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INTRODUCTION

Virtual testing has become a short term aim of industrials which will to replace expensive experimental studies and validations by numerical simulations, even in order to certify large structures as planes and bridges. So, one keypoint of the new numerical methods to develop is the verication of computations which enables to warranty that the computed solution is suciently close to the original continuum mechanics model. This topic of numerical analysis has been the subject of many studies for the last decades.

Another key point of new numerical methods is their ability to quickly provide solutions to large (nonlinear) systems. The most classical answer to this issue is to use domain decomposition methods in order to take advantage of the parallel hardware architecture of recent clusters and grids. In engineering, non-overlapping domain decomposition methods are mostly employed.

Our aim is to provide a fully integrated adaptative computational strategy to compute large structural mechanical problems with certied quality. Our method is based on the error in constitutive relation [START_REF] Ladevèze | Mastering calculations in linear and nonlinear mechanics[END_REF] to measure the quality of our results, and on a generic vision of non-overlapping domain decomposition methods [START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF].
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In this paper, we focus especially on the computation of elementary contribution to the global error in a fully parallel context. First, we give basic notions about non-overlapping domain decomposition and constitutive error for elastic mechanical problem. Then, the present a strategy to compute elementary contribution tted to sub-structuration. At last, we give some results and conclusions.

FORMULATION AND BASIC NOTIONS

We study the static equilibrium of a linear elastic structure occupying the domain Ω under the small perturbation hypothesis. The problem is solved using nite element discretization.

Non-overlapping domain decomposition

Domain Ω is decomposed into a set of subdomains (Ω (s) ), in the following superscript (s) stands for data associated to domain Ω (s) . Assuming conforming decomposition of the structure (one-to-one correspondance of nodes on the interface between subdomains), the equilibrium equation Ku = f (K is the stiness matrix, u and f the displacement and force nodal elds), can be written in a substructured-fashion:

K (s) u (s) = f (s) + t (s) T λ (s) b ∑ s A (s) u (s) b = 0 ∑ s A (s) λ (s) b = 0 (1)
First equation of (1) stands for equilibrium of substructure (s), λ

(s) b
is the nodal reaction of neighbouring subdomains and t (s) is the trace operator (which extracts the boundary nodes from the subdomain nodes). Second equation of (1) sets the continuity of displacements between substructures (u (s) b = t (s) u (s) is the boundary displacement, and A (s) is a signed boolean assembly operator like in FETI method [START_REF] Farhat | The dual schur complement method with well-posed local neumann problems[END_REF]). Third equation of (1) sets the equilibrium of reactions (action-reaction principle) (A (s) is a boolean assembly operator like in BDD method [START_REF] Mandel | Balancing domain decomposition[END_REF]).

Whatever the (most often iterative) resolution strategy to system (1), in the end one obtains boundary elds u 

u KA : u |∂1Ω = u d σ SA : ∫ Ω σ : ε(u * )dΩ = ∫ Ω f d • u * dΩ + ∫ ∂2Ω F d • u * dS, ∀u * KA 0 CR : σ = K : ε(u) ( 2 
)
where σ is Cauchy stress tensor, ε(u) 

e CR ( u h , σ h ) = σ h -K : ε( u h ) σ,Ω with x 2 σ,Ω = ∫ Ω ( x : K -1 : x ) dΩ (3)
An important feature is that whenever (u h , σ h ) satises (2, KA&SA), the associated estimator overestimates the true error.

RECOVERING SA STRESS WITHIN SUB-STRUCTURED CONTEXT

Most classical nite element formulations provide displacement eld u h satisfying kinematic constraints so that u h is chosen equal to u h . However, σ h is seldom statically admissible so that σ h satisfying (2, SA) has to be computed from σ h . A systematic two steps process (illustrated g. 1(a)) consists in: rst, building equilibrated force densities F set on the edges of each element of the mesh, using star-patches of elements and previous eld σ h ; second, recovering equilibrated stress eld σ h from an element-by-element procedure with F applied as Neumann boundary condition, using when possible analytical solution or richer approximation basis ( [START_REF] Babuska | Validation of a posteriori error estimators by numerical approach[END_REF] recommands p + 3 interpolation).

Since the second step is fully local, it can be easily driven in a sub-structured context. Unfortunatly, the rst step involves, for each node, systematic computations on a patch of elements centered on it (cf g. 1(b)). In a substructured # sub-domains 1 2 3 5 8 9

e CR (%) 9.40 9.31 13.59 9.23 9.32 8.77

Table 1: Global error for dierent substructurations These rst results enable to conclude that in most cases our strategy provides satisfying SA elds since the estimated error is smaller when the problem is substructured. The 3-subdomain substructuration is an exception, in this case, an interface between subdomain passes through the stress concentration zone making the linear interpolation of reaction density irrelevant.

Future work will try to overcome this problem, so that no a priori knowledge of stress concentrations will be necessary to provide decompositions leading to correct fully-parallel estimation of constitutive relation error.

2. 2

 2 Constitutive relation error in elasticityA posteriori error estimation, which has been widely studied for the last decades, contains a large number of techniques. The associated estimators are usually classied into three main categories: ux projection techniques, residual on equilibrium equation or error in constitutive relation[START_REF] Ladevèze | Mastering calculations in linear and nonlinear mechanics[END_REF].In the present study, we have chosen to use an estimator based on the constitutive relation error whose principle is recalled below. The usual continuum formulation of any mechanical problem can be rewritten in term of kinematic admissibility (2, KA) , static admissibility (2, SA) through the principle of virtual work and constitutive relation (2, CR):
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 1 Figure 1: Recovering of SA stress

  is the symmetric part of the gradient of displacement eld u, u d is given displacement on the part ∂ 1 Ω of the boundary, F d is given surface eort on the part ∂ 2 Ω of the boundary, f d is the given volume force.

Usually, a nite-element solution pair (u h , σ h ) satises (2, KA&CR) but not (2, SA). Then, the starting point of the measure of the constitutive relation error is to build a new displacement-stress pair ( u h , σ h ) from (u h , σ h ), which satises (2, KA&SA). Thereafter, the constitutive relation error is computed through the residual on the constitutive relation (2, CR) with the use of following energetic norm (3):