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FAST AND ROBUST DOMINANT POINTS DETECTION ON DIGITAL CURVES
Thanh Phuong Nguyen, Isabelle Debled-Rennesson

LORIA Nancy, Campus Scientifique - BP 239
54506 Vandoeuvre:-Nancy Cedex, France

ABSTRACT v maximal blurred segment, used in this paper, was proposed in [3]
A new and fast method for dominant point detection and polygonafdeduced from [1,2]). We consider a discrete cutve- {C'}i=1..n

representation of a discrete curve is proposed. Starting from resulfd N Points, let us recall that the predica;;, a set of points in-
of discrete geometry [1, 2], the notion of maximal blurred segmenf!€Xing from i tojinC' is a blurred segment of widt#t’ is noted by
of width v has been proposed, well adapted to possibly noisy and/oPS (i, 5, v).
not connected curves [3]. For a given width, the dominant points Obefinition 1

a curveC' are deduced from the sequence of maximal blurred Sedy. s called awidth » maximal blurred segment and noted
]

ments ofC in O(nlog®n) time. Comparisons with other methods MBS(i, j,v) iff BS(i,j,v) and—~BS(i,j + 1,) and—=BS(i —

of the literature prove the efficacity of our approach. 1,j,v)

Index Terms— corner detection, dominant point, critical point
An algorithm is proposed in [3] to determine the sequence of max-
1. INTRODUCTION imal blurred s_egmen_ts of wi_dth of a discrete curve’ of_ n poir_lts.
The complexity of this algorithm i©(n log? n). For a given width

The work on the detection of dominant points started from the re¥» the sequence of the maximal blurred segments of a diree-
search of Attneave [4] who said that the local maximum curvaturdirély determines the structure 6t
points on a curve have a rich information content and are sufficierk€t ¢ = {Ci}i=1..» be a discrete curve antf/ BS, (C) the se-
to characterize this curve. Therefore, these points play a critical rolguence of all maximal blurred segments of C, in whi(':hiﬂ.’iema?(-
in curve approximation, image matching and in other domains ofMmal blurred segmend/ BS(Bi, Ei, v), is a set of point indexing
machine vision. Many works have been realised about the dominaffom Bi to E;. We recall below two important properties [3].
point detection and an interesting survey is presented in [5]. Severf_\JrO
) - o X = perty 1

problgms have been identified in the dn‘fgrent approaches. time com-o MBS, (C) the sequence of widtlr maximal blurred seg-
pgtatnor_n number of parameters, selection of start point, bad reSUIFﬁents of the curve. Then,MBS,(C) = {MBS(Bi, E1,v),
with noisy curves, ... . . BS(By, Fa,v),....; MBS(By, Em,v)} and satisfiesB; <

In this paper, we present_a new fast and seguentlal mgthod |s§u«]%\§1]2 < .. <B,. Sowehavel < Es < ... < E,..
from theoretical results of discrete geometry, it only requires to fixe
one parameter, it is invariant to the choice of the start point and iProperty 2

works naturally with general curves : possibly being noisy or dis- gt 1,(1), R(k) be the functions which respectively return the indices

connected. It relies on the geometrical structure of the studied curvss the |eft and right extremities of the maximal blurred segments on
obtained by considering the decomposition of the curve into maXiyhe |eft and right sides of the poifit,. So:

mal blurred segments for a given width [3].

In section 2, we recall theoretical results of discrete geometry e Vk suchthatf;_; < k < E;, thenL(k) = B;
used in this paper to analyse a curve. The section 3 describes our
method for dominant point detection. Finally, the section 4 presents ® Yk suchthatB; < k < Biy1, thenR(k) = E;

experimental results and comparisons with other methods.
P P Thanks to Property 2 and the sequedd S, (C), it is easy to ob-

tain the left and right extremities of the widthblurred segments
starting from each point of the studied cu&e For each point M of
C, the widthv blurred segment between M and left (resp. right) ex-

The notion of blurred segment [2] relies on the notion of arithmetictremlty Is calledwidth » maximal left (resp. right) blurred segment

discrete line [6]. Anarithmetic discrete line, noted D(a, b, u, w), of this point (see Fig. 1).

is a set of points (x, y) that verifies this double inequatian:<

ar — by < p+ w with a, b, 4, w integer parameters. MAidth v 3. DOMINANT POINT DETECTION
blurred segment is a set of integer points which belong to a discrete
line D(a, b, 1, w) verifying Wahbl) < v. The notion ofwidth

2. DECOMPOSITION OF A CURVE INTO MAXIMAL
BLURRED SEGMENTS

We present here a new method for dominant point detection based on
theoretical results of discrete geometry (recalled in section 2) : the

This work is supported by the ANR in the framework of the GEODIB Sequence of maximal blurred segments of a curve permits to obtain
project, BLANO6-2 134999. important informations about the geometrical structure of the studied




Proof 2

Let us consider k successive widthmaximal blurred segments
which share the smallest common zone. Without loss of general-
ity, we assume that these k maximal blurred segments do not inter-
sect any other smallest zone. Suppose that there are k first maximal
blurred segments with the extremities beloiB:, E1), (B2, E2),
...(Bgk, Ex). Their slopes satisfylope; < slopes < ... < slopey

Fig. 1 Region of support basedFig. 2. Pink zone is not a com- (similarity to decreasing case). Due to Property 1, we must have:

on maximal left (pink points) and rightmon zone of successive maximal Bl < Bz <. < By By < B2 < .. < Ey. Because these max-
(blue points) blurred segments of M blurred segments imal blurred segments share the smallest common zone, we must

haveB;, < Ei. So, the smallest common zong[ By, E1]. By ap-
plying Property 2, the left and right extremities of the points of the
curve. The width of the maximal blurred segments permits to workk partial common zonesB1, Bz, [Be, Bs|, ... Bx, F1[ respectively
in different scales and permits to consider the noise present in there (B, , E1), (B1, E2),..(B1, Ex). The slopes of the left blurred
studied curve. The width is the only parameter uses in our methodsegments of the points of these partial common zones are always
equal toslope;. On the contrary, the slopes of the right blurred seg-
3.1. Dominant point and region of support (ROS) ments of the points of these partial common zones respectively are
slope1, slopea, ... sloper. By a similar way, we deduce that on
8the partial common zoné#:, Es],...| Ex—1, Ex], the slopes of the
right blurred segments of the points of these partial common zones
Definition 2 are equal taslopey, and the slopes of the left blurred segments re-
Widthr maximal left and right blurred segments of a point constitutespectively are equal tslopes, ... slopex. The ROS angle of the
its region of support (ROS) (see figure 1). The angle between thempints in the zongBy, E1) is equal to the angléslopes, slopes,)
called the ROS angle of this point. and this value is minimal for all the points indexed frdsa to Ej,
due to the hypothesis of the increasing slopes of maximal blurred

Remark 1 o _ _ segments. Therefore, this zone contains a candidate as dominant
The smaller the ROS angle of a point is, the higher the domlnan[_r)oim

character of this point is.

Deducing from [7], we propose in this section the notion of ROS th
is compatible with the blurred segment notion.

To eliminate the weak dominant point candidates, we use the fol-
gdowing natural property of a maximal blurred segment, due to the
shape of straight line of a maximal blurred segment and also due to
the property of corner of a dominant point.

This remark is deduced from the work [3], wherervature at
a point Cy, is estimated as inverse of the radius of the circumcircl
passing througld’;, and the extremities of its left and right width
maximal blurred segments. Therefore, we have a corollary of thi
remark: if the ROS angle of a point is neatl§0°, this point cannot

be a dominant point. Property 3

A maximal blurred segment contains at most 2 dominant points.

3.2. Relation between dominant points and maximal blurred

segments 3.3. Proposed algorithm

In this paragraph, we study the relation between position of domis-3-1- Algorithm

nant points and maximal blurred segments. We propose below a heuristic strategy for localizing the position of

Proposition 1 each dominant point candidatdeuristic strategy: In each smallest

A dominant point of the curve must be in a common zone of succe§2MMoOn zone of successive maximal blurred segments whose slopes

sive maximal blurred segments. are increasing or decreasing, a candidate as dominant point is de-
tected as middle point of this zone.

Proof 1 Let us consider a small-
Let us consider the points on the pink zone (see Fig. 2) which are est zone that satisfies this
not in a common zone of successive maximal blurred segments but - condition. This zone con-
which belong to one blurred segment. By applying the Property 2, tains a candidate as domi-
the left and right end points of the blurred segments of these points c nant point (cf. proposition
are also in the same blurred segment. The ROS angles of these points=" : 2). By using the property 1,
are nearlyl80°. Therefore these points are not candidates as domi- this zone must be the inter-
nant points. section of the first and the

Fig. 3. A dominant point is expected

Let us now consider the common zone of more than 2 successiVas center of smallest common zone.
maximal blurred segments.

last maximal blurred seg-
ments in the set of succes-
sive maximal blurred seg-
Proposition 2 ments that share this zone (see Fig. 3). We recall that each point
The smallest common zone of successive widtaximal blurred in this zone has the same region of support. We then propose to lo-
segments whose slopes are increasing or decreasing contains a catate the candidate as dominant point that has geometric properties
didate as dominant point. close to the expected corner point. So, the candidate as dominant



point is detected aiddle point of the partial curve corresponding
to this zone.

Based on the above theoretical framework and using the heuris-
tic strategy above, we present hereafter our proposed algorithm for
dominant point detection. It is decomposed into two parts :

e the scan of the interesting common zones of maximal blurred ¥ *e

segments according to the Proposition 2 and the Property 3, .
Fig. 4. Detected dominant points with default parameter (width=0em

e the detection of dominant points in common zones of succeskeft to right: leaf, chromosome, semicircle curves.
sive maximal blurred segments whose slopes are increasing or
decreasing.

He proposed 2 measures, fidelity for error measurement and effi-
Algorithm 1: Dominant point detection ciency for compression ratioFidelity = (Eopt/FEappr) * 100,
Efficiency = (Nopt/Nappr) * 100 where Eqppr and Noppr are
respectively error and DP number of tested algorittiig,: is er-
ror of optimal algorithm with the same approximated DP num-

Data: C discrete curve ofi points,v width of the segmentation
Result D set of extracted dominant points

beglréu"d MBS, — (MBS(Bi, B, )7y, {slope:} ™, ber, No,: is DP number of optimal algorithm with the same ap-
m=|MBS,|;p=1,q=1,D=0; proximated error. The merit measure is based on these measures.
while p < m do Merit = +/Fidelity « Ef ficiency. Our method is not as effi-
while E; > By dop + +; cient as the top 3 of the Rosin’s list [9], that contains 30 different

Add (¢, p — 1) to stack;
L 9=p-1;
while stack # () do
Take(q, p) from stack;
Decompose slopeq, slopeqy1, ..., slopey } into monotone

methods (see table II), but it is better than all others.

Moreover, our method also gives good results on noisy curves as
it can be seen on figure 6 and in the table hereafter. The noisy image
is created by using Kanungo model [10]:

sequences; i i _ _ ' _
Determine the last monotone sequence Without noise, nPoint=338 With noise, nPoint=370
{sloper, ..., slopep }; width ISE CR nDP || width ISE CR nDP
D={Du CLMJ} : 1 62.22 | 7.51 45 2 262.68 | 11.21| 33
L 2 2 203.25| 12.52 | 27 3 506.62 | 16.09 | 23
end 3 424.65 | 17.79 | 19 4 878.72 | 20.56 | 18
3.3.2. Complexity 5. CONCLUSION

The complexity of our method depends on the decompositiotWe have presented a new method for dominant point detection. This
of a curve into maximal blurred segments that can be done imnethod utilizes recent results in discrete geometry to work naturally
O(nlog®n) time [3]. The slope estimation of maximal blurred with noisy curves. The width parameter permits to take into account
segments is done in linear time. On the other hand, each maximé#ie noise present in the curve. For the future work, we will compare
blurred segment is considered at most twice while the curve is desur method with other methods that can also work with noisy curves.
composed into common zone of maximal blurred segments whose

slopes are monotone sequence. So, in this phase, the dominant points 6. REFERENCES
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(g) Arcelli [15] (h) Sarkar [8] (i) Shearer [16] Sarkar [8] 19 5.37 1474 | 17.37 | 0.309
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Table 2. Comparisons using Rosin's criteria on semicircle curve

Fig. 6. From left to rigth : First line -Leaf image, segmentations for
width=2 and 3- Second line - segmentations of noisy curve faOidth
=2,3and4



