
HAL Id: hal-00437341
https://hal.science/hal-00437341v2

Preprint submitted on 17 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Image structure preserving denoising using generalized
fractional time integrals.

Edurado Cuesta, Mokhtar Kirane, Salman Amin Malik

To cite this version:
Edurado Cuesta, Mokhtar Kirane, Salman Amin Malik. Image structure preserving denoising using
generalized fractional time integrals.. 2011. �hal-00437341v2�

https://hal.science/hal-00437341v2
https://hal.archives-ouvertes.fr


Image structure preserving denoising using generalized fractional time integrals

Eduardo Cuestaa, Mokhtar Kiraneb, Salman A. Malikb

aDepartment of Applied Mathematics, E.T.S. of Telecomunication Engineers, University of Valladolid, Spain.
bLaboratoire de Mathématiques, Image et Applications, Université de La Rochelle, Avenue M. Crépeau, 17042 La Rochelle Cedex, France.

Abstract

A generalization of the linear fractional integral equation u(t) = u0 + ∂
−αAu(t), 1 < α < 2, which is written as a

Volterra matrix–valued equation when applied as a pixel–by–pixel technique, has been proposed for image denoising
(restoration, smoothing,...). Since the fractional integral equation interpolates a linear parabolic equation and ahyper-
bolic equation, the solution enjoys intermediate properties. The Volterra equation we propose is well–posed for all
t > 0, and allows us to handle the diffusion by means of aviscosity parameterinstead of introducing non linearities in
the equation as in the Perona–Malik and alike approaches. Several experiments showing the improvements achieved
by our approach are provided.

Keywords: Image processing, Fractional integrals and derivatives, Volterra equations, Convolution quadrature
methods.
2010 MSC:44A35, 44K05, 45D05, 65R20, 68U10, 94A08.

1. Introduction

Partial differential equations based methods for im-
age processing (filtering, denoising, restorations, seg-
mentation, edge enhancement/detection,...) have been
largely studied in the literature (see [47] and references
therein).

In that framework the first, and most investigated
equation is the linear heat equation with homogeneous
Neumann boundary condition
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∂tu(t, x) = ∆u(t, x), (t, x) ∈ [0,T] ×Ω,
u(0, x) = u0(x), x ∈ Ω,
∂u
∂η

(t, x) = 0, (t, x) ∈ [0,T] × ∂Ω,
(1)

where∂t, and∆ stand for the time derivative, and two–
dimensional Laplacian operator, respectively,Ω ⊂ R2

is typically a square domain,∂Ω represents the bound-
ary ofΩ, ∂/∂η stands for the outward normal derivative,
andu0 is the noisy image from which the objective is
to restore the original (ideal) image. Let us notice that
u(t, x) stands for the restored image at the time levelt.
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The interest for this model is due to the fact that the
solution of (1) can be written as a convolution

u(t, x) =
∫

R2
G√2t(x − y)u0(y) dy,

whereG is the two–dimensional Gaussian kernel

Gσ(x) :=
1

2πσ2
e−|x|

2/2σ2
.

Since convolution with a positive kernel is the basic tool
in linear filtering, computing the solution of (1) is equiv-
alent to Gaussian filtering in a classical way.

However, in this equation the diffusion is isotropic
which, in the context of image processing, means that
smoothing applies uniformly in the whole image and
is equivalent in the direction of both coordinates axis,
therefore independently of the image structure itself.
This yields that in most of cases edges and corners are
severely blurred disabling this filter for practical appli-
cations.

In view of this, an edge–preserving regularization, i.e.
a non uniform diffusion model, will require more so-
phisticated approaches. One of this was proposed by
Perona and Malik in [39] and reads as the non linear
heat equation based problem
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∂tu(t, x) = div
(

c(|∇u(t, x)|2)∇u(t, x)
)

,

u(0, x) = u0(x),
∂u
∂η

(t, x) = 0, x ∈ ∂Ω,
(2)

for (t, x) ∈ Q = [0,T] × Ω. The diffusion coefficient
c : [0,+∞) → [0,+∞), is chosen to be close to zero
near edges and corners, that is, pixels where gradient
is large. On the contrary,c should be large in pixels
with low gradient variation. Functions satisfying these
assumptions are commonly callededge stopping func-
tions, and examples of such a function were firstly pro-
posed by Perona and Malik, e.g,

c(s) = 1/(1+ s) or c(s) = e−s. (3)

Unfortunately, theedge stopping functionslead in
general to backward–forward problems that turn out to
be ill–posed. Numerical experiments carried out by
some authors with these models (involving edge stop-
ping functions) reported that no significant instabilities
are observed; moreover, for large final times, restored
images seem to preserve and enhance edges (see e.g.
[26]). The reason for not observing any instability in
Perona-Malik model is that in many cases the numerical
scheme used does not correspond to their equation but
rather to a time–regularized one which is a well–posed
equation as reported by H. Amman [2]. Even in the case
of the discretization corresponding to the equation (i.e.
without regularizing) the only one artifact usually ob-
served in the numerical experiments is thestaircasing
effect. This occurs when a standard spatial discretiza-
tion of the equation is considered instead of the contin-
uous one. In that case it has been proved in [44] that
(2) becomes a well–posed system of nonlinear ordinary
differential equations.

In the same way, some other approaches have been
proposed as for example the ones based on the total vari-
ation of suitable functionals (see [43]). All these works
have promoted the idea of replacing (2) by nearby equa-
tions keeping on the one hand the same image structure,
and on the other hand, lying in areasonablefunctionals
space setting where the well–posedness can be guaran-
teed as well as the bounded variation, and further analyt-
ical and numerical properties. The first perturbed model
was proposed in [11] where, for a suitable extension of
u overR2 (e.g. by 0) denoted ˜u, c(|∇u|) is replaced by
c(|∇(Gσ ∗ ũ)|) (Gσ as defined above). In that case, for
u0 ∈ L2(Ω), the regularized problem admits a unique so-
lution in C([0,T], L2) ∩ L2((0,T),H1) whereH1 is the
Sobolev space defined asH1(R2) := { f ∈ L2(R2),▽ f ∈

L2(R2)}. Despite of some features of this model, images
become uniformly grey (for grey–scale images) in the
long run, thus the information gets lost (see [2]). Vari-
ants of this approach have been studied by many authors
(see e.g. [27, 28] and references therein).

Lately, further approaches have been proposed, e.g.
by adding regularizing terms, likeǫ∆∂tu, to the diffu-
sion equation in (2) (see [6]), or for example higher
order partial differential equations based regularization
(see [21]), and in particular fourth order partial differ-
ential equations (see [37, 51]). However, despite of the
practical results which seem to be quite good in most of
the cases, some of them have not been closely studied
from the analytical and the numerical view point.

Many image denoising models based on local aver-
age (also known as neighborhood filters) have been pro-
posed for controlling the diffusion process. Let us men-
tion some of the neighboring filters: Yaroslavsky neigh-
borhood filter [50], sigma filter [30], bilateral filtering
[45] are few examples. The faster diffusion is obtained
in these filters by assigning appropriate weights where
the neighborhood pixels have gray scale value close to
one another (uniform region) and slower diffusion is
obtained across the boundaries of the region, resulting
in the preservation of edges in the image. All the lo-
cal nonlinear filters (neighborhood filters) create artifact
boundaries (staircase effect) in the restored images. In
[8], the authors justify the phenomena of artifact bound-
aries by showing that the Yaroslavsky neighborhood fil-
ter has exactly the same qualitative behavior as Perona-
Malik model [39]. The similar behavior of staircase for
the bilateral filter was observed (see [4]).

Finally let us comment that one can face up to diffu-
sion filtering in a more general framework as the one of
anisotropicmodels. In fact most of models we men-
tioned above turn out to beisotropic since the diffu-
sion is governed by means of a scalar–valued function
c which allows to reflect the structure of the underly-
ing image, but the diffusion turns out to be the same
in the two orthogonal directions of coordinate axis. A
generalization of such approaches consist in replacing
c by a tensor which allows on the one hand to rotate
the flux and so the diffusion orthogonal directions to-
ward a suitable orientation, and on the other hand a
suitable choice of the eigenvalues of the tensor can lead
to different diffusions on each single direction (see e.g.
[1, 5, 46, 48, 49] for more details). In the present work
we focus on the scalar approach, i.e. no tensor diffu-
sion are considered, keeping in mind that a tensorial ap-
proach in the framework of fractional calculus fits and
will be the topic of our future works.

In this work, we present a new approach based on
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fractional calculus which allows us to handle the dif-
fusion, i.e. the smoothing in the image terminology,
by means of a single parameter which plays the role
of "viscosity" parameter in a linear partial differential
equation. Let us mention the new features of our pro-
posed model although satisfactory practical results are
obtained (see section 6). First, the linear model we are
proposing here is well–posed; since the final objective
is the practical implementation, very efficient numerical
discretizations can be applied for the proposed model
because a large variety of them have been closely stud-
ied by many authors and they are at our disposal for
the experiments in Section 6. Moreover, the model we
propose enjoys the well-posedness for all positive time
levels, i.e. fort > 0, on the contrary to what typi-
cally happens when nonlinear equations are involved. In
fact, despite of the Perona-Malik model turn out to be
a well-posed systems of nonlinear equations after dis-
cretizing in space as we described earlier, the existence
of a unique solution can be locally guaranteed i.e. for
a finite time interval (normally small). Therefore, when
using the semidiscrete Perona-Malik model in practical
applications some estimation of the final time should be
done. Second, we have to highlight the simplicity of
our model for controlling the diffusion process, which
has been achieved by choosing a scalar function which
allows a suitable choice of the viscosity parameter as
we describe in Section 5. Moreover, due to the numeri-
cal scheme chosen for our experiments, some additional
properties are guaranteed, in fact the positivity of the
image seen in the continuous setting is also guaranteed
in the discrete one (Th. 1, in Section 4).

This paper is organized as follows. In section 2, we
recall some facts concerning fractional calculus, and the
first approaches to image processing by using fractional
calculus. Section 3 focusses on generalized fractional
integrals based approach to image processing which is
the main novelty of this work. Numerical discretiza-
tions are presented in Section 4. The discussion on the
implementation, and practical experiments, are shown
in Sections 5 and 6 respectively. Finally, we end with
conclusions in Section 7.

2. Fractional calculus

Image filtering by means of fractional calculus is first
considered in [13]. In that work, a generalization of the

heat equation (1) is proposed which reads as
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∂αt u(t, x) = ∆u(t, x), (t, x) ∈ [0,T] ×Ω
u(0, x) = u0(x), x ∈ Ω,
∂tu(0, x) = 0, x ∈ Ω,
∂u
∂η

(t, x) = 0, (t, x) ∈ [0,T] × ∂Ω,
(4)

where∂αt stands for the fractional time derivative of or-
der 1< α < 2 in the sense of Riemann–Liouville. Inte-
grating in both sides, the problem (4) can be expressed
as

u(t, x) = u0(x) +
1
Γ(α)

∫ t

0
(t − s)α−1∆u(s, x) ds,

also with homogeneous Neumann boundary condition,
or in a compact format

u(t, x) = u0(x) + ∂−α∆u(t, x), (5)

where∂−β, for β > 0, stands for the fractional integral
of orderβ ∈ R+, in the sense of Riemann–Liouville.

Let us recall that, forg : [0,+∞) → R, g ∈
AC[0,+∞) (the space of absolutely continuous func-
tions) the integral of orderβ ∈ R+ in the sense of
Riemann–Liouville is defined as the convolution inte-
gral

∂−βg(t) :=
∫ t

0
kβ(t − s)g(s) ds, t ≥ 0, (6)

wherekβ(t) := tβ−1/Γ(β), for t > 0 (see [29]). Now, the
definition of the fractional derivative of orderβ ≥ 0 is

∂βg(t) :=
dm

dtm
∂β−mg(t), t ≥ 0,

wherem ∈ N, m− 1 < β ≤ m.
The interest of our model in the framework of im-

age processing is due to the fact that, for 1< α < 2,
the problem (4) interpolates the linear (parabolic) heat
equation (1) corresponding toα = 1 (with no need of
∂tu(0, x) = 0), and the linear (hyperbolic) wave equa-
tion
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∂2
t u(t, x) = ∆u(t, x), (t, x) ∈ [0,T] × Ω
u(0, x) = u0(x), x ∈ Ω,
∂tu(0, x) = 0, x ∈ Ω,
∂u
∂η

(t, x) = 0, (t, x) ∈ [0,T] × ∂Ω,
(7)

corresponding toα = 2 (with zero initial velocity).
Therefore, some properties of the solution of (4) are
intermediate between the ones of (1) and (7) (see e.g.
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[23, 24]). In particular, it can be easily proved that for
the scalar equation (i.e., by replacing∆ in (4) with a
complexλ with non–positive real part) the solution de-
cays as 1/(1 + tα|Re(λ)|), i.e., the solution iso(t−α), as
t → +∞. In that case, the solution decays slower than
the one of the scalar heat equation (with the sameλ) for
which the solution decays exponentially, and faster than
the one of the scalar wave equation whose solution does
not decays (but oscillates). The diffusion is now handled
by the parameterα. We show below that the solution of
the model we propose is well behaved.

At the same time, fractional calculus was proposed
for edge detection in [38], and later for image denoising
in [3]. In these papers, the authors proposed anisotropic
equations, where the anisotropy is handled by means
of spatial fractional derivatives; however, the papers do
neither include the study of the well–posedness of the
problem nor the study of the behavior of the fully nu-
merical discretization.

Finally, let us mention [16, 17, 18, 19, 20] where
the fractional calculus, also applied to image process-
ing, is understood as the fractional powers of the two–
dimensional Laplacian, i.e. (−∆)β, for β > 0, therefore
in a different framework and with some different fea-
tures.

3. Volterra equations

Despite of the fact that the approach (5) in Section 2
seems to be very promising, the diffusion (smoothing)
is still uniform all over the whole image as in (1).

The above idea leaded us to a refinement which con-
sists in splitting the whole image into sub–images, and
apply (4) with different values ofα for each sub–image
(see [12]). However the approach we propose in this
paper is more than a slight extension of the one in [12],
from a technical viewpoint. Roughly speaking, in [12]
the choice of eachα is carried out by setting values close
to 1 for the sub–images with lower mean gradient varia-
tion, and close to 2 for the sub–images with higher mean
gradient variation. This approach does not provide sat-
isfactory results as extended in the framework of image
denoising despite of the fact that this approach has pro-
vided good results in some practical situations such as
in satellite image classification (see [42]). It is mainly
due to the fact that in most of cases the borders of each
single sub–image keep clearly sharpened which is un-
desirable in image denoising.

However this idea suggested us a finer approach
which is the main contribution of this work, and which
intends to be the limit of the above situation, i.e., the

application of the fractional equation (4) with a differ-
ent value ofα (i.e. order of derivative) for each sin-
gle pixel. The values ofα are chosen according to the
gradient variation at each single pixel as we discuss in
Section 5.

Hereafter, we will consider gray–scale images since
for colored images processing becomes a more difficult
task. A naive way for colored images is to perform a
similar methodology based on the one we present here
but separately for each of the three layers (one per color)
e.g. in the case of RGB format.

Let us start by taking a spatial discretization of the
Laplacian in (4) based on a second order central differ-
ence scheme with mesh lengthh > 0. In such a way,
∆ transforms into aM2 × M2 pentadiagonal matrix∆h

(see Fig. 1), and in the same fashion,u(t, x) is trans-
formed into aM2×1 vector–valued functionu(t) which
stands for the vector–arranged image pixels at time level
t whereM is the length and width of the image.

Figure 1: Sparsity pattern of the discretized Laplacian

Actually, since at present the most of signals (image,
sound,...) are handled in digital format, this approach
becomes natural.

As we commented above, the novelty of our approach
consists in replacing the (only one) order derivativeα of
equation (4) with a different value ofα for each single
pixel of the image. This approach reads now as the lin-
ear Volterra matrix–valued equation

u(t) = u0 +

∫ t

0
K(t − s)u(s) ds, 0 ≤ t ≤ T, (8)

whereu0 is the vector–arranged initial data (noisy im-
age), and the convolution kernelK is defined as

K(t) = I (t) · ∆h
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with

I (t) =
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and, 1< α j < 2, for j = 1, 2, . . . ,M2.
Let us notice thatK is a pentadiagonal matrix valued

function, and since the Laplace transform ofK exists,
the well–posedness of (8) is then guaranteed all over the
positive real line (see e.g. [41]).

4. Time discretizations

4.1. Background

Time discretizations of Volterra equations as (8) have
been largely studied in literature; let us mention, e.g.,
the convolution quadrature based methods (see [33, 34,
35]). In particular Runge–Kutta convolution quadrature
methods (the convolution quadrature is based on clas-
sical Runge–Kutta methods) of that equations provide
high order numerical methods jointly with good stabil-
ity properties. In [36], these discretizations have been
studied in the abstract setting of sectorial operators, i.e.
for convolution kernels whose Laplace transform is of
sectorial type. Let us recall that a complex functionG
is of sectorial typeif there exist 0< θ < π/2,c ∈ R, and
µ,M > 0 such thatG is analytic in the sector

Sθ := {λ ∈ C : | arg(λ − c)| < π − θ},

and

|G(λ)| ≤
M
|λ|µ
, λ ∈ Sθ.

Under these assumptions, the inverse Laplace transform
of G can be written by means of the Bromwich formula
as

g(t) =
1

2πi

∫

γ

eλtG(λ) dλ,

whereγ is a complex path connecting−i∞ and+i∞
parallel to the boundary ofSθ with increasing imaginary
part.

The convergence of these methods has been recently
extended to analytic semigroups (see [9]) where the
only one requirement on the kernel is the existence of
the Laplace transform (weaker assumption than the as-
sumption of sectorial type). Since the Laplace transform
of each functiontα j /Γ(α j+1) in (8) exists, and therefore

the Laplace transform ofK exists as a matrix–valued
function, these methods turn out to be appropriate for
our purposes. In this case, if̃K denotes the Laplace
transform ofK, then the inverse Laplace transform can
be written as

K(t) =
1

2πi

∫

γ

eλtK̃(λ) dλ,

whereγ(r) = a+ ri , −∞ < r < +∞, for a ∈ R+. Let us
notice that now the whole pathγ lies on the right–hand
complex plane Re(λ) ≥ a.

In order to set a suitable Runge–Kutta convolution
quadrature method, we must take into account that the
time regularity of the solution of (8) is constrained by
the nature of the convolution kernel, in particular the
continuity of their derivatives is guaranteed only up to
the first order. Therefore, in this work, we will focus on
the backward Euler convolution quadrature method, i.e.,
avoiding higher order schemes whose convergence will
require more regularity on the solutions. This method
will be sufficient to show the new features of our ap-
proach.

4.2. Convolution quadratures
For the sake of the readers convenience, we first re-

call the definition of the backward Euler convolution
quadratures, and for the sake of the simplicity of the
explanation we refer the readers to [9, 35] for the def-
inition of Runge–Kutta convolution quadratures in the
general case and further references.

Let τ > 0 be the time step of the discretization. The
convolution integral in (8) reads

∫ t

0
K(t − s)u(s) ds =

∫ t

0

1
2πi

∫

γ

eλ(t−s)K̃(λ) dλ u(s) ds

=
1

2πi

∫

γ

K̃(λ)Y(λ, t) dλ,

whereY(λ, t) stands for the solution of the ordinary dif-
ferential equation

y′(t) = λy(t) + u(t), 0 ≤ t ≤ T, with y(0) = 0. (9)

The backward Euler convolution quadrature is ob-
tained as

∫ tn

0
K(tn − s)u(s) ds≈ 1

2πi

∫

γ

K̃(λ)Yn(λ) dλ,

wheretn = nτ, andYn(λ) stands for the approximation
of Y(λ, tn) reached by the backward Euler method ap-
plied to (9). Therefore, the convolution quadrature reads

∫ tn

0
K(tn − s)u(s) ds≈

n
∑

j=0

Q(α)
n− ju(t j),
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where the weightsQ(α)
j ’s are defined in terms of

the backward Euler characteristic polynomials quotient
ρ(z)/δ(z) = z/(z− 1) evaluated in the variableξ = 1/z.
In fact, such weights turn out to be the coefficients of

K̃
(

1− ξ
τ

)

=

+∞
∑

j=0

Q(α)
j ξ

j .

which explicitly written read
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· ∆h, (10)

for j = 0, 1, 2, . . ., asM2×M2 matrices. (see [9, 14, 35]
for more details).

4.3. Numerical method. Convergence
Let un be the approximation ofu(tn), for n ≥ 0. Then

the time discretization of (8) by means of the backward
Euler convolution quadrature method reads

un = u0 +

n
∑

j=1

Q(α)
n− ju j , n ≥ 1,

and keeping in mind the practical implementation, since
the matrix∆h is not singular, the uniquen-th approxima-
tion is reached by solving the linear system

(

I −Q(α)
0

)

un = u0 +

n−1
∑

j=1

Q(α)
n− ju j , n ≥ 1. (11)

In the abstract setting considered in [9], optimal error
bounds are obtained. In particular, for the backward Eu-
ler based method, the first order is reached by assuming
the existence and boundedness of the second derivative
of the solution. However, since the second derivative
of the solution of (8) is merely integrable but not con-
tinuous, these results cannot be directly applied. In our
case, if one takes into account the nature of the con-
volution kernel, then the stability proven in [14] jointly
with Theorem 3.1 in [33] allow us to guarantee that the
method is convergent of first order.

Besides, in [9] an interesting result is also proven
which becomes even more interesting when applica-
tions fit into the framework of image processing. For
the readers convenience we recall this result in the case
of the backward Euler convolution quadrature method
we apply in this paper.

Theorem 4.1. If u is the solution of (8), andun, for
n ≥ 0, is the numerical solution yielded by (11), then
there exists a probability densityρn,τ : [0,+∞) → R

such that

un =

∫ +∞

0
u(s)ρn,τ(s) ds, n ≥ 1. (12)

The interest of this theorem is that, sinceρn,τ is a
probability density, i.e., positive and satisfying

∫ +∞

0
ρn,τ(s) ds= 1,

if u is for example positive, then the representation (12)
guarantees the positivity ofun. In other words, the nu-
merical solution (11) preserves, among other properties,
the positivity of the continuous solution.

Moreover, let us point out that in [9] it is proven that
the density of probability in (12) does not depend on
the equation itself but only on the numerical method. In
particular, for the method considered here (see [14, 10]),
there is an explicit expression for such a density

ρn,τ(t) =
1

τ(n− 1)!

( t
τ

)n−1
e−t/τ, n ≥ 1.

Finally, we can mention some other very efficient
methods to discretize (8) as for example the ones based
on the discretization of the inverse Laplace transform
(see [32]), the ones based on the adaptive fast and obliv-
ious convolutions (see [31]), or the collocation methods
(see [7] and references therein).

5. Implementation

In this section we will discuss some facts concerning
the implementation of (11) itself.

First of all, the choice ofα’s should be done accord-
ing to the idea of preserving edges and corners and re-
moving noise. Therefore, in view of the discussion in
Section 2, pixels where the gradient is large should be
associated with values ofα close to 2. On the contrary,
pixels with lower gradients should be associated with
values ofα close to 1. Let us notice that the practi-
cal computation of the gradient variation turns out to be
very simple in a discrete setting as the one we consider
in the spatial variables.

However some remarks have to be taken into account:

• On the one hand, avoiding singular situations can
be yielded in both–sides values ofα, i.e.α = 1 and
α = 2, at least from the numerical point of view,
we will not reach these values when settingα’s.
In particular, in Section 6, forj = 1, 2, . . . ,M2,
α j ∈ [1 + ǫ, 2− ǫ] with ǫ = 10−3.
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• On the other hand, since extreme situations appear
such asisolatednoisy pixels (see Figure 3 where a
gray–scale image is shown as a three–dimensional
surface), a particular choice ofα’s is expected; in
particular for those pixels, values close to 1 will be
associated. On the contrary, near edges and corners
(very high gradient variation) no smoothing should
be required, thereforeα’s close to 2 will be set for
that pixels.

According to this criteria, in this work, the setting
of α values follows a profile distribution as in Fig-
ure 2.
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Figure 2: Profile distribution ofα’s.

Notice that this simple and naive procedure allows
one to establish different settings of distributions
depending, e.g., on the characteristics of each im-
age.

• From a computational point of view, the number
of different values ofα’s should be limited, other-
wise if one admits a number ofα’s as large as the
number of pixels, the implementation becomes un-
available in practical cases. In fact, in this work,
we setα ∈ {1+ j/N, 1 ≤ j ≤ N}, for a fixed integer
N which in Section 6 turns out to beN = 100.

Let us also mention that in (10) a fixed number of
weights Q(α)

j are computed once for all for eachα j .
Moreover, the practical computation of that weights has
been carried out by means of the Fast Fourier Transform
as in [9], therefore saving a noticeablerun–time.

Another fact of interest concerns the measure of
goodness of an implementation or procedures in im-
age filtering, restoration, and in general, to measure the

Figure 3: Three dimensional representation of (expected) isolated
noisy pixels for a gray–scale image.

quality of a processed image. Despite of in many cases
a visual analysis turn out to be sufficient to determine
the goodness of a methodology when applied to image
processing, in this work, we consider two numerical cri-
teria, S NRand PS NR, which have been largely used
in literature (see e.g [15, 22, 40]), and which are com-
monly applied to determine the quality of a processed
image in the sense commented above (filtering, restora-
tion,...). In fact,S NRandPS NRstand for the Signal
to Noise Ratio and Peak Signal to Noise Ratio, respec-
tively, and the unit for both of these ratios are decibels
(dB). To be more precise,S NRof a restored imageR
compared to an ideal imageI is defined as

S NR= 10 · log10

( var(I )
var(I − R)

)

,

where var(x) stands for the variance of the vectorx.
Here I andR are considered as vector arranged gray–
scale images, as in Section 3, with 256 gray levels. In
the same way,PS NRis defined as

PS NR= 10 · log10

(

∑

i, j 2552

∑

i, j(I i, j − Ri, j)2

)

,

whereI i, j , Ri, j are the pixel values ofI andR respec-
tively. Notice that in restoration problems, we have
a corrupted image, and try to restore the ideal image
which in general is not available, but for the calcula-
tion of S NRand PS NR(from above formulas) ideal
image is required. For the experiments in Section 6, we
take an image (ideal image) and we perturb that image
by adding up some noise. This image is then used for
restoration; thereforeS NRandPS NRcan be computed
for the restored images.
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6. Practical results

In this section, we show the improvements in the
restorations provided by our approach. To this end,
we perform some experiments where a noisy image
is evolved by using the Perona–Malik model (2) with
c(s) = e−s as commented in (3) (PM), the contrast pa-
rameter (λ) is chosen such that 1.5 ∗ σ < λ < 2 ∗ σ as
suggested in [25] (whereσ is the noise variation) and
the model (8) we propose (VE).

(a) (b)

(c) (d)

(e) (f)

Figure 4: Images for the first experiment: (a) Lena, (b) Boats, (c)
Elaine, (d) Baboon, (e) Lady, (f) Zebra.

First experiment:
In the first experiment the six images shown in (Fig-
ure 4) are considered for the experimental validation of
the proposed method. Each original image from the six

images (Figure 4) has been perturbed by additive Gaus-
sian noise of variance ranging from 10 to 30. In Table
1, we show the results (in terms of SNR) yielded by the
restoration carried out with the mentioned procedures.

In fact, in view of Table 1, it can be observed that
similar results are reached with (PM) and (VE). How-
ever we should recall that (VE) stands for a linear model
whose well–posedness is guaranteed on the contrary to
what happens with (PM).

For further close observation of the procedures ap-
plied to the images of Lena (Figure 4.(a)) and Elaine
(Figure 4.(c)), withσ = 25 a part of such image
is considered for all denoising models; in particu-
lar, a 200× 200 part of the image has been consid-
ered (see Figure 5). The restored images by Perona-
Malik model for both Lena and Elaine images, pre-
serves edges/corners (Figure 5.(c) and Figure 5.(g)) but
smooths very strongly theflat areas which causes lost
of information regarding the texture of the image. Also,
strong artifacts at the edges and corners has been ob-
served as reported in [8]. The (VE) denoises the im-
age (Figure 5.(j) and Figure 5.(h)), also by preserving
edges/corners of the image; but here smoothing in flat
areas is not so strong as with (PM) and it preserves the
structure of the image without creating any artifacts.

In Table 2PS NRanalysis for the six images of Figure
4 with the variance of noise from 10 to 30 is given. The
values of the table shows that the proposed method per-
forms more or less in the same manner. In fact for the
images from Figure 4.(a) to Figure 4.(e) the values of
PS NRfor the purposed method are slightly larger then
the (PM) model. For the image of zebra (PM) model
has values ofPS NRlarger then (VE) model.

Consider the image of Lady (Figure 4.(e)) perturbed
by an additive Gaussian noise of varianceσ = 25 for
further investigation. Notice that the size of the image
is 256× 256 and in Figure 6, we provide original im-
age (Figure 6.(a)), noisy image (Figure 6.(b)), restored
images by (PM) and (VE) in (Figure 6.(c)-Figure 6.(d)),
respectively. Figure 6.(e) and Figure 6.(f) are the resid-
ual to (PM) model and (VE) model with the noisy im-
age, i.e, Residual= Noisy image – restored image. The
residual figure 6.(e) contain more structure part of the
image as compare to the figure 6.(f), which also hints
that the denoising by proposed (VE) method is structure
preserving.
Second experiment:
As in the previous discussion ofS NRand PS NRfor
(PM) and (VE), keep very close one to each other, the

8



Table 1: First experiment: SNR analysis

σ 10 15 20 25 30 10 15 20 25 30

Input SNR 13 10 7 5.6 4 13.3 9.88 7.4 5.5 4

Method Lena (512× 512) Boats (512× 512)

(PM) 16.81 14.79 13.82 13.32 11.27 15.07 13.69 12.26 11.32 9.72

(VE) 17.31 15.00 14.46 13.73 12.78 15.74 14.10 12.65 11.57 10.32

Input SNR 13.2 9.7 7.3 5.3 3.8 12.5 9 6.5 4.5 3

Method Elaine (512× 512) Baboon (512× 512)

(PM) 15.60 14.56 13.52 13.01 11.22 13.42 10.09 8.34 7.27 6.15

(VE) 16.32 14.74 13.71 13.52 11.96 12.88 10.29 8.51 7.49 6.89

Input SNR 12 8.73 6.34 4.5 3.1 13.79 10.25 7.81 5.88 4

Method Lady (256× 256) Zebra (256× 256)
(PM) 16.06 14.23 12.50 11.90 9.94 15.18 12.38 10.19 9.13 7.49

(VE) 16.49 14.54 13.19 12.00 11.07 14.33 11.44 9.63 8.14 7.60

efficiency of our approach seems to be based on no more
than an optical evidence. However, we will show that
the efficiency of our approach is more than optical, and
to this end, we will consider images where the texture
plays a crucial role, and where the restoration proce-
dures can be stressed.

The images we consider in these experiments are a
250× 250 size image of a wood (Figure 7. (a)), and a
512×512 size naive image (Figure 7. (e)), both strongly
perturbed with gaussian noise (ratiosS NR= 0.014 and
PS NR= 12, see Figure 7. (b),S NR = 0.054 and
PS NR= 16.2, see Figure 7. (f), respectively). In these
kind of images, the texture turns out to be more impor-
tant than edges preservation, and among the numerical
results in Table 3, a simple overview shows the good-
ness of our approach vs. (PM).

However, to be more precise in our analysis, Table
3 shows a numerical evidence of the efficiency of our
method; in fact it must be highlighted thatS NRand
PS NRare improved by using (VE) in comparison with
(PM).

Table 3: Second experiment (textured images).

SNR PSNR Figure

(PM) 1.8 12.1 Fig. 7.(c)
(VE) 4 14.4 Fig. 7.(d)

(PM) 5 21.2 Fig. 7.(g)
(VE) 6.8 22.6 Fig. 7.(h)

7. Conclusions and outlook

In the present work, we propose a partial differential
equation based approach to image processing (filtering,
denoising, enhancing,...) whose main novelty is that it
fits into the framework of fractional calculus (deriva-
tives and integrals) hence Volterra equations.

The interest of our work is twofold: On the one hand,
the model we propose allows us to handle the smoothing
by means of certain "viscosity" parameters which de-
fine the matrix–valued linear Volterra equation we pro-
pose. In other words, the smoothing is now handled by
means of a linear partial equation, i.e. without intro-
ducing tricky nonlinear terms in the equation as many
authors propose.

On the other hand, the model we propose fits into a
closed mathematical setting, both from the analytical
and the numerical point of view. To be more precise,
the well–posedness of the Volterra equation we propose
is as we said guaranteed all over the whole positive real
line on the contrary what typically happens with non–
linear models, and numerical methods for its discretiza-
tion have been largely studied in the literature.

As an additional interesting property of our proposal
is that one can change theprofile of the filter merely
by changing the “viscosity" parameters setting, i.e. the
distribution function we use. This allows the user to
adapt easily the filter to each single image according to
its characteristics.
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Table 2: First experiment: PSNR analysis

σ 10 15 20 25 30 10 15 20 25 30

Input PSNR 26.66 24.5 22 20.2 18 28 24.6 22 20.27 18.7

Method Lena (512× 512) Boats (512× 512)

(PM) 28.14 27.40 26.73 26.00 25.15 29.45 28.00 27.12 25.64 24.15

(VE) 30.00 29.33 28.37 27.08 25.94 30.49 28.42 27.25 26.32 25.02

Input PSNR 28 24.6 22.16 20.25 18.7 28 24.6 22 20.19 18.6

Method Elaine (512× 512) Baboon (512× 512)

(PM) 29.11 28.50 26.73 25.94 23.61 28.44 24.91 22.62 22.57 21.75

(VE) 30.98 30.19 28.41 28.00 26.08 29.02 25.92 24.07 22.87 22.34

Input PSNR 28.24 24.88 22.49 20.69 19.23 28.24 24.7 22.27 20.3 18.78

Method Lady (256× 256) Zebra (256× 256)
(PM) 32.06 30.29 28.46 28.00 27.04 29.64 26.83 24.63 22.05 19.95

(VE) 32.14 30.78 29.35 27.85 25.76 28.00 25.45 22.57 21.45 19.00
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(c) (d)
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Figure 6: Analysis of Lady image: (a) Original image of Lady,(b)
Noisy image perturbed by Gaussian noise (σ = 25), (c) Restoration
by (PM), (d) Restoration by (VE), (e) Residual to (PM) restoration,
(f) Residual to (VE) restoration.
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Figure 7: Denoising of textured images: (a) Original image of wood,
(b) Noisy image perturbed by gaussian noise, (c) (PM), (d) (VE) (e)
Original naive image, (f) Noisy image perturbed by gaussiannoise,
(g) (PM), (h) (VE).
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