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Abstract

Over the past thirty years, composite materials have been used increasingly
in industry, especially in the aeronautical and spatial industries. Therefore, there
is a great interest in the prediction of their degradation. The objective of this
work is to develop a program capable of simulating structures on an industrial
level using the latest models developed. In the first section, we present a review
of the damage mesomodel used for the simulations. The second section presents
the partition technique, and the parallel resolution technique utilized for the sim-
ulation. A new Newton loop is added to the classic algorithm to improve the
performance in the case of localized nonlinearities. The third section present the
implementation on a C++ home made finite element code. And the technique
utilized to parallelized the problem. Finally, the forth section gives illustrations
showing the level of performance which can be expected from such an approach.

Keywords: Composite Material, Partitioning, Parallelization, Domain decomposi-
tion, Newton-Krylov-Schur methods, Damage.



1 Introduction

Today, the simulation of the degradation mechanisms in composite structures until
final failure is still an industrial challenge, specially in the aeronautical and the spatial
industry. This is mainly due to: (i) the complexity of the degradation mechanisms
involved in the failure of composite structures and (ii) the size and the geometric
complexity of the parts. Also structural phenomena like buckling can appear in these
cases when stability is lost.

Degradation in composites is a complex phenomenon involving both damage and
inelastic residual deformation. We observe fiber-matrix interface debonding, plastic-
ity, progressive transverse cracking, brittle fracture of fibers (in plies) and delamina-
tion (between plies). These mechanisms are highly nonlinear, fiber-matrix debonding,
transverse cracking and delamination present a strong unilateral feature which de-
pends on whether the cracks are open or close. In order to take all these phenomena
into account, a model proposed in [1] was chosen. In our work an enhanced version
of this model was used [2]. This model is defined at the mesoscale characterized by
the thickness of the plies [3]. Then, the laminated structure is described as a stack-
ing sequence of homogeneous layers and interlaminar interfaces. The model of each
mesoconstituent (i.e. the elementary layer and the interface) are introduced using the
internal variable framework. Damage is quantified by mesodamage indicators, which
can be connected directly to the loss of stiffness. An important point is that the state
of damage is assumed to be uniform throughout the thickness of the elementary layer,
but not throughout the whole thickness of the laminate.

On can observe that the scale of the model regarding to the scale of the composite
structure are very different. Indeed, this difference results in a high computational cost
in the case of a simulation of an industrial size structure. Today the increasing power
of computers and the efficiency of parallel resolution algorithms offer the opportunity
to perform simulation of very complex geometries.

2 Damage mesomodel

The first description of the mesomodel for laminates can be found in [3]. Two main
assumptions lead to such a mesomodel. The first one is that the behavior of any lam-
inated structure can be reconstructed starting from two elementary mesoconstituents:
the elementary layer [4] and the interface [5] (fig. 1). The second assumption is that
the damage state is uniform throughout the whole thickness of the elementary layer
(but not throughout the thickness of the laminated composite).

In the earlier version of the model, the behavior law of each mesoconstituent was
considered to be intrinsic, but recent works showed that at the mesoscale the behavior
of an interface is coupled with the internal variables of the adjacent layers.
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Figure 1: The model of a laminate

2.1 The elementary layer

The elementary layer is defined in classical energy form: 2e = atSlayera [2], where
o is the stress and Sj,,., the compliance operator. This equation is written in a local
reference frame defined by the fiber’s direction (/V;) and the transverse direction (Vs).
Operator Sjqy., takes into account the damage state of the elementary layer [2]. The
damage indicators, which are constant throughout the thickness, are associated with
the following degradation mechanisms:

e fiber breakage,
e diffuse intralaminar degradation,

e transverse microcracking

For the sake of simplicity, we present the general form of the evolution laws (for
more details, one can refer to [2]). The damage evolution laws use classical ther-
modynamic forces. The calculation of these forces involves a “mean value” operator
whose role is to calculate the mean value of the thermodynamic forces throughout the
thickness of the elementary layer. This operator is very important because it ensures
that the damage indicator remains constant throughout the thickness of the elemen-
tary layer. Then, the damage indicators for fiber breakage and diffuse intralaminar
degradation are updated using the evolution laws. These evolution laws depend on the
material and can be modeled as progressive or brittle. For a complete description of
these functions see [6].

The case of transverse microcracking is a little different. Transverse microcracking
is taken into account by using an equivalent microcracking rate p for the elementary
layer [2]. Then, with this microcracking rate and the evolution law, one can update the
damage indicators for this phenomenon.

Other phenomena, like fiber hiperelasticity, matrix plasticity or fiber rotation can
be easily taken into account.

2.2 The interface

The interface, which is introduced in order to model the debonding of two adjacent
plies, can be interpreted as the thin layer of matrix between two plies and is a two-



dimensional entity which ensures the transfer of stresses and displacements from one
elementary layer to another.

The displacement jump between the upper and lower surfaces of the interface is
expressed in the local reference frame defined by the orthotropic directions Ny, No
and Nj3; N3 is normal to the interface, and N; and N, are the bisectors of the angle
formed by the fibers of the upper and lower plies (fig. 2).
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Figure 2: Orthotropic directions of the interface

As in the case of the elementary layer, the elastic strain energy of the interface
(2e = 0t Sinter face0 ) 18 defined by a compliance operator Sipte, face- This operator take
into account the damage indicators as well as the unilateral behavior of the interface
in mode I.

In the current version of the mesomodel, the interface’s damage evolution laws are
strongly coupled with the state variables of the adjacent layers [2]. This coupling is
achieved through the mean value of the microcracking rate p of the upper and lower
adjacent layers (1).
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The mean values operator used for the layer and the coupled evolution law of the
interface make the model highly nonlocal. Special care must be taken to ensure the
correct implementation and integration of the evolution laws.
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3 Parallel Nonlinear Solving Method

The previous section allow us to describe all the main mechanisms involved in the
ruin of a composite structures. All this makes the problem highly nonlinear and non
local, and also because the model is written at the mesoscale, a large number of d.o.f.
is expected.

To treat these kind of problems, parallel solvers seems to be the best choice. The
Balancing Domain Decomposition method (BDD) [7] was chosen to parallelized the
problem. As we will further explain, this method rely on Schur non-overlapping de-
composition of the structure and Krylov iterative solvers. This method is used as a
linear solver inside a Newton-Raphson scheme to solve the nonlinear problem. Like
every parallel solver a partition of the domain (the mesh) is required.



3.1 Preprocessing and partitioning

The discretization and partitioning of a composite structure prior to a parallel simu-
lation with the mesomodel becomes a very delicate task. Because the behavior law
is nonlocal and the integration of the evolution law is done at Gauss points, the mesh
must be regular in the thickness of the composite (fig. 3).
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Figure 3: Regular (left) and unregular (right) mesh (grey area: Integration point
aligned in the thickness)
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To achieve this, the mesh is created only with hexahedral and wedges elements, this
ensure that the integration points are always aligned in the thickness of the mesh. This
point add some difficulty in the meshing process but is not a real restriction because
virtually all composite structures are made from a stack of single laminas.

It is known that the performance of parallel solvers are very dependent of the qual-
ity of the partitioning [8]. On one hand, one would seek partitions with the same
number of elements in order to achieve a good balance of the load among the proces-
sors during the parallel resolution. On the other hand, one also wants to minimize the
interaction zones between subdomains in order to minimize communications among
processors. Finally, one must take into account the fact that the behavior law is non-
local and requires information of the neighboring elements in order to be integrated
correctly.

In the case of the use of a classical algorithm, two elements that are aligned in the
thickness of the composite could end in different subdomains. In this case, one will be
forced to transfer information across subdomains during the behavior law integration.
One way to prevent this is to force the partition algorithm not to cut between element
that are aligned in the thickness of the composite structure (fig. 4).

In order to restrict the way the partitioning is performed, we calculate the dual
graph of the mesh (fig. 5.a and 5.b). Then this graph is reduced in such a way that ele-
ments that are aligned in the thickness of the composite are condensed into one single
vertex. The reduce graph is then weighted to take into account the number of elements
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Figure 4: Poor partitioning (left), Good partitioning (right)

aligned in the thickness (fig. 5.c). Now that the condensed graph was constructed, we
can use any partition algorithm to perform the partition of the graph (fig. 5.d). In our
case we used Metis [9], an open source software capable of performing fast and high
quality partitions for irregular graphs. After the partition, the graph is expanded (fig.
5.e) to finally calculate the partition of the mesh (fig. 5.1).
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Figure 5: (a) Original mesh and its graph, (c) dual graph of the mesh (the bold lines
represent element aligned in the thickness), (c) weighted reduce graph, (d) partitioned
weighted graph, (e) expanded graph, (f) partitioned final mesh

At the same time that the partition is calculated, a file with the connectivity of the
subdomains is created. This information will be used to optimize the reading of the
meshes once the parallel simulation begins.

This technique enable us to perform fast, hight quality and automatic partitions of
the mesh.



3.2 The resolution algorithm

As we said before, a BDD method was used to parallelize the resolution. The principle
of the BDD is to condense the internal unknowns of each subdomain on the boundary,
and then solve the condensed problem in parallel using an iterative method. First, for
each substructure s we construct the Schur complement of the tangent operator and
the condensed residue through the elimination of inner degrees of freedom (2) and
(3). In equations (2) and (3) the 7 subscript indicates the internal unknowns and b
the unknowns on the boundaries. These Schur complements and condensed residues
computed for each subdomain can be assembled to construct a global linear problem
over all boundary unknowns (4). Solving the global linear problem enables to compute
the displacements on the boundaries. Finally a localization step is needed to determine
the inner displacement in each subdomain (5).

578“ = K%bb_Kzs“bz‘K%;K%ib (2)
b= = Ky Kol 3)
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The equations (2), (3) and (5) are defined within subdomains, and only the equation
(4) is defined over all the boundary unknowns. To avoid the heavy transfer (in the case
of a direct resolution) the equation (4) is solved using a Krylov solver. The conjugate
gradient, used to solve the global problem, only requires local matrix-vector products
and vectors assemblies, avoiding the assemblage of the global system. More detail
about this method can be found in [7].

Then, this linear solver is used inside a Newton loop which treats the non linear
problem. Algorithm 1 summarized the structure of the Newton-Krylov-Schur method.

Algorithm 1: Classic Newton-Krylov-Shur algorithm

repeat
-Assemble local tangent operators K7

-Factorize K7,; (eq. (2))

-Assemble local residue r° (eq. (3))

-Solve condensed global problem (eq. (4)) (Krylov solver)

-Compute inner displacement in each subdomain (eq. (5))
until error< € gopal

In general the evolution of the nonlinearity in a composite structure is not uniform.
Indeed, in most of the cases the nonlinearity is localized in a reduce zone (holes, crack
tips, junctions), having sometime little or no influence on the rest of the structure.
When the algorithm 1 is used, the convergence of the Newton is directly related to the
convergence of the localized nonlinearity. To correctly treat this type of nonlinearity
at the correct scale, an enhanced version of the NKS solver was proposed [10]. In
this version, a new Newton loop is introduced instead of the equation (5). This local



Newton forces the subdomains to obey the nonlinear behavior and the equilibrium.
Algorithm 2 summarizes the structure of the Newton-Krylov-Schur method with a
nonlinear localization.

Algorithm 2: Newton-Krylov-Shur with nonlinear localization

repeat
-Assemble local tangent operators K7

-Factorize K7.; (eq. (2))

-Assemble local residue r° (eq. (3))

-Solve condensed global problem (eq. (4))

repeat
-Compute inner displacement Auf = K., (15 — K,u3)
-Update w;, K7,;, K7, and 1}

until error< g;50q;

until error< € gopal

4 Implementation

The strategy presented in the previous section was implemented in a home made 3D
finite element software. The software was written in C++ using a preprocessor [11]
written in Python that was in charge of generating the C++ code for elements and
behavior laws. This makes the code very scalable for new functions, behavior laws or
element types. Because the code generated is already optimized, the performance of
the final code is guaranteed.

Most of todays supercomputer are SMP (Symmetric Multi-Processors) Clusters,
this means that the cluster is composed of multi-core (or multi-processor) nodes. Fig-
ure 6 show a simple schema of a SMP Cluster. One can see that each node contains
more than one core (or processor). All cores belonging to the same node share some
resources, like RAM, local hard drive and network connections. Two level of synchro-
nization and communication can be distinguished, the node level (between threads)
and the cluster level (between nodes). To take advantage of this configuration, the
idea is to run only one process per node, and make use of multithreading to take ad-
vantage of all the available cores.

Communication between threads is almost instantaneous (because they share the
same RAM) only the synchronization must be taken care of. The synchronization
at this level was ensured by the use of an open source library named ZThread. The
second level of communication and synchronization was implemented using MPI.
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Figure 6: Schema of a SMP Cluster Super-calculator

5 Simulation Results

To verify the implementation of the domain decomposition method in parallel an elas-
tic problem was treated. Figure 7.a shows the mesh and one of the partition (50 subdo-
mains) used for the test. The different partitions were done with a classical algorithm,
because the behavior law is elastic, there is no need to used the algorithm presented
before. The boundary condition of the problem were blocked displacement in all
directions in one side (face o in fig. 7.b), and an unitary displacement in the three
direction on the other side (face p in fig. 7.b). The material is linear elastic, the piece
has 150.000 degrees of freedom. Figure 7.b show the deformation and the strain on

the piece.

Figure 7: The mesh (each color represent a subdomain) (left), deformation and strain

(right)

First, we solved the problem for a different number of subdomains. Figure 8 show
that the number of iteration of the iterative method rest almost constant, this is impor-
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Figure 8: Iterations of the Krylov solver vs subdomain number (left), memory usage
vs subdomain number (right)
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Figure 9: Total time vs number of node (left), speed up vs number of nodes (right)

tant to ensure the extensibility of the method. The number of iteration may vary from
decomposition to decomposition, due mainly to the partition algorithm [8]. Figure 8
show the memory used for the resolution.

Then, using a fix number of subdomains (50), the simulation was executed for a
different number of nodes. Each cluster node has 2 cores at 2.4 GHz and 8 GB of
RAM. In Figure 9 one can see the time spend and the speed up of the resolution in
function of the number of node used.

The second case is holed carbon fiber reinforced laminate plate, figure 10 show the
geometry and the partition used for the simulation, fiber orientation of the layers are
[454 90,4 -454 04)s. The partitioning of the mesh was done with the proposed technique.

In this simulation all the degradation mechanisms of the damage model were ac-
tive. The loading (0.075% of deformation) was apply in 6 steps. Table 1 show, the
number of iteration executed for a classic Newton algorithm and for the algorithm
with nonlinear localization.

Each global Newton computations of the classic algorithm implies one global res-
olution with the Krylov solver plus one local computation per subdomain. In the case
of the algorithm with nonlinear localization the number of local resolution may varies
from subdomain to subdomain, according to the local nonlinearities. Even though the
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Figure 10: Holed carbon fiber reinforced laminate plate geometry and partition

Loading step Number of Iteration nonlinear localization linear localization
1 Newton Global 1 2
Newton Local 89 100
2 Newton Global 1 2
Newton Local 99 100
3 Newton Global 1 2
Newton Local 89 100
4 Newton Global 1 2
Newton Local 89 100
5 Newton Global 1 2
Newton Local 91 100
6 Newton Global 3 3
Newton Local 197 150

Table 1: Number of Newton iteration for each step: with nonlinear localization (left),
with linear localization (right)

number of local iteration of the algorithm with nonlinear localization may be superior
to the classic algorithm, the most spending time task is the execution of a global loop.

6 Conclusion

In the first section, we reviewed briefly one of the possible model for the simulation
of composites and pinpointed the difficulties of implementing such a model.

In the second section we proposed a technique for partitioning a mesh correctly so
no additional effort would be necessary in a parallel calculation. Also we proposed a
calculation strategy for the simulation of large composite structures in parallel. The
strategy enable us to reduce the iteration number executed by global newton.

Third section showed the techniques used for implementation of the strategy. These
techniques enable us to run the software in parallel in SMP cluster.

Finally, we showed some preliminary results of the partitioning tool and calculation
strategy.
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