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Abstract 

The response of thermally stimulated luminescence (TSL) is investigated theoretically. An original dimensionless treatment is proposed, first 
to highlight the key dimensionless factors rationalizing the competition between the mechanisms at play during the TSL readout, and second to 
clean up the approach from any particular values of the relevant physical parameters. The approach holds for an unlimited number of interactive 
traps. The total response from a current trap is derived and cast into simple formal expressions as a function of the recombination cross-section, 
the set of trapping cross-sections, and of initial trap occupancies (i.e. those existing before the readout of the current peak). This allows one to 
calculate each peak response by taking proper account of carrier transfers accompanying the successive peak readouts. 
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1. Introduction 
 

Thermally stimulated luminescence (TSL) is used as a 
routine solid-state dosimetry technique. Nevertheless, its 
modelling still lacks of dimensionless analysis highlighting 
the key factors which govern its response. Basic mechanisms 
at play – trapping, detrapping and recombination – are usually 
accounted for by a set of differential kinetic equations, but 
their resolution has not provided the sought factors: simplest 
formal treatments were based on severe approximations (well-
known kinetic order models with single active traps and quasi-
equilibrium approximation). More realistic models, involving 
several interactive traps, have been treated numerically for 
restricted sets of parameter values (see e.g. Chen et al., 1981; 
Bull et al., 1986; Berkane-Krachai et al., 2002; Mady et al., 
2006), or formally with significant complexity (Lewandowski 
and McKeever, 1991). 

In dosimetry, what is expected from a TSL theory is 
basically a relation between the absorbed dose and the 
measured response. The total response integrated over a 
relevant temperature range is only governed by intrinsic 
dosimeter properties, as trapping and recombination cross-
sections or trap concentrations, and by trap occupancy at the 
onset of this range. This occupancy depends on the radiation 
dose and dose-rate given to the dosimeter prior to the readout 
(Chen et al., 1981). Thus, the dose response modelling first 
requires the determination of the initial trap occupancy 
yielded by irradiation. It then demands to calculate the total 
response as a function of initial trap occupancy. The present 
work focuses on the latter stage. 

Since we deal with integrated responses, there is no point 
in considering a time or temperature-resolved approach here. 
This frees us from the mathematical complexity that forces to 
resort to numerical resolution and makes the theory 
independent of the nature or kinetics of the stimulation 
allowing the readout. Then, general expressions of the 
response are derived within a simple formalism. The key 
coefficients governing the response are naturally pointed out 
by the dimensionless treatment. 
 
2. Theoretical route of attack 
 

A typical system similar to that of usual TSL models is 
illustrated in Fig. 1. TSL is assumed to originate from the 
stimulated release of trapped electrons which subsequently 
recombine with holes on recombination centres (RC). The 
treatment being independent of the carrier polarity, it would 
hold for holes as well. A set of M discrete gap levels is 
considered. Each level is denoted by its order index k which 
increases with trap depth (1 ≤ k ≤ M). βk is the trapping 
coefficient of traps k (electron thermal velocity multiplied by 
the capture cross-section of traps k), while γ is the 
recombination coefficient (electron thermal velocity 
multiplied by the recombination cross-section). Nk and nk are 
the densities of traps k and of electrons in traps k respectively, 
and h is the concentration of holes on RC. 
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Fig 1. Typical energy scheme showing traps, recombination centres (RC), 
trapping and recombination transitions. Trap depths Ek increase with k. 

The total TSL response of the pth peak, due to the emptying 
of trap p, results from a conversion between two equilibriums 
characterized by the absence of carriers in the conduction and 
valence bands. At initial state, electrons are distributed on 
traps p to M, levels 1 to (p – 1) having been emptied at lower 
temperature. At final state, electrons that have escaped 
recombination are retrapped on traps (p + 1) to M. 

In what follows, initial concentrations are indicated by a 
superscript (p). Final populations are denoted by a superscript 
(p + 1) since they also define initial occupancies relative to the 
emptying of the (p + 1)th trap. The sample neutrality is then 
written as: 
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During the readout of the current peak p, nk (for p +1 ≤ k ≤ M) 
and h obey usual equations, where nc is the transient electron 
concentration in the conduction band: 
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For levels p + 1 ≤ k ≤ M, thermal release is neglected within 
the temperature range of the pth peak. Then, partial integration 
of Eq. (2) and (3) between initial and final states gives: 
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3. Dimensionless formulation and total response 

 
After Eq. (4), competition between recombination with 

holes on RC and retrapping on levels k > p is naturally 
rationalized by the αk = βk/γ ratios. We furthermore define 
trap occupancies ϕk as the fraction of occupied traps nk/Nk, and 
introduce the proportion ξk of traps k with respect to the total 

density of traps: ∑
=

=
M

j
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The total TSL response of the pth peak is equal to the total 
number of recombination taking place throughout the peak 
readout. If every recombination is radiative, this response is 
equal to h(p)

 – h(p+1), the variation of the hole concentration on 
RC between initial and final states. We then define the 
dimensionless total response Rp of the pth peak by: 
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The normalization is such that 0 ≤ Rp ≤ 1. The case Rp = 1 is 
achieved when all traps k ≥ p are initially saturated. 

From (1), (4) and (5), one obtains the formal equation of Rp 
for initial occupancy rates ϕk

(p), trap weights ξk and cross-
section ratios αk (k = p..M): 
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This leads to Rp = ϕp
(p), that is h(p)

 – h(p+1) = np
(p), in the 

absence of traps deeper than the pth one (ξk = 0 for k > p), or if 
deep traps are initially saturated (ϕk

(p) = 1 for k > p). Then, 
carriers released from the pth trap can not be retrapped (except 
on the pth trap itself from which they are rapidly re-emitted). 
Finally, they all recombine and take part in the total response. 
 
4. Case of a single trapping cross-section 
 

When traps have a same trapping cross-section, i.e. 
αk = α for k = 1..M, Eq. (4) shows that (ϕk

(p+1) – ϕk
(p))/(1 – 

ϕk
(p)) does no depend on k. ϕk

(p+1) is therefore independent of k 
if ϕk

(p) is the same for any k. This is actually true regardless of 
initial and final moments, even between ϕk

(1) and trap 
occupancy before irradiation: if traps are all initially empty, 
they will fill up parallel to one another under irradiation. 
Thus, the ϕk

(1) and the subsequent ϕk
(p) for p > 1 will be all 

independent of k and Eq. (6) will reduce to: 
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Now, ϕ(p) is the trap occupancy of traps k ≥ p before the pth 
peak readout and ξD

(p) is the fraction of traps deeper than the 
pth one, that is ( ) ∑

+=
=

M

pk
k

p
D

1
ξξ . Note that ξD

(0) = 1 and ξD
(M) = 0.  

Fig. 2 and 3 show the R2 plots obtained after Eq. (7) as a 
function of the initial occupancy ϕ(2). These examples 
consider a three trap system (M = 3) with ξ1 = 20%, ξ2 = 30%, 
ξ3 = 50% (Fig. 2) and ξ1 = 69%, ξ2 = 30%, ξ3 = 1% (Fig. 3). 
They well illustrate the effect of the deep trap density (N3 
here) on the total response. 
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Fig 2. Dimensionless integrated response of peak 2 as a function of initial 
occupancy of traps 2 and 3 for a three trap system with ξ1 = 20%, ξ2 = 30%  
and ξ3 = 50%. The three traps have the same trapping cross-section (α values 
are indicated on the plots). 
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Fig 3. Same as Fig. 2 for ξ1 = 69%, ξ2 = 30%  and ξ3 = 1%. Note the difference 
due to the concentration of the deepest (third) trap at high α and high initial 
occupancy rate. 
 
5. Useful approximations 
 

Explicit approximations of Eq. (6) can be derived for 
convenience. Let us first examine the strong retrapping 
hypothesis, when most carriers released from the pth trap are 
captured on levels (p + 1) to M instead of recombining. Then, 
(h(p) – h(p+1))/ h(p) << 1, that is ∑

=
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p
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order expansion of (6) readily gives:  

( )

∑

∑

=

+=
−

+

=

M

pk

p
kk

M

pk

p
kkk

p
p

pR

)(

1

)(

)(

1
1

ϕξ

ϕξα

ϕ
. (8) 

In case of weak retrapping, carriers released from the pth 
trap mostly recombine with holes and 1 – Rp/ϕp

(p) << 1. If one 
further assumes that negligible retrapping is due to the 
predominance of the recombination cross-section over every 
trapping one rather than to saturation of traps k > p, one also 
has αk << 1 for k = p+1..M. Then, the approximated Rp 
obtained by first order expansions of Eq. (6), is found to be 
the same as Eq. (8). Thus, Eq. (8) seems to be an appropriate 
approximation in either limit situation. 

If a single trapping cross-section is assumed (αk = α), Eq. 
(8) can be written as: 
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At weak trap occupancy, the second term in the denominator 
of Eq. (9) is much greater than unity and Rp obeys:  
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The response is then quadratic with respect to initial 
occupancy (see examples of Fig. 2 and 3). As ϕ(p) increases, 
the denominator of Eq. (9) tends to unity and the response 
becomes linear, independent of α: Rp ~ ϕ(p). Such quadratic 
and linear TSL responses have already been predicted (Sunta 
et al., 1994; Kristianpoller et al., 1974, Mady et al., 2006). 
They are formally demonstrated here, and quantified as a 
function of the physical parameters of the standard model. 

Eq. (9) becomes exact, i.e. rigorously equivalent to Eq. (7), 
when α = 1. For examples of Fig. 2 and 3, Eq. (9) slightly 
overestimates Rp for α < 1 and yields an underestimated value 
for α > 1. The relative error is only about a few percent over a 
wide range of initial occupancy, but it forms a peak around 
the quadratic-to-linear transition. The peak maximum is at 5-
10% for α < 1, so the approximation is always reliable in this 
case. This error is much greater for α >> 1, when the 
transition appears as a ‘vertical’ increase (e.g. when ϕ(2) is in 
the range 0.5 - 1 in Fig. 2 or 0.01-0.1 in Fig. 3). Then, the 
term in square brackets of Eq. (7) tends to unity and a more 
adequate approximation is:   
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This approximation also corresponds to a linear increase of Rp, 
independent of α. It tends towards Rp ~ ϕ(p) as ϕ(p) approaches 
unity. A detailed examination of Eq. (7) indicates that Eq. (11) 
is valid when ϕ(p) > ϕc. The critical value ϕc is ξD

(p)/ ξD
(p-1); it 

gives the location of the vertical transition: ϕc = 0.625 in Fig. 
2 and ϕc  = 3.2×10-2 in Fig. 3. At ϕ << ϕc, the quadratic regime 
is accurately described by Eq. (9) or (10), as for α < 1. 

In Eq. (8), for traps with different trapping cross-sections 
and initial occupancies, it is much more difficult to highlight 
linear and quadratic regimes of Rp according to ϕp

(p). 
However, taking αk >> 1 for k = p+1..M in Eq. (6) still yields 
a linear relation at high occupancies: 
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6. Iterative calculation of successive peak responses  
 

A simple iterative scheme can be proposed to predict the 
total response of the successive glow peaks. First, the total 
response Rp of a current peak p is given by Eq. (6). Second, 
Eq. (4) allows the calculation of initial trap occupancies ϕk

(p+1) 
at the (p + 1)th step as a function of initial occupancies at the 
pth step and of the pth peak response. For p +1 ≤ k ≤ M: 
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If initial occupancies are known at the pth step, Rp can be 
calculated either numerically by (6) or analytically with the 
approximated form (8) if applicable. Eq. (13) then provides 
new occupancies at the (p + 1)th step, thus enabling the 
calculation of Rp+1… The problem now lies in finding the first 
trap filling state ϕk

(1) left by irradiation in the dosimeter. This 
state depends on the material, on the absorbed dose and on the 
dose-rate. Its general calculation is worth peculiar publication 
and is far beyond the scope of this work. The following 
section just presents a particular example where radiation-
induced occupancies and the related responses can be 
calculated formally as a function of the absorbed dose. 
 
7. Application example 
 

The case αk = α = 1, corresponding to a single cross-
section equal to the recombination one, ensures a full formal 
treatment. Then, trap occupancies are independent of the trap 
level k at any step p and Eq. (9) and (13) leads to: 
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For the sake of example, the assumption of low doses is 
made here: the dimensionless dose coefficient D, defined as 
the ratio of the total density of electron-hole pairs excited by 
irradiation to the total concentration of traps (sum of the Nk for 
k = 1.. M), is such that D << 1. Then, initial trap filling is 
approximately ϕ(1) = D regardless of the dose-rate and the 
following equations can be derived from Eq. (14) and (9): 
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The TSL response of the pth peak depends on the fractions of 
traps deeper than the (p – 1)th and pth ones. If these fractions 
were very small, such as ξD

(p-1) , ξD
(p)  << D << 1, Rp would 

tend to unity because of trap saturation. However, ξD
(p-1) and 

ξD
(p) are likely to be much greater than D if D << 1, so Rp is 

expected to be proportional to D2. This quadratic dose 
response holds for all peaks p, except for p = M since 
ξD

(M) = 0. The response of this last peak varies linearly with 
the dose because of the absence of deeper traps. 
 
8. Conclusion 
 

Dimensionless expressions of the total TSL response have 
been derived in the context of a simple model accounting for 
essential physics in a set of interactive traps. The obtained 
equations clearly demonstrate that the αk = βk/γ ratios are the 
only relevant coefficients that determine the effect of trapping 
and recombination cross-sections on each peak response. This 

fact, which has already been observed from simulations 
(Mady et al, 2006), is here formally demonstrated. 

Starting from a given dosimeter model – defined by its 
cross-section ratios αk = βk/γ and trap weights ξk – and from a 
set of initial trap occupancies, the iterative procedure of 
section 6 gives the response of successive peaks associated 
with traps of increasing depths. Carrier transfer, i.e. 
enhancement of deep trap occupancies due to retrapping of 
carriers released during the readout of a shallow level, is 
naturally taken into account. The main assumption of the 
treatment is the absence of detrapping from traps deeper than 
the active one in the temperature range of the current peak. 
Therefore, what we refer to as successive peaks must be 
separate peaks. If a group of several neighbouring traps yields 
overlapping peaks, the formalism will provide the total 
response of the peak group if all associated traps have the 
same β. Then, subscripts p or k refer to the whole group of 
traps rather than to a single level. 

Apart from the particular case α = 1 where explicit 
equations and formal solutions exist, the proposed procedure 
can be implemented in a computer program to perform very 
efficient calculations of the dose and dose-rate response of 
any peak of a series. This requires the calculation of initial 
trap occupancies as a function of dose and dose-rate. We 
currently consider this issue with an adequate dimensionless 
formalism which is to be presented in a forthcoming 
publication. 
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