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Drop fragmentation on impact

E. VILLERMAUX† AND B. BOSSA

IRPHE, Aix-Marseille Université, 13384 Marseille CEDEX 13, France

We address the sequence of events accompanying the transition from an initially
compact volume of liquid – a drop – into dispersed fragments when it impacts a solid
surface. We describe the change of topology of the drop to a radially expanding sheet
and discuss the reasons of its rim destabilization, responsible for the emergence of
radial ligaments which ultimately fragment into smaller drops. The dynamics ruling
the radius of the sheet, its stability and the resulting fragment drop size distribution
are documented experimentally. The radius dynamics results from a simple balance
between inertia of the initial drop and capillary restoring forces at the rim, with
damping due to the continuous transfer of momentum from the sheet to the rim.
The ligaments expelled from the rim originate from a Rayleigh–Taylor mechanism
localized at the rim. The final drop size distribution in the spray is shown to be
a linear superposition of gamma distributions characteristic of ligament breakup,
leading generically to Bessel functions.

Key words: aerosols/atomization, instability

1. Introduction

The change of topology of an initially compact liquid volume into a set of
ligamentary structures, mandatory for subsequent breakup into smaller drops, is
often enforced by an impact, either with a directed source of momentum or with
a solid surface. Indeed, an obvious manifestation following the splash of a drop
on a solid surface, on a thin layer of the same (Worthington 1908) or a different
liquid (Thoroddsen, Etoh & Takehara 2006), is the formation of fingers and the
eventual breakup of ligaments into drops. Since da Vinci contemplated the imprint of
a drop crushed on a sheet of paper, the phenomenon has been a continuous source
of amazement, ever renewed by the technological progress allowing it to be imaged
(figure 1).

Most of the attention has however been devoted to describe the kinematics of the
drop spreading as it flattens, its maximal radial extension and the number of fingers
emerging from the resulting celebrated Worthington–Edgerton crown (Yarin 2006).
Data on the fragmentation following the binary collision of drops, or their impact on
a solid, are nevertheless scarce, and this is in spite of the relevance of the phenomenon
to many natural and industrial processes (Villermaux 2007), some of which occurring
at the scale of miniaturized ink jet printers up to that of the solar system (Stern et al.
2006).

† Also at Institut Universitaire de France, 75005 Paris, France. Email address for correspondence:
villermaux@irphe. univ-mrs.fr
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(a)
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Figure 1. (Colour online) (a) Crushing of a water drop falling on a flat dense substrate.
Drawing in the margin of folio 33r in the Codex Hammer (previously Codex Leicester,
1506–1510) by Leonardo da Vinci (1508) who notes there the axisymmetry of the impacted
drop imprint pattern. Radial fingers are also visible. (b) A dramatic and neat illustration
of the phenomenon discussed in the present paper: a train of drops drip into a glass of
milkshake; a drop ‘impales’ on the jet emerging from the collapsing cavity formed by the
previous drop. The expanding liquid sheet and rim drops are clearly visible. © Irene Müller
(2006, http://www.pbase.com/daria90), by kind permission.

Among the relevant studies documenting fragmentation on impact are those of
the following: Ashgriz & Poo (1990) and Qian & Law (1997), who quantified
the conditions for coalescence or satellite formation in binary collisions of drops;
Stow & Stainer (1977), who measured the number of fragments of a water drop
colliding with various solid surfaces, dry, wet, smooth and rough, and measured
their size distribution; Mundo, Sommerfeld & Tropea (1995), who performed similar
measurements with liquids of different surface tension and viscosity; Yarin & Weiss
(1995), who measured the fragment size distributions of a drop impacting a shallow
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layer of the same fluid; Roisman, Horvat & Tropea (2006), who made various
measurements on the spray resulting from an impact on a dry solid; and Xu, Barcos
& Nagel (2007), who singled out the importance of the solid surface texture and
ambient gas conditions on splashing and the resulting fragments’ distribution. As for
all fragmentation processes, a broad collection of fragment sizes is produced following
drop impact, with a typical positively skewed size distribution presenting many small
drops and few larger drops. The status of this distribution however remains obscure,
and in spite of these notable progresses, the remark made by Stow & Stainer (1977,
p. 518) more than 30 years ago is thus still largely topical:

Almost without exception, recent investigations of splashing have concentrated on the observation of the

hydrodynamics of the impact itself with little or no attention being paid to the final consequences of the

event.

We may add that it is also conversely true that investigations documenting the ‘final
consequences of the event’, namely the atomized products, usually pay little attention
to the hydrodynamics of the initial deformation of the drop itself, nevertheless
obviously responsible for the ultimate fragmentation process. The present paper is an
attempt to establish this lacking link between the deterministic fluid mechanics and
the statistical facets of the fragmentation process, a question ubiquitous in nature, far
beyond the context of impacts.

We thus address here the complete sequence of events accompanying the transition
from an initially compact drop into dispersed fragments when it impacts a solid
target matching its own size, a configuration pioneered by Rozhkov, Prunet-Foch &
Vignes-Adler (2002, 2003, 2004). We describe the change of topology of the drop to a
radially expanding sheet (§ 3), and having understood its kinematics, we speculate on
the reasons of its rim destabilization (§ 4), from which radial ligaments emerge. These
ligaments ultimately fragment into smaller drops distributed in size according to a
well-defined distribution. The construction mechanism of the drop size distribution
in the overall spray is established experimentally (§ 5).

2. Set-up and chronology

We let a water (density ρ = 103 kg m−3, surface tension σ = 70 × 10−3 Nm−1,
viscosity ν =10−6 m2 s−1) or ethanol (density ρ =810 kgm−3, surface tension
σ = 22 × 10−3 Nm−1, viscosity ν =1.52 × 10−6 m2 s−1) drop of diameter d0 = 6 mm fall
on the section of a solid iron cylinder with the same diameter. The drop is injected
from an orifice that is 6 mm in diameter and is connected to an elevated plenum,
and the falling height ranges from 5 to 130 cm. The experiment is conducted in a
room safe from draughts to realize repeated centred impacts. A tube confining the
drop trajectory is used for this purpose. The injection velocity is monitored to obtain
6mm drops in all cases. The impacting velocity of the drop u0 is set by varying both
the injection velocity and the height of fall. The velocity ranges from 1 to 13 m s−1

(higher velocities cause the drop to deform in air and burst; see e.g. Villermaux &
Bossa 2009 and the references therein) such that the Weber number

We =
ρ u2

0 d0

σ
(2.1)

varies typically from 102 to 104, whereas the Reynolds number u0d0/ν ranges from
103 to 105. The impactor is mounted on a translucent floor lit from below, and the
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impact is recorded from the top at a weak parallax angle by a Phantom V5 camera
operating at 1000 images s−1 and a resolution of 1024 × 1024 pixels.

Upon impact, the drop flattens into a radially expanding sheet which impales on
the impactor while remaining attached to it in r = r0, as seen in figures 2 and 3 . The
impacted cylinder is fitted with a thin brass jacket to control the sheet ejection angle
with respect to the solid cylinder axis (see Clanet & Villermaux 2002 for details) and
is kept at right angle in the present study. The present set-up is the discrete version
of the one initially studied by Savart (1833) with a continuous liquid jet and used in
the context of drop impacts by Rozhkov et al. (2002, 2003, 2004). That configuration,
where the sheet expands freely in a light environment at rest (namely ambient air),
was chosen deliberately in order to avoid any interaction with solid wall, such as the
formation of a viscous boundary layer. It does not remove the possible interaction
with the surrounding gaseous environment, notably important when the drop expands
over a solid surface (Xu et al. 2007) which is, we believe, unessential in the present
case for reasons discussed below.

The chronology of the drop fragments’ transformation, illustrated in figure 2, is as
follows: the drop crushes on the impactor and feeds a radially developing sheet of
radius R(t), first expanding and then recoiling. The crushing time d0/u0 (2 × 10−3 s
typically) is smaller than the typical time τ over which R(t) varies (2 × 10−2 s typically)
so that the details of drop deformation when it hits the solid are essentially decoupled
from the subsequent dynamics of the sheet itself, when all the liquid initially contained
in the drop is constitutive of the sheet. The average sheet radius increases up to a
maximal value Rmax which depends on u0, while the sheet rim corrugates. These
corrugations are the base for radial ligaments which, at the moment the sheet has
been pierced by the impactor (second to last frame in figure 2) from which a hole
opens and reaches the corrugated rim, collect most of the initial liquid drop and
break to form stable drops. The overall transformation from the initial drop to stable
fragments is completed shortly after the sheet rim has started to recede (i.e. when
Ṙ(t) < 0). The drop sizes were measured using the algorithm described in Marmottant
& Villermaux (2004), and their distribution for the given conditions resulted from the
accumulation of typically 10 impacts, representing typically 1000 resolved drops.

3. Expansion dynamics

Willing to achieve a transparent conclusion through a tractable analysis, we must
deal with two a priori antagonist aspects of the phenomenon:

(i) It is clear that a spherical drop deposited on a surface at zero velocity keeps
its shape and that its initial radius r0 is not affected (provided it is small enough to
disregard gravity). Hence, the effect of an impact at velocity u0 results for R(t) − r0

in a correction F (u0, t, σ, . . .) which must vanish for u0 → 0. In other words, the
expanded drop radius R(t) must in the end be written as follows:

R(t) = r0 + F (u0, t, σ, . . .). (3.1)

(ii) The interesting case is obviously not the limit u0 → 0 but rather when the
effect of the impact results in a strong shape change with a maximal radius extension
Rmax ≫ r0. In that case, the liquid constitutive of the drop shapes into a radially
expanding sheet, whose typical thickness h is such that the aspect ratio h/R is
very small, thus legitimating a slender-slope description. This limit is, in addition,
what makes the problem easily tractable, but the final result should be compatible
with (3.1).
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Figure 2. Sequence of events of the drop fragments’ transformation following the drop (visible
in the first image) impact on a target of the same diameter d0 =6 mm. The liquid is ethanol,
and the Weber number is We = 1200. The time interval between the pictures is 1/500 s.
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d0

h(r, t)

R(t)

r

(b)(a)

Figure 3. (Colour online) (a) A water drop just before it impacts the target of the same
diameter 2 r0 = d0 = 6 mm. Also visible is the confining tube used to prevent residual draughts
from altering the drop trajectory. (b) Side view of the expanding sheet impaling on the
impactor, 25/3000 s after the impact of the drop for We = 1800, and definitions of the sheet
thickness h(r, t) and radius R(t). The velocity u(r, t) is the radial velocity in the sheet plane.

We call u(r, t) and h(r, t) the radial velocity and thickness of the expanding drop
(figure 3), for which we write the Euler equation in the slender-slope approximation
(|∂rh(r, t)| ≪ 1):

ρ(∂tu + u∂ru) = −∂rp, (3.2)

r∂th + ∂r (ruh) = 0, (3.3)

where p(r, t) is the pressure in the liquid. We do not consider any interaction with
the surrounding gaseous environment in which it expands (see § 4.4). An additional
Trouton viscosity term (Trouton 1906; Taylor 1961)

6η ∂r (hr ∂ru)/(hr), (3.4)

suitable for a biaxially stretched sheet, can be added to the right-hand side of (3.2)
to account for viscous stresses in the liquid, which we neglect owing to the high value
of the Reynolds number in the present case. A steady-state axisymmetric solution
of (3.2) and (3.3) relevant to a continuous jet impacting a solid target is u(r) = u0

and h(r) = d2
0/8r , expressing global mass conservation and the conservation of energy

carried by fluid particles from the jet to any radial location in the sheet (Clanet &
Villermaux 2002). An impacting drop will produce a similar expanding sheet but with
an a priori unknown injection rate; by extension, we thus seek for a time-dependent
solution of the form

h(r, t) =
f (t)

r
(3.5)

which, owing to (3.3) with the sheet remaining attached to the impactor as it expands
and impales on it, that is u(r0, t) = 0, implies

u(r, t) = − ḟ

f
(r − r0), (3.6)

where ḟ denotes df (t)/dt . The fact that the (Eulerian) radial velocity in the sheet
is an increasing function of r is consistent with figure 4 which shows how two
initially close particles separate in time while keeping their initial (Lagrangian) radial
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Figure 4. (Colour online) (a) Evidence for the radial dependence of the velocity u(r, t): two
initially nearby particles (smoke dust introduced in the liquid prior to drop formation) in the
sheet separate along r as time elapses; We = 800, and time interval between the pictures is
2/3500 s. (b) Time evolutions of the sheet radius R(t) (black dots) and of the position r(t) of a
tracer particle in the sheet close to its edge and before it is incorporated in the rim (red dots),
recorded simultaneously at We = 103. The black line represents r(t) =u0t .
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u(R, t) Ṙ(t)

r0

m(t)

R(t)

Figure 5. Sketch of the rim with mass per unit arclength, m(t), attached to the sheet with
velocity u(r, t) and radius R(t), used for the mass and momentum balances.

velocity as the sheet expands, an observation also made by Rozhkov et al. (2004)
(see the discussion above (3.15)). The net radial flow rate transported along the sheet,
Q(r, t) = 2πrh(r, t)u(r, t) ∼ rḟ , is thus expected to increase with r and to depend on
time, by contrast with other choices made by Yarin & Weiss (1995) and Rozhkov
et al. (2004); the latter authors postulated Q(r) ∼ 1/r , independent of time, leading
(see the discussion below (3.19); see also Appendix A) to very different trends for
h(r, t). Note that the viscous term in (3.4) identically cancels with the forms we have
chosen for h(r, t) and u(r, t).

The solution for f (t) is constrained by two additional conditions which express that
the radially expanding fluid particles are arrested at some distance from the impact
point R(t) by capillary confinement and that they feed the sheet rim at which they
progressively all collect (see e.g. figure 4). If Ω = πd3

0/6 is the initial drop volume, the
liquid volume constitutive of the sheet at time t is

∫ R

r0

2πrh(r, t) dr = Ω −
∫ t

0

2πR(t)(u(R, t) − Ṙ)h(R, t) dt, (3.7)

where the second term on the right-hand side of is the net volume accumulated at
time t on the rim. Momentum conservation at the rim whose mass per unit arclength
is m(t) is written (see figure 5) according to a system familiar in the propulsion context
(Tsiolkovsky 1903):

d

dt
(mR · Ṙ) = qu(R, t) R − 2σ (R − r0), (3.8)

q = ρh(R)(u(R, t) − Ṙ) (3.9)

with

q =
1

R

d

dt
(mR) (3.10)

in axisymmetric coordinates. Equation (3.8) expresses that the rate of change of the
rim inertia is equal to the sum of the momentum it absorbs plus the net force acting
on it. The velocity u(R, t) is that of the liquid in the sheet at r = R(t) in the Galilean
reference frame of the laboratory. The force term 2σ (R − r0) incorporates the initial
drop radius r0 and vanishes when R = r0; indeed, the net force acting on an immobile
drop of radius r0 is zero, in compliance with constraint (3.1). Equations (3.9) and
(3.10) express the conservation of mass. It will be shown below (see § 4.2) that mR̈
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can be neglected because | ˙(mR)/mR| ≫ |R̈/Ṙ| for all times. Thus, (3.8) amounts to

ρh(R)(u(R, t) − Ṙ)2 = 2σ

(

1 − r0

R

)

, (3.11)

reminiscent of Culick’s law (Culick 1960). Using (3.5) and (3.6) for h(r, t) and u(r, t),
one gets from (3.7) and (3.11)

f (t)[R(t) − r0] =
Ω

2π

(

1 − t

τ

)2

(3.12)

with

τ =

√

ρ Ω

πσ
. (3.13)

Integrating the momentum equation (3.2) between r = r0 and r = R(t) with (3.6) for
u(r, t) yields

(R(t) − r0)
2

2

(

− f̈

f
+ 2

(

ḟ

f

)2
)

= − 1

ρ
{p(R, t) − p(r0, t)} . (3.14)

The pressure in the liquid is the ambient pressure patm, taken as independent
of r , since we disregard any interaction with the ambient medium as well as
viscous stresses, plus a correction, owing to Laplace law, accounting for the liquid
interface curvature. That curvature is weak and decays in time for most of radial
location r <R(t), where it is of the order of ∂2h/∂r2 ≈ Ω/R4. The liquid interface
curvature is comparatively larger at the sheet rim, but there, recirculation motions
dissipate energy in a way that the internal pressure is not likely to increase
compared with its value in the quasi-planar sheet attached to it, as discussed in
Appendix B. The pressure in the liquid is thus essentially constant along r , that is
p(R, t) ≈ p(r0, t).

The absence of pressure gradient along r induces a ballistic motion of the fluid
particles. Equation (3.14) with the right-hand side set to zero is indeed a reformulation
of u(r, t + δt) = u(r − δr, t), expressing velocity conservation, or equivalently of (3.2)
for ∂rp = 0, with δr/δt = u(r, t) given by (3.6). It is consistent with the observed fact
that tracer particles indeed keep their initial velocity while travelling along the sheet
(figure 4). Under this assumption, which cancels the right-hand side of (3.14), and
using (3.13), one gets

R̈ +
6

(τ − t)2
(R − r0) +

4

τ − t
Ṙ = 0. (3.15)

Equation (3.15) interestingly shows that the nonlinear dynamics of (3.2) and (3.3)
leads to a linearly damped oscillatory motion of the sheet radius, with time-dependent
frequency and damping factor. This dynamics expresses a simple balance between
inertia (that of the initial drop) and capillary restoring forces (through Culick’s law),
the damping term originating from the continuous transfer of momentum from the
sheet to the rim.

For times of the order of d0/u0 ≪ τ , the radial velocity of the fluid particles at
the impactor edge in r0 = d0/2 is u0, as seen in figure 4 and as expected from energy
conservation along the curved streamline going from the heart of the crushing drop to
the expanding sheet (this result also holds for the continuous Savart case; see Clanet
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Figure 6. (Colour online) Sheet radius evolution as a function of dimensionless time t/τ for
three different impact Weber numbers, We = 489 ( ), 1378 ( ) and 2873 ( ), superimposed with
the trajectory expected from (3.16). The insert shows the dependence of the maximal sheet
extension Rmax on the Weber number. The line represents (3.18).

& Villermaux 2002). Thus with R(0) = r0 and Ṙ(0) = u0, the radius of the expanding
drop is expected to be

R(t) − r0

r0

=

√

2

3

√
We

t

τ

(

1 − t

τ

)2

, (3.16)

describing an asymmetric one-period oscillatory motion which fits well the observed
trajectories for different Weber numbers (figure 6) and which lasts for

τ =

√

ρ d3
0

6 σ
. (3.17)

This period is proportional to the Rayleigh time characteristic of drops oscillating
slightly around their spherical stable shape, a time scale holding also, at least in
scaling dependencies, for even larger deformations, as noticed earlier about drops
impacting a hydrophobic surface (Richard, Clanet & Quéré 2002) or a solid above
the Leidenfrost temperature (Watchers & Westerling 1966). The trajectory R(t) is
usually found to be much more asymmetric when the drop impacts a solid surface
(Chandra & Avedisian 1991; Bartolo, Josserand & Bonn 2005) because the viscous
stress at the wall slows down the recoil period.

The maximal amplitude of the motion is reached for t/τ = 1/3 and is

Rmax − r0

r0

=
4

27

√

2

3

√
We ≈ 0.12

√
We, (3.18)

a law fitting the observed maximal radii not only in scaling dependencies (see also
Chandra & Avedisian 1991; Roisman, Riobo & Tropea 2002; Rozhkov et al. 2002,
2004; Mehdizadeh, Chandra & Mostaghimi 2004; Ukiwe & Kwok 2005) but also
quantitatively, including the prefactor (the insert of figure 6). Note that Rmax = r0 for
We → 0, as it should for a small drop (not deformed by gravity) deposited gently on
a solid surface (consistently, R̈ = 0 for R = r0 and Ṙ = 0 in (3.15)).

10

https://doi.org/10.1017/S002211201000474X


The trajectory R(t) in (3.16) together with (3.13) thus provides a representation for
the motion within the sheet u(r, t) and for its thickness h(r, t) as

u(r, t) =
r

t
, h(r, t) ∼ Ω

u0 rt
, (3.19)

giving a carried flow rate Q(r, t) = 2πrh(r, t) ∼ Ωr/(u0t
2). The flow description in

(3.19) is at odds with the one in Rozhkov et al. (2004) who, postulating Q(r) ∼ 1/r

and ballistic motion along r , obtained u(r, t) ∼ r/t and h(r, t) ∼ t/r3. That description
which, unlike the present one, also incorporates several adjustable parameters offers
a much poorer agreement, as it overestimates the radius trajectory R(t) at late times,
a consequence of the presumed increase in sheet thickness in time. The flow in (3.19)
is also different from the one in Yarin & Weiss (1995) who, from a different approach
(see also Appendix A), arrive at u(r, t) ∼ r/t and h(t) ∼ 1/t2.

A few final remarks are in order:
(i) The consistency of the present model for R(t) is ensured by the large value of

the Weber number
√

We ∼ τ/(d0/u0) expressing the time scale separation between the
liquid reorganization at the impact that we do not describe (lasting d0/u0) and the
comparatively long inertia–capillary expansion and recoil dynamics of the deformed
drop (lasting τ ).

(ii) The present solution is highly dissipative. Indeed, from a naive global
energy conservation (1/2ρu2

0πd3
0/6 ∼ 2σπR2

max), it would be expected that

Rmax/r0 ∼ √
We/6 ≈ 0.4

√
We, an extension much larger than the real one in (3.18).

Dissipation does not occur at the impact location, nor in the sheet, whose motion
is conservative, but at the rim where all the incoming kinetic energy of the particles
absorbed in the rim is basically dissipated (see Appendix B).

(iii) Gravity, although responsible for accelerating the drop up to its impacting
velocity u0, is subdominant in the dynamics for R(t). The typical acceleration (in the
sheet plane) is of order u0/τ , and denoting Fr = u2

0/(g d0) the Froude number, one
has

u0

gτ
=

Fr√
We

= O(102). (3.20)

The radius trajectories are interrupted at t/τ ≈ 0.6 because the rim has destabilized
(figure 6). The parameters needed to understand this destabilization kinetics are those
describing R(t) according to (3.16), as shown below.

4. Stability and ligament formation

As the sheet expands, its border gets more corrugated (figure 7). We denote ξ the
amplitude of the corrugation, which depends on time t and the azimuthal location
along the rim θ . In a local frame tangent to the rim, we have in a planar approximation
ξ ∼ eikx−iωt with x = Rθ , valid for kR ≫ 1. Corrugations grow on their own, but the
natural length scale to measure the growth of the amplitude ξ is the sheet radius R

itself: the destabilization of the sheet has occurred when the corrugations of its edge
represent a substantial fraction of its radius. With that reference scale, the growth of
the amplitude is written as (see also Tomotika 1936 in the context of stretching jets)

d

dt
ln

(

ξ

R

)

= − Ṙ

R
+ Re(−iω), (4.1)
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R + ξ

b

(b)(a)

Figure 7. (Colour online) (a) Rim destabilization and the amplitude of corrugation, ξ . (b)
Superimposed pictures of the sheet taken at constant time interval, showing sheet radius
slowing, rim destabilization, rim diameter b constancy and wavenumber stretching.

where Re(−iω) is the growth rate of the instability responsible for the rim
corrugations; it has to be large enough to overcome the geometrical damping −Ṙ/R,
for ξ to increase.

4.1. A global Rayleigh–Taylor mechanism is unlikely

The particles close to the sheet rim are part of an ever-decelerating density interface.
This situation, as noted by Simpkins & Bales (1972), Allen (1975), Kim, Feng &
Chun (2000) and others, may be unstable in the sense of Rayleigh–Taylor, since the
associated body force, if present, would be pointing towards the light medium (namely
the surrounding gas).

However, there is, according to the solution for R(t) derived above, no pressure
gradient along r at all and hence no net body force. Indeed

∂rp = −ρ

(

− f̈

f
+ 2

(

ḟ

f

)2
)

r (4.2)

= 0, (4.3)

since (3.14) with p(R, t) =p(0, t) cancels the right-hand side of (4.2). The expansion
and recoil dynamics is essentially made at constant pressure, the inertia of the liquid
being balanced by a restoring force concentrated at the rim edge, according to
Culick’s law. Further arguments discussed in Appendix B suggest that the dissipation
in the rim, although the fluid is arrested there, prevents its internal pressure to
increase appreciably (in a Galilean frame; see however § 4.3). Thus, although its rim is
decelerating for most of its development period (R̈(t) < 0), a global Rayleigh–Taylor
instability of the expanding sheet is unlikely, because most of the liquid in the sheet
does not feel this deceleration which only affects the fluid particles in the rim and
where the instability takes place, as explained in § 4.3.

4.2. Fast capillary destabilization of the rim

The rim becomes rapidly thick compared with the sheet to which it is attached. It is
gradually fed by more incoming liquid from the sheet (the difference u(R, t) − Ṙ(t)
is always positive; see e.g. figure 4); it is also stretched, since it borders a frontier
expanding like R(t). By the combination of these two effects, its diameter b (figure 7)
reaches an equilibrium value. The volume accumulated in the rim is such that

12

https://doi.org/10.1017/S002211201000474X


100 300 1000 3000 10 000
0.05

0.10

0.20

0.30

0.50

1.00

We

〈d
〉/

d
0

〈ξ
2
〉/

R
2

–1/4

1 2 3 4 50

0.1

0.2

(R–r0)/r0
b
/d

0

0 0.1 0.2 0.3 0.4 0.5 0.6
0.0001

0.0003

0.0010

0.0030

0.0100

0.0300

0.1000

t/τ

(a) (b)

Figure 8. (Colour online) (a) Average fragment drops’ diameter 〈d〉 as a function of the
impacting Weber number; d0 = 6 mm. The insert shows the rim diameter b scaled by the initial
drop diameter d0 as a function of current radius R(t) for We = 1200. (b) Time evolution of
the rim corrugations scaled by the sheet radius 〈ξ 2〉/R2 for different impact Weber numbers,
We =490 (�), 960 (�), 1400 (�), 2460 (�, �). The red line indicates exponential growth.

(see (3.7))

π
2

2
b2R = Ω −

∫ R

r0

2πrh(r, t) dr, (4.4)

providing

π
2

2
b2R = Ω(1 − (1 − t/τ )2) ≈ 2Ωt/τ. (4.5)

With R ∼
√

We t/τ (1 − t/τ )2 ≈
√

We t/τ on the same time interval in the growth
period, one anticipates that

b ∼ d0 We−1/4 (4.6)

independent of time, as seen in figure 8. The rim is likely to destabilize by
fluid rearrangements driven by capillarity, in a way similar to a Plateau–Rayleigh
mechanism (see e.g. Bremond & Villermaux 2006). The associated time scale of this
capillary instability is

τc ∼
√

ρ b3

σ
∼ τ We−3/8 ≪ τ, (4.7)

much smaller than the overall sheet–drop transition period τ and soon also smaller
than the stretching time R/Ṙ ∼ t which therefore does not affect its development as
soon as t/τ >We−3/8. Note that the rim mass per unit arclength, m ∼ ρb2, is constant,
thus supporting the assumption leading to (3.11).

4.3. Radial expulsion from the rim

The fast destabilization of the rim accounts for the corrugations soon visible at the
sheet edge. However, the sheet ultimately fragments via the formation of ligaments
which are ejected radially in the plane of the sheet, in a way very similar to the
Edgerton crown phenomenology. The origin of this ‘radial expulsion’ has yet to be
understood.

The pressure is constant along the sheet up to r = R(t) even with R̈ 
= 0. It would
remain essentially constant in the rim too if the acceleration R̈ were zero (see
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Appendix B). But since the rim sits in a decelerating frame, an associated body
force proportional to −ρR̈ exists, which pushes the fluid particles constitutive of the
rim radially outward. This force, which originates in the non-Galilean character of
the rim motion, induces a Rayleigh–Taylor-like mechanism, but localized at the rim.

With an acceleration in the plane of the sheet −R̈, the growth rate of perturbations
of the rim location with wavenumber k reads, in the planar approximation and in the
infinite depth limit (i.e. when k R ≫ 1; see Bremond & Villermaux 2005),

ω2 = R̈k +
σ

ρ
k3 (4.8)

with R̈ < 0, which also reads

ω2 = − R̈

a
(−ka + (ka)3) (4.9)

with a =
√

σ/ρ (−R̈). The perturbations are themselves carried by fluid particles which
separate geometrically during the sheet expansion (see figure 7 and Thoroddsen &
Sakakibara 1998) so that a wavenumber k0 on the rim at, say, R = r0 will be stretched
by the base flow according to

kR = k0r0. (4.10)

The instantaneous growth rate of an initial perturbation of wavenumber k0 is thus

ω2 = − R̈

R
k0 r0

(

−1 + (k0r0)
2 a

R

)

. (4.11)

The net gain of a perturbation with initial wavenumber k0 results from the integration
of the above instantaneous growth rate with the known temporal dependencies
of R(t) and R̈(t) (see e.g. Eggers & Villermaux 2008). It is however clear that a
perturbation amplitude ξ (k0, t) with k0r0 = O(1) has a growth rate proportional to

Re(−iω) ≈
√

−R̈/R and that, according to (4.1), it will grow like

d

dt
ln

(

ξ

R

)

= − Ṙ

R
+

√

−R̈

R
. (4.12)

Figure 8 shows the time dependence of the mean squared amplitude 〈ξ 2〉. The local
radius is R + ξ , as shown in figure 7, and the brackets stand for an average over the
radial positions θ at a given instant of time. Obviously, 〈ξ〉 =0. The perturbation
amplitude relative to R first decays because of the intense stretching at short time
(Ṙ/R ∼ 1/t) and then grows. The stretching vanishes close to the maximal sheet
extension when Ṙ = 0. At that time (t/τ = 1/3), the deceleration of the rim R̈ is such
that

R̈

R
= −27

2

1

τ 2
, (4.13)

leading to a growth of the radial ligaments amplitude independent of the impacting
velocity. The growth of the rim indentations is thus ruled by the same time scale τ

as the one ruling the sheet expansion itself, explaining why the sheet rim breaks in
a time (of the order of t/τ ≈ 0.6), independent of the Weber number. The optimal
wavenumber making ω2 extremum is

kc ∼ 1

a
=

√

R

Ω
, (4.14)
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providing

kc d0 ∼ We1/4, (4.15)

close to the maximal sheet extension in R = Rmax ∼ d0We1/2 where the damping
−Ṙ/R is zero. The corresponding wavelength coincides, at least in law, with the
one arising from the capillary destabilization of the rim whose diameter b is given
by (4.6). Interestingly, the unstable capillary corrugations of the rim are ‘expulsed’
at a wavelength matching their own wavelength, explaining why it is so difficult to
decipher between the two kinds of instabilities in practice (see Bremond & Villermaux
2006; Roisman et al. 2006; see also the discussion in Krechetnikov 2010). Since they
are expelled from the rim close to the maximal sheet extension, the number N of
ejected ligaments is expected to scale as

N ∼ kcRmax ∼ We3/4, (4.16)

a scaling consistent with our observations and with the one found for drops impacting
a solid surface (Marmanis & Thoroddsen 1996). The measurements of Cossali, Coghe
& Marengo (1997) exhibit, however, a weaker dependence on We. Not surprisingly,
this characteristic size also sets the average drop size in the resulting spray,

〈d〉 ∼ d0 We−1/4, (4.17)

for those arising from the breakup of corrugated ligaments whose transverse size is
b, as seen in figure 8.

4.4. Interplay with ambient air

A liquid sheet expanding in an environment (air in the present case) at rest is known
to interact with it (Squire 1953). That interaction, of a Kelvin–Helmoltz type, confers
to the sheet a flapping motion around a wavelength λ, equilibrating air inertia ρau

2
0

if u0 is the characteristic velocity difference between the in-plane motion of the sheet
and its surroundings, and capillary restoration forces σ/λ. Here, the prefactors matter
and we keep them (see Villermaux & Clanet 2002 for the mode selection in a radially
expanding sheet with a thickness profile h(r) ∼ 1/r):

λ =
10πσ

ρau
2
0

. (4.18)

This instability is likely to develop and therefore alter the sheet dynamics if at
least one wavelength λ exists within, say, the radial interval between r = 0 and
r = Rmax ≈ 0.12 (d0/2)We1/2. The condition λ<Rmax is fulfilled above a critical Weber
number We⋆ such that

We⋆ =

(

20π

0.12

ρ

ρa

)2/3

≈ 5 × 103 (4.19)

for a water droplet expanding in air at atmospheric pressure. This Weber number is
close to the largest values investigated in this study so that the presence of an external
medium is unlikely to influence the phenomena described here. The same conclusion
holds when comparing the flapping instability time of development (see Villermaux &
Clanet 2002) with τ . We have indeed seen no sign of flapping at all. This interaction
with air may however be relevant at the very first moments of the contact of the drop
with the solid when the first ‘ejecta sheet’ is both very thin and fast (Xu et al. 2007;
Pepper, Courbin & Stone 2008). But this is confined to very short instants of time
(smaller than d0/u0) and is not concerned with the dynamics described here.
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Figure 9. Construction of the elementary drop size distribution from the breakup of similar
ligaments. The first image is a snapshot taken close to the maximal sheet extension 1/100 s
after drop impact. The time interval between the images is 1/100 s; We = 490.

5. Drop size distributions

5.1. Elementary distributions from ligament breakup

Sprays are built from the breakup of ligaments. Depending on the way the ligaments
have been prepared, precisely depending on their initial roughness, the distribution
of sizes d in the spray is more or less broad. The distribution coming from ligament
breakup is of a gamma type,

Γ (n, x = d/〈d〉) =
nn

Γ (n)
xn−1 e−nx, (5.1)

with a parameter n being the function of the ligament corrugation. As explained
in Villermaux (2007), this distribution does not result from the maximization of
an entropy (which would give a distribution with a much too rapidly falling large
excursion tail), nor does it reflect a sequential multiplicative process (which would
give a log-normal distribution). It originates from the rearrangement dynamics of
the fluid particles along the ligament as the ligament separates into disjointed drops.
The index n refers to the roughness of the ligament: a straight, smooth ligament has
n= ∞ and produces a single-size population of drops. A strong corrugation means
that the amplitude of the cross-section diameter fluctuations along the ligament is of
the order of its mean radius. In that case, the parameter n is of order of a few units,
typically 4–5.

These corrugated ligaments are those produced by the radial expulsion from the
sheet rim, as seen in figure 9. The corresponding distribution of sizes P (d), obtained
for a moderate impact Weber number We = 490 is indeed observed to be

P (d) =
1

〈d〉Γ (5, d/〈d〉) (5.2)

with an order n= 5 (figure 10), identical to the one observed for a continuous jet
impacting a solid target, expanding radially and then fragmenting into drops via
corrugated ligaments (see figure 23 in Bremond, Clanet & Villermaux 2007). This is
the ‘elementary’ distribution obtained when all the ligaments carry the same volume
of fluid and have the same level of corrugation, that is when they all break with
a mean drop size 〈d〉. This distribution is similar in shape with those commonly
measured in drop impacts (Stow & Stainer 1977; Mundo et al. 1995; Yarin & Weiss
1995; Roisman et al. 2006) and is probably a good quantitative fit for them.
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Figure 10. (Colour online) (a) Elementary distribution P (d) obtained for We =490 and fit
according to (5.2). (b) Compound distribution obtained at We = 1400 under very symmetrical
conditions (see figure 11) and fit according to (5.3).

5.2. Composition law and global distributions

The poly-dispersity of the drops in a given spray may result both from the distribution
of the drops coming from the breakup of a given ligament and from the distribution
of the volumes carried in the population of the ligaments. Several particular cases
exhibit a homogeneous population of ligaments, all carrying the same volume so that
the poly-dispersity of the drop sizes in the spray is contained by that arising from the
breakup of a single ligament (see e.g. Marmottant & Villermaux 2004; Bremond &
Villermaux 2006). There is, however, no reason that this should be a general rule.

The present experiment offers an example in which the overall spray is a mixture
of the elementary distribution in (5.1) and of the distribution of ligament volumes
or the equivalent mean diameter. For a very symmetrical impact at We =1400, the
sheet expands radially, thins and eventually impales on the solid impactor. A hole
expands from the impactor to the rim, which at the same time forms radial ligaments.
Two distinct classes of ligaments are formed, one with mean a1 = 0.35mm coming
from the remnant rim not completely converted into radial ligaments, and the other
with mean a2 = 1.17 mm corresponding to the thick radial ligaments (figure 11). They
both break to form a dispersion of drops around their respective averages (figure 10).
The ligaments with the smallest mean a1 are more numerous than those with the
largest mean a2 in a ratio close to 3/2. The linear superposition of the two elementary
gamma distributions centred around their respective means leads to a compound
overall distribution as

P (d) =
0.6

a1

Γ (9, d/a1) +
0.4

a2

Γ (9, d/a2). (5.3)

This sheet piercing is quite a deterministic event and forms the two classes of ligaments
evidenced in figure 11 when the impact is absolutely perfectly centred. Any tiny off-
centre deviation produces a continuous distribution of ligament sizes. If now the
ligaments’ equivalent average size a is distributed according to q(a/〈d〉), where 〈d〉 is
the average size of the ligament population, the drop size distribution in the spray

17

https://doi.org/10.1017/S002211201000474X


a1

a2

a3

(a)

(b)

Figure 11. (Colour online) (a) Compound fragmentation under very symmetrical impact at
We = 1400. The time interval between the images is 1/1000 s. Two distinct classes of ligaments
are formed, one with mean a1 = 0.35mm coming from the remnant rim not completely
converted into radial ligaments, and the other with mean a2 = 1.17 mm corresponding to the
thick radial ligaments (see also figure 10). (b) A family of homothetic (i.e. having the same
aspect ratio) ligaments with a continuous distribution of equivalent sizes ai with i = 1, 3.

will be

P (d) =

∫

q(a/〈d〉) p(d/a) da. (5.4)

How is a generically distributed? Remembering that, in the present case, ligaments
are expelled from the sheet rim and that the rim is itself a toroidal ligament, it is
clear, except for special conditions like the ones described above, that the distribution
of the ligament sizes will follow the distribution of the corrugations of the rim,
itself characteristic of a ligament, and that a will be continuously gamma-distributed
(figure 11) as

q(a/〈d〉) =
1

〈d〉 Γ (m, a/〈d〉), (5.5)

where 〈d〉 is the average ligament size given in (4.17). With drop sizes distributed
according to (see (5.1))

p(d/a) =
1

a
Γ (n, d/a) (5.6)

for a ligament of size a, we have, following the linear superposition of (5.4),

P (x = d/〈d〉) =
2mmn(m+n)/2 (mx)(n−m)/2 xm−1Km−n(2

√
nmx)

Γ (m)Γ (n)
, (5.7)

where Km−n is the Bessel function of order m − n (Abramowitz & Stegun 1964). This
global fragment size distribution incorporates two a priori free parameters, namely m,
setting the width of the rim corrugations’ distribution, and n, setting the distribution of
the ligament corrugations. These parameters are, in practice, constrained. As already
mentioned, the ligaments forming drops are strongly corrugated so that n ≈ 5. The
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Figure 12. (Colour online) Global drop size distributions P (d) obtained for increasing Weber
numbers, We = (a) 960, (b) 2870 and (c) 16 930. Also shown is the distribution at (d )
We =16 930 in log–log units. The solid line is a fit by (5.7) with n= 5 and m= 2, 1.5
and 1 (We = 960, 2870 and 16 930 respectively).

same limit applies generically to the rim corrugations, and we find indeed that, taking
n equal to 5, the values of m fitting the experimental distributions are of the order of
1–2 for Weber numbers in the range 960–16 930 (figure 12).

The overall drop size distribution is thus a compound of stable drops coming from
the breakup of ligaments essentially exponentially distributed in size, a phenomenon
also encountered for the ‘soft’ impact of drops bursting because of a relative motion
in air (Villermaux & Bossa 2009). Note that, in this limit, the drop size distribution
P (d) is broader than an exponential law but narrower than a pure power law, as seen
in figure 12.

6. Conclusion

We have described the complete sequence of events accompanying the transition
from an initially compact drop impacting a solid target matching its own size into
dispersed stable fragments. The successive steps are as follows:

(i) The drop crushes on the impactor and feeds a radially developing sheet of
radius R(t), first expanding, then recoiling within a characteristic time τ independent
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of the impact Weber number. The asymmetric dynamics of R(t) expresses a simple
balance between inertia (that of the initial drop) and capillary restoring forces at the
rim (through Culick’s law), with the damping term originating from the continuous
transfer of momentum from the sheet to the rim. This idealization relies on the
particular choice made for the sheets thickness h(r, t) in (3.5), which leads to a very
precise agreement for the trajectory R(t) with experiments involving no adjustable
parameter. Other choices which also lead to a closed form for R(t) are possible, and
among them is the case of a sheet thickness h(t) constant along the radial location r

and dependent on time only. That case leads to a symmetrical motion for R(t) not
completely inconsistent with the data but less satisfactory than the one corresponding
to (3.5) (see Appendix A).

(ii) The expansion and recoil dynamics is essentially made at constant pressure
in the liquid. Although its rim is decelerating for most of its development period
(R̈(t) < 0), a global Rayleigh–Taylor instability of the expanding sheet is unlikely.
However, since the rim sits in a decelerating frame, an associated body force
proportional to −ρR̈ pushes the fluid particles constitutive of the rim radially
outward. That force, which originates in the non-Galilean character of the rim motion,
induces a Rayleigh–Taylor-like mechanism, localized at the rim. It is at the origin
of the radially expelled ligaments, whose breakup ultimately built the overall spray.
The corresponding discussion has distinguished between mode selection and radial
expulsion, which are two different phenomena. They both occur around wavelengths
having the same scaling on We (see (4.15)), but the rate at which the ligaments are
expelled is set by the rim deceleration, which is independent of the impacting velocity,
as figure 8 demonstrates.

(iii) The final fragment drop size distribution P (d) is a compound of drops coming
from the breakup of ligaments themselves distributed in size. The composition rule
is the linear superposition in (5.4) of gamma distributions characteristic of ligament
breakup p(d/a), weighed by the relative proportion q(a/〈d〉) of the ligaments’ initial
size a in the toroidal sheet rim of average size 〈d〉. It generically leads to the family
of Bessel function in (5.7) whose shape, typical of fragmentation phenomena in
uncontrolled condition such as impacts, is intermediate between a pure power law
and an exponential one.

Since the fragmentation of a macroscopic liquid volume mandatorily involves the
formation of ligaments as transient objects mediating the subsequent formation of
smaller drops, the chronology of events and principles we have evidenced here are
generic of drop fragmentation in a general frame. They are likely to also hold beyond
the small target limit, as for the more familiar case of a drop impacting a pre-wetted
or dry surface.

This work was supported by the Office national d’études et recherches aérospatiales
(ONERA) under contract F/20215/DAT-PPUJ and Agence Nationale de la
Recherche (ANR) through grant ANR-05-BLAN-0222-01. We thank Henri Lhuissier
for figure 3 and interesting comments. We also thank Professor Jens Eggers for
mentioning to us the existence of the small drawing in the Codex Hammer, reproduced
in figure 1.

Appendix A. Expansion dynamics for h(t)

For a sheet thickness h(t) dependent solely on time t , one has u(r, t) = −(ḣ/2 h)
(r − r0) from (3.3), and from the mass balance in (3.7) and dynamical closure at the
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Figure 13. (Colour online) Sheet radius evolution as a function of dimensionless time t/τ ′

for three different impact Weber numbers, We = 489 ( ), 1378 ( ) and 2873 ( ), superimposed
with the trajectory expected from (A4). Compare with figure 6, where the fit by (3.16) is more
satisfactory.

rim in (3.11), one has, in place of (3.13),

h(t)[R(t) − r0]
2 =

Ω

π

(

1 − t

τ ′

)2

with τ ′ =

√

ρ Ω

2πσ
. (A 1)

Using (3.2) within the same isobaric approximation as the one leading to (3.15), one
gets instead

R̈ +
2

(τ ′ − t)2
(R − r0) +

2

τ ′ − t
Ṙ = 0 (A 2)

whose solution is now

R(t) − r0

r0

=

√

We

3

t

τ ′

(

1 − t

τ ′

)

, (A 3)

describing this time a symmetric one-period oscillatory motion lasting for

τ ′ =

√

ρ d3
0

12σ
. (A 4)

The motion within the sheet u(r, t) and its thickness h(t) is now expected to be

u(r, t) =
r

t
, h(t) ∼ Ω

(u0 t)2
, (A 5)

displaying the same scaling dependencies as the ones derived by Yarin & Weiss (1995).
As seen in figure 13, that case leads to a symmetrical motion for R(t) not completely
inconsistent with the data, with however a somewhat-too-short time period τ ′ and an
overexpected maximal radius.

Appendix B. Pressure in the rim and energy loss

Consider an abrupt expansion in a Galilean frame, like the one in figure 14, and
an element of mass m = ρu1A1�t passing though the expanding region and being
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Figure 14. An abrupt expansion from a section A1 with velocity u1 to a section A2 with
velocity u2 accompanied by turbulence and vortices, as imagined by Leonardo Da Vinci
(1508).

decelerated from u1 to u2 in a time interval �t . The force needed for the deceleration
of this conserved element of mass is

f =
�

�t
(m u) = ρu1A1�u, (B 1)

where �u = u2 − u1. The force f is equal to the pressure difference p1 − p2 applied
to the section A2 bordering the mass volume, giving

p2 − p1 = ρu2(u1 − u2), (B 2)

owing to mass conservation u1A1 = u2A2 (Batchelor 1967). The associated loss of
energy per unit volume ẇ such that

1
2
ρu2

1 + p1 = 1
2
ρu2

2 + p2 + ẇ (B 3)

is equal, p1 and p2 being linked by (B 2) to the kinetic energy of the velocity loss

ẇ = 1
2
ρ(u1 − u2)

2, (B 4)

a result known since Borda (1763).
If applied to a rim bordering a plane steady liquid sheet of thickness h, the above

result permits the inference of the rim velocity v. Fluid particles passing from the
sheet to the (much thicker) rim expand and, if the expansion is abrupt enough,
dissipate energy according to (B 4) as ẇ = (1/2)ρv2 per unit volume. When the rim
has travelled a distance ℓ and has therefore collected a mass m = ρhℓ, the work of
capillary forces 2σℓ is the kinetic energy of m plus the energy dissipated ẇℓh. Thus

2 σℓ = 1
2
m v2 + ẇℓh, (B 5)

that is

v2 =
2σ

ρh
, (B 6)

consistent with Taylor (1959) and Culick (1960) who have solved the problem of
the receding rim after attempts by Dupré (1867) and Lord Rayleigh (1891), using a
flawed version of (B 5) and omitting the dissipation term (see also de Gennes 1996).

If applied to a moving sheet bordered by a stationary rim, as for Savart sheets, the
result of (B 4) is also consistent with the observation that fluid particles leave the rim
with no remnant kinetic energy, which is fully dissipated on the rim (see e.g. Taylor
1959; Clanet & Villermaux 2002; Bremond et al. 2007).
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The analogy with the abrupt expansion permits one not only to reformulate
Culick’s law but also, considering (B 2), to infer that if the fluid is arrested in the rim
(u2 = 0) and if the incident knietic energy is dissipated according to (B 4), the pressure
difference p2 − p1 is zero. The numerics in Savva & Bush (2009) tend to support this
result. This conclusion holds in a Galilean frame, in the absence of external body
forces.
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