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Abstract A generalization of the linear fractional in-
tegral equation u(t) = u0+∂−αAu(t), 1 < α < 2, which
is written as a Volterra matrix–valued equation when
applied as a pixel–by–pixel technique, has been pro-
posed for image denoising (restoration, smoothing,...).
Since the fractional integral equation interpolates a lin-
ear parabolic equation and a hyperbolic equation, the
solution enjoys intermediate properties. The Volterra
equation we propose is well–posed, and allows us to
handle the diffusion by means of some viscosity param-
eters instead of introducing non linearities in the equa-
tion as in the Perona–Malik and alike approaches. Sev-
eral experiments showing the improvements achieved
by our approach are provided.
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Laboratoire de Mathématiques Image et Applications, Université
de La Rochelle, Avenue M. Crépeau, 17042 La Rochelle Cedex,
France.

Mokhtar Kirane
E-mail: mokhtar.kirane@univ-lr.fr

Salman A. Malik
E-mail: salman.malik@univ-lr.fr

1 Introduction

Partial differential equations based methods for image
processing (filtering, denoising, restorations, segmenta-
tion, edge enhancement/detection,...) have been largely
studied in the literature (see [39] and references therein).

In that framework the first, and most investigated
equation is might be the (parabolic) linear heat equa-
tion




∂tu(t,x) = ∆u(t,x), (t,x) ∈ [0, T ]×Ω,

u(0,x) = u0(x), x ∈ Ω,
∂u

∂η
(t,x) = 0, (t,x) ∈ [0, T ]× ∂Ω,

(1)

where ∂t, and ∆ stand for the time derivative, and two–
dimensional Laplacian, respectively, Ω ⊂ R2 is typically
a square domain, ∂Ω represents the boundary of Ω,
∂/∂η stands for the outward normal derivative, and u0

the original image. Let us notice that u(t,x) stands for
the restored image at time level t, i.e. the original image
u0(x) evolved in time.

The interest for this model comes out due to the fact
that the solution of (1) can be written as a convolution

u(t,x) =
∫

R2
G√2t(x− y)u0(y) dy,

where G is the two–dimensional Gaussian kernel

Gσ(x) :=
1

2πσ2
e−|x|

2/2σ2
.

Since convolution with a positive kernel is the basic
tool in linear filtering, computing the solution of (1) is
equivalent to Gaussian filtering in a classical way.

However, in this equation the diffusion is isotropic
which, in the context of image processing, means that
smoothing applies uniformly in the whole image, there-
fore independently of the image itself. This yields that
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in most of cases edges and corners are severely blurred
disabling this filter for practical applications.

In view of this, an anisotropic model seems to be
a suitable approach to guarantee a preserving–edges
regularization. This approach was initially proposed by
Perona and Malik in [34]; it reads





∂tu(t,x) = div
(
c(|∇u(t,x)|2)∇u(t,x)

)
, (t,x) ∈ Q,

u(0,x) = u0(x), x ∈ Ω,
∂u

∂η
(t,x) = 0, ∂Ω,

(2)

for (t,x) ∈ Q = [0, T ] × Ω. The diffusion coefficient
c : [0, +∞) → [0, +∞), is chosen to be close to zero
near edges and corners, that is, pixels where gradient
is large. On the contrary, c should be large in pixels
with low gradient variation. Functions satisfying this
assumptions are commonly called edge stopping func-
tions. Unfortunately, edge stopping functions lead to
backward–forward problems that are ill–posed. Typical
examples of edge stopping functions are

c(s) = 1/(1 + s) or c(s) = e−s, (3)

used firstly by Perona and Malik, and later by many
others authors. Despite of the ill–posedness, numerical
experiments with these models carried out by some au-
thors show that no significant instabilities are observed;
moreover, for large final times, images yielded seem to
preserve and enhance edges, even by explicitly assum-
ing the ill–posedness of the problem (see e.g. [21]). The
reason for that, as reported by H. Amman [1], is that
the numerical scheme used by Perona and Malik does
not correspond to their equation but rather to a time–
regularized one which is well–posed this time. In the
same way, some other approaches have been proposed
as for example the ones based on the total variation of
suitable functional (see [38]).

These results have promoted the idea of replacing
(2) by nearby equations keeping on the one hand the
same practical and numerical properties, and on the
other hand, lying in a reasonable functional space set-
ting where the well–posedness can be guaranteed as
well as the bounded variation, and further analytical
and numerical properties. The first perturbed model
was proposed in [7] where, for a suitable extension of
u over R2 (e.g. by 0) denoted ũ, c(|∇u|) is replaced
by c(|∇(Gσ ∗ ũ)|) (Gσ defined above). In that case, for
u0 ∈ L2(Ω), the regularized problem admits a unique
solution in C([0, T ], L2)∩L2((0, T ),H1). Despite of some
features of this model, images become uniformly grey
(for grey–scale images) in the long run, thus the in-
formation gets lost (see [1]). Variants of this approach

have been studied by many authors (see e.g. [22,23] and
references therein).

Lately, further approaches have been proposed, e.g.
by adding regularizing terms, like ε∆∂tu, to the diffu-
sion equation in (2) (see [4]). Let us also mention that
practical experiments have been carried out by means of
stable numerical discretizations applied to anisotropic
diffusion equations of type (2) into spheres S2 (see [3]).

Moreover, higher order partial differential equations
based regularizations are also used (see [17]), and in
particular four order partial differential equations (see
[25,40]). However, despite of the practical results seem
to be quite good in most of cases, some of them have
not been closely studied yet, both from the analytical
and the numerical point of view.

In our work, we present a new approach based on
fractional calculus which allows us to handle the dif-
fusion, i.e. the smoothing in the image terminology, by
means of a parameter which plays the role of ”viscosity”
parameter in a linear partial differential equation. The
well–posedness is now guaranteed, and since the final
objective is the practical implementation, very efficient
numerical discretizations have been closely studied by
many authors, and therefore they are at our disposal
for the experiments we show in Section 6.

This paper is organized as follows. In section 2, we
recall some facts concerning fractional calculus, and the
first approaches to image processing by using fractional
calculus. Section 3 focusses on generalized fractional in-
tegrals based approach to image processing which is the
main novelty of this work. Numerical discretizations are
presented in Section 4. The discussion on the implemen-
tation, and practical experiments, are shown in Sections
5 and 6 respectively.

2 Fractional calculus

Image filtering by means of fractional calculus is first
considered in [9]. In that work, a generalization of the
heat equation (1) is proposed; the equation in [9] can
be written as




∂α
t u(t,x) = ∆u(t,x), (t,x) ∈ [0, T ]×Ω

u(0,x) = u0(x), x ∈ Ω,
∂u

∂η
(t,x) = 0, (t,x) ∈ [0, T ]× ∂Ω,

(4)

where ∂α
t stands for the fractional time derivative of

order 1 < α < 2 in the sense of Riemann–Liouville.
Integrating in both sides, the problem (4) can be ex-
pressed as

u(t,x) = u0(x) + ∂−α∆u(t,x), (5)
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also with homogeneous Neumann boundary condition,
and where ∂−β , for β > 0, stands for the fractional
integral of order β ∈ R+, in the sense of Riemann–
Liouville.

Let us recall that, for g : [0,+∞) → R, g ∈ AC[0,+∞)
the integral of order β ∈ R+ in the sense of Riemann–
Liouville is defined as the convolution integral

∂−βg(t) :=
∫ t

0

kβ(t− s)g(s)ds, t ≥ 0, (6)

where kβ(t) := tβ−1/Γ (β), for t > 0 (see [24]). Now,
the definition of the fractional derivative of order β ≥ 0
is

∂βg(t) :=
dm

dtm
∂β−mg(t), t ≥ 0,

where m ∈ N, m− 1 < β ≤ m.
The interest of our model in the framework of im-

age processing is due to the fact that, for 1 < α < 2,
the problem (4) interpolates the linear (parabolic) heat
equation (1) corresponding to α = 1, and the linear
(hyperbolic) wave equation




∂2
t u(t,x) = ∆u(t,x), (t,x) ∈ [0, T ]×Ω

u(0,x) = u0(x), x ∈ Ω,

∂tu(0,x) = 0, x ∈ Ω,
∂u

∂η
(t,x) = 0, (t,x) ∈ [0, T ]× ∂Ω,

(7)

corresponding to α = 2 (with zero initial velocity).
Therefore, some properties of the solution of (4) are
intermediate between the ones of (1) and (7) (see e.g.
[19,20]). In particular, it can be easily proven that for
the scalar equation (i.e. by replacing ∆ in (4) with a
complex λ with non–positive real part) the solution de-
cays as 1/(1 + tα|Re(λ)|), i.e. the solution is o(t−α), as
t → +∞. In that case, the solution decays slower than
for the scalar heat equation (with the same λ) for which
the solution decays exponentially, and faster than for
the scalar wave equation whose solution does not de-
cays (but oscillates). The diffusion is now handled by
the parameter α. We show below that the solution of
the model we propose, is well behaved.

At the same time, fractional calculus was proposed
for edge detection in [32], and later for image denoising
in [2]. In these papers, the authors proposed anisotropic
equations, where the anisotropy is handled by means of
spatial fractional derivatives; however, the papers do
neither include the study of the well–posedness of the
problem nor the study of the behavior of the fully nu-
merical discretization.

Finally, let us mention [12–16] where the fractional
calculus, also applied to image processing, is under-
stood as the fractional powers of the two–dimensional
Laplacian, i.e. (−∆)β , for β > 0.

3 Volterra equations

Despite the fact that the approach (5) in Section 2
seems to be very promising, the diffusion (smoothing)
is still uniform all over the whole image as in (1).

The main contribution of this paper comes out of
a refinement of such approach which consists in split-
ting the whole image into sub–images, and apply (4)
with different values of α for each sub–image (see [8]).
Roughly speaking, the choice of each α is carried out by
setting values close to 1 for the sub–images with lower
mean gradient variation, and close to 2 for the sub–
images with higher mean gradient variation. This re-
finement provided very good practical results e.g. when
applied in some satellite image classifications (see [37]).

This idea suggested us a finer approach which is in-
tended to be the limit of the above situation, i.e. the
application of the fractional equation (4) with a differ-
ent value of the derivative order α for each single pixel.
The values of α are chosen according to the gradient
variation at each single pixel as we discuss in Section 5.

Hereafter, we will consider gray–scale images since
for colored images processing becomes a more difficult
task. Might be one can perform a similar methodology
based on the one we present here but separately for
each of the three layers (one per color) e.g. in the case
of RGB format.

Let us start by taking the spatial discretization of
the Laplacian in (4) based on a central difference scheme
with mesh length h > 0. In such a way, ∆ transforms
into a M2 ×M2 five–diagonals matrix ∆h (see Fig. 1),
and in the same fashion, u(t,x) is transformed into a
M2×1 vector–valued function u(t) which stands stand
for the vector–arranged image pixels at time level t.

Fig. 1 Sparsity pattern of the discretized Laplacian

ha
l-0

04
37

34
1,

 v
er

si
on

 1
 - 

30
 N

ov
 2

00
9



4

Actually, since at present the most of signals (image,
sound,...) are handled in digital format, this approach
becomes natural.

As we commented above, the novelty of our ap-
proach consists in replacing the (only one) order deriva-
tive α of equation (4) with a different value of α for each
single pixel of the image. This approach reads now as
the linear Volterra equation

u(t) = u0 +
∫ t

0

K(t− s)u(s)ds, 0 ≤ t ≤ T, (8)

where u0 is the vector–arranged initial data (original
image), and the convolution kernel K is defined as

K(t) = I(t) ·∆h

with

I(t) =




tα1

Γ (α1 + 1)
0 . . . 0

0
tα2

Γ (α2 + 1)
. . . 0

...
...

. . .
...

0 . . . 0
tαM2

Γ (αM2 + 1)




and, 0 < αj < 1, for j = 1, 2, . . . , M2.
Let us notice that K is a five–diagonals matrix val-

ued function, and since the Laplace transform of K ex-
ists, the well–posedness of (8) is then guaranteed (see
e.g. [36]).

4 Time discretizations

4.1 Background

Time discretizations of Volterra equations as (8) have
been largely studied in literature; let us mention, e.g.,
the convolution quadrature based methods (see [28–
30]). In particular Runge–Kutta convolution quadra-
ture methods (the convolution quadrature is based on
classical Runge–Kutta methods) of that equations pro-
vide high order numerical methods jointly with good
stability properties. In [31], these discretizations have
been studied in the abstract setting of sectorial oper-
ators, i.e. for convolution kernels whose Laplace trans-
form is of sectorial type. Let us recall that a complex
function G is of sectorial type if there exist 0 < θ < π/2,
c ∈ R, and µ,M > 0 such that G is analytic in the sec-
tor

Sθ := {λ ∈ C : | arg(λ− c)| < π − θ},
and

|G(λ)| ≤ M

|λ|µ , λ ∈ Sθ.

Under these assumptions, the inverse Laplace transform
can be written by means of the Bromwich formula as

g(t) =
1

2πi

∫

γ

eλtG(λ)dλ,

where γ is a complex path connecting −i∞, and +i∞
parallel to the boundary of Sθ with increasing imagi-
nary part.

The convergence of these methods has been recently
extended to analytic semigroups (see [6]) where the only
one requirement on the kernel is the existence of the
Laplace transform (weaker assumption that for secto-
rial case). Since the Laplace transform of each function
tαj /Γ (αj + 1) in (8) exists, and therefore the Laplace
transform of K exists, these methods turn out to be
appropriate for our purposes. In this case, if K̃ denotes
the Laplace transform of K, then the inverse Laplace
transform can be written as

K(t) =
1

2πi

∫

γ

eλtK̃(λ)dλ,

where γ(r) = a+ri, −∞ < r < +∞, for a ∈ R+. Let us
notice that now the whole path γ lies on the right–hand
complex plane Re(λ) ≥ a.

In order to set a suitable Runge–Kutta convolution
quadrature method, we must take into account that
the time regularity of the solutions of (8) is constrained
by the nature of the convolution kernel, in particular
the continuity of their derivatives is guaranteed only
up to the first order. Therefore, in this work, we will
focus on the backward Euler convolution quadrature
method, i.e. avoiding higher order schemes whose con-
vergence will require more regularity on the solutions.
This method will be sufficient to show the new features
of our approach.

4.2 Convolution quadratures

For the sake of the readers convenience, we first re-
call the definition of the backward Euler convolution
quadratures, and for the sake of the simplicity of the
explanation we refer the readers to [6,30] for the defi-
nition of Runge–Kutta convolution quadratures in the
general case and further references.

Let τ > 0 be the time step of the discretization. The
convolution integral in (8) reads
∫ t

0

K(t− s)u(s)ds

=
∫ t

0

1
2πi

∫

γ

eλ(t−s)K̃(λ)dλu(s)ds

=
1

2πi

∫

γ

K̃(λ)Y (λ, t)dλ,
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5

where Y (λ, t) stands for the solution of the ordinary
differential equation

y′(t) = λy(t) + u(t), 0 ≤ t ≤ T, with y(0) = 0. (9)

The backward Euler convolution quadrature is ob-
tained as

∫ tn

0

K(tn − s)u(s)ds ≈ 1
2πi

∫

γ

K̃(λ)Yn(λ)dλ,

where tn = nτ , and Yn(λ) stands for the approxima-
tion of Y (λ, tn) reached by the backward Euler method
applied to (9). Therefore, if δ(z)/ρ(z) stands for the
quotient of the backward Euler characteristic polyno-
mials, i.e. δ(z)/ρ(z) = z − 1, then

∫ tn

0

K(tn − s)u(s)ds ≈
n∑

j=0

Q(α)
n−ju(tj),

where the weights Q(α)
j ’s turn out to be the coefficients

of

K̃
(

1− ξ

τ

)
=

+∞∑

j=0

Q(α)
j ξj .

Here, the quotient of the backward Euler character-
istic polynomials is evaluated in ξ = 1/z, leading to
δ(ξ)/ρ(ξ) = δ(ξ) = 1−ξ, and to the definition of weights

Q(α)
j = τα




(
α1

j

)
0 . . . 0

0
(

α2

j

)
. . . 0

...
...

. . .
...

0 . . . 0
(

αM2

j

)




·∆h, (10)

for j = 0, 1, 2, . . ., as M2 ×M2 matrices. (see [6,10,30]
for more details).

4.3 Numerical method. Convergence

Let un be the approximation of u(tn), for n ≥ 0. Then
the time discretization of (8) by means of the backward
Euler convolution quadrature method reads

un = u0 +
n∑

j=1

Q(α)
n−juj , n ≥ 1,

and keeping in mind the practical implementation, since
the matrix ∆h is not singular, the unique n-th approx-
imation is reached by solving the linear system

(
I −Q(α)

0

)
un = u0 +

n−1∑

j=1

Q(α)
n−juj , n ≥ 1. (11)

In the abstract setting in [6], optimal error bounds
are reached. In particular, for the backward Euler based
method, the first order is reached by assuming the ex-
istence and boundedness of the second derivative of the
solution. However, since the second derivative of the
solution of (8) is merely integrable but not continu-
ous, these results cannot be directly applied. In our
case, if one takes into account the nature of the con-
volution kernel, then the stability proven in [10] jointly
with Theorem 3.1 in [28] allow us to guarantee that the
method is convergent of first order.

Besides, in [6] an interesting result is also proven
which becomes even more interesting when applications
fit into the framework of image processing. For the read-
ers convenience we recall this result in the case of the
backward Euler convolution quadrature method we ap-
ply in this paper.

Theorem 1 If u is the solution of (8), and un, for
n ≥ 0, is the numerical solution yielded by (11), then
there exists a probability density ρn,τ : [0, +∞) → R
such that

un =
∫ +∞

0

u(s)ρn,τ (s)ds, n ≥ 1. (12)

The interest of this theorem is that, since ρn,τ is a
probability density, i.e. positive and such that

∫ +∞

0

ρn,τ (s)ds = 1,

if u is for example positive, then the representation (12)
guarantees the positivity of un. In other words, the nu-
merical solution (11) preserves, among other properties,
the positivity of the continuous solution.

Moreover, let us point out that in [6] it is proven that
the density of probability in (12) does not depend on
the equation itself but only on the numerical method.
In particular, for this method (see [10,33]), we have an
explicit expression for such a density

ρn,τ (t) =
1

τ(n− 1)!

(
t

τ

)n−1

e−t/τ , n ≥ 1.

Finally, we can mention some other very efficient
methods to discretize (8) as for example the ones based
on the discretization of the inverse Laplace transform
(see [27]), the ones based on the adaptive fast and obliv-
ious convolutions (see [26]), or the collocation methods
(see [5] and references therein).

5 Implementation

In this section we will discuss some facts concerning the
implementation of (11) itself.
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6

First of all, the choice of α’s should be done ac-
cording to the idea of preserving edges and corners and
removing noise. Therefore, in view of the discussion in
Section 2, pixels where the gradient is large should be
associated with values of α close to 2. On the contrary,
pixels with lower gradients should be associated with
values of α close to 1. Let us notice that the practical
computation of the gradient variation turns out to be
very simple in a discrete setting as the one we consider
in the spatial variables.

However some remarks have to be taken into ac-
count:

– On the one hand, avoiding the singular situations
which can be yielded in both–sides values of α, i.e.
α = 1 and α = 2, at least from the numerical point
of view, we will not reach these values when setting
α’s. In particular, in Section 6, for j = 1, 2, . . . , M2,
αj ∈ [1 + ε, 2− ε] with ε = 10−3.

– On the other hand, since extreme situations appear
such as isolated noisy pixels (see Figure 3 where a
gray–scale image is shown as a three–dimensional
surface), a particular choice of α’s is expected; in
particular for those pixels, values close to 1 will be
associated. On the contrary, near edges and corners
(very high gradient variation) no smoothing should
be required, therefore α’s close to 2 will be set for
that pixels.
According to this criteria, in this work, the setting
of α values follows a profile distribution as in Figure
2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Normalized gradients

V
al
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s 
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Fig. 2 Profile distribution of α’s.

Notice that this procedure allows one to establish
different settings of distributions depending e.g. on
the characteristics of each image.

– From a computational point of view, the number of
different values of α’s should be limited, otherwise if

one admits a number of α’s as large as the number
of pixels, the implementation becomes unavailable
in practical cases. In fact, in this work, we set α ∈
{1 + j/N, 1 ≤ j ≤ N}, for a fixed integer N which
in Section 6 turns out to be N = 100.

Let us also mention that in (10) a fixed number
of weights Q(α)

j are computed once for all for each αj .
Moreover, the practical computation of that weights has
been carried out by means of the Fast Fourier Trans-
form as in [6], therefore saving a noticeable run–time.

Fig. 3 Three dimensional representation of (expected) isolated
noisy pixels for a gray–scale image.

Another fact of interest concerns the measure of
goodness of an implementation or procedures in im-
age filtering, restoration, and in general, to measure the
quality of a processed image. To this end, in this work,
we consider two criteria, SNR and PSNR, which have
been largely used in literature (see e.g [11,18,35]), and
which are commonly applied to determine the quality
of a processed image in the sense commented above (fil-
tering, restoration,...). In fact, SNR and PSNR stand
for the Signal to Noise Ratio and Peak Signal to Noise
Ratio, respectively, and the unit for both of these ra-
tios are decibels (dB). To be more precise, SNR of a
restored image R compared to an ideal image I is de-
fined as

SNR = 10 · log10

(
var(I)

var(I −R)

)
,

where var(x) stands for the variance of the vector x.
Here I and R are considered as vector arranged gray–
scale images, as in Section 3, with 256 gray levels. In
the same way, PSNR is defined as

PSNR = 10 · log10

( ∑
i,j 2552

∑
i,j(Ii,j −Ri,j)2

)
,
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7

where Ii,j , Ri,j are the pixel values of I and R respec-
tively. Notice that in restoration problems, we have a
corrupted image, and try to restore the ideal image
which is not in general available (in practice), but for
the calculation of SNR and PSNR (from above for-
mulas) ideal image is required. For the experiments in
Section 6, we take an image (ideal image) and we per-
turb that image by adding up some noise. This image
is then used for restoration; therefore SNR and PSNR

can be computed for the restored images.
Finally, let us point out that all the computations

have been carried out on an Intel(R)Core(TM)2Duo
2.53GHz, 3Gb RAM desktop PC.

6 Practical results

In this section, we show the improvements in the restora-
tions provided by our approach. To this end, we perform
some experiments where a noisy image is evolved by
using the heat equation (1) (HE), Perona–Malik model
(2) with c(s) = e−s as commented in (3) (PM), and the
model (8) we propose (VE).
Example 1
In this example, a 150 × 150 size Lena’s image is con-
sidered (Figure 4.(a)), i.e. on the spatial domain Ω =
[0, 150]×[0, 150]. The original image has been perturbed
by additive gaussian noise, and the resulting image (Fig-
ure 4.(b)) has values SNR = 5.7 and PSNR = 16. In
Table 1, we show the results yielded by the restoration
carried out with the mentioned procedures.

In fact, in view of Table 1, it can be observed that
similar results are reached with (PM) and (VE), better
anyway than with (HE). However we should recall that
(VE) stands for a linear model whose well–posedness is
guaranteed on the contrary to happens with (PM).

For further close observation of the procedures ap-
plied to Figure 4.(b), a part of such image is consid-
ered in all instances; in particular, a small square has
been zoomed (see Figures 4.(f)–(j)). On the one hand,
the restored image obtained by (HE) (Figure 4.(h)) has
severely lost the structure of the original image, and
the gray–scale level of the pixels became almost uni-
form. However, (PM) somehow preserves edges/corners
(Figure 4.(i)) but smooths very strongly the flat areas
which causes a lost of information regarding the tex-
ture of the image. The (VE) denoises the image (Fig-
ure 4.(j)), also by preserving edges/corners of the im-
age; but here smoothing in flat areas is not so strong as
with (PM).
Example 2
In Figure 5.(a) a 256 × 256 size gray–scale image of
a house has been perturbed also by additive gaussian
noise (Figure 5.(b)) having SNR = 5 and PSNR = 20.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4 Denoising of Lena image: (a) Original image, (b) noisy
image perturbed by guassian noise, (c) with (HE), (d) with (PM),
(e) with (VE), (f) zoomed part of original image, (g) zoomed part
of noisy image, (h) zoomed part with (HE), (i) zoomed part with
(PM), and (j) zoomed part (VE).
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Table 1 First experiment.

SNR PSNR Figure

(HE) 4.6 17 Fig. 4.(c)
(PM) 10.4 18 Fig. 4.(d)
(VE) 9.5 19.3 Fig. 4.(e)

Table 2 Second experiment.

SNR PSNR Figure

(HE) 6.5 17 Fig. 5.(c)
(PM) 12 27 Fig. 5.(d)
(VE) 11 26 Fig. 5.(e)

As in Example 1, the restorations have been ap-
plied yielding the results in Table 2 and, as in Example
1, the ratios SNR and PSNR for (PM) and (VE) are
quite similar. However, in this example, a remarkable
difference can be observed when zooming a small square
of the image. In particular, it can be observed that in
the zoomed area (Figure 5.(f)), the noisy image (Fig-
ure 5.(g)) is severely blurred with (HE) as expected
(Figure 5.(h)), while (PM) and (VE) (Figures 5.(i)-(j)
respectively) clearly preserve the image structure (i.e.
edges/corners). Moreover, a further analysis of Figures
5.(i)-(j) reveals that the structure of the original image
keeps clearer with (VE) than with (PM) meaning here
that smoothing with (PM) in flat areas shows stronger
than with (VE). Finally, isolated noisy pixels appear
when restoring with (PM) on the contrary to what hap-
pens with (VE).
Example 3
Since in Experiments 1 and 2, SNR and PSNR, for
(PM) and (VE), keep very close one to each other, the
efficiency of our approach seems to be based on no more
than an optical evidence. However, in this experiment,
we will show that the efficiency of our approach is more
than optical, and to this end, we will consider an image
where the texture plays a crucial role, and where the
restoration procedures can be stressed.

The images we consider in these experiments are a
250 × 250 size image of a wood (Figure 6. (a)), and a
512×512 size naive image (Figure 6. (e)), both strongly
perturbed with gaussian noise (ratios SNR = 0.014
and PSNR = 12, see Figure 6. (b), SNR = 0.054 and
PSNR = 16.2, see Figure 6. (f), respectively). In these
kind of images, the texture tuns out to be more impor-
tant than edges preservation, and among the numerical
results in Table 3, a simple overview shows the goodness
of our approach vs. (PM).

However, to be more precise in our analysis, Table
3 shows a numerical evidence of the efficiency of our
method; in fact it must be highlighted that SNR and

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5 Denoising of house image: (a) Original image, (b) noisy
image perturbed by guassian noise, (c) with (HE), (d) with (PM),
(e) with (VE), (f) zoomed part of original image, (g) zoomed part
of noisy image, (h) zoomed part with (HE), (i) zoomed part with
(PM), (j) zoomed part with (VE).
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PSNR are improved by using (VE) in comparison with
(PM).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Denoising of textured images: (a) original image of wood,
(b) noisy image perturbed by gaussian noise, (c) (PM), (d) (VE)
(e) original naive image, (f) noisy image perturbed by gaussian
noise, (g) (PM), (h) (VE).

Table 3 Third experiment.

SNR PSNR Figure

(PM) 1.8 12.1 Fig. 6.(c)
(VE) 4 14.4 Fig. 6.(d)

(PM) 5 21.2 Fig. 6.(g)
(VE) 6.8 22.6 Fig. 6.(h)

7 Conclusions and outlook

In the present work, we propose a partial differential
equation based approach to image processing (filtering,
denoising, enhancing,...) whose main novelty is that it
fits into the framework of fractional calculus (deriva-
tives and integrals) hence Volterra equations.

The interest of our work is twofold: On the one hand,
the model we propose allows us to handle the smooth-
ing by means of certain ”viscosity” parameters which
define the matrix–valued linear Volterra equation we
propose. In other words, the smoothing is now handled
by means of a linear partial equation, i.e. without intro-
ducing tricky nonlinear terms in the equation as many
authors propose.

On the other hand, the model we propose fits into a
closed mathematical setting, both from the analytical
and the numerical point of view. To be more precise, the
well–posedeness of the Volterra equation we propose is
guaranteed and numerical methods for its discretization
have been largely studied in the literature as well.

As an additional interesting property of our pro-
posal is that one can change the profile of the filter
merely by changing the “viscosity” parameters setting,
i.e. the distribution function we use. This allows the
user to adapt somehow the filter to each single image
according to its characteristics.
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