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Abstract

This study presents a strategy to verify computations in a substruc-
tured context: after a �nite element solution has been obtained from a
domain decomposition based iterative solver, discretization error is es-
timated through the recovery of statically admissible stresses. A �rst
parallel recovery technique is presented and assessed.

1 INTRODUCTION

Virtual testing has become a short term aim of industrials which will to replace
expensive experimental studies and validations by numerical simulations, even
in order to certify large structures as planes and bridges. So, one keypoint
of the new numerical methods to develop is the veri�cation of computations
which enables to warranty that the computed solution is su�ciently close to the
original continuum mechanics model. This topic of numerical analysis has been
the subject of many studies for the last decades.

Another key point of new numerical methods is their ability to quickly pro-
vide solutions to large (nonlinear) systems. The most classical answer to this
issue is to use domain decomposition methods in order to take advantage of
the parallel hardware architecture of recent clusters and grids. In engineering,
non-overlapping domain decomposition methods are mostly employed.

Our aim is to provide a fully integrated adaptative computational strategy
to compute large structural mechanical problems with certi�ed quality. Our
method is based on the error in constitutive relation [4] to measure the quality
of our results, and on a generic vision of non-overlapping domain decomposition
methods [3].
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In this paper, we focus especially on the computation of elementary con-
tribution to the global error in a fully parallel context. First, we give basic
notions about non-overlapping domain decomposition and constitutive error for
elastic mechanical problem. Then, the present a strategy to compute elemen-
tary contribution �tted to sub-structuration. At last, we give some results and
conclusions.

2 FORMULATION AND BASIC NOTIONS

We study the static equilibrium of a linear elastic structure occupying the do-
main Ω under the small perturbation hypothesis. The problem is solved using
�nite element discretization.

2.1 Non-overlapping domain decomposition

Domain Ω is decomposed into a set of subdomains (Ω(s)), in the following su-
perscript (s) stands for data associated to domain Ω(s). Assuming conforming
decomposition of the structure (one-to-one correspondance of nodes on the inter-
face between subdomains), the equilibrium equation Ku = f (K is the sti�ness
matrix, u and f the displacement and force nodal �elds), can be written in a
substructured-fashion:

K(s)u(s) = f (s) + t(s)
T
λ

(s)
b∑

s

A(s)u
(s)
b = 0∑

s

A(s)λ
(s)
b = 0

(1)

First equation of (1) stands for equilibrium of substructure (s), λ
(s)
b is the

nodal reaction of neighbouring subdomains and t(s) is the trace operator (which
extracts the boundary nodes from the subdomain nodes). Second equation of

(1) sets the continuity of displacements between substructures (u
(s)
b = t(s)u(s) is

the boundary displacement, and A(s) is a signed boolean assembly operator like
in FETI method [2]). Third equation of (1) sets the equilibrium of reactions
(action-reaction principle) (A(s) is a boolean assembly operator like in BDD
method [5]).

Whatever the (most often iterative) resolution strategy to system (1), in the

end one obtains boundary �elds u
(s)
b and λ

(s)
b respectively satisfying interface

continuity and equilibrium conditions.

2.2 Constitutive relation error in elasticity

A posteriori error estimation, which has been widely studied for the last decades,
contains a large number of techniques. The associated estimators are usually
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classi�ed into three main categories: �ux projection techniques, residual on
equilibrium equation or error in constitutive relation [4].

In the present study, we have chosen to use an estimator based on the con-
stitutive relation error whose principle is recalled below. The usual continuum
formulation of any mechanical problem can be rewritten in term of kinematic
admissibility (2, KA) , static admissibility (2, SA) through the principle of vir-
tual work and constitutive relation (2, CR):

u KA : u|∂1Ω = ud

σ SA :
∫

Ω

σ : ε(u∗)dΩ =
∫

Ω

fd · u∗dΩ +
∫

∂2Ω

Fd · u∗dS, ∀u∗ KA0

CR : σ = K : ε(u)

(2)

where σ is Cauchy stress tensor, ε(u) is the symmetric part of the gradient of
displacement �eld u, ud is given displacement on the part ∂1Ω of the boundary,
Fd is given surface e�ort on the part ∂2Ω of the boundary, fd is the given volume
force.

Usually, a �nite-element solution pair (uh, σh) satis�es (2, KA&CR) but not
(2, SA). Then, the starting point of the measure of the constitutive relation error
is to build a new displacement-stress pair (ûh, σ̂h) from (uh, σh), which satis�es
(2, KA&SA). Thereafter, the constitutive relation error is computed through the
residual on the constitutive relation (2, CR) with the use of following energetic
norm (3):

eCR(ûh, σ̂h) = ‖σ̂h − K : ε(ûh)‖σ,Ω with ‖x‖2
σ,Ω =

∫
Ω

(
x : K−1 : x

)
dΩ (3)

An important feature is that whenever (uh, σh) satis�es (2, KA&SA), the
associated estimator overestimates the true error.

3 RECOVERING SA STRESS WITHIN SUB-

STRUCTURED CONTEXT

Most classical �nite element formulations provide displacement �eld uh satis-
fying kinematic constraints so that ûh is chosen equal to uh. However, σh is
seldom statically admissible so that σ̂h satisfying (2, SA) has to be computed
from σh. A systematic two steps process (illustrated �g. 1(a)) consists in: �rst,

building equilibrated force densities F̂ set on the edges of each element of the
mesh, using �star-patches� of elements and previous �eld σh; second, recovering
equilibrated stress �eld σ̂h from an element-by-element procedure with F̂ ap-
plied as Neumann boundary condition, using when possible analytical solution
or richer approximation basis ([1] recommands p + 3 interpolation).

Since the second step is fully local, it can be easily driven in a sub-structured
context. Unfortunatly, the �rst step involves, for each node, systematic compu-
tations on a patch of elements centered on it (cf �g. 1(b)). In a substructured
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(b) Patch problems on interfaces

Figure 1: Recovering of SA stress

context, di�culties occur for interface nodes, for which associated patches are
split between distinct substructures. Thus classical reconstruction of SA stess
�eld would require inter-subdomains communications.

Though such an exchange of data would not be excessively expensive, we
study fully-parallel alternative construction techniques. As stated earlier, in

the end of the DD-based resolution continuous displacement �eld u
(s)
b and equi-

libriated reaction �eld λ
(s)
b are available on each interface node. We propose to

build an approximated interface force density function λ̃b from nodal reaction λb

in order to decouple the construction of equilibrated stress density F̂ on edges.
As a �rst approximation, we choose to represent λ̃b on the basis constituted by
the trace of the �nite element shape functions. Then, λ̃b is computed thanks to
:

λ̃b =
∑

i

λ̃biϕi with λ̃b verifying λ̃bi =
∫

Υ

λ̃bdτ (4)

4 RESULTS AND CONCLUSION

Tests have been conducted on a Γ-shape structure. For a �xed mesh, global
error has been computed for the sequential initial problem and for di�erent
decompositions obtained with automatic splitting, see Tab. 1.

# sub-domains 1 2 3 5 8 9

eCR (%) 9.40 9.31 13.59 9.23 9.32 8.77

Table 1: Global error for di�erent substructurations

These �rst results enable to conclude that in most cases our strategy provides
satisfying SA �elds since the estimated error is smaller when the problem is
substructured. The 3-subdomain substructuration is an exception, in this case,
an interface between subdomain passes through the stress concentration zone
making the linear interpolation of reaction density irrelevant.

Future work will try to overcome this problem, so that no a priori knowledge
of stress concentrations will be necessary to provide decompositions leading to
correct fully-parallel estimation of constitutive relation error.
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