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Abstract. A Monte Carlo simulation is proposed to study the mobility reduction due to 
coulombic defects for hopping transport in a one-dimensional regular lattice. Hops 
between energetically equivalent sites and within an exponential distribution of energy 
levels are considered. In absence of coulombic wells, the calculations reproduce the well-
known features of gaussian and highly dispersive transport respectively. When the field 
due to coulombic potential wells is superimposed to the applied one, the macroscopic 
conduction features change dramatically. The computed apparent mobilities or transit-
times exhibit a Poole-Frenkel character and a modified Arrhenius temperature 
dependence. Their activation energy differs from the mean energy characterizing hops at 
the microscopic scale and it is found to depend on parameters such as the defect charge. 
This has important practical consequences on data interpretation. 
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1. Introduction 
The electrical conduction in semi-conductors and insulators is usually described in terms of multiple-
trapping (MT) and hopping. MT considers that conduction is due to the drift of electrons or holes in 
their respective band of delocalized states, the motion being slowed down by a succession of capture 
on – and thermal release from – band gap states (traps). By contrast, hopping transport describes 
tunnelling of a carrier from one localized state to another and does not require activation above a 
transport edge. Both mechanisms actually coexist and compete depending on the relative separations 
in energy and distance between traps. Even if this competition has been studied in detail by Blaise at 
thermodynamical equilibrium [1], a huge number of authors focused on transient behaviours related to 
pure MT or pure hopping. Both models succeed in producing the so-called anomalous dispersive 
transport observed in disordered materials [2] and originally rationalized by the famous Continuous 
Time Random Walk (CTRW) theory of Scher and Montroll [3]. The latter predicts that transient 
currents following carrier excitation obey I(t < tT) ∝ t-(1-α) and I(t > tT) ∝ t-(1+α) depending on whether 
the time t is smaller or greater than the transit-time tT required to move a mean carrier across the 
sample, where α is the dispersion parameter lying between 0 and 1. 

Maybe the simplest hopping mechanism is the transport of small polarons, i.e. self-trapped charge 
carriers which move together with the surrounding structural deformation. The intrinsic motion of 
these quasi-particles can be described as a succession of jumps between energetically equivalent sites 
on a regular lattice, and the corresponding mobility can be cast into the following form where F is the 
electric field [4]: 
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In equation (1), kB is the Boltzman constant, T is the absolute temperature and e is the magnitude of 
the electron charge. λ represents the mean distance between polaronic sites and µ0 is the thermally 
activated zero-field mobility (µ0 = µ(0)). Equation (1) is in fact valid at low fields and high 
temperatures. In the high field limit, the actual mobility is expected to vanish due to the decreasing 
probability of emission of the necessarily high number of phonons required to dissipate the energy eFλ 
during a downward hop in energy (see Emin [5,6]). 

Hopping within either positionally or energetically disordered system of localized states is an 
alternative model relevant for describing conduction in disordered materials. This much more 
complicated problem was extensively investigated both analytically and by simulation. Analytical 
efforts ranged from the stochastic theory of Scher and Lax [7,8] to the recent mobility calculations of 
Arkhipov et al [9-11] in disordered organic semiconductors. Monte Carlo simulations were used, for 
instance, to study hopping between bandtails states of amorphous materials by considering a uniform 
distribution of traps with randomly distributed activation energies [12-15]. Silver et al [14] showed 
that a density of traps which decays exponentially with the trap depth ε according to exp(-ε/εc), where 
εc is a given mean level, could generate dispersive transport analogous to that of the CTRW theory. 
The dispersion parameter was found to be α = kBT/εc at low fields [14,16] and to become field-
dependent at high field. This can be explained by the proposal that high field effects are embodied in 
an effective temperature Teff depending on both the lattice temperature and the field [12,13,15]. 

At the early seventies, Gill [17] presented dispersive photocurrents measured on complexes of 
trinitrofluorenone and poly-n-vinylcarbazole (TNF:PVK). He found that the mobility evaluated from 
the inverse transit-time was well fitted by an expression of the form: 
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Since then, this unusual mobility has been observed in a wide class of materials, particularly in doped 
organic polymers, either for gaussian or dispersive transport [17,18]. The parameters E0, T0 and β can 
change with the material, but the F1/2 dependence and the modified Arrhenius behaviour are universal. 
Experimental estimate of β were found to be the same for electrons and holes [17] and to be roughly 
equal to the Poole-Frenkel coefficient βPF. The appearance of an effective temperature (1/T –1/T0)-1 
can be explained qualitatively by the ‘modified Poole-Frenkel effect’ of Jonscher and Ansari [19] who 
stipulated that hopping proceeds in the presence of a weak density of charged impurities, each of them 
extending over many localization centres. A detailed treatment of this situation and a theoretical 
support of equation (2) were more recently given by Rackovsky and Scher [18]. These authors 
considered a polaron executing a nearest-neighbour random walk on a two-dimensional lattice with a 
central hole acting as a coulomb trap, by using the Holstein transition rates and Green’s functions. 

In this work, gaussian motion of small polaron and highly dispersive transport due to hopping in 
site-ordered exponential bandtails are successively considered (apparent mobility and transit-time are 
retained as the relevant experimental observables respectively). The basic task is to show how the 
well-known ‘intrinsic’ features of each model are modified by extrinsic charged defects responsible 
for coulombic potential wells. It is demonstrated that the apparent mobility (2) is in fact consistent 
with the simplest model of one dimensional hopping in presence of coulombic wells, and that it can fit 
both the extrinsic mobility and the extrinsic inverse transit-time. 

2. Simulation model 
The simulation of hopping transport is generally based on the simplest possible model [9-16] 
formulated by Miller and Abrahams [20]. In the case of a one-dimensional treatment, jumps from site i 
to site k are then governed by the following hopping rate: 
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In these expressions, rik and Δik = εi – εk are respectively the spatial and the energy distances between 
the involved sites and d is the wavefunction localization length. Vi (resp. Vk) denotes the electrostatic 
potential experienced by a charge q = ±e located on site i (resp. k). R0 is an attempt-to-escape 
frequency of the order of 1012 s-1, the magnitude of a typical phonon frequency. Note that the choice of 
R0 only defines the time scale of the simulated experiment and does not affect the key results. 

Simulations are carried out by considering a large number of sites placed along a regular one 
dimensional lattice. The distance λ between sites is taken larger than d because carrier are no longer 
localized on separate sites if λ < d. The probability for a jump from site i to site j is given by: 
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and the mean time required for the hop is: 
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The simulation thus requires two random numbers per hopping event. The first gives the destination of 
the hop in agreement with (4). The second specifies the time t for such a hop according to the density 
of probability P(t) = exp(- t/τ)/τ.  

The electric potential at a given position r is due to the superimposition of a uniform applied field F 
parallel to the hopping site array and of a uniform distribution of coulombic wells produced by ionized 
defects (as donors or acceptors) located at ri and charged with Q, each of them being of the form:  
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where ε0 and εr are the vaccum and the material relative permittivity respectively. Of course, most of 
these centres are actually neutralized because of the prohibitively high space charge that would 
accompany a high density of uncompensated ions. Thus, a reasonable consideration is that any 
particular carrier only feels the coulombic field of the nearest ionized defect while the fields of more 
distant ones are effectively screened from it. 

In practise, the history of each particle is followed from its injection on a site located at Z = 0 until 
it reaches a given sample thickness L. The retained results correspond to the average behaviour 
obtained from the simulation of several thousands independent ‘trajectories’. According to this 
procedure, it is clear that filling or saturation of localized states is not taken into account. Particular 
attention is paid to the calculation of the mean velocity v of the carriers in the applied field direction. It 
provides information about their effective mobility after µ = v/F. 

Impurities are assumed to be separated by a constant distance Rc much greater than λ. The effect of 
the applied and coulombic fields can be interpreted as a spatial deformation of the mobility edge above 
localized states, as illustrated for electrons in figure 1 for λ = 1 nm, Q = +e, F = 0.5×106 V.cm-1, 
εr = 4, Rc = 10 and 20 nm. The thick line is the mobility edge in absence of neutralization of distant 
centres, i.e. when all coulombic centres contribute to the electron potential energy, whereas the dashed 
line corresponds to a localized electron which only feels the potential of the nearest charged centre. 
The difference between these two situations is quite negligible for Rc = 20 nm and remains slight for 
Rc = 10 nm, that is for a high concentration of coulombic centres (about 1018 cm-3). Even if 
neutralization of distant ions is not explicitly included in calculations, hopping rates between localized 
states are therefore mainly perturbed by the first – and at worst the second – neighbouring defect, and 
not by more distant ions. 



3. Small polaron hopping motion 
In the small polaron problem, charge carriers get localized because they dig their own potential well 
by distorting the surrounding medium. The non-occupied sites can be regarded as zero energy centres 
(ε = 0), whereas the filled site can be characterized by the polaron activation energy ε = Δ. Then, the 
intrinsic energy difference between the sites involved in a jump is constant, Δik = Δ, and hops 
essentially take place between first neighbours. 
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Figure 1. Mobility edge given by the electron potential energy against position for (a) Rc = 10 nm,
(b) Rc = 20 nm, in absence of coulombic centres (straight line), by including the contribution of all 
ions (thick solid line) and by considering the nearest charged centre only (dashed lines). The dots 
represent a statistical distribution of localized states below the mobility edge.  
 

Since the field-lowering of the small polaron activation energy is only one half of the difference in 
the site potential energies [4], the q(Vi – Vk) term in (3) has to be replaced by q(Vi – Vk)/2. In absence 
of coulombic potential wells, the simulation of the polaron hopping motion leads to the same mobility 
as (1) at low fields, with: 
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This result is normal since both the analytical theory and the simulation make use of one-dimensional 
models based on similar hopping rates [4,5]. At high fields, the computed mobility departs from (1) 
and takes the decreasing form: 
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This law is satisfied when the field magnitude F exceeds the critical value F0 = 2Δ/eλ. Then, the 
condition q(Vi – Vk)/2 > Δ is always satisfied and the simulation mostly generates forward jumps at a 
rate R = R0exp(-2λ/d). Correspondingly, the effective velocity of hopping carriers becomes constant, 
equal to Rλ, and the mobility obeys expression (8). This simplistic behaviour is inherent in the 
simulation model; the high field mobility derived by Emin [5] is most probably more physical. 

Coulombic potential wells strongly affect the field and temperature dependence of the mobility as 
illustrated in figures 2 and 3. The data have been obtained from simulations carried out with Q = +e 
(carriers are electrons), εr = 4, Rc = 10 nm, R0 = 1012 s-1, λ = 2 nm, d = 0.5 nm, and Δ = 0.185 eV. The 
plots of figure 2 still exhibit two regimes with respect to the applied field. The high field decrease has 
to be connected to the behaviour discussed above. Because of the potential wells, the electrons can feel 
electric fields which locally exceed F and experience energy variations greater than eFλ, even for the 
shortest jumps. Thus, the high field decrease now begins below F0 = 2Δ/eλ (F0

1/2 = 1.36 MV1/2 cm-1/2 



here). In the low field region, the plots are linear and the slopes depend on temperature. The straight 
lines intersect for a particular field which is found to be about F0/2 here. This indicates the mobility no 
longer depends on temperature when the applied field is Δ/eλ. As shown in figure 3, the temperature 
dependence of the mobility has similar properties: the plots are straight lines which intersect for a 
particular value T0 (the mobility is therefore independent of the field when T = T0). 
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Figure 2.  Mobility against the square-root of the 
electric field at different temperatures and fits of 
the low-field data with equation (1) (dashed lines). 

Figure 3. Mobility against the temperature at low 
field and fits with equation (1) (dashed lines). 

 
The preceding features demonstrate that the simulation reproduces the phenomenological mobility 

(2) proposed by Gill [17] for F ≤ Δ/eλ (low fields). The fit of the simulation results with this 
expression allows an estimate of the relevant parameters: 

µ0 = 10-7 cm2 V-1 s-1 ; E0 = 0.295 eV ; β = 0.308 eV MV-1/2 cm1/2 ; T0 ≈ 7500 K 
The corresponding plots are drawn in dashed lines in figures 2 and 3. The β value is rather close to the 
Poole-Frenkel coefficient βPF = e(Q/πε0εr)1/2 for Q = +e and εr = 4, i.e. βPF = 0.379 eV MV-1/2 cm1/2 if 
ε0 = 8.85×10-12 F m-1. A better agreement was found from other calculations where each coulombic 
well extend over (‘contains’) more localized states, that is with Rc = 20 nm (β = 0.342, E0 = 0.32 eV) 
or λ = 1 nm (β = 0.381, E0 = 0.48 eV). In addition, fits of simulation data carried out for Rc = 10 nm, 
λ = 2 nm but Q = 2e lead to β = 0.558 (and E0 = 0.523 eV) while the Poole-Frenkel coefficient is 
0.536 in this case. General behaviours shown in figures 2 and 3 have been found to be remarkably 
reproducible for all sets of investigated parameters. The Poole-Frenkel behaviour, i.e. proportionality 
between the logarithm of the mobility and the square-root of the field, is not the result of a 
presupposed mechanism. It is produced in a natural way due to the perturbations introduced by the 
coulombic wells in the carrier hopping rates.  

Since the mobility is temperature independent when λeF /Δ≈ , the macroscopic activation energy 
E0 necessarily satisfies: 
 

λ
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e
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This expression is only deduced from numerical calculations and is not derived from physical or even 
mathematical arguments. It is roughly verified for all sets of reported parameters (Q, Rc, λ and Δ have 
been varied) within the error inherent in the simulation and fitting procedures. Perhaps a three 
dimensional simulation would lead to a slightly different relation, but one can nevertheless retain that 
the effective activation energy appearing at the scale of experiments is no longer the microscopic 
energy Δ as in equation (7). It now depends on Δ, but also on the mean distance λ between hopping 
sites and on the ion charge Q. This has a profound effect upon interpretation of experimental results 
since E0 cannot be uniquely associated with a trap depth or a polaron binding energy. 



4. Hopping in bandtails of disordered materials 
We now consider hopping in site-ordered exponential bandtails [12-15]. The simulation differs from 
the small polaron study in the energy distribution of hopping sites. In order to reproduce the 
exponential density of localized states, proportional to exp(-ε/εc), an energy level εi is assigned to each 
localization site by drawing a random number γi uniformly distributed between 0 and 1 such that 
εi  = - εc ln(1 - γi). In one dimension, this procedure has to be repeated before each particle injection to 
ensure the statistical reliability of the simulation. Hops are controlled by the competition between the 
spatial separation rik and the energy difference Δik = εi – εk between sites. A carrier can now jump to a 
distant site whose energy is close to the occupied level instead of tunnelling to a neighbouring site. 

As expected, the simulation shows that hopping transport in an exponential bandtail is highly 
dispersive. It is therefore convenient to present the results in terms of transient current I(t) and transit-
time tT. I(t) is calculated from the knowledge of the instant amount NS of carriers contained in the 
sample and from the evaluation of their mean position Z . To make the results independent of the 
number Ntot of simulated particles, I(t) is expressed in the reduced form (10) with the dimension of an 
inverse time (s-1): 
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The bandtail width has been fixed by setting εc = 0.0862 eV. Although arbitrary, this choice makes the 
low field dispersion parameter α = kBT/εc easy to calculate (one then has α = T/1000). The calculations 
also use the following parameters: R0 = 1012 s-1, λ = 1 nm, d = 0.5 nm, L = 200 nm. 

In absence of coulombic wells, the computed current reproduces the properties pointed out by prior 
researches [12-15]. It is governed by an intricate interplay between temperature and field effects. For 
sufficiently low temperature and applied fields, the current satisfies the power law time dependence 
predicted by Scher and Montroll [3], where A and B are constants: 
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The dispersion parameter is well given by α = kBT/εc at low field but it becomes field-dependent as the 
field is increased. This feature is illustrated on figure 4 by the simulated currents obtained for 
T = 600 K (kBT < εc) and several applied field (F = 0.1, 0.3 and 0.6×106 V cm-1). For the lowest F 
value, the data are well fitted by (11) with α = 0.6, as expected from α = T/1000. For F = 0.3 and 
0.6×106 V cm-1, one has α = 0.62 and 0.69 respectively. Transit-times can be estimated from the fitted 
plots according to tT = (B/A)1/2α. The values calculated for a significant set of temperatures indicate 
that the transit time is thermally activated: tT ∝ exp(Ea/kBT). A reproducible activation energy Ea about 
0.2 eV was found for all the considered field. 
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at T = 600 K. The fits by the power-law functions 
are shown. For each plot, the transit time is given 
by the intersection of the two straight-lines. 

at T = 600 K and F = 0.2×106 V cm-1 in absence 
and in presence of coulombic defects. The fits 
show that the dispersion parameter is not modified. 

Changes induced by the presence of the coulombic potentials are illustrated in figure 5 for Q = +e, 
Rc = 10 nm, T = 600 K and F = 0.2×106 V cm-1. The coulombic wells slow-down the carrier motion 
and are responsible for a decrease in the instantaneous current as well as for an increase in the transit 
time. However, the current still obeys the power-law approximation (11) around the transit time for 
the same dispersion parameter α = 0.63 as for intrinsic transport (the ionized defects do not affect 
dispersion). Calculations carried out at other T (500 K, 700 K) and F (0.3, 0.4×106 V cm-1) confirmed 
that α is independent of the presence of charged defects. 

Equation (11) does not provide a proper description of the current at short time because of the 
delay required to reach the steady-state regime of trap-limited transport. The regions where the current 
decay follows straight lines are therefore ‘shortened’ and this affects the accuracy of the estimate of 
coefficients involved in (11). Even if any small change in A or B (or also α) only leads to a small shift 
of the transit time location on the logarithmic scale, it yields a significant change in the corresponding 
value. The evaluation of the trap-modulated transit-times t’T has been carried out for a set of applied 
fields and temperatures. In each case, the extreme straight lines (upper and lower limits) which could 
reasonably fit the data on both sides of the transit time were considered. We then deduced a 
corresponding transit time range and noticed that the discrepancies never exceed a 20% relative error. 
The plots of figures 6 and 7 show the values of t’T taken at the middle of the error range, as a function 
of F1/2 and 1000/T respectively, together with the error bars accounting for the overall 20% 
uncertainty. Note that two points are not reported for the lowest temperature and the highest fields 
considered here, that is at T = 500 K, F = 0.5 and 0.6 MV cm-1. In these cases, field effects prevail 
over thermal ones and the steady-state trap-limited transport is not established before the first carrier 
transit. As a consequence, the related currents plots depart markedly from straight lines and the transit 
times can not be calculated in the framework of equation (11). Within the admitted error, impurity-
limited transit times follow straight-lines which intersect for a particular field Fc and temperature T0. 
They therefore satisfy: 
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The fits shown in dashed lines have been obtained for the following parameters: 
t’T0 = 8.4×10-7 s ; E0 = 0.64 eV ; β = 0.645 eV MV-1/2 cm1/2 ; T0 ≈ 1760 K 

There is now an appreciable difference between the β coefficient and the expected Poole-Frenkel one 
(βPF = 0.379 eV MV-1/2 cm1/2). This discrepancy is not surprising with regard to the combined error 
introduced by the successive fits, but it prevents from any definitive conclusion. The apparent 
activation energy E0, related to the critical field Fc by E0 = βFc

1/2, differs from the mean energy εc of 
the bandtail states and is greater than the 0.2 eV energy obtained in absence of coulombic defects. 
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Figure 6. Transit-time against the square-root of 
the electric field at different temperatures and fits 
of the low-field data with the inverse of equation 
(1) (dashed lines). 

Figure 7. Transit-time against 1000/T at different 
fields and fits of the low-field data with the inverse 
of equation (1) (dashed lines). 

5. Discussion 
It has been demonstrated in sections 3 and 4 that, statistically, the average mobility and transit time 
produced by the hopping rate (3) exhibit a Poole-Frenkel-like field dependence and a modified 
Arrhenius behaviour characterized by a critical temperature T0. Two questions are then remaining: is 
the β coefficient of the phenomenological mobility (2) really the same as the Poole-Frenkel one and 
why? What is the physical origin of T0 and what are the parameters which control its value? 

The well-known Poole-Frenkel (PF) model basically describes the classical emission of a carrier 
from a energy depth Et at the centre of a coulombic or neutral trap over a barrier lowered by a uniform 
external field [21,22]. If an external field of magnitude F is turned towards the – x direction, the 
potential energy of a carrier q at a distance x from a coulombic centre can be written as:  
 

( ) qFx
qx

xE +=
4

2
PF

p
β . 

 
(13)

The constant βPF is defined as in section 3, that is here βPF = |q|(Q/πε0εr)1/2, so βPF
2/4|x|q2 is the 

coulombic potential (6) in one dimension. The maximum of potential energy occurs at 
x0 = βPF /2|q|F1/2, where Ep = sign(q) βPF F1/2. Then, if the coulombic contribution in (13) and the trap 
depth Et are measured with respect to the potential energy at infinity, a trapped carrier will be emitted 
if it passes over a barrier Et - βPF F1/2 and the thermal emission rate W from the coulombic trap is: 
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Corrections to this simple theory generally result in multiplying the barrier lowering by a correction 
factor [22]. 

Let us now turn to the case of hopping transport. For the sake of simplicity, we focus here on the 
small polarons hopping motion for which the most probable hops take place between nearest 
neighbours (the hopping range is just λ, the mean distance between sites). If one assumes positive xi, 
the potential energy variation accompanying a hop from site i to site k is given by equations (15) and 
(16) for forward and backward jumps respectively. 
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(16)

If the centres are positively charged and carriers are electrons (Q > 0, q <0), a forward jump in space 
will correspond to a upward hop in energy if q(Vi – Vk) < 0 in (15), that is if xi is smaller than the 
critical value xc defined as: 
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Similarly, (16) indicates that a backward jump in space will always correspond to a downward hop in 
energy if xi is smaller than xc + λ. As a consequence, carriers located on a site between 0 and xc mainly 
undergo backward hops, i.e. towards the centre, and are likely to remain below xc: they are “trapped”. 
For carriers located on a site beyond xc + λ, forward jumps correspond to downward hops whereas 
backward jumps are upward hops in energy. Thus, a carrier that has moved beyond xc + λ is likely to 
move away from the centre: it is emitted. For carriers between xc and xc + λ, both forward and 
backward jumps will produce downward hops in energy, but the backward jump will favour trapping 
while the forward jump will favour emission. The hop direction then depends on F, Q and λ. For 
instance, if λ or Q are such that q(Vi – Vk) exceeds the polaron activation energy, equations (3)-(5) will 
make the probability of emission greater than that of capture. 

A carrier bound to a coulombic centre requires a certain average energy Ea to escape from the 
centre, just as in the classical PF effect, but this energy does not now refer to the edge of the barrier at 
x0 (edge of the conduction band), but to some level between xc and xc + λ at which the probability to 
escape is sufficiently high. One has: 
 

a0aa EEE Δ−= , (18)

where Ea0 is the average energy of electrons “trapped” below xc at equilibrium and ΔEa is the barrier 
lowering now given by the potential energy at xc. Note that xc and xc + λ both tends to x0 when λ tends 
to zero, so the classical PF effect is then recovered (continuous distribution of states along the band 
edge). In normal conditions, when the coulombic trap contains a significant numbers of localized sites 
between x = 0 and x = xc (x0/λ << 1), one has: 
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Therefore, xc is slightly smaller than x0. Correspondingly the barrier lowering at xc, given by equation 
(20), is slightly greater than for the classical PF. 
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This result suggests that the barrier lowering is not exactly the same in case of hopping transport as in 
the classical effect. The difference is not constant when the applied field varies (it decreases at low 
fields due to the increase of x0), so the correction factor between βPF and the constant coefficient β in 
(2) probably correspond to a mean correction averaged over the experimental field range. With regard 
to the experimental and fitting errors, one can reasonably retain that both coefficients are roughly the 
same. As regards our simulations, it is also difficult to discriminate between physical corrections and 
statistical and fitting errors in the deviations between βPF and β. However, it has been mentioned in 
section 3 that increasing the number of centres within the coulombic radius, i.e. decreasing λ/x0 at all 
fields, well produces a β value much closer to the expected one βPF: the β value was found to be 
0.381for λ =1 nm instead of 0.308 with λ = 2 nm, while the theoretical βPF value is 0.379. 

The T0 values reported in sections 2 and 4 are high, from about 1700 K for dispersive hopping 
transport up to 7500 K for small polaron motion. If experimental values of T0 in the range 550 – 660 K 



have been reported for electrons and holes by Gill in TNF:PVK [17], the theoretical model of 
Rackovsky and Scher [18] predicts values between about 500 K and almost infinity. Our T0 values are 
of course included in this infinitely broad range, but comparison is difficult because of the differences 
in treatment: the T0 values in [18] are shown to depend on the initial position of the carrier on the 
lattice with respect to the coulombic centre while this position is not retained as a parameter in our 
study. It is likely that simulations based on equation (3) would have yielded different T0 values if the 
injection site (Z = 0 here, see section 1) has been varied. Actually, making an attempt at finding a 
straightforward interpretation of T0, based on first principles and simple arguments, proves to be a very 
hard task. One may say that the modified Arrhenius behaviour is certainly associated with the field-
assisted trapping of carriers since the derivative of the mobility (2) becomes a decreasing function of 
the field when T > T0 [18]. This idea is consistent with the dependence of T0 on the initial site because 
the latter also affects the trapping probability. To stand comparison with the experimentally measured 
T0, which are of course independent of the initial position, the study would require a detailed 
calculation of the trapping and release probabilities averaged over a large number of initial sites. In 
this respect it seems that neither the present simulations nor the Rackovsky and Scher’s model are 
suitable for a proper examination of the modified Arrhenius law and of T0.  

6. Conclusion 
The phenomenological mobility (2), first reported by Gill [17] for dispersive transport, was related to 
hopping in presence of coulombic traps long time ago [19]. A formal derivation was given quite 
recently by Rackovsky and Scher, but with a substantial formalism and in the context of gaussian 
transport only [18]. The present work demonstrates that this mobility is actually consistent with the 
simplest model of hopping motion in presence of coulombic potential wells at low field. It also 
extends the conclusion of [18] by showing that the basic characteristics of this mobility, namely the 
Poole-Frenkel field dependence and the modified Arrhenius behaviour, are not only obtained for the 
gaussian motion of polarons, but also in case of an highly dispersive intrinsic transport (hopping in 
bandtails of disordered materials) provided the mobility is estimated after µ ∝ 1/t’T as in the Gill’s 
experiments. 

Trap-limited mobilities also exhibit a Poole-Frenkel field dependence in the multiple-trapping 
(MT) model of gaussian transport (see [23,24] for recent treatments of MT for gaussian and dispersive 
transport). In this situation however, the field-assisted lowering of the activation energy is initially 
assumed and included in the thermal release frequency W from coulombic traps (equation (14)). It 
finally comes out in the apparent steady-state mobility because the latter is simply given by µ = τW for 
sufficiently deep traps, where τ is the mean lifetime before trapping. Then, the apparent activation 
energy of µ is necessarily the same as the microscopic trap energy Et in W. As regards hopping, the 
Poole-Frenkel behaviour appears naturally, i.e. without underlying assumption, because hopping rates 
are perturbed by the coulombic potential. In this respect, hopping transport is rather limited by the 
electrical perturbation due to defects than by trapping on a band-gap level in the MT sense. Then, the 
apparent activation energy E0 in (2) is not simply related to a trap depth or to energies characterizing 
intrinsic transport. It depends on the extrinsic limiting defects through the coefficient β, comparable to 
the Poole-Frenkel coefficient, and is therefore proportional to the square-root of the defect charge Q1/2. 
It also depends on the critical field F0 where the mobility (2) is temperature independent and so 
probably on the mean distance between localized states. 

Properties of anomalous dispersive transport resulting from MT on an exponential trap distribution 
are also similar to that of hopping in an exponential bandtail. Both mechanisms give rise to currents 
obeying equation (11) with the same dispersion parameter α = kBT/εc [2,23,24]. Discrepancies between 
these models are expected at short time and high field. First, high field hopping transport is 
characterized by a field-dependent dispersion parameter which departs from the low field value. 
Second, multiple-trapping can yield a specific current behaviour at short time [23,24]. In all cases, 
discrimination between coulombic trap-limited MT and hopping can be done because of the modified 
Arrhenius law characterizing hopping, provided the effective temperature (1/T –1/T0)-1 clearly differs 
from T. The crossing temperatures T0 reported in figures 3 and 7 are very high and confusion would be 
possible at low T in the situation of an experimental data analysis. A detailed study of the origin and of 
the dependence of T0 and F0 or Fc is beyond the scope of this paper whose objective is mostly a 
qualitative demonstration of basic properties. 
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