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Abstract: Several unsymmetrical heterobiaryls have been 
synthesized through palladium-catalyzed cross-coupling reactions 
of lithium triorganozincates. The latter have been prepared by 
deprotonative lithiation followed by transmetalation using non 
hygroscopic ZnCl2·TMEDA (1/3 equiv). 

Key words: cross-coupling, heterocycle, metalation, palladium, 
zinc 

The importance of heterobiaryls in natural products and 
pharmaceutical intermediates, and their unique properties 
have stimulated tremendous efforts for the development of 
synthetic methods in the area of aryl-aryl bond formation.1 
Like the Suzuki-Miyaura2 and Stille3 reactions, the Negishi4 
cross-couplings of organozincs and aryl halides offer the 
advantage of stable starting materials and thus are known to 
tolerate a large range of functional groups. Nevertheless, 
the latter become more attractive when heteroaryl boronic 
acids cannot be prepared; in addition, they do not use 
highly toxic starting materials. 

The organozincs are in general prepared by treating the 
corresponding lithium or magnesium compounds with zinc 
halides.5 Alternative methods employ zinc dust or active 
Rieke zinc (direct insertion).5,6 Electrochemical methods 
have also been considered.7 

A major drawback of the Negishi coupling procedure lies in 
obtaining dry zinc chloride or zinc bromide. Mutule and 
Suma described in 2005 a sequential microwave assisted 
Grignard formation-transmetalation-Negishi one pot 
reaction using the less hygroscopic TMEDA-chelated zinc 
chloride.8 Gauthier and co-workers developed an approach 
through lithium zincates using only one third equivalent of 
zinc chloride for the synthesis of 5-aryl-2-furaldehydes 
from 5-lithio-2-furaldehyde diethyl acetal.9 Miller and 
Farrell reported the use of a catalytic amount of zinc 
chloride to perform nickel- or palladium-catalyzed 
couplings of aryl Grignard reagents with aryl halides.10 
Other authors completely avoided the use of zinc halide by 
generating lithium zincates either by iodine-metal 
exchange11 or by deprotonation.12 Herein, we report 
palladium-catalyzed reactions for which the lithium zincate 
intermediates are generated by transmetalation of the 
corresponding lithio compounds using ZnCl2·TMEDA. 

We first optimized the procedure for the cross-coupling of 
zinc compounds obtained from 2-lithiobenzofuran. 
Benzo[b]furan (1) was lithiated using butyllithium in 
tetrahydrofuran (THF) at –15 °C.13 Transmetalation was 
performed using 1:1, 3:1 and 4:1 

benzofuryllithium/ZnCl2·TMEDA stoichiometries in order 
to generate the corresponding organozinc, lithium 
triorganozincate and dilithium tetraorganozincate, 
respectively. 

Nickel-catalyzed cross-couplings of organozinc compounds 
have been described.14 However, the toxicity of nickel salts 
led us to explore alternative routes.15 

In 2002 Figadère16 and Fürstner17 separately reported iron-
catalyzed aryl-heteroaryl cross-coupling reactions starting 
from aryl Grignard reagents and heteroaryl chlorides. The 
reactions proceed in good yields when carried out in THF at 
–30 °C using iron(III) acetylacetonate (Fe(acac)3). A 
magnesium trialkylzincate, Et3ZnMgBr, also proved to 
react with methyl 4-chlorobenzoate when the reaction was 
conducted similarly.17 Attempts to perform the reaction 
between benzofurylzinc chloride and 2,4-
dichloropyrimidine in the presence of Fe(acac)3 under the 
same reaction conditions failed. 

We thus turned to palladium-catalyzed reactions (Scheme 1, 
Table 1).18 Cross-coupling reactions of all the 
benzofurylzincs performed with 2,4-dichloropyrimidine at 
55 °C in THF with catalytic amounts of palladium(II) 
chloride and 1,1'-bis(diphenylphosphino)ferrocene (dppf)19 
provided the expected benzofurylpyrimidine 2a.20 Whereas 
a lower 44% yield was obtained with the higher order 
zincate,21 similar results were shown using the organozinc 
and lithium triorganozincate (62% and 56% yields 
respectively). Other ligands such as triphenylphosphine 
(53%), tri(cyclohexyl)phosphine (30%), 1,3-
bis(diphenylphosphino)propane (< 20%), and 1,4-
bis(diphenylphosphino)butane (< 10%) were tested for the 
palladium-catalyzed reaction involving lithium tri(2-
benzofuryl)zincate, which was preferred for stoichiometry 
efficiency, but proved less efficient than dppf.22 
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Scheme 1 a Using PPh3 (4 mol.%) instead of dppf. b Using PCy3 (4 
mol.%) instead of dppf. 
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The pyridylbenzofuran 2b23 was similarly obtained in 61% 
yield from 2-chloropyridine (Table 1, entry 2). 

Table 1 Coupling Reactions of Lithium Triarylzincates with 
Heteroaryl Chlorides 
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a Coupling step performed in the presence of DME (5 equiv). b Since 
2,4-dichloropyrimidine rapidly reacts with air damp, lower yields can 
be partly attributed to the presence of pyrimidinone in the starting 
heteroaryl chloride. 

Having optimized the conditions, various aromatic 
substrates were used in the deprotonation-transmetalation-

coupling sequence using 2,4-dichloropyrimidine and/or 2-
chloropyridine. 

Furan (3) was similarly lithiated;24 subsequent 
transmetalation using ZnCl2·TMEDA (1/3 equiv) and 
coupling with 2,4-dichloropyrimidine afforded the expected 
furylpyrimidine 425 (entry 3). Benzo[b]thiophene (5), 
thiophene (6) and 2-chlorothiophene (7), which were 
lithiated using butyllithium in THF at –75, –15 and –75 
°C,26 respectively, gave the bisheterocycles 8a,27 8b,28 9a29 
and 1030 (entries 4-7). N-Boc pyrrole (11) was deprotonated 
upon treatment with lithium 2,2,6,6-tetramethylpiperidide 
(LiTMP) in THF at –75 °C31 to give the 2-pyridyl 
derivative 1232 (entry 8) after subsequent transmetalation-
coupling reactions. Anisole (13) was similarly ortho-
functionalized33 to afford the 2-pyridyl derivative 1434 
(entry 9). The reaction also proved convenient for the 
functionalization of a -deficient substrate, 2-
fluoropyridine (15), which was converted to the bipyridine 
1635 (entry 10) after lithiation using LiTMP in THF at –75 
°C,36 followed by transmetalation and cross-coupling steps. 

Since the addition of 1,2-dimethoxyethane (DME) to the 
reaction mixture proved to improve yields of Negishi cross-
coupling products,37 the palladium-catalyzed reaction 
between lithium tri(2-benzofuryl)zincate and 2-
chloropyridine was performed in the presence of five 
equivalents of this cosolvent to give the pyridylbenzofuran 
2b in a slightly higher yield (76%, entry 2). 

Nevertheless, even using these improved conditions, the 
coupling between the N,N-diethylbenzamide lithium zincate 
and 2-chloropyridine failed, a result probably due to the 
size of the diethylamide group. 

In addition, when heteroaryl chlorides were replaced by 
phenyl chlorides the reactions also failed, even in the 
presence of electron-withdrawing groups at the phenyl 4-
position. We therefore turned to the corresponding 
bromides38 which have lower carbon-halogen bond 
dissociation energies,39 and investigated the access to 
functionalized 2-phenylthiophenes (Scheme 2). 
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9d: R = CO2Me: 41%
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Scheme 2 a Coupling step performed in the presence of DME (5 
equiv). 

The reaction of lithium tri(2-thienyl)zincate with 4-
bromoanisole afforded the expected coupling product 9b,40 
but in a poor 10% yield due to the competitive formation of 
2,2'-bisthiophene (40-50% yield). With bromobenzenes 
containing electron-withdrawing groups at the 4-position, 
such as 2-bromo-4-nitrobenzene, methyl 4-bromobenzoate 
and 4-bromobenzonitrile, the expected derivatives 9c,41 
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9d42 and 9e43 were isolated in yields ranging from 38 to 
79%. 

Since 2-chloropyridine and, above all, 2,4-
dichloropyrimidine are -deficient chloro substrates, a 
reaction mechanism involving a nucleophilic aromatic 
substitution by an aryl group was suspected (Scheme 3, 
left). However, this was discarded since the reaction 
between lithium tri(2-benzofuryl)zincate and 2,4-
dichloropyrimidine performed without catalyst did not 
allow the cross-coupling product 2a to be formed. A 
mechanism involving an addition-elimination of an 
organopalladate as first step can be proposed alternatively 
(Scheme 3, right) though this is unlikely if one considers 
the poor reactivity of 2,4-dichloropyrimidine towards an 
arylzincate.44 
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Scheme 3 Ligands are omitted for clarity. 

A more classical pathway is an oxidative addition of 2,4-
dichloropyrimidine to a Pd(0) complex followed by 
transmetalation by the nucleophile (Scheme 4, right). 
However, the oxidative addition could take place either at 
the 2- or 4- position. To test the regioselectivity of the 
oxidative addition, the reaction of 2,4-dichloropyrimidine 
(0.01 mmol) with Pd(PPh3)4 (0.01 mmol) was followed by 
1H NMR (250 MHz, TMS) and 31P NMR (101 MHz, 
H3PO4) in CD2Cl2 at 27 °C. Two 1H signals of equal 
magnitude at 6.73 ppm (dt, JHH = 5.1 Hz, JPH = 1.2 Hz, H5) 
and 6.58 ppm (d, JHH = 5.1 Hz, H6) associated to a 31P 
singlet at 22.0 ppm characterized the formation of complex 
17 by oxidative addition at the 4-position, in agreement 
with the regioselectivity observed in the catalytic reactions. 

It should be noted that the presence of a lithium zincate 
could also allow the formation of an arylpalladate 
ArPd(0)L2

-,45 which could regioselectively react with 2,4-

dichloropyrimidine by oxidative addition as depicted in 
Scheme 4 (left). 
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Scheme 4 Ligands are omitted for clarity. 

In conclusion, we have described the synthesis of 
unsymmetrical heterobiaryls using palladium-catalyzed 
cross-coupling reactions of lithium triorganozincates, which 
have been prepared through one pot deprotonative 
lithiation-transmetalation using non hygroscopic 
ZnCl2·TMEDA. 

Typical Procedure: Preparation of 2-(2-
benzo[b]thienyl)pyridine (8b). To a stirred and cooled (-75 
°C) solution of benzo[b]thiophene (5, 0.54 g, 4.0 mmol) in 
dry THF (5 mL) under argon was added BuLi (about 1.6 M 
hexanes solution, 4.0 mmol) and, 1 h later, 
ZnCl2·TMEDA46 (0.33 g, 1.3 mmol). The mixture was 
slowly warmed to room temperature (1 h) before addition 
of 2-chloropyridine (0.45 g, 4.0 mmol), PdCl2 (14 mg, 80 mol) and dppf (44 mg, 80 mol). The mixture was cooled 
before addition of water (0.5 mL) and EtOAc (50 mL), 
dried over MgSO4, and the solvents were removed under 
reduced pressure. Compound 8b was isolated by 
chromatographic purification on silica gel column (eluent: 
heptane/CH2Cl2 50/50 to 30/70) as a white powder (1.0 g, 
81%).28 
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