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FAST AND ROBUST DOMINANT POINTS DETECTION ON DIGITAL CURVES

Thanh Phuong Nguyen, Isabelle Debled-Rennesson

LORIA Nancy, Campus Scientifique - BP 239
54506 Vandoeuvre-lès-Nancy Cedex, France

ABSTRACT

A new and fast method for dominant point detection and polygonal
representation of a discrete curve is proposed. Starting from results
of discrete geometry [1, 2], the notion of maximal blurred segment
of width ν has been proposed, well adapted to possibly noisy and/or
not connected curves [3]. For a given width, the dominant points of
a curveC are deduced from the sequence of maximal blurred seg-
ments ofC in O(n log2 n) time. Comparisons with other methods
of the literature prove the efficacity of our approach.

Index Terms— corner detection, dominant point, critical point

1. INTRODUCTION

The work on the detection of dominant points started from the re-
search of Attneave [4] who said that the local maximum curvature
points on a curve have a rich information content and are sufficient
to characterize this curve. Therefore, these points play a critical role
in curve approximation, image matching and in other domains of
machine vision. Many works have been realised about the dominant
point detection and an interesting survey is presented in [5]. Several
problems have been identified in the different approaches: time com-
putation, number of parameters, selection of start point, bad results
with noisy curves, ...

In this paper, we present a new fast and sequential method issued
from theoretical results of discrete geometry, it only requires to fixe
one parameter, it is invariant to the choice of the start point and it
works naturally with general curves : possibly being noisy or dis-
connected. It relies on the geometrical structure of the studied curve
obtained by considering the decomposition of the curve into maxi-
mal blurred segments for a given width [3].

In section 2, we recall theoretical results of discrete geometry
used in this paper to analyse a curve. The section 3 describes our
method for dominant point detection. Finally, the section 4 presents
experimental results and comparisons with other methods.

2. DECOMPOSITION OF A CURVE INTO MAXIMAL
BLURRED SEGMENTS

The notion of blurred segment [2] relies on the notion of arithmetic
discrete line [6]. Anarithmetic discrete line, notedD(a, b, µ, ω),
is a set of points (x, y) that verifies this double inequation:µ ≤
ax − by < µ + ω with a, b,µ, ω integer parameters. Awidth ν
blurred segment is a set of integer points which belong to a discrete
line D(a, b, µ, ω) verifying ω−1

max(|a|,|b|)
≤ ν. The notion ofwidth
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ν maximal blurred segment, used in this paper, was proposed in [3]
(deduced from [1,2]). We consider a discrete curveC = {Ci}i=1..n

of n points, let us recall that the predicate ”Si,j , a set of points in-
dexing from i to j inC, is a blurred segment of widthν” is noted by
BS(i, j, ν).

Definition 1
Si,j is called a width ν maximal blurred segment and noted
MBS(i, j, ν) iff BS(i, j, ν) and¬BS(i, j + 1, ν) and¬BS(i −
1, j, ν).

An algorithm is proposed in [3] to determine the sequence of max-
imal blurred segments of widthν of a discrete curveC of n points.
The complexity of this algorithm isO(n log2 n). For a given width
ν, the sequence of the maximal blurred segments of a curveC en-
tirely determines the structure ofC.
Let C = {Ci}i=1..n be a discrete curve andMBSν(C) the se-
quence of all maximal blurred segments of C, in which theith max-
imal blurred segmentMBS(Bi, Ei, ν), is a set of point indexing
from Bi to Ei. We recall below two important properties [3].

Property 1
Let MBSν(C) the sequence of widthν maximal blurred seg-
ments of the curveC. Then,MBSν(C) = {MBS(B1, E1, ν),
MBS(B2, E2, ν), ..., MBS(Bm, Em, ν)} and satisfiesB1 <
B2 < ... < Bm. So we have:E1 < E2 < ... < Em.

Property 2
LetL(k), R(k) be the functions which respectively return the indices
of the left and right extremities of the maximal blurred segments on
the left and right sides of the pointCk. So:

• ∀k such thatEi−1 < k ≤ Ei, thenL(k) = Bi

• ∀k such thatBi ≤ k < Bi+1, thenR(k) = Ei

Thanks to Property 2 and the sequenceMBSν(C), it is easy to ob-
tain the left and right extremities of the widthν blurred segments
starting from each point of the studied curveC. For each point M of
C, the widthν blurred segment between M and left (resp. right) ex-
tremity is calledwidth ν maximal left (resp. right) blurred segment
of this point (see Fig. 1).

3. DOMINANT POINT DETECTION

We present here a new method for dominant point detection based on
theoretical results of discrete geometry (recalled in section 2) : the
sequence of maximal blurred segments of a curve permits to obtain
important informations about the geometrical structure of the studied
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Fig. 1. Region of support based
on maximal left (pink points) and right
(blue points) blurred segments of M

Fig. 2. Pink zone is not a com-
mon zone of successive maximal
blurred segments

curve. The width of the maximal blurred segments permits to work
in different scales and permits to consider the noise present in the
studied curve. The width is the only parameter uses in our method.

3.1. Dominant point and region of support (ROS)

Deducing from [7], we propose in this section the notion of ROS that
is compatible with the blurred segment notion.

Definition 2
Widthν maximal left and right blurred segments of a point constitute
its region of support (ROS) (see figure 1). The angle between them is
called the ROS angle of this point.

Remark 1
The smaller the ROS angle of a point is, the higher the dominant
character of this point is.

This remark is deduced from the work [3], wherecurvature at
a point Ck is estimated as inverse of the radius of the circumcircle
passing throughCk and the extremities of its left and right widthν
maximal blurred segments. Therefore, we have a corollary of this
remark: if the ROS angle of a point is nearly180◦, this point cannot
be a dominant point.

3.2. Relation between dominant points and maximal blurred
segments

In this paragraph, we study the relation between position of domi-
nant points and maximal blurred segments.

Proposition 1
A dominant point of the curve must be in a common zone of succes-
sive maximal blurred segments.

Proof 1
Let us consider the points on the pink zone (see Fig. 2) which are
not in a common zone of successive maximal blurred segments but
which belong to one blurred segment. By applying the Property 2,
the left and right end points of the blurred segments of these points
are also in the same blurred segment. The ROS angles of these points
are nearly180◦. Therefore these points are not candidates as domi-
nant points.

Let us now consider the common zone of more than 2 successive
maximal blurred segments.

Proposition 2
The smallest common zone of successive widthν maximal blurred
segments whose slopes are increasing or decreasing contains a can-
didate as dominant point.

Proof 2
Let us consider k successive widthν maximal blurred segments
which share the smallest common zone. Without loss of general-
ity, we assume that these k maximal blurred segments do not inter-
sect any other smallest zone. Suppose that there are k first maximal
blurred segments with the extremities below:(B1, E1), (B2, E2),
...,(Bk, Ek). Their slopes satisfyslope1 < slope2 < ... < slopek

(similarity to decreasing case). Due to Property 1, we must have:
B1 < B2 < ... < Bk; E1 < E2 < ... < Ek. Because these max-
imal blurred segments share the smallest common zone, we must
haveBk < E1. So, the smallest common zone is[Bk, E1]. By ap-
plying Property 2, the left and right extremities of the points of the
k partial common zones[B1, B2[, [B2, B3[, ...[Bk, E1[ respectively
are(B1, E1), (B1, E2),...(B1, Ek). The slopes of the left blurred
segments of the points of these partial common zones are always
equal toslope1. On the contrary, the slopes of the right blurred seg-
ments of the points of these partial common zones respectively are
slope1, slope2, ... ,slopek. By a similar way, we deduce that on
the partial common zones]E1, E2],...,]Ek−1, Ek], the slopes of the
right blurred segments of the points of these partial common zones
are equal toslopek and the slopes of the left blurred segments re-
spectively are equal toslope2, ... ,slopek. The ROS angle of the
points in the zone[Bk, E1) is equal to the angle(slope1, slopek)
and this value is minimal for all the points indexed fromB1 to Ek,
due to the hypothesis of the increasing slopes of maximal blurred
segments. Therefore, this zone contains a candidate as dominant
point.

To eliminate the weak dominant point candidates, we use the fol-
lowing natural property of a maximal blurred segment, due to the
shape of straight line of a maximal blurred segment and also due to
the property of corner of a dominant point.

Property 3
A maximal blurred segment contains at most 2 dominant points.

3.3. Proposed algorithm

3.3.1. Algorithm

We propose below a heuristic strategy for localizing the position of
each dominant point candidate.Heuristic strategy: In each smallest
common zone of successive maximal blurred segments whose slopes
are increasing or decreasing, a candidate as dominant point is de-
tected as middle point of this zone.
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Fig. 3. A dominant point is expected

as center of smallest common zone.

Let us consider a small-
est zone that satisfies this
condition. This zone con-
tains a candidate as domi-
nant point (cf. proposition
2). By using the property 1,
this zone must be the inter-
section of the first and the
last maximal blurred seg-
ments in the set of succes-
sive maximal blurred seg-

ments that share this zone (see Fig. 3). We recall that each point
in this zone has the same region of support. We then propose to lo-
cate the candidate as dominant point that has geometric properties
close to the expected corner point. So, the candidate as dominant



point is detected asmiddle point of the partial curve corresponding
to this zone.

Based on the above theoretical framework and using the heuris-
tic strategy above, we present hereafter our proposed algorithm for
dominant point detection. It is decomposed into two parts :

• the scan of the interesting common zones of maximal blurred
segments according to the Proposition 2 and the Property 3,

• the detection of dominant points in common zones of succes-
sive maximal blurred segments whose slopes are increasing or
decreasing.

Algorithm 1: Dominant point detection

Data: C discrete curve ofn points,ν width of the segmentation
Result: D set of extracted dominant points
begin

Build MBSν = {MBS(Bi, Ei, ν)}m
i=1, {slopei}m

i=1 ;
m = |MBSν |; p = 1; q = 1; D = ∅ ;
while p ≤ m do

while Eq > Bp do p + +;
Add (q, p − 1) to stack;
q=p-1;

while stack 6= ∅ do
Take(q, p) from stack;
Decompose{slopeq , slopeq+1, ..., slopep} into monotone
sequences;
Determine the last monotone sequence
{sloper, ..., slopep};
D = {D ∪ C

⌊ r+p

2
⌋
} ;

end

3.3.2. Complexity

The complexity of our method depends on the decomposition
of a curve into maximal blurred segments that can be done in
O(n log2 n) time [3]. The slope estimation of maximal blurred
segments is done in linear time. On the other hand, each maximal
blurred segment is considered at most twice while the curve is de-
composed into common zone of maximal blurred segments whose
slopes are monotone sequence. So, in this phase, the dominant points
are detected in linear time. Therefore the complexity of this method
is O(n log2 n).

4. EXPERIMENTAL RESULTS

The figures 4 and 5 show our obtained results and compare them
with other methods (see table I) on some classical criteria: number
of dominant points (nDP), compression ratio (CR), ISE error, max
error, and figure of merit (FOM). CR is the ratio between number
of curve points and number of detected dominant points, ISE is the
sum of squared perpendicular distance of the curve points from ap-
proximated polygon. As a low error of approximation leads to a low
ratio of compression, Sarkar [8] propose a FOM criterion to combine
these measures:FOM = CR/ISE.

Because FOM criterion is not suitable for comparation with dif-
ferent dominant point number, Rosin [9] proposed other criteria
to evaluate obtained result by comparing with the optimal result.

Fig. 4. Detected dominant points with default parameter (width=0.9). From

left to right: leaf, chromosome, semicircle curves.

He proposed 2 measures, fidelity for error measurement and effi-
ciency for compression ratio.Fidelity = (Eopt/Eappr) ∗ 100,
Efficiency = (Nopt/Nappr) ∗ 100 whereEappr andNappr are
respectively error and DP number of tested algorithm,Eopt is er-
ror of optimal algorithm with the same approximated DP num-
ber, Nopt is DP number of optimal algorithm with the same ap-
proximated error. The merit measure is based on these measures.
Merit =

√
Fidelity ∗ Efficiency. Our method is not as effi-

cient as the top 3 of the Rosin’s list [9], that contains 30 different
methods (see table II), but it is better than all others.

Moreover, our method also gives good results on noisy curves as
it can be seen on figure 6 and in the table hereafter. The noisy image
is created by using Kanungo model [10]:

Without noise, nPoint=338 With noise, nPoint=370
width ISE CR nDP width ISE CR nDP

1 62.22 7.51 45 2 262.68 11.21 33
2 203.25 12.52 27 3 506.62 16.09 23
3 424.65 17.79 19 4 878.72 20.56 18

5. CONCLUSION

We have presented a new method for dominant point detection. This
method utilizes recent results in discrete geometry to work naturally
with noisy curves. The width parameter permits to take into account
the noise present in the curve. For the future work, we will compare
our method with other methods that can also work with noisy curves.
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Shape Algo. Nd CR MaxE ISE FOM

Chro.

Proposed 13 4.61 0.742 5.853 0.798
Masood [13] 12 5 0.88 7.76 0.65
Shearer [16] 10 6 6.086 0.744

Wu [14] 17 3.53 0.64 5.01 0.704
Marji [11] 11 5.45 0.895 9.96 0.548

Teh [7] 15 4.00 0.74 7.2 0.556
Ansari [12] 16 3.75 2 20.25 0.185
Arcelli [15] 7 8.57
Sharkar [8] 19 3.16 0.55 3.857 0.819

Leaf

Proposed 23 5.217 0.74 11.52 0.4527
Masood [13] 23 5.217 0.74 10.61 0.49
Shearer [16] 22 5.46 13.06 0.418

Wu [14] 23 5.22 1 20.34 0.256
Marji [11] 22 5.45 0.78 13.21 0.413

Teh [7] 29 4.14 0.99 14.96 0.277
Ansari [12] 30 4.00 2.13 25.57 0.156
Arcelli [15] 16 7.50
Sarkar [8] 23 5.22 0.784 13.17 0.396

Semi.

Proposed 21 4.857 0.84 10.41 0.466
Masood [13] 19 5.37 1.00 23.9 0.23
Shearer [16] 13 7.85 22.97 0.342

Wu [14] 27 3.78 0.88 9.19 0.411
Marji [11] 18 5.67 1 24.2 0.234

Teh [7] 22 4.64 1 20.61 0.225
Ansari [12] 28 3.64 1.26 17.83 0.24
Arcelli [15] 10 10.20
Sarkar [8] 19 5.37 1.474 17.37 0.309

Table 1. Comparisons using Sarkar’s criteria

Method nDP ISE Fidel. Effi. Merit Rosin’s rank
Massod [13] 21 9.82 81.7 95.8 88.5 -

Proposed 21 10.41 77.07 90.47 83.5 -
Sarkar II [8] 20 13.65 66 78.9 72.2 4
Sarkar I [8] 19 17.38 57.8 73.7 65.3 6
Arcelli [15] 10 75.10 51.8 80.3 64.5 7

Teh [7] 22 20.61 34.0 59.2 42.4 17
Ansari [12] 28 17.83 18.8 49.1 28.8 26

Wu [14] 27 9.01 41.09 74.07 55.17 -

Table 2. Comparisons using Rosin’s criteria on semicircle curve

Fig. 6. From left to rigth : First line -Leaf image, segmentations for
width=2 and 3- Second line - segmentations of noisy curve [10]for width
= 2,3 and 4


