theory that will be needed

here, referring the reader to [2], [10] or [14] for a complete account. We implicitly exclude

the compound Poisson processes (merely to avoid discussing periodicity).

We shall use the canonical notation : the probability space is chosen to be Ω = D([0,∞), R),

the space of càdlàg paths endowed with the Borel sigma-field generated by Skorohod’s topology,

and ξ = (ξt)t≥0 is the coordinate process, i.e. ξt(ω) = ω(t). Our building block is a probability

measure P on Ω for which ξ is a Lévy process, i.e. ξ has independent and homogeneous

increments and starts from ξ0 = 0 a.s. We write Π for the Lévy measure, which specifies the

intensity of the jumps. We also denote by P̂ the image of P by the map ω → ω̂ = −ω. In

other words, P̂ is the law of the dual Lévy process ξ̂ = −ξ under P .

Killing the paths at their first-exit time from the upper half-line

T = inf{t ≥ 0 : ξt ≤ 0}

yields two sub-Markovian transition probabilities on (0,∞)

pt(x, dy) = Px(ξt ∈ dy, t < T ) and p̂t(x, dy) = P̂x(ξt ∈ dy, t < T ) ,

where Px and P̂x denote the law of x + ξ under P and under P̂ , respectively. We write

U(x, dy) =

∫ ∞

0

dtpt(x, dy)

for the potential measure of the Lévy process killed when exiting (0,∞).

Recall that under P , the reflected process (sup0≤s≤t ξs − ξt)t≥0 is a Feller process in [0,∞)

which possesses a local time (Lt)t≥0 at level 0. The (ascending) ladder time is defined as the

right-continuous inverse of L, viz. L−1(t) = inf{s ≥ 0 : Ls > t} and the ladder height process

H+ by

H+(t) = ξL−1(t) = sup
0≤s≤L−1(t)

ξs , whenever L−1(t) < ∞ .

Here, we use the convention inf ∅ = ∞ and H+(t) = ∞ when L∞ ≤ t. It is well-known that

H+ is a subordinator (killed at time L∞ when the Lévy process tends to −∞). We denote its
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drift coefficient by a+ ≥ 0 and its Lévy measure by µ+, so that for every q, t ≥ 0,

E (exp(−qH+(t))) = exp

(

−t

(

a+q +

∫

(0,∞]

µ+(dx)(1 − e−qx)

))

.

Here we agree that exp(−qH+(t)) = 0 when L−1(t) = ∞, and µ+({∞}) corresponds to the

killing rate of H+. We write U+ for its renewal function, viz.

U+(x) =

∫ ∞

0

P (H+(t) ≤ x, L−1(t) < ∞)dt , x ∈ [0,∞) .

We also consider the dual ladder H−, that is the ladder height of the dual Lévy process ξ̂

and denote by U− its renewal function. According to Silverstein [18] (see also Theorem VI.20

in [2]), there is the remarkable identity

U(x, dy) =

∫ x

(x−y)+
U−(dz)U+(dy + z − x) . (2)

More precisely, Silverstein’s identity often appears with an additional constant factor c > 0 in

the right-hand side of (2), which depends on the choice of the normalization that has been used

to define the local times at 0 of the reflected Lévy processes. We thus implicitly assume that

the local times have been normalized so that (2) holds exactly.

Silverstein [18] also observed that the renewal function U− is harmonic for the semigroup

induced by (pt)t≥0, i.e.

U−(x) =

∫ ∞

0

pt(x, dy)U−(y) , x > 0 .

Following Doob, this enables us to construct (conservative) Markovian transition functions

p↑t (x, dy) =
U−(y)

U−(x)
pt(x, dy) .

The distribution of the Markov process on (0,∞) started from x > 0 and with transition

functions (p↑t )t≥0 will be denoted by P ↑
x ; roughly speaking, P ↑

x should be viewed as the law of

the Lévy process started from x and conditioned to stay positive. Indeed, if the Lévy process

tends to ∞, that is Px(T = ∞) > 0 for some (and then all) x > 0, then it is easily seen

that there exists some constant c′ > 0 such that U−(x) = c′Px(T = ∞) and hence p↑t (x, dy)

coincides with the transition probability of the Lévy process conditioned to stay positive in the

usual sense. Finally, we denote the potential measure of the Lévy process started from x and
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conditioned to stay positive by

U↑(x, dy) =

∫ ∞

0

dtp↑t (x, dy) =
U−(y)

U−(x)
U(x, dy) . (3)

When 0 is regular upwards, in the sense that P (sup0≤s≤ε ξs > 0) = 1 for any ε > 0, it is

known from a work of Chaumont and Doney [7] that P ↑
x has a weak limit as x → 0+, which we

denote by P ↑
0 . More precisely P ↑

0 (ξt > 0) = 1 for all t > 0 and under P ↑
0 the canonical process

ξ remains Markovian (as a matter of fact, Fellerian) with transition probabilities (p↑t )t≥0. We

shall need the following result when the ladder height subordinator H+ has a strictly positive

drift coefficient (we refer to Vigon [19] for an explicit necessary and sufficient condition for this

to happen).

Lemma 1 Suppose that a+ > 0. Then the following holds :

(i) The renewal function U+ has a continuous derivative u+ which is strictly positive everywhere

with u+(0) = 1/a+. For every x > 0, the probability that the dual Lévy process started from x

exits (0,∞) for the first time continuously is

P̂x(ξT = ξT−, T < ∞) = a+u+(x) .

Further, this quantity converges to a+/E(H+(1)) when x → ∞.

(ii) There is the identity

U↑(0, dy) = U−(y)u+(y)dy .

Proof: The probability under P̂x that ξ is continuous at its first exit time from (0,∞) coincides

with the probability that the ladder height subordinator H+ crosses the level x continuously.

The first assertion in (i) merely rephrases a result of Neveu which is stated as Theorem III.5

in [2], while the last one is a consequence of the renewal theorem for subordinators (see, e.g.

Proposition 3.3 in [3]).

So we focus on (ii). The existence of a regular density u+ for the renewal function U+ enables

us to rewrite (2) in the form

U(x, dy)/dy =

∫ x

(x−y)+
U−(dz)u+(y + z − x) .

Combining with (3) readily yields the desired formula. �
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2.2 A duality relation

In order to state the duality relation that lies at the heart of this work, we still need one more

notation. We introduce the measure

m(dx) = Π(x)U−(x)dx + a+δ0(dx) , x ∈ [0,∞) (4)

where Π(x) = Π((x,∞)) is the (upper) tail distribution of the Lévy measure Π and a+ the drift

coefficient of the ladder height subordinator H+.

Theorem 1 (i) There is the duality identity

p↑t (x, dy)U−(x)dx = p̂t(y, dx)U−(y)dy .

(ii) The duality measure U−(x)dx can be expressed as

U−(x)dx =

∫

[0,∞)

m(dy)U↑(y, dx) .

Proof: (i) This follows immediately from Hunt’s switching identity

pt(x, dy)dx = p̂t(y, dx)dy

(see Theorem II.5 in [2]) and the definition of p↑t (x, dy). Note that this has already been pointed

out in the proof of Theorem 4 of Chaumont [6].

(ii) From (3) we get

∫

[0,∞)

dyΠ(y)U−(y)U↑(y, dx) = U−(x)

∫

[0,∞)

dyΠ(y)U(y, dx).

On the other hand, Hunt’s switching identity gives

∫

[0,∞)

dyΠ(y)U(y, dx) =

(
∫

[0,∞)

Û(x, dy)Π(y)

)

dx

where

Û(x, dy) =

∫ ∞

0

dt p̂t(x, dy)

is the potential measure of the dual Lévy process ξ̂ = −ξ killed upon exiting (0,∞).
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A standard argument based on the Poissonian structure of the jumps of the dual Lévy process

and the compensation formula for Poisson point processes shows that

∫

[0,∞)

Û(x, dy)Π(y) = P̂x(ξ exits from (0,∞) by a jump) .

See for instance the proof of Proposition III.2 in [2]. When the drift coefficient a+ of the ladder

height subordinator H+ (under P ) is zero, the probability above is one according to a celebrated

result due to Kesten which is stated as Theorem II.4 in [2], and the proof is complete. When

a+ > 0, we deduce from Lemma 1 that

a+U↑(0, dx)/dx = U−(x)P̂x(ξ exits from (0,∞) continuously ) ,

which yields the conclusion. �

2.3 Weak convergence of the over and under shoots

The probabilistic interpretation of the duality identity (Theorem 1) requires the measure m

defined by (4) to be finite. The following claims are due to Vigon [19] (see (5.3.4) in [10]) and

Doney and Maller (see Theorem 8 in [12]), respectively.

Lemma 2 The mass of the measure m coincides with the mean ladder height, i.e.

m([0,∞)) = E(H+(1)) .

This quantity is finite if and only if ξ1 ∈ L1(P ) and either E(ξ1) > 0 or E(ξ1) = 0 and

∫

[1,∞)

dx
xΠ(x)

∫ x

0
dy
∫∞

y
dzΠ((−∞,−z))

< ∞ .

We assume that E(H+(1)) < ∞ throughout the rest of this work, except at the

beginning of Section 3.2. We stress that this rules out the case when the Lévy process tends

to −∞; in particular the ascending ladder processes are not defective.

Next, we introduce the probability measure ρ on [0,∞)2 as

ρ(dx, dy) =
1

E(H+(1))
(U−(x)Π(x + dy)dx + a+δ0(dx)δ0(dy)) , (5)
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and write ρ1 and ρ2 for the marginal laws of ρ :

ρ1(dx) =
1

E(H+(1))

(

U−(x)Π(x)dx + a+δ0(dx)
)

,

ρ2(dy) =
1

E(H+(1))

(

a+δ0(dy) +

∫ ∞

0

dxU−(x)Π(x + dy)

)

.

Note that the first marginal ρ1 coincides with the measure m in (4) normalized to be a proba-

bility, and that an integration by parts gives

∫ ∞

0

dxU−(x)Π(x + dy) =

(
∫ ∞

0

U−(dx)Π(x + y)

)

dy .

According to Vigon’s équation amicale inversée (see [19]), the right-hand side can be expressed

as µ+(y)dy, where µ+ denotes the tail of the Lévy measure of the ladder height subordinator

H+. Hence we also have

ρ2(dy) =
1

E(H+(1))

(

a+δ0(dy) + µ+(y)dy
)

,

which is the classical limit distribution for the overshoot (i.e. the residual lifetime in the renewal

process constructed from the subordinator H+).

More precisely, it belongs to the folklore of fluctuation theory that when the ladder height

of a random walk or a Lévy process has a finite mean, then the pair formed by the undershoot

and the overshoot across a large level z converges weakly as z → ∞; see in particular Theorem

3 in [15]. For every path ω ∈ Ω, let

T̂ (ω) = T (ω̂) = inf{t ≥ 0 : ω(t) ∈ (0,∞)}

denote the first entrance time to the positive half-line. We now provide a formal statement of

the convergence alluded above which stresses the role of the measure ρ defined in (5).

Lemma 3 The probability measures on [0,∞)2

P̂z(ξT− ∈ dx,−ξT ∈ dy) = P−z(−ξT̂− ∈ dx, ξT̂ ∈ dy)

converge to ρ as z → ∞ in the sense of weak convergence of probability measures.

Proof: A by-product of the quintuple identity for first passage times for Lévy processes (see

Doney and Kyprianou [11] and references therein for further results in this area) is that for
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x, y > 0

P−z(−ξT̂− ∈ dx, ξT̂ ∈ dy) =

∫ z

0

U+(z − dv)1{x>v}U−(dx − v)Π(dx + y) .

Roughly speaking, the renewal theorem implies that U+(z − dv) converges as z → ∞ towards

dv/E(H+(1)), and this yields that

lim
z→∞

P−z(−ξT̂− ∈ dx, ξT̂ ∈ dy) =
1

E(H+(1))
U−(x)Π(x + dy)dx , vaguely on (0,∞)2.

This establishes the claim when the ladder height process has no drift, because the right-hand

side then defines a probability measure on (0,∞)2. In the case when a+ > 0, the same conclusion

follows invoking further Lemma 1(i) and the Portemanteau theorem, as ρ is a probability

measure. �

2.4 Time-reversal identities

On our way to providing the probabilistic interpretation of the duality relation of Theorem 1,

we need to introduce some notation for càdlàg paths indexed by the entire real line.

We set Ω = D(R, R); ω will denote a generic path in Ω. We also set ξt(ω) = ω(t) for every

t ∈ R, so (ξt)t∈R is the usual coordinate process. It may sometimes be convenient to identify Ω

as the product space Ω × Ω via the canonical bijection ω → (ω, ω′), where

ω(t) = −ω(−t−) and ω′(t) = ω(t) for every t ≥ 0 .

Equivalently, we have for t ∈ R

ω(t) =

{

ω′(t) if t ≥ 0 ,

−ω(−t−) if t < 0 .

We then introduce a probability measure P on Ω by

P(dω) = P(dω, dω′) =

∫

[0,∞)2
ρ(dx, dy)P ↑

x (dω)Py(dω′) .

Thus under P, the pair (−ξ0−, ξ0) has the stationary distribution ρ for the under and the

over shoots, and conditionally on (−ξ0−, ξ0) = (x, y), the processes (−ξt−)t≥0 and (ξt)t≥0 are

independent with laws P ↑
x and Py, respectively. Note that ξt < 0 for t < 0 and limt→−∞ ξt = −∞

P-a.s. while for large times ξ oscillates or limt→∞ ξt = ∞ according as the genuine Lévy process

oscillates or tends to ∞. In this section, we will essentially work with the canonical process on
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nonnegative times, (ξt)t≥0, which has thus the law Pρ2
=
∫

ρ2(dx)Px under P.

We then fix a level z > 0 and let τ(z) = inf{t ∈ R : ξt > z} denote the first passage time

above z. Note that τ(z) ∈ [0,∞) P-a.s. and that τ(z) = 0 when ξ0 > z. In the latter case, the

notation −ξτ(z)− means −ξ0− (which is a nonnegative random variable), and (ξt)0≤t<τ(z) is the

empty path.

Theorem 2 The following assertions hold for each z > 0 :

(i) We have the identity

P(z − ξτ(z)− ∈ dx, ξτ(z) − z ∈ dy) = ρ(dx, dy) .

(ii) Under P, the process (ξt)0≤t<τ(z) and the variable ξτ(z) are conditionally independent given

ξτ(z)−.

(iii) Under the conditional law P(· | ξτ(z)− = z − x), the process (z − ξ(τ(z)−t)−)0≤t<τ(z) has the

same law as the process (ξt)0≤t<ℓ(z) under P ↑
x , where ℓ(z) = sup{t ≥ 0 : ξt < z} denotes the last

exit-time from (−∞, z).

Proof: (i) This just reflects the fact that ρ is the stationary distribution of the under and

over shoots, as it can be seen from Lemma 3.

(ii) Consider a process K = (Kt)t≥0 with nonnegative left-continuous paths, which is adapted

to the natural filtration generated by ξ (hence K is predictable). Let also f : R → R+ be a

continuous function with support in (z,∞). We write ∆t = ξt − ξt− for the jump of ξ at time

t and E for the mathematical expectation under P. By an application of the compensation

formula to the Poisson point process of the jumps of a Lévy process at the second line below,

we have

E
(

Kτ(z)f(ξτ(z))
)

= E

(

∑

t≥0

1{sup0≤s<t ξs≤z}Ktf(∆t + ξt−)

)

= E

(
∫ ∞

0

dt1{sup0≤s<t ξs≤z}Kt

(
∫

Π(dx)f(x + ξt−)

))

.

So if we define

ϕ(y) =
1

Π(z − y)

∫

Π(dx)f(x + y) for every y ≤ z

(we stress that ϕ(z) = 0 when Π((0,∞)) = ∞, since our assumptions on f ensure that
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∫

Π(dx)f(x + z) < ∞), we obtain

E
(

Kτ(z)f(ξτ(z))
)

= E

(
∫ ∞

0

dt1{sup0≤s<t ξs≤z}Ktϕ(ξt−)Π(z − ξt−)

)

= E

(

∑

t≥0

1{sup0≤s<t ξs≤z}Ktϕ(ξt−)1{∆t+ξt−>z}

)

= E
(

Kτ(z)ϕ(ξτ(z)−)
)

,

where we again applied the compensation formula for Poisson point processes at the second

line above. This establishes the claim of conditional independence.

(iii) To prove that under P ↑
ρ1

=
∫

ρ1(dx)P ↑
x the process time-reversed at its last passage time

below level z, (ξ(ℓ(z)−t)− : 0 ≤ t < ℓ(z)), is sub-Markovian with semigroup p̂t we shall apply

Nagasawa’s Theorem 3.5 in [17]. There are six conditions to be checked to ensure the validity

of Nagasawa’s result. To be rigorous and comply with the notation in [17] we put E = (0,∞)

when a+ = 0 and E = [0,∞) when a+ > 0 ( note that ρ1 has mass at zero and ξ under P ↑
ρ1

can

start from zero; however as mentioned before Lemma 1, P ↑
0 (ξt > 0) = 1 for each t > 0). We

proceed by stating and demonstrating these conditions :

(1) Condition A 3.1 on p. 188 in [17] requires that the semigroups p↑ and p̂ are in duality

w.r.t.
∫∞

0
U↑(x, dy)ρ1(dx). This holds due to Theorem 1 and ρ1(dx) = m(dx)/E(H+(1)).

(2) Condition A 3.2 and condition (ii) in the footnote on p. 190 in [17] are satisfied since

our process is started from the probability measure ρ1 and this ensures the finiteness of any

quantities of the type P ↑
ρ1

(ξ(ℓ(z)−t)− ∈ .) and
∫∞

0
e−αtP ↑

ρ1
(ξ(ℓ(z)−t)− ∈ ·)dt, for α > 0.

(3) Condition A 3.3 asks for right-continuity of P̂ T
t f(x) = Êx(f(ξt), T > t) in t and a.s.

right-continuity in t of
∫∞

0
e−αsP̂ T

s f(ξ(ℓ(z)−t)−)ds under any of the measures P ↑
a for a ∈ E,

x ∈ E and α > 0, where f is a continuous function with a compact support in E. These are

satisfied since the canonical process is defined in Ω.

(4) Condition (i) in the footnote on p. 190 in [17] can be read off as the existence of the

left-limit ξℓ(z)− on the event {0 < ℓ(z) < ∞}, Pρ1
-a.s. This plainly holds.

(5) Condition (iii) is similar to A 3.3. We need to check that P̂ T
t f(x) is continuous for x ∈ E

for any continuous function f with a compact support in E. However the statement is clear

from the continuity of P̂x(T > t) in x, for x > 0 and any fixed t, independently of a+ = 0 or

not, and the fact that when a+ > 0, T̂ is continuous at 0 since 0 is regular for (0,∞).

Thus, we have checked that (ξ(ℓ(z)−t)− : 0 ≤ t < ℓ(z)) is sub-Markovian with semigroup p̂t.

Note that the latter thus fulfills the strong Markov property and denote its initial distribution

by

νz(dx) = P ↑
ρ1

(ξℓ(z)− ∈ dx, ℓ(z) > 0) , for x ∈ [0, z].
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Pick an arbitrary z′ > z and apply the strong Markov property to the time-reversed path

(ξ(ℓ(z′)−t)− : 0 ≤ t < ℓ(z′)) at its first-passage time below level z, that is ℓ(z′)− ℓ(z). This yields

νz(dx) =

∫ ∞

0

νz′(dy)P̂y−z(z + ξT ∈ dx) , for x ∈ [0, z].

Letting z′ → ∞, we deduce from Lemma 3 that νz(dx) = ρ2(z − dx) on [0, z].

We conclude that under P ↑
ρ1

, the time-reversed process (ξ(ℓ(z)−t)−)0≤t<ℓ(z) has the same law

as (ξt)0≤t<T under P̂νz
. Equivalently, under Pρ2

, the process (z−ξ(τ(z)−t)−)0≤t<τ(z) has the same

law as the process (ξt)0≤t<ℓ(z) under P ↑
ρ1

, which is our statement. �

In the special case when the drift coefficient a+ of the ladder height subordinator H+ is

strictly positive, recall from Lemma 1 that the probability under P̂x that the first-exit from

(0,∞) occurs continuously equals a+u+(x) > 0. Similarly, it is easy to see that for any x > 0,

the probability under P ↑
0 that the last-exit from (0, x) occurs continuously is strictly positive.

Hence we immediately deduce from Theorem 2 the following identity which can also be seen

from Theorem 4 of Chaumont [6].

Corollary 1 Suppose a+ > 0 and fix x > 0. The law of (ξt : 0 ≤ t < ℓ(x)) under P ↑
0 (· |

ξ is continuous at ℓ(x)) is that of (ξ(T−t)− : 0 ≤ t < T ) under P̂x(· | ξ is continuous at T ).

Remark. Note that these conditionings are trivial when ξ has no positive jumps under P ,

and hence Corollary 1 encompasses the extension of Williams’ time-reversal stated as Theorem

VII.18 in [2].

In the same vein, we recover (and slightly extend) a result due to Duquesne; see Theorems

4.1 and 4.2 in [13].

Corollary 2 Under P ↑
0 the law of (ξℓ(x)− − ξ(ℓ(x)−t)−)t<ℓ(x) is the law of (ξt)t<g(T̂ (x)) under P ,

where T̂ (x) = inf{t ≥ 0 : ξt > x} and g(T̂ (x)) = sup{s < T̂ (x) : ξs ∨ ξs− = supt<T̂ (x) ξt}.

Remark. Note that Corollary 2 is intuitively obvious when we deal with random walks because

the law P ↑
0 equals the law under P of the reversed excursions away from the maximum.

Proof: Recall that we assume that E(H+(1)) < ∞ and denote by I = inft≥0 ξt and gI =

sups≥0{ξs ∧ ξs− = I}. We deduce from Theorem 25 in Chapter 8 in [10] that under P ↑
ρ1

the

process (ξgI+t − ξgI
)t≥0 has the law of (ξt)t≥0 under P ↑

0 and it is independent of (ξt)t≤gI
. This

combined with Theorem 2 yields that for every bounded measurable functional F on Ω

E↑
ρ1

[

F
(

(ξℓ(x)− − ξ(ℓ(x)−t)−)t<ℓ(x)−gI

)]

= E↑
0

[

F
(

(ξℓ(x−I)− − ξ(ℓ(x−I)−t)−)t<ℓ(x−I)

)]

= E
[

F
(

(ξt)t<g(T (x−ρ2))

)]

, (6)
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where g(T (x−ρ2)) is the time when the last maximum is attained before ξ goes beyond x−ρ2,

where ρ2 is the stationary overshoot and is independent of ξ under P and I in the second term

has the distribution of P ↑
ρ1

(I ∈ dy) and is independent of ξ under P ↑
0 . Next note that Theorem

2 implies as well that

P ↑
ρ1

(I ∈ dy) = lim
z→∞

P̂ρ1
( inf
s<ℓ(z)

ξs ∈ dy) = lim
z→∞

Pρ2
( inf
s<τ(z)

z − ξτ(z−s)− ∈ dy) = ρ2(dy).

The last identity can be deduced as in Lemma 3 or recovered from Theorem 3 in [15]. Then

(6) translates easily to A ∗ ρ2(x) = B ∗ ρ2(x) with B(y) = EF
(

(ξt)t<g(T (y))

)

and A(y) =

E↑
0F
(

(ξℓ(y)− − ξ(ℓ(y)−t)−)t<ℓ(y)

)

and we get that A = B on (0,∞). Since this holds for any

measurable functional F we conclude the proof. �

3 Applications to weak limit theorems

3.1 Starting a Lévy process from −∞

We first observe that the probability measure P that has been introduced in Section 2.4 fulfills

a remarkable spatial stationarity property, which follows easily from Theorem 2 and the strong

Markov property.

Corollary 3 For any x ∈ R, let τ(x) = inf{t ∈ R : ξt > x} denote the first passage time of ξ

above the level x. Under P, the processes (ξτ(x)+t)t∈R and (x+ξt)t∈R have the same distribution.

Proof: Let Pz be the law of (z + ξt)t∈R for an arbitrary z ∈ R. An application of the

strong Markov property combined with Theorem 2 shows the following. Let us work under

Pz for an arbitrary z < 0, and recall that T̂ denotes the first entrance time into (0,∞).

Then the pair (−ξT̂−, ξT̂ ) has the law ρ, and conditionally on (−ξT̂−, ξT̂ ) = (x, y), the pro-

cesses (−ξ(T̂−t)−)0≤t<T̂ and (ξt+T̂ )t≥0 are independent. Further the former has the same law as

(ξt)0≤t<ℓ(−z) under P ↑
x while the latter has the law Py. As the last-exit time from (−∞,−z),

ℓ(−z), tends to infinity as z → −∞, we see that the law of the shifted process (ξt+T̂ )t∈R under

Pz converges weakly to that of (ξt)t∈R under P. We can now complete the proof by an easy

argument based on replacing z by z + x. �

The proof of Corollary 3 suggests that the limit theorem for the under and over shoots should

have an extension to paths. In this direction, for every ω ∈ D([0,∞), R), we denote by ϑ(ω)

the path indexed by the entire real line which is obtained by shifting ω at the time T̂ (ω) = T̂
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of its first entrance in (0,∞), that is ϑ(ω) = (ω′(s))s∈R with

ω′(s) =

{

ω(T̂ + s) for every s ≥ −T̂ ,

−∞ otherwise .

We now state the main result of this section.

Theorem 3 Fix any b ∈ R. The law of (ξt ◦ ϑ)t≥b under Px converges weakly on D([b,∞), R)

as x → −∞ towards the law of (ξt)t≥b under P.

We shall derive Theorem 3 from Corollary 3 using a coupling argument which requires

distinguishing whether the drift coefficient a+ of the ladder height subordinator H+ is zero or

strictly positive. The first case is easier and relies on the following standard construction.

Lemma 4 Fix ε > 0. We can construct on some probability space a random variable γ with

values in [0, ε], an a.s. finite random time τ and a pair of processes (ξ′t)t≥0 and (ξ′′t )t≥0 that

fulfill the following requirements :

(i) ξ′ has the law P and ξ′′ has the law Pρ2
,

(ii) ξ′′t = ξ′t + γ for all t ≥ τ .

Proof: We start from a pair (ξ̃′, ξ′′) with law P ⊗ Pρ2
, i.e. ξ̃′ and ξ′′ are independent with

respective laws P and Pρ2
. Then ξ′′− ξ̃′ is a symmetric Lévy process with initial law ρ2. Recall

from Lemma 2 that it is centered and hence recurrent by the test of Chung and Fuchs (cf.

Exercise I.10 in [2]). We set τ = inf{t ≥ 0 : ξ′′t − ξ̃′t ∈ [0, ε]} and γ = ξ′′τ − ξ̃′τ , so τ is an a.s finite

stopping time and γ a random variable in [0, ε]. By the strong Markov property, the process

ξ′t =

{

ξ̃′t if t ≤ τ

ξ′′t − γ if t > τ

has the law P . �

When the drift coefficient of the ladder height subordinator H+ is strictly positive, a+ > 0,

we need a stronger coupling.

Lemma 5 Assume a+ > 0. We can construct on some probability space a pair of a.s. finite

random times τ ′ and τ ′′ and a pair of processes (ξ′t)t≥0 and (ξ′′t )t≥0 that fulfill the following

requirements :

(i) ξ′ has the law P and ξ′′ has the law Pρ2
,

(ii) ξ′τ ′+t = ξ′′τ ′′+t for all t ≥ 0.
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Proof: We start again from a pair (ξ̃′, ξ′′) with law P ⊗ Pρ2
. We define the passage times

σ′
1 = inf{t ≥ 0 : ξ̃′t ≥ ξ′′0} , σ′′

1 = inf{t ≥ 0 : ξ′′t ≥ ξ̃′(σ′
1)}

and then recursively

σ′
k+1 = inf{t ≥ 0 : ξ̃′t ≥ ξ′′(σ′′

k)} , σ′′
k+1 = inf{t ≥ 0 : ξ′′t ≥ ξ̃′(σ′

k+1)} .

We claim that a.s., these non-decreasing sequences remain constant after a finite number of

steps. Taking this assertion for granted, the construction of the coupling is immediate as it

suffices to set τ ′ = σ′
∞, τ ′′ = σ′′

∞, and

ξ′t =

{

ξ̃′t if t ≤ τ ′

ξ′′τ ′′+t−τ ′ if t > τ ′ .

To complete the proof, it suffices to recall from Lemma 1 (i) that, since the ladder height

subordinator H+ has a strictly positive drift coefficient and a finite mean, the probability that

H+ hits some fixed point x ∈ [0,∞) is bounded from below by a strictly positive constant.

Hence the number of steps alluded above is stochastically bounded by a geometric variable. �

We may now tackle the proof of Theorem 3.

Proof: Recall the notation Px for the law of x + ξ under P

1. Suppose first a+ > 0 and fix ε > 0 arbitrarily small. According to Lemma 5, we can

construct two process (ξ′t)t≥0 and (ξ′′s )s∈R with respective laws P and P and two a.s. finite

random times τ ′ and τ ′′ such that ξ′τ ′+t = ξ′′τ ′′+t for all t ≥ 0. Provided that x is chosen

sufficiently large, the probability of the event that

sup
0≤t≤τ ′

ξ′t ≤ x/2 , sup
t≤τ ′′

ξ′′t ≤ x/2 and inf{t ≥ 0 : ξ′t+τ ′ − ξ′τ ′ > x/2} > −b

is at least 1 − ε.

Therefore if we set ξ̃′t = ξ′t − x and ξ̃′′t = ξ′′t − x, then the processes (ξ̃′t)t≥0 and (ξ̃′′s )s∈R have

the law P−x and P−x, respectively. Further the probability that the paths obtained by shifting

ξ̃′ and ξ̃′′ at their first entrance time into (0,∞) coincide on [b,∞) is bounded from below

by 1 − ε. This entails the statement as we know from Corollary 3 that the path obtained by

shifting ξ̃′′ has the law P.

2. Suppose now that a+ = 0 and fix η > 0 arbitrarily small. Then the stationary distribution

ρ2 of the overshoot has no atom at 0, and we may pick ε > 0 sufficiently small so that ρ2([0, ε]) <

η/2. According to Lemma 4, we can construct two process (ξ′t)t≥0 and (ξ′′s )s∈R with respective
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laws P and P, an a.s. finite random time τ and a random variable γ ∈ [0, ε] such that ξ′t+γ = ξ′′t
for all t ≥ τ .

For every x ≥ 0, consider the first entrance times

τ ′(x) = inf{t ≥ 0 : ξ′t > x} and τ ′′(x) = inf{t ≥ 0 : ξ′′t > x} .

Since ξ′t ≤ ξ′′t ≤ ξ′t + ε for all t > τ , the probability of the event

{τ < τ ′(x) ∧ τ ′′(x), τ ′(x) 6= τ ′′(x)}

is bounded from above by the probability that the overshoot ξ′′τ ′′(x) − x does not exceed ε, and

thus by η/2. Further, provided that x is chosen sufficiently large, the probability of the event

{τ − b < τ ′(x) ∧ τ ′′(x)} is at least 1 − η/2.

Now set ξ̃′t = ξ′t − x and ξ̃′′t = ξ′′t − x; the processes (ξ̃′t)t≥0 and (ξ̃′′s )s∈R have thus the law P−x

and P−x, respectively. It follows from above that the probability that the paths obtained by

shifting ξ̃′ and ξ̃′′ at their first entrance time into (0,∞) remain parallel on the time interval

[b,∞) with a distance at most ε, is bounded from below by 1 − η. This entails the statement

as we know from Corollary 3 that the path obtained by shifting ξ̃′′ has the law P. �

3.2 A Lamperti-type representation for self-similar Markov pro-

cesses entering from 0+

We now conclude this work with an application to the class of Markov processes in (0,∞) that

enjoy the scaling property. That is, we consider a Markov process X = (Xt)t≥0 with values

in (0,∞) and write Px for its law started from X0 = x > 0. We shall always assume that

the process is conservative, i.e. there is no cemetery state. We suppose that the self-similarity

property

the distribution of (cXt/c)t≥0 under Px is Pcx

holds for every c, x > 0. Lamperti [16] has studied in depth this class of processes which

are nowadays called positive self-similar Markov processes (in short pssMp), and pointed at a

fundamental connection with real valued Lévy processes that can be described as follows in the

framework of this paper.

We work under the probability measure Py for which (ξt)t≥0 is a Lévy process started from

y ∈ R. We drop for a moment the assumption that the ladder height has a finite expectation,

and just suppose that the Lévy process does not tend to −∞. We introduce a time-change γ(t)
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for every t ≥ 0 as the inverse of the exponential functional, that is

∫ γ(t)

0

eξsds = t .

Then the process Xt = exp(ξγ(t)) is a pssMp started from x = ey, and any (conservative) pssMp

can be constructed by this procedure.

The question of whether a pssMp can enter from the boundary point 0+, that is if Px admits

a non-degenerate weak limit P0+ as x → 0+ was raised by Lamperti. Bertoin and Yor [4]

provided a positive answer when the underlying Lévy process possesses a positive and finite

first moment. Recall that this implies that the mean ladder height E(H+(1)) is finite; it is

further easy to show that a pssMp cannot enter from 0+ when E(H+(1)) = ∞. Caballero and

Chaumont [5] obtained an explicit necessary and sufficient condition; basically they proved that

a pssMp can enter from 0+ if and only if E(H+(1)) < ∞ and some very mild technical condition

holds. That this technical condition is automatically fulfilled when the mean ladder height is

finite has been proved recently by Chaumont et al. [8], so the definitive simple characterization

is that a pssMp can enter from 0+ if and only if E(H+(1)) < ∞. ¿From now on this assumption

is thus again enforced.

We point at a simple and direct construction of the law P0+ in terms of the spatially ho-

mogeneous law P and the canonical process (ξt)t∈R indexed by the whole real line, which is

somehow hidden in the approach by Caballero and Chaumont [5]. The intuition stems from the

observation that Lamperti’s transformation can be re-expressed in terms of the shifted path

ξ ◦ ϑ: if we write σ : [0,∞) → R for the inverse of the functional

t →

∫ t

−∞

exp(ξs ◦ ϑ)ds , t ∈ R ,

then for every y ∈ R, under Py the time-changed process (exp(ξσ(t) ◦ ϑ))t≥0 has the law Px

with x = ey. Since we know from Theorem 3 that the law of the shifted path ξ ◦ ϑ under Py

converges weakly to P, we arrive naturally at the following.

Corollary 4 (i) The exponential functional

I(t) =

∫ t

−∞

eξsds

is finite for all t ∈ R and I(∞) = ∞, P-a.s.
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(ii) Introduce the time-change σ(t) for t > 0 by

∫ σ(t)

−∞

eξsds = t .

Then under P, the process (Xt)t>0 given by

Xt = exp(ξσ(t))

is a pssMp started from the entrance boundary 0+, in the sense that its law is the weak limit

of Px as x → 0+.

Proof: (i) By Theorem 1(ii), we have

E(I(0)) =

∫ ∞

0

ρ1(dx)

∫ ∞

0

U↑(x, dy)e−y =
1

E(H+(1))

∫ ∞

0

dye−yU−(y) .

Because a renewal function is always sub-additive, the right-hand side is finite, which implies

our claim.

(ii) We now know that Xt = exp(ξσ(t)) is well-defined. Recall that τ(y) = inf{s ∈ R : ξs > y}

denotes the first entrance time in (y,∞), so I(τ(y)) corresponds to the first passage time of X

above the level x = ey. It follows readily from Corollary 3 and Lamperti’s transformation that

conditionally on XI(τ(y)) = z, the shifted process (Xt+I(τ(y)))t≥0 has the law Pz. Further the

distribution of XI(τ(y)), say µx, is the image of ρ2 by the map w → xew. Plainly µx converges

to δ0 as x → 0+ (i.e. y → −∞), while τ(y) = σ(I(τ(y)) → −∞. We conclude that (Xt)t>0 has

the law P0+. �

We stress that the argument for establishing Corollary 4 has little to do with self-similarity or

exponential functions. It would apply just as well to construct the Markov process entering from

the boundary 0+ in the following more general situation (which mirrors Feller’s construction

of one-dimensional diffusions as time-space transforms of Brownian motions). More precisely,

consider a measurable locally bounded function f : R → (0,∞) with
∫ 0

−∞
dy|y|f(y) < ∞

and
∫∞

0
dyf(y) = ∞, and g : R → (0,∞) a continuous strictly increasing function with

limz→−∞ g(z) = 0. Then the functional

I(t) =

∫ t

−∞

f(ξs)ds

is finite for all t ∈ R and limt→∞ I(t) = ∞, P-a.s. Writing σ for the inverse functional of I, the

process (Xt)t>0 defined by Xt = g(ξσ(t)) then enters from 0+, and is Markovian in (0,∞) with

an infinitesimal generator defined by an obvious transformation of that of the Lévy process.
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