
 
 

 

  

Abstract— An algorithm dedicated to the detection and 
decoding of an alphabetic 2D barcode, namely the Alphacode, 
from a captured image is developed. When the camera is freely 
handled, images are degraded by several artifacts (motion, 
acquisition, low resolution...), making recovery of the code a 
more difficult task. We propose a two-stage strategy. The code 
structure is first recovered using image processing steps 
including localization, geometric correction and code grid 
structure retrieval. The code is then recognized using an 
iterative structure based on a factor graph representation of the 
displaying/reading process and making use of the specific 
structure of the code. The proposed algorithm is evaluated in 
case of strongly blurred images and shows high improvements 
in performances compared to the basic processing which is 
unable to decode reliably. 

I. INTRODUCTION 

ith the improvement of the quality and the resolution 
of their equipped camera, mobile phone are no more 
restricted to radio communication. Used as a capture 

device in conjunction with barcodes, mobile phones are 
addressed to interact with the real-world [3]. Emerging 
applications, for large public as well as professional usages, 
require drastic increasing in coding capacity and robustness 
with respect to the usual 1D barcode. Almost all solutions 
converge now to 2D barcodes meeting consequently the 
markets of identification (e.g. electronic stamps), 
authentication (e.g. counterfeit medicines) and interacting 
(e.g. e-ticketing). 

Many 2D barcodes are now available such as Datamatrix, 
Maxicode, QR-code and PDF417 (see [1] for an example of 
the different symbols). Beside all of these codes, the 
Alphacode, patented by the eponymous society [2], is built 
on a very different principle. Whereas, the aforementioned 
2D barcodes represent a monolithic block of symbols 
generated by dedicated software, Alphacode is based on a 
predetermined alphabet defined by a font a characters, the 
Dotem font, and a given code consists with a chain of 
characters. The number of characters is not limited allowing 
to code as much information as needed for a given 
application. An example of an Alphacode word with five 
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characters (two columns each) is shown in Fig. 1.a. This font 
based implementation grants Alphacode with numerous 
advantages especially in flexibility and interoperability. 
Standard keyboards, word processors and printers are the 
only materials required to generate a code on a physical 
support (screen, paper …). Remarkably enough, the Dotem 
alphabet is full compatible with Unicode norm (8, 16 and 
32). 

In order to confirm this novel technology for the 
identification, authentication and mobile markets we propose 
robust solutions for detecting and decoding the Alphacode. 
Most of the barcode readers are designed with limited signal 
processing circuitry [1]. The response time satisfying the 
human operator wins out over quality, or false decoding and 
rejections. Besides, classical artifacts inherent to low-quality 
cameras (e.g. sensor noise, sensor resolution) or to motion 
caused by camera manipulation by end-user or to unfocused 
image and to geometric distortion…impact drastically 
reading performances [4]. Classical processing techniques 
have a rate of good detection in the context described above 
at best of about 90% before any error correction blocs. This 
is definitely not sufficient when aiming at developing robust, 
reliable and sustainable receivers. In digital transmission, 
error probability is a quality measure used to evaluate 
different receiver designs. A value of 10-6 is a commonly 
acceptable error rate for data. We propose then cutting edge 
solutions that enable us to attain this low error probability 
when decoding the Alphacode with standard cameras. 

We propose a two-steps strategy which consists first in 
localizing the word and recovering the grid structure, 
second, in decoding using iterative structure based on 
statistical processing and making use of the Dotem structure. 
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Fig. 1.  A 2D Alphacode illustration. (a) a word of five characters. 
(b) an isolated character with two columns and ten rows. 



 
 

 

The remaining of the paper is as follows. Section 2 
presents the structure of a Dotem character. Section 3 
exposes the image processing steps to localize the code and 
to correct geometrical distortions due to acquisition. Section 
4 studies some optimal decoding strategies, taking into 
account image blur. Finally, Section 5 concludes on the 
proposed algorithm and discusses possible improvements. 

II. DOTEM CODE STRUCTURE 

In the basic Dotem alphabet presented in Fig. 1.b. (namely 
truetype font DoteM02), a character is made of at least two 
columns and ten rows of dots. A dot is a basic black or white 
square element designing a binary symbol. Dots from rows 2 
to 7 are called "data dots" and allow to code up to 212=4096 
characters in a 2-column structure, 218=242164 characters 
for a 3-column structure… Rows 1 and 10 have a fixed 
pattern used to make reading easier, especially the half dot in 
row 1, column 2. The black dot in row 9, last column (see 
Section 2.2) is an indicator for the end of a character. Dots 
from row 7 equip the character with a parity check binary 
element used to enhance the decoding process (Section 4). 

III. I MAGE RECTIFICATION 

When acquiring a 2D barcode with a mobile camera such 
as a webcam or a camera in a mobile phone, the so-obtained 
image is degraded by several artifacts [4] (see figure 2 for a 
typical example): 
• Complex background: the image may contain other 

objects lying in the scene which gives arise to some 
difficulties in detecting and localizing the code in the 
image; 

• Distortions: geometric distortions can be expected from 
the acquisition angle between the sensor and the code 
resulting in a projective deformation. A step is required 
to rectify the image in order to recover the rectangular-
shaped code. 

• Noise and blur: Apart from the inherent sensor noise, 
images are blurred by (i) motion during acquisition, and 
(ii) necessary interpolation for rectification. Hence dots 
intensity runs on neighboring ones, making the decision 
on the state of a dot more difficult to take. 

 

Fig. 2.  A typical image illustrating the various artifacts 
encountered in barcode reading from a camera-equipped mobile 
phone. 

Fig. 3.  Connected component based on image gradient intensity. 

(a) 

(b)

Fig. 4.  Code rectification from estimated projective transformation. 



 
 

 

In this section we develop an algorithm for the recovery of 
the underlying grid from an image as in Fig. 2. The latter will 
be used to illustrate the three algorithm steps. 

A. Code localization (Fig. 3) 

To localize the region of interest inside a complex scene, 
we opt for the image gradient which is able to exhibit code 
edges. Then we label all connected components based on 
local gradient density. Using a priori geometrical property of 
the desired code, we select the region of interest among 
possible candidates. 

B. Image rectification (Fig. 4) 

As explained before, images are distorted by some 
projective transformation. In this step, we intend to estimate 
the geometric parameters and apply the projection backward 
to get the code rectified. The first step consists in retrieving 
the four corners of the parallelepiped including the code, see 
Fig. 4. a. We use the points of the convex hull to set the left, 
right, up and down segments, which give by intersection the 
searched corners. 

Then, the parallelepiped corners are registered to a 
rectangle one to estimate the projection matrix. The 
projection matrix we get for image in Fig. 2 (see [3]) is 
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which gives the image in Fig. 4. b. We may expect from this 
transformation that dots are stretched according to one 
direction, giving rectangular-shaped dots. 

C. Grid recovery (Fig. 5) 

To recover the number of characters and the number of 
columns by character we make use of the different tags 
present in each character: (i) the semi-dot in the first row and 
second column, (ii) the black dot in the ninth row and last 
column. Basic image processing based on column and line 
profiles allow us to recover the code structure. For the 
studied example, the mean width of a dot is 18 pixels, and 
the mean height is about 18.7 pixels.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The processing implemented to recover the grid structure 

takes about 1.5 seconds for a PC with an Intel Core 2, 2.0 
GHz processor, using Matlab. 

IV. CODE READING 

According to the grid the observed image is now a matrix 
Y of observed dots with elements: 
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Elements uk,l represent black and white modules (dots) of 
the original code, wk,l are zero-mean additive white Gaussian 
noise samples and the [hi,j] describe the blur affecting the 
image. From a communication point of view, expression (1) 
models the reading/displaying process as a linear 2D ISI 
channel. A factor graph representation of this model is 
derived. We propose then a robust decoder based on a 
message-passing algorithm running on this graph and 
involving interactions between adjacent modules or dots. We 
make use of the parity dot to enhance performances with an 
iterative structure. We aim then at proposing a simplified 
version of the studied message passing algorithm without 
attempting much on performances, motivated by the design 
of receivers with a humanly acceptable complexity. We 
finally show some simulation results and conclude on the 
necessity of using such structure when simple binarization is 
not able to satisfy a given quality of service. 

The factor graph consists of variable nodes (circles) and 
factor nodes (squares) connected by edges (Fig. 6.). Variable 
nodes represent the hidden data dots {uk,l}, the resulting 
gray-levels from ISI {xk,l} and the observed variables {yk,l} . 
Factor nodes rk,l represent local functions connecting a 

Fig. 5.  Result of grid structure recovery. The blue vertical lines 
denote character separation. 
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Fig. 6.  Factor graph representation of the 2D ISI channel combined to 
the iterative equalizer making use of the parity code. 
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subset of these variables while fk,l is the likelihood function 
)/( ,,, lklkY xyf

lk
. The sum-product algorithm (SPA) is a 

message-passing algorithm that computes the marginal a 
posteriori probabilities (APP) of any data dot P(uk,l/Y), by 
passing "messages" through the factor graph [5]. 

We apply SPA to detect data dots (detection step). The 
outputs of this detector constitute soft extrinsic information 
about each dot and enter the parity decoder (decoding step). 
We realize an iterative detection and decoding procedure as 
the detector and the decoder exchange extrinsic information 
between each other for several iterations. In the SPA, 
messages are resumed by the following rules [5] for 

nin ≤≤−  et pjp ≤≤− (Fig. 6.):  

 1) Messages from variable u nodes to factor nodes r: 
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In the first formula we distinguish the message of the form 

mD→u coming from the decoder and calculated according to 
the extrinsic information that the latter deliver: 
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Practically, all messages mr→u  in (2) are initialized to 1 in 
order to avoid short cycles. We thus have uDru mm →→ = .  

2) Messages from factor nodes r to variable nodes u : 
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In expression (4) we define U ={uk–n,l–p ,…,uk+n,l+p}, 
−= UU ' { uk – i,l – j}, and lkr ,  is given by the following 

logical proposition: 
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such that r( x, U ) = [ x = = γ (U)] is defined by the 
following, r( x, U ) = 1 if   x =  γ (U ) and 0 if not. Finally, 
we have )/(

,,
,,,

lklkYrx
xyfm

lklklk
=→ . Assuming a white 

and Gaussian additive noise we rewrite (4) as: 
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The second sum in (6) is the probability P(v) that the 
intersymbol interference affecting the dot uk – i,l – j and 
observed from yk,l is equal to 

jlikjilk
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extrinsic information transmitted to decoderlkL , is then: 
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as there are (2n+1)x(2p+1) observed variables related to one 
hidden variable uk,l. 

Complexity of the sum product algorithm grows 
exponentially with the memory size, which make its 
application practically unfeasible for some channels such for 
long memory channels. The objective of this work is 
primarily to propose a reduced complexity version of the 
sum product algorithm, aiming at proposing an algorithm 
with a linear complexity according to the memory size. In 
estimation theory, linearity is obtained when the joint density 
function of the hidden and the observed variables is 
Gaussian. Let us assume this hypothesis which could fairly 
be justified in case of long memory channel and yielding a 
Normal distribution for P(v) with mean and variance 
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µ −−  and 2

',' jlik −−σ  are the mean and the variance of 

the variable node 
',' jlik

u −−  calculated according to the a 

priori  information provided by the parity check decoder. 
This approximation enables us to conclude a simple 
expression for the extrinsic information in (7): 
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After several iterations this iterative structure converges 
and one makes the following decision: 
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which may be used by an error control decoder. We assume 
as in classical 2D barcodes, Reed Solomon (RS) encoder [6] 
protecting information from errors. The redundant symbols 
may be added at the end of the Alphacode chain of character. 
We consider an RS encoder constructed over Galois Field 
GF(256), and compare the data error probability obtained 
with the novel iterative equalizer and the classical 
binarisation based detector which equips almost all available 
readers in the market. We intentionally simulate poor quality 
images with high amount of blur. In these simulations the 
matrix modeling the blur is larger than a dot. 



 
 

 

 
Fig. 7 shows the bad quality of the received image with a 

dot of 4x4 pixels and a blur matrix size of 5x5, and Figure 8 
represents an image with a dot of 2x2 pixels and a blur of 
3x3. Fig. 9 and 10 show the performances obtained for the 
two latter cases. It is obvious that the proposed algorithm 
outperforms standard readers. These figures represent the 
data error probability with respect to the received signal to 
noise ratio expressed in terms of Ep/N0 in dB, where Ep is the 
mean energy received by one dot and N0 the spectral density 
of the noise. 

V. CONCLUSION 

In this work, we present a study of the 2D alphabetic 
barcode based on the Dotem alphabet in real situation, i.e. 
under difficult acquisition conditions (noise, blur, complex 
background and geometrical deformation). We have 
implemented a two-steps solution to decode a word from an 
image acquired using a hand-held camera. First, we defined 
some image processing tasks, including code localization in 
a complex scene and projective-based image rectification to 
recover the word structure. Then, we studied the decoding 
process using a modified sum-product algorithm running on 
a factor graph modeling the displaying/reading process. We 
make use of the parity dot in each column to derive an 
iterative structure of this equalizer. This algorithm has a 
linear complexity which makes it a realistic and attractive 
reading solution for camera-phones. Reed-Solomon encoders 

are then used to control errors. The resulting data error rate 
is greatly improved compared to basic processing techniques 
equipping most of the barcode readers for the identification 
and interacting markets. 
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Fig. 7.  A 2D Alphacode chain of character (60 data characters and 30 redundant characters) with a dot of 4x4 pixels and a blur matrix of 5x5. This 
image is corrupted with a noise with Ep/N0 = 0 dB, where Ep is the mean energy received by one dot and N0 the spectral density of the noise. 

Fig. 8.  A 2D Alphacode chain of character (60 data characters and 30 redundant characters) with a dot of 2x2 pixels and a blur matrix of 3x3. This 
image is corrupted with a noise with Ep/N0 = 9 dB, where Ep is the mean energy received by one dot and N0 the spectral density of the noise. 

 



 
 

 

 
 
 

Fig. 10.  Performance in bit error rate of an Alphacode with the proposed algorithm (dashed lines) 
compared to a classical reader (solid line). The received image have a dot size of 2x2 pixels and a blur of 
size 3x3. The Alphacode is encoded with a RS(90,60,31) constructed over GF(256). 
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Fig. 9.  Performance in bit error rate of an Alphacode with the proposed algorithm (dashed lines) 
compared to a classical reader (solid line). The received image have a dot size of 4x4 pixels and a 
blur of size 5x5. Different RS encoders are used. 
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