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We propose a geometric approach to extract local properties of digital curves. This approach uses the notion of blurred segment 1 that extends the definition of segment of arithmetic discrete line 2 to adapte to noisy curves. A curvature estimator 3 for 2D curves in O(n log 2 n) time is proposed relying on this flexible approach. The notion of 2D blurred segment is extended to 3D space. A decomposition of the curve into 3D blurred segments is deduced and allows new curvature and torsion estimators for 3D curves. All these estimators can naturally work with disconnected curves.

Introduction

Geometric properties of curves are important characteristics to be exploited in geometric processing. They directly lead to applications in machine vision, computer graphics. So curvature for 2D curves, curvature and torsion for 3D curves are interesting subjects to study digital curves.

In the 2D case, many applications are based on the curvature property in domains such as curve approximation [START_REF] Salmon | A new method to detect arcs and segments from curvature profiles[END_REF] , geometry compression 5 , and particularly in corner detection after the pioneer paper of Attneave [START_REF] Attneave | Some informational aspects of visual perception[END_REF] . Curvature estimation is a key problem for many applications in image processing that require the geometric measures of represented discrete objects.

In 3D space, torsion and curvature are the most important properties that permit to study the bending of a spatial curve. Several methods have been proposed for torsion estimation. Mokhtarian 7 used Gaussian smoothing to estimate torsion directly with a torsion formula. Similarly, Kehtarnavaz et al. [START_REF] Kehtarnavaz | A 3-d contour segmentation scheme based on curvature and torsion[END_REF] used B-spline smoothing techniques; Lewiner et al. [START_REF] Lewiner | Curvature and torsion estimators based on parametric curve fitting[END_REF] proposed weighted least-squares fitting techniques. Raluben Medina et al. [START_REF] Medina | Curvature and torsion estimation for coronary-artery motion analysis[END_REF] proposed two methods to estimate torsion and curvature values at each point of the curve. The first used the Fourier transform, the second is based on the least squares fitting. These methods are applied in the description of arteries in medical imaging.

In the framework of the discrete geometry, estimators of geometrical parameters have been proposed, but these methods rely on the recognition of discrete line segments which is very sensitive to the noise present in the studied curves [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: Application to the curvature[END_REF][START_REF] Coeurjolly | Discrete curvature based on osculating circle estimation[END_REF][START_REF] Lachaud | Analysis and comparative evaluation of discrete tangent estimators[END_REF] . The boundary of discrete objects is often noisy due to the acquisition process. Therefore the concept of blurred segment was introduced [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF] , which allows the flexible segmentation of discrete curves, taking noise into account. Relying on an arithmetic definition of discrete lines [START_REF] Reveillès | Géométrie discrète, calculs en nombre entiers et algorithmique[END_REF] , it generalizes such lines, admitting that some points are missing.

We propose in this paper a novel method, based on the definition of blurred segments, for the estimation of local geometric parameters of 2D and 3D curves. It uses a geometrical approach and relies on results of discrete geometry on decomposition of a curve into maximal blurred segments [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: Application to the curvature[END_REF][START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF][START_REF] Nguyen | Curvature estimation in noisy curves[END_REF] . This paper recalls the obtained results for a 2D curvature estimator [START_REF] Nguyen | Curvature estimation in noisy curves[END_REF] and presents an extension to 3D of these results. The 3D curvature estimator given in [START_REF] Coeurjolly | Estimation of curvature along curves with application to fibres in 3d images of paper[END_REF] is extended with the notion of blurred segment and permits to study noisy or disconnected curves. We also propose a new approach to the discrete torsion estimation.

The paper is organized as follows. In Section 2, after recalling some definitions related to 2D blurred segments, we study the problem of adding (or removing) a point to (from) a 2D blurred segment of width ν in the case of general discrete curves. Then we propose an extension for noisy curves the notion of maximal segment of a discrete curve. An algorithm to determine all maximal blurred segments of a 2D discrete curve is given in Section 3. In Section 4, after recalling the definition of the curvature estimator adapted to 2D noisy curves, an algorithm for the determination of the curvature at each point of a discrete curve is proposed. In this section, we also present how to extend these ideas into the 3D space. The next sections propose curvature and torsion estimators for 3D curves. The last section gives experiments and comparisons with Mokhtarian's and Lewiner's methods.

Blurred segment of width ν

Definitions

2D case

The notion of blurred segments relies on the arithmetical definition of discrete lines2 . A line, with slope a b , lower bound µ and thickness ω (with a, b, µ and ω being integer such that gcd(a, b) = 1) is the set of integer points (x, y) verifying µ ≤ ax-by < µ+ω. Such a line is denoted by D(a, b, µ, ω). Let us recall definitions 1 that we use in this paper (see Fig. 

3D case

The notion of 3D discrete line (see the [START_REF] Debled-Rennesson | Reconnaissance des droites et plans discrets[END_REF][START_REF] Coeurjolly | Segmentation and length estimation of 3d discrete curves[END_REF] ) is defined as follows:

Definition 2.4. A 3D discrete line [43], denoted D 3D (a, b, c, µ, µ ′ , e, e ′
), with a main vector (a, b, c) such that (a, b, c) ∈ Z Z 3 , and a ≥ b ≥ c is defined as the set of points (x, y, z) from Z Z 3 verifying:

D µ ≤ cx -az < µ + e (1) µ ′ ≤ bx -ay < µ ′ + e ′ (2) 
with µ, µ ′ , e, e ′ ∈ Z Z. e and e ′ are called arithmetical width of D.

According to the definition, it is obvious that a 3D discrete line is bijectively projected into two projection planes as two 2D arithmetical discrete lines. Thanks to that property, we naturally define the notion of 3D blurred segment by using the notion of 2D blurred segment and by considering the projections of the sequence of studied points in the coordinate planes (see Fig. 1.b) Definition 2.5. Let Sf 3D be a sequence of points of Z Z 3 , Sf 3D is a 3D blurred segment of width ν with a main vector (a, b, c) such that (a, b, c) ∈ Z Z 3 , and a ≥ b ≥ c if it possesses a said optimal discrete line, named D 3D (a, b, c, µ, µ ′ , e, e ′ ), such that • D(a, b, µ ′ , e ′ ) is optimal for the sequence of projections of points of Sf 3D in the plane (O, x, y) and

e ′ -1 max(|a|,|b|) ≤ ν,
• D(a, c, µ, e) is optimal for the sequence of projections of points of Sf 3D in the plane (O, x, z) and A linear algorithm of 3D blurred segment recognition may be deduced from that definition. Indeed, we only need to use an algorithm of 2D blurred segment recognition in each projection plane (for example, the one describe in 1 ) .

2.2.

Add (or remove) a point to (from) a 2D blurred segment of width ν

In this section we study the problem of adding (or removing) a point to (from) a blurred segment of width ν. The recognition algorithm of 2D width ν blurred segments presented in 1 is executed in linear time. However, it only considers the incremental addition of a point to a blurred segment in the first octant. We present here the general case which requires the incremental calculation of both height and width of the convex hull after adding or removing a point. To do that, we use the results given in [START_REF] Overmars | Maintenance of configurations in the plane[END_REF] and 17 that we briefly recall below.

Dynamic estimation of the convex hull:

The problem of dynamic estimation of the convex hull of a set of points when adding (or removing) a point to (from) this set was proposed by M.H. Overmars and J. van Leeuwen [START_REF] Overmars | Maintenance of configurations in the plane[END_REF] . The convex hull is represented by Concatenable Queue data structure that support search, insert, removal, split and concatenate operations in O(log n) time [START_REF] Aho | The Design and Analysis of Computer Algorithms[END_REF] . A segment tree data structure was proposed to allow to work with convex hull based on the divide-and-conquer strategy. This strategy is based on the fact: it costs O(log n) time to determine the bridge between 2 convex hulls. In their work, a convex hull is considered as the union of two parts: the upper convex hull (U hull ) and the lower convex hull (L hull ) which correspond to 2 segment trees. They are updated after each operation of addition or removal of a point. The cost of these operations are estimated by the following theorem [START_REF] Overmars | Maintenance of configurations in the plane[END_REF] .

Theorem 1. The convex hulls U hull and L hull of the set S of n points may be dynamically kept, in the worst case, in O(log 2 n) by an operation of addition or removal.

Determination of height and width of the convex hull:

We use the double technique of binary search [START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF] to determine the height and width of the convex hull. In 17 , the convex hull is also considered as the union of two parts U hull and L hull . The double technique of binary search permits to find the vertical width of the convex hull by using the concavity property of the function height(x) = U hull (x) -L hull (x) in O(log 2 n). To do that, firstly, for each point in the upper convex hull, he applied binary search technique to detemine its opposite edge on the lower convex hull. So the height from this point to the lower hull is determined. By applying one time the binary search technique on the upper convex hull, the maximal height between the upper and lower convex hulls will be determined. So, the complexity of this double technique is O(log 2 n).

3. Maximal blurred segment of width ν

Definitions and first proposition

The notion of the maximal segment of a discrete curve was proposed in [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: Application to the curvature[END_REF][START_REF] Lachaud | Analysis and comparative evaluation of discrete tangent estimators[END_REF] and relies on the discrete line segments. This structure enables a global understanding of the discrete curve to be analyzed. We propose here an extension of that notion to blurred segments, adapted to noisy curves, by using the same notation as in [START_REF] Lachaud | Analysis and comparative evaluation of discrete tangent estimators[END_REF] .

Let us consider a 2D or 3D discrete curve called C, the points of C are indexed from 0 to n -1. C is a general curve and the points of C can be disconnected . We note C i,j a set of successive points of C ordered increasingly from index i to j. Definition 3.1. The predicate "C i,j is a blurred segment of width ν" is denoted by BS(i, j, ν). The first index j, i ≤ j, such that BS(i, j, ν) and ¬BS(i, j + 1, ν) is called the front of i and noted F (i). Symmetrically, the first index i such that BS(i, j, ν) and ¬BS(i -1, j, ν) is called the back of j and noted B(j). Definition 3.2. C i,j is called a maximal blurred segment of width ν and noted M BS(i, j, ν) iff BS(i, j, ν) and ¬BS(i, j + 1, ν) and ¬BS(i -1, j, ν).

It is obvious that an equivalent characterization for a maximal blurred segment of width ν, M BS(i, j, ν), is to show that F (i) = j and B(j) = i. In this work, we use the notion of blurred segment of width ν which is maximal on the right or on the left sides: Definition 3.3. C i,j is called a maximal blurred segment of width ν on the right side (resp. on the left side) and noted

M BS R (i, j, ν) (resp. M BS L (i, j, ν)) if F (i) = j (resp. B(j) = i). Proposition 1. Let C be a discrete curve, M BS ν (C) the sequence of maximal blurred segments of width ν of the curve C. Then, M BS ν (C) = {M BS(B 1 , E 1 , ν), M BS(B 2 , E 2 , ν), ..., M BS(B m , E m , ν)} and satisfies B 1 < B 2 < ... < B m . So we have: E 1 < E 2 < ... < E m . Proof: We consider 2 consecutive maximal blurred segments M BS(B i , E i , ν) and M BS(B i+1 , E i+1 , ν). By hypothesis, B i < B i+1 , let us suppose that E i > E i+1 , then M BS(B i+1 , E i+1 , ν) becomes a part of M BS(B i , E i , ν). Therefore M BS(B i+1 , E i+1 , ν)
is not a maximal blurred segment, which is contradictory.

3.2.

Algorithm for the segmentation of a curve C into maximal blurred segments

2D case

We propose the algorithm 1 which determines all maximal blurred segments of width ν of a 2D discrete curve C according to the conditions given in section 3.1 by using proposition 1.

Complexity

Each point of the curve is scanned at most twice in this algorithm. The cost of determining a new optimal bounding discrete line when we add (or remove) a point to (from) a blurred segment is in O(log 2 n). Hence the complexity of this algorithm is in O(n log 2 n).

3D case

The algorithm 2 permits to obtain the sequence of 3D maximal blurred segments of width ν in time O(n log 2 n) for any noisy 3D discrete curve C. It uses the algorithm 1 to determine the 2D maximal blurred segments of the projections in the coordinate planes of the points of the studied curve.

To determine the optimal discrete line of the current 3D blurred segment S b (step marqued with (*) in the algoritm 2), we consider the characteristic of the two 2D blurred segments obtained in the planes of projection and combine them to obtain the characteristics of the optimal 3D discrete line of S b . As the whole process is done in dimension 2, this algorithm 2 has the same complexity as the one in dimension 2. So, we have the theorem below. We recall here the curvature estimator which is adapted to noisy curves [START_REF] Debled-Rennesson | Estimation of tangents to a noisy discrete curve[END_REF] . It is directly deduced from the estimator proposed by D. Coeurjolly 11 for 2D curves without noise. This technique can be seen as a generalization of the classical order m normalized curvature [START_REF] Rosenfeld | Angle detection on digital curves[END_REF] . Let C be a 2D or 3D discrete curve, C k is a point of the curve. Let us consider the points C l and C r of C such that : l < k < r, BS(l, k, ν) and ¬BS(l -1, k, ν), BS(k, r, ν) and ¬BS(k, r + 1, ν).

}; M BSν = ∅; a = 0; b = 1; ω = b, µ = 0; while ω-1 max(|a|,|b|) ≤ ν do k++; S b = S b ∪ C k ; Determine D(a, b, µ, ω) of S b ; bSegment=0; eSegment=k-1 ; M BSν = M BSν ∪ M BS(bSegment, eSegment, ν); while k < n -1 do while ω-1 max(|a|,|b|) > ν do S b = S b \ C bSegment ; bSegment++ ; Determine D(a, b, µ, ω), optimal bounding line of S b ; while ω-1 max(|a|,|b|) ≤ ν do k++ ; S b = S b ∪ C k ; Determine D(a, b, µ, ω), optimal bounding line of S b ; eSegment=k-1; M BSν = M BSν ∪ M BS(bSegment,
D (1 ,-2 ,-3 ,5 ) D (1 ,2 ,-2 ,5 ) Ox Oy R ad iu s: 14 .7 63 8 C k C R C L (a) B i B i+1 E i+1 E i (b)
The estimation of the curvature of width ν at the point C k shall be determined as the inverse of the radius of the circle passing through the points C l , C k and C r . To determine the radius R ν (C k ) of the circumcircle of the triangle [C l , C k , C r ], we use the formula given in [START_REF] Harris | Handbook of mathematics and computational science[END_REF] as follows (see Fig. 2.a and Fig. 3).

Let

s 1 = || ---→ C k C r ||, s 2 = || ---→ C k C l || and s 3 = || ---→ C l C r ||, then R ν (C k ) = s 1 s 2 s 3 (s 1 + s 2 + s 3 )(s 1 -s 2 + s 3 )(s 1 + s 2 -s 3 )(s 2 + s 3 -s 1 )
Then, the curvature of width ν at the point [START_REF] Coeurjolly | Discrete curvature based on osculating circle estimation[END_REF] , the degenerated cases, which correspond for example to colinear half-tangents, may be independently tested and, thus, a null curvature is affected to the considered point.

C k is C ν (C k ) = s Rν (C k ) with s = sign(det( ---→ C k C r , ---→ C k C l )) (it

indicates concavities and convexities of curve). As indicated in

Estimation of the curvature of width ν at each point of C

In this section, we propose a new algorithm for the determination of the curvature of width ν at each of the n points of a 2D or 3D curve C. The complexity of this algorithm is better than the one of the naive algorithm, in O(n 2 ). It consists of calculating at each point C k , the maximal blurred segment on the right side, M BS R , the maximal blurred segment on the left side, M BS L , and then the circle passing through 3 points: (left extremity of M BS L , C k , right extremity of M BS R ).

Description of the algorithm (see Fig. 3) Let M BS R (k, r, ν) and M BS L (l, k, ν) be the maximal blurred segments on the right and left sides of the point C k . Then, there exist

r ′ ≤ k and l ′ ≥ k such that M BS R (k, r, ν) ⊂ M BS(r ′ , r, ν) and M BS L (l, k, ν) ⊂ M BS(l, l ′ , ν).
Let us then consider the decomposition of C into maximal blurred segments:

M BS ν (C) = {M BS(B 1 , E 1 , ν), M BS(B 2 , E 2 , ν), ..., M BS(B m , E m , ν)} with B 1 < B 2 < ... < B m and E 1 < E 2 < ... < E m .
We look for the indices i and j such that i is the first index such that E i ≥ k and j is the last index such that B j ≤ k. So it is obvious that l = B i , r = E j and that the curvature of width ν at the point C k is the inverse of the radius of the circumcircle of the triangle [C l , C k , C r ]. More generally, we have the following result. 

• ∀k such that E i-1 < k ≤ E i , then L(k) = B i • ∀k such that B i ≤ k < B i+1 , then R(k) = E i
This definition is used in the algorithm 3 (see also Fig. 

for i = 0 to m -1 do for k = E i-1 + 1 to E i do L(k) = B i ; for k = B i to B i+1 -1 do R(k) = E i ; for i = 0 to n -1 do Rν (C i ) = Radius of the circumcircle to [C L(i) , C i , C R(i) ]; Cν (C i ) = sign(det( -----→ CiC R(i) , -----→ CiC L(i) )) Rν (Ci)
; end Remark: The bounds mentioned in the algorithm 3 are correct for a closed curve. In the case of an open curve, the instruction becomes: for i = l to n -1 -l with l fixed to a constant value. Indeed it is not possible to calculate a maximal blurred segment on the left side (resp. on the right side) at the first point (resp. at the last point) of the curve. Thus the calculation of the curvature begins (resp. stops) at the l th (resp. (n -1l) th ) point of the curve.

Complexity

Both steps of labelling and estimation of the curvature at each point are executed in linear time. However, the determination of the maximal blurred segments are executed in O(n log 2 n). Thus the complexity of our method is O(n log 2 n). Because the complexity of a blurred segment is O(n) for simple curves, and O(n log n) for general curve (see [START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF] ), the existing method [START_REF] Salmon | A new method to detect arcs and segments from curvature profiles[END_REF] for curvature estimation has O(n 2 ) complexity with simple curve and O(n 2 log n) for general curve. Let us recall that a simple curve is a polygonal chain of line segments that do not cross each other. It is not correct for general curve. So, this algorithm is more efficient than existing method.

Fig. 3. Given a spatial curve, firstly the set of maximal blurred segments is computed. To determine the curvature value at the second black point, its left (resp. right) extremity is located as the left (resp. right) extremity of the corresponding maximal blurred segment, and then the curvature value is estimated as the inverse of circumcircle radius. Working width is 2.

Discrete torsion of width ν

Definitions

The curvature is not sufficient to characterize the local properties of a 3D curve. This parameter only measures how rapidly the direction of the curve changes. In case of a planar curve, the osculating plane does not change. For 3D curves, torsion is a parameter that measures how rapidly the osculating plane changes. To clarify this notion, we recall below some definitions and results in differential geometry (see the [START_REF] Oprea | Differential geometry and its applications[END_REF] for more details). Definition 5.1. Let r : I → R 3 be a regular unit speed curve parameterized by t.

[i] T (t) (resp. N (t)) is a unit vector in direction r ′ (t) (resp. r ′′ (t)). So, N (t) is a normal vector to T (t). T (t) (resp. N (t)) is called the unit tangent vector (resp. normal vector) at t.

[ii] k(t) = |T ′ (t)| is called the curvature of r at t.

[iii] The plane determined by the unit tangent and normal vectors (T (t) and N (t)), is called the osculating plane at t. The unit vector B(t) = T (t) ∧ N (t) is normal to the osculating plane and is called the binormal vector at t. According to the definition 5.2, the torsion value at a point is 0 if the curvature value at this point is 0.

Discrete torsion

Discrete torsion was studied in [START_REF] Lewiner | Curvature and torsion estimators based on parametric curve fitting[END_REF][START_REF] Mokhtarian | A theory of multiscale, torsion-based shape representation for space curves[END_REF][START_REF] Medina | Curvature and torsion estimation for coronary-artery motion analysis[END_REF][START_REF] Kehtarnavaz | A 3-d contour segmentation scheme based on curvature and torsion[END_REF] . In this section, we propose a new geometric approach for the problem of torsion estimation that uses the definitions and results presented in the previous sections.

Definitions

Let ζ be a 3D discrete curve, C k is k th point of the curve. Let us consider the points C l and C r of ζ such that : l < k < r, BS(l, k, ν)&¬BS(l -1, k, ν) and BS(k, r, ν)&¬BS(k, r + 1, ν). Recall that the curvature of width ν is estimated by circumcircle of triangle The osculating plane (C l , C k , C r ) has two unit tangent vectors :

△C l C k C r . If ---→ C k C l and ---→ C k C r
-→ t1 = ---→ C l C k | ---→ C k Cr| and -→ t2 = ---→ C k Cr | ---→ C k Cr|
. Therefore, we have the binormal vector at the k th point:

- 

→ b k = -→ t1 ∧ -→ t2 

Torsion estimator

Our proposed method for torsion estimation is based on the definition 5.4. Let us remark that the set { -→ b k } n-1 k=0 can be constructed from the set of maximal blurred segments in O(n log 2 n) time. So, we can obtain the torsion value by calculating the derivative at each position of { -→ b k } n-1 k=0 . The traditional method for derivative estimation of discrete sequences is Gaussian kernel [START_REF] Worring | Digital curvature estimation[END_REF] . We propose by the use of a geometric approach method to solve this problem.

Let us consider the curve ζ 1 = {P } n i=0 that is constructed by this rule:

----→ P i P i+1 = -→ b i , i = 0, .., n -1 (see Fig. 4).

Proposition 2. The estimation of tangent vector at each point P i of the curve ζ 1 is -→ b i (i = 0, .., n -1).
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- → b 1 P 0 P 1 - → b 4 - → b 5 - → b 5 P 3 P 4 P 5 - → b 0 - → b 0 - → b 1 - → b 2 - → b 3 - → b 4 P 2 P 6 - → b 2 - → b 3
Fig. 4. The curve ζ 1 is constructed from the sequence of binormal vectors.

Proof. In differential geometry, the tangent vector of a curve r(t) at the point

P t0 = r(t 0 ) is defined as: t(t 0 ) = r ′ (t 0 ) = lim h→0 r(t0+h)-r(t0) h = lim h→0 ---→ Pt 0 P
h . Therefore, in discrete space, the tangent vector at the point Therefore, by using these two propositions, we can estimate the torsion value at each point of ζ curve by determining the curvature value at the corresponding points of curve ζ 1 . Our proposed method is presented in the algorithm 4, which uses the curvature estimator presented in section 4.

P i = α(i) can be estimated as t(i) = r(i+1)-r(i) 1 = ----→ PiPi+1 1 = ----→ P i P i+1 = -→ b i .
M BSν = {M BS i (B i , E i , ν)} i=0 to m-1 ; m = |M BSν |; E -1 = -1; Bm = n; for i = 0 to m -1 do for k = E i-1 + 1 to E i do L(k) = B i ; for k = B i to B i+1 -1 do R(k) = E i ; for i = 0 to n -1 do -→ t1 = -----→ CiC L(I) | -----→ CiC L(i) | ; -→ t2 = -----→ CiC R(i) | -----→ CiC R(i) | ; -→ b i = -→ t1 ∧ -→ t2; Construct ζ 1 = {P k } n k=0 , with -----→ P k P k+1 = -→ b k ; Estimate the

Experiments and comparisons

Experiments

We evaluated our methods on this computer configuration: CPU Pentium 4 with 3.2GHz, 1G of RAM, linux kernel 2.6.22-14 operating system. Because the estimated result is not correct for the beginning and the end of an open curve (see the bounds mentioned in the algorithms 2 and 3), during the phase of error estimation, we use a border parameter to eliminate this influence.

Error measure

We introduce three criteria for measuring error: mean relative error (meanRE), max relative error (maxRE) and quadratic relative error (QRE). Let us consider 2 sequences: the actual results {IR i } n i=1 and the estimated results {RR i } n i=1 at each position. Then, we can define:

meanRE = 1 n n X i=1 |RR i -IR i | IR i (1) maxRE = max  |RR i -IR i | IR i ff , i = 1, .., n (2) 
QRE = v u u t 1 n n X i=1 8 
> :

|RR i -IR i | IR i 9 > ; 2 (3) 
These criteria are modified from clasic error criteria. They allow us to measure how an estimated result respects the profile of an actual result.

Curvature experiments

We present in Fig. 5 some experiments with our curvature estimator for planar curves. Two discrete curves (Fig. 5.a and 5.c) are presented with the plot of their curvature values calculated at each point of the curves with width 2 (Fig. 5.b and 5.d). The points of the curve 5.c that correspond to the peaks (black squares) of the associated curvature graph 5.d, are indicated by black pixels. We recognize that these black pixels are well located on the corners of the curve 5.c. As a result, an application for corner detection can be deduced based on this curvature estimator. For 3D curves, Fig. 6 presents some experiments with our 3D curvature estimator on some actual spatial discrete curves: helix, Viviani's curve,... a with their actual curvature profiles (Fig. 6.b and 6.e) and their estimated curvature profiles using by our estimator (Fig. 6.c and 6.f).

Concerning the error approximation, the Tab. 1 shows the error of our method in relation with actual results when we test with these above curves.

Torsion experiments

We present some experiments of our method on some ideal 3D curves : helix, Viviani's, spheric, horopter and hyper helix curves. The tests are done after a process of discretisation of these 3D curves (see Fig. 7).

a Math curves, http://www.mathcurve.com/courbes3d/courbes3d.shtml In most cases presented in Tab. 2 and Fig. 7, the mean relative errors do not overtake 0.15, and the quadratic relative errors do not overtake 0.015. If the actual torsion of the input curve has a value which is close to 0 at some positions, the obtained result is not very good. Let's see the case of Viviani's curve in the Tab. 2 (without threshold) and Fig. 9.a. In this case, the maximal relative error is high (15.6036). In spite of that, the mean relative error is acceptable (0.628899). In particular cases, if most of input curves has a torsion value which is close to 0, the obtained result is the worst (see Fig. 8, Fig. 9.b).

Curves

Like other approximation methods, our method doesn't perform well when the actual value of the torsion approximates zero. It comes from the formula of relatif error. The divergence between actual value and estimated value reduce slowly when the actual value is close to 0. So the relatif error is so high in this situation. Let JournalShapeModel-ing˙NguyenDebled 3. Error estimation on the curvature and torsion results of Lewiner's method on viviani's curve without (with a threshold), N 0 : number of points, N 1 : border, time is caculated in ms. In the second line, without: without threshold; with: with a threshold = 0.0005 us consider the case of an hyper helix curve (see Fig. 8). The problem is that the torsion approximation is not good at nearly-0 values. In spite of that, the approximation value is also close to 0 but the relative rate between approximation value and actual value is very high. In the Fig. 9.b, we show the relation between approximation torsion and actual torsion of an hyper helix curve from the index 15 and to the index 250. In this index interval, the actual torsion is close to 0. So, the relative error between approximation torsion and actual torsion is very high, in spite of that the approximation value does not overtake 0.006. So, we propose to consider only the points whose actual torsion value is greater than the threshold.

In the equations 1, 2 and 3, n is replaced by number of points whose actual torsion value is greater than a threshold. The Tab. 2 shows also the approximated error On the local properties of digital curves 17

τ (u, σ) = Xu(YuuZuuu -ZuuYuuu) + Yu(ZuuXuuu -XuuZuuu) + Zu(XuuYuuu -YuuXuuu) (XuYuu -XuuYu) 2 + (YuZuu -YuuZu) 2 + (ZuXuu -ZuuXu) 2
Lewiner et al's approach: Lewiner et al. [START_REF] Lewiner | Curvature and torsion estimators based on parametric curve fitting[END_REF][START_REF] Lewiner | Arc-length based curvature estimator[END_REF] proposed curvature and torsion estimators based on a parametric curve fitting technique that uses weighted leastsquares fitting. Consider a sequence of points {p i } on a smooth curve r. For each point p j , he considered a window of 2q + 1 points around p j = r(j) to estimate the derivatives of r(s). Let s i be the arc-length corresponding to sample p i . It can be estimated as

l i = i-1 k=0
p k p k+1 . To determine curvature, considering that p 0 = r(0)

is the origin, he used the second order approximation: r(s) = r ′ (0)s + 1 2 r ′′ (0)s 2 + g1(s)s 3 with lim s→0 g1(s) = 0. The estimation of derivatives are obtained by a weighted least square minimization. Consider the case of a planar curve. His idea is to locally fit a parametric curve (x(s), ŷ(s)) to the curve, with one of the coordinate functions, say x, being quadratic in the arc-length: x

(s) = x 0 + x ′ 0 .s + 1 2 x ′′ 0 .s 2 . The derivatives x ′ 0 and x ′′ 0 can be estimated by minimizing Ex(x ′ 0 , x ′′ 0 ) = q X i=-q ω i (x i -x ′ 0 l i - 1 2 x ′′ 0 (l i ) 2 ) 2 .
The weight ω i of the point p i can be considered simply ω i = 1. The estimates y ′′ 0 = 0. A similar approach with spatila curve. So the curvature can be calculated by this formula:

κ(t, q, σ) = r ′ × r ′′ ||r ′′′ ||
For torsion estimation, the third order approximation is used: r(s) = r ′ (0)s + Comparison: We present in Fig. 10, 11 and Tab. 3, 4 a comparison between our estimators and these methods. We admit that the result of Mokhtarian's method depends largely on the value of the parameter σ. When the value of σ is too small, the obtained result is very noisy, but the higher value for σ can lead to inexact results and margin effects in which the result is totally different from actual result. Our method use 1 parameter that is the width, Mokhtarian's method used 1 parameter that is σ. Lewiner's method use 2 different parameters (σ and q), so the number of parameters of this method is more than 2 others. The result of this torsion estimator seems to be more noisy than other methods. Concerning the quality of approximated results, our method is better than 2 methods, but among these 3 methods, the method of Mokhtarian is the fastest thanks to its linear complexity. 

Conclusions

We have presented in this paper the methods to estimate curvature for planar curves, and the curvature and torsion for spatial curves. These methods benefit from the improvement of curvature estimator in 2D case 3 , so they are efficient than using existent method [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF][START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF] for blurred segment recognition to construct these estimators.

These estimators permit to extract local properties of spatial curves. We hope to identify and classify 3D objects by using these estimators. Our work can also be applied for an application to fibres in 3D images of paper that has been presented in [START_REF] Coeurjolly | Estimation of curvature along curves with application to fibres in 3d images of paper[END_REF] . Another applications can be geometric compression [START_REF] Lewiner | Arc-length based curvature estimator[END_REF] or medical imaging [START_REF] Medina | Curvature and torsion estimation for coronary-artery motion analysis[END_REF] . In the futur, we will look for an application for DNA curve matching based on curvature and torsion estimation. 
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 21221 Fig. 1. From left to right: a. D(5, 8, -8, 11), optimal bounding line (vertical distance = 10 8 = 1.25) of the sequence of gray points -b. D 3D (45, 27, 20, -45, -81, 90, 90) optimal discrete line of the grey points.

  ,|c|) ≤ ν.

Algorithm 1 :

 1 Algorithm for the segmentation of a curve C into 2D maximal blurred segments of width ν Data: C -discrete curve with n points, ν -width of the segmentation Result: M BSν -the sequence of maximal blurred segments of width ν begin k=0; S b = {C 0

Algorithm 2 :

 2 eSegment, ν); end Algorithm for the segmentation of a curve C into maximal 3D blurred segments of width ν Data: C -discrete curve with n points, ν -width of the segmentation Result: M BSν -the sequence of maximal blurred segments of width ν of C begin k=0; S b = {C 0 }; M BSν = ∅; a = 0; b = 1; ω = b, µ = 0; while the widths of 2 blurred segments obtained by projecting the points of S b in the coordinate planes are ≤ ν do k++; S b = S b ∪ C k ; Determine D 3D (a, b, c, µ, µ ′ , e, e ′ ), optimal discrete line of S b ; (*) bSegment=0; eSegment=k-1 ; M BSν = M BSν ∪ M BS(bSegment, eSegment, ν); while k < n -1 do while the widths of 2 blurred segments obtained by projecting the points of S b in the coordinate planes are > ν do S b = S b \ C bSegment ; bSegment++ ; Determine D 3D (a, b, c, µ, µ ′ , e, e ′ ), optimal discrete line of S b ; (*) while the widths of 2 blurred segments obtained by projecting the points of S b in the coordinate planes are ≤ ν do k++ ; S b = S b ∪ C k ; Determine D 3D (a, b, c, µ, µ ′ , e, e ′ ), optimal discrete line of S b ; (*) eSegment=k-1; M BSν = M BSν ∪ M BS(bSegment, eSegment, ν); end Theorem 2. The decomposition of a 3D curve into maximal blurred segments of width ν can be done in time O(nlog 2 n).

4 .

 4 Discrete curvature of width ν 4.1. Definition

Fig. 2 .

 2 Fig. 2. a. Estimation of the 2D curvature at the point C k with width 2; b. E i (B i+1 ) is front (back) of points in first (second) bold edge.

Definition 4 . 1 .

 41 Let L(k), R(k) be the functions which respectively represent the indices of the left and right extremities of the maximal blurred segments on the left and right sides of the point C k .

Algorithm 3 :

 3 2.b). Width ν curvature estimation at each point of a 2D or 3D curve Data: C Discrete curve of n points, ν width of the segmentation Result: {Cν (C k )} k=0..n-1 -Curvature of width ν at each point of C begin Build M BSν = {M BS i (B i , E i , ν)} i=0 to m-1 (see Algorithm 1 for 2D case or Algorithm 2 for 3D case); m = |M BSν |; E -1 = -1; Bm = n;

[Definition 5 . 2 .i| 3 ii

 523 iv] τ (t) = |B ′ (t)| is called the torsion of curve at t. Let r : I → R 3 be a spatial curve parameterized by t. The curvature of r at t ∈ I: k(t) = |r ′ ∧r ′′ | |r ′ The torsion of r at t ∈ I: τ (t) = (r ′ ∧r ′′ ).r ′′′ |r ′ ∧r ′′ | 2

Definition 5 . 3 .

 53 are colinear, the curvature value at C k is 0, therefore the torsion value at C k is 0. So, without loss of generality, we suppose that ---→ C l C k and ---→ C k C r are not collinear. In addition, the plane defined by ---→ C l C k and ---→ C k C r is noted (C l , C k , C r ), and we propose the definition below. The osculating plane of width ν at C k is the plane (C l , C k , C r ).

Definition 5 . 4 .

 54 = (b x , b y , b z ) So, we propose the following definition of discrete torsion of width ν. The discrete torsion of width ν at C k is the derivative of -→ b k .

Proposition 3 .Algorithm 4 :

 34 The torsion value at each point of the 3D discrete curve ζ corresponds to the curvature value of the curve ζ 1 . Proof. Thanks to definition 5.4, the discrete torsion at C k of ζ curve is the derivative of -→ b k . In addition, -→ b k is the tangent vector at the k th point of ζ 1 curve. So,this value is also curvature value at the k th point of ζ 1 curve. Width ν torsion estimation at each point of ζ Data: ζ 3D discrete curve of n points, ν width of the segmentation Result: {Tν (C k )} k=0..n-1 -Torsion of width ν at each point of ζ begin Build

  curvature value of width ν at each point of the curve ζ 1 as torsion value of corresponding point of the curve ζ (see Algorithm 2); end Remark: The bounds mentioned in the algorithm 4 are similar to the ones in the algorithm 3.

On the local properties of digital curves 13 (Fig. 5 .

 135 Fig. 5. Examples of 2D curvature extraction with ν = 2: (a) A discrete circle (radius=20) -(b) associated curvature profile. (c) A rabbit discrete curve -(d) associated curvature profile.

Fig. 6 .

 6 Fig. 6. Experiments of curvature estimator, working width ν = 2

On the local properties of digital curves 15 -Fig. 7 .-Fig. 8 .

 1578 Fig. 7. Experiments on torsion estimator, working width ν= 2.

Fig. 9 .

 9 Fig. 9. a:Torsion of Viviani's curve; b:The actual torsion and our result obtained with a hyperhelix curve between the index 15 and 250.

0

  are obtained by both the unit norm of the tangent and the orthogonality of the tangent and the normal: (x

1 2 r

 12 ′′ (0)s 2 + 1 6 r ′′′ (0)s 3 + g2(s)s 4 i + with lim s→0 g2(s) = 0. For spatial curve, the torsion estimator fits a cubic parametric curve to the sample points. So, x ′

  Fig. 10. Comparisons between our curvature and torsion estimators with Lewiner's approach on Viviani's curve. The results of Lewiner are supplied by the author.

On the local properties of digital curves 19 -Fig. 11

 1911 Fig. 11. a. Comparison between our 2D curvature estimator and Mokhtarian's 2D curvature estimator on a circle, radius is 20; b (resp. c): Comparison between our 3D curvature (resp. torsion) estimators and Mokhtarian's 3D curvature (resp. torsion) estimators on an helix curve.

  

Table 1 .

 1 Error estimation on the curvature results, N 0 : number of points, time is caculated in ms.

		N 0	Border	meanRE	maxRE	QRE	Time
	Circle	90	6	0.0186	0.1118	0.0316	100
	Helix	760	20	0.0074	0.0519	0.0132	610
	Viviani	274	20	0.1185	0.7248	0.2198	200

Table 2 .

 2 Error estimation on the torsion results without (with a threshold), N 0 : number of points, N 1 : border, time is caculated in ms. In the second line, without: without threshold; with: with a threshold = 0.0005

	Curves	N 0	N 1	meanRE Without With	maxRE Without With	QRE Without	With	Time
	Spheric	255	30	0.1317	0.1317	0.3428	0.3428	0.1642	0.1642	280
	Horopter	239	30	0.0827	0.0827	0.1862	0.1862	0.0979	0.0979	300
	Helix	760	30	0.0481	0.0481	0.5145	0.5145	0.0814	0.0814	920
	Viviani	274	30	0.6289	0.4570	15.6036	3.5128	1.6228	0.6156	290
	Hyperhelix	740	30	8551.24	1.1527	154378	3.8019	24704.2	1.6210	720
	Estimator	N 0	N 1	meanRE Without With	maxRE Without With	QRE Without	With	Time
	Curvature	274	30	0.5191	0.5010	1.0618	1.0085	0.7355		0.7098	NA
	Torsion	274	30	0.5367	0.4987	1.2160	1.0036	0.7615		0.7066	NA
	Table									
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Curves

with a threshold equal to 0.0005.

Comparisons to other approachs

We compare our estimators to some well-known methods in the literature.

Mokhtarian's approach: Mokhtarian 24,7 proposed an approach using a scale space technique which is based on Gaussian fitting. A planar curve, Γ is first parameterized by the arc length parameter u: Γ = (x(u), y(u)). By using Gaussian fitting, an evolved version Γ σ is computed:

So the curvature at each point can be computed on the evolved curve Γ σ as follows

where

Similarly, in the case of spatial curve, an evolved version of the curve is Γ σ = (X(u, σ), Y (u, σ), Z(u, σ)). So, the curvature and torsion can be calculated respectively as follows.

κ(u, σ) = p (XuYuu -XuuYu)