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ABSTRACT

In this paper, we present a new algorithm of snakes with
geometric prior. A method of shape alignment using Fourier
coefficients is introduced to estimate the Euclidean transfor-
mation between the evolving snake and a template of the
searched object. This allows the definition of a new field
of forces making the evolving snake to have a shape similar
to the template one. Furthermore, this strategy can be used
to manage several possible templates by computing a shape
distance to select the best one at each iteration. The new
method also solves some well-known limitations of snakes
such as evolution in concave boundaries, and enhances the
robustness to noise and partially occluded objects. A series of
experimental results is presented to illustrate performances.

Index Terms— Snakes, geometric prior, Euclidean
Transform, Alignment.

1. INTRODUCTION

Active contours [1] are iterative methods of edge detection by
means of energy minimization. Many variants of active con-
tours have been presented, among them parametric models
(snakes [1]), level sets [2], and geodesic active contours [3].
The active contours evolution is driven essentially by pixel
values which are low level primitives. Therefore, original al-
gorithms show some limitations in presence of noise, occlu-
sions and clutters. Especially, the snakes model suffers from
its sensitiveness to initial guess and its disability to evolve in
concave boundaries.

A way to cope with active contours limitations is to intro-
duce prior information about the shape of the object to be re-
trieved. The prior information can be represented by a drawn
sketch, another instance of the object or a trained data. Many
approaches have been presented recently that we can roughly
divide in two categories: those which assume statistical shape
prior and those which make use of geometrical ones. In the
case of geometric shape prior, paper [4]proposes to minimize

a distance between the region inside the evolving contour and
the template. This distance is computed between the Legen-
dre moments, which ensures invariance to translation, rota-
tion and scaling. In [5], we propose to add shape prior to
parametric active contours using Fourier-based invariants to
Euclidean transformations. Statistical shape prior can also be
added to active contours. In [6], Staib & al. determine the pa-
rameters of a Gaussian probability distribution that associates
the object boundaries to a range of shapes. The optimiza-
tion problem is then performed by the maximum a posteriori
using Bayesian rule. Eigensnake [7] are driven by an affine-
invariant deformable contour. The internal energy is used to
define the global and local shape deformations between the
shape and the image domains in a Bayesian framework. Dif-
fusion snakes [8] are a method of snakes with statistical shape
prior using a modified Mumford-Shah functional.

This work aims at adding a geometrical shape prior to
snakes by aligning the evolving snake and the template.
Transformation parameters are estimated thanks to the Haus-
dorff distance, expressed in the Fourier domain. The outlines
of the shape alignment method are presented in Section 2.
Section 3 describes the way a shape prior is introduce to
the snakes model through shape alignment using Fourier
coefficients of closed contours. Experimental results are
commented in Section 4. Section 5 concludes the work and
highlight some possible perspectives.

2. SHAPE ALIGNMENT USING FOURIER COEF.

The closed contour of a planar object can be represented by a
parametric equation γ : [0, 2π] −→ C

l 7−→ x(l) + i y(l), (1)

with i2 = −1. For latter use, the Fourier coefficients of γ is
given by

Ck(γ) =
∫ 2π

0

γ(l) e−ikl dl, k ∈ Z. (2)



Now let γ1 and γ2 be centered (according to the center
of mass) and normalized arclength parameterizations of two
closed planar curves having shapes F1 and F2. Hence, scale
factor and translation between the two curves can be ignored.

Ghorbel [9] shown that the following quantity is a metric
between shapes:

d(F1, F2) = inf
(l0,θ)∈T 2

‖γ1(l)− eiθγ2(l + l0)‖, (3)

where T = [0, 2π] is the range of the rotation angle θ, and
of the difference between the starting description points for
the two curves l0. By using the shift theorem in the Fourier
domain, computing such a distance comes down to the mini-
mization of

f(θ, l0) =
∑
k∈Z

∣∣∣Ck(γ1)− ei(kl0+θ) Ck(γ2)
∣∣∣2. (4)

Persoon & al. [10] proposed a solution to compute l0 and
θ. First, l0 is one of the zeros of the function

g(l) =
∑
k

ρk sin(ψk + kl)
∑
k

kρk cos(ψk + kl)−∑
k

kρk sin(ψk + kl)
∑
k

ρk cos(ψk + kl),
(5)

where ρkeiψk = C∗k(γ1) Ck(γ2). Second, θ is chosen to
satisfy (6) and minimize f(θ, l0) where l0 is one of the roots
of (5).

tan θ = −
∑
k ρk sin(ψk + kl0)∑
k ρk cos(ψk + kl0)

. (6)

Ghorbel proved in [9] the uniqueness of the parameters
so obtained. Indeed, minimizing (4) is equivalent to compute
the Hausdorff distance between shapes in the Fourier domain.
An example of alignment between two contours with the same
shape but distinct parameters θ and l0 is given in Fig. 1.

3. SHAPE PRIOR EMBEDDING IN SNAKES

We start by recalling the principles of parametric active con-
tours. Then we describe how to add shape prior to the model
using contours alignment between the template and the evolv-
ing curve. We end with the case of several possible templates.

3.1. Snakes Model

A snake [1] is a parameterized curve v(l, t) moving under in-
ternal and external energies to reach features of interest in the
image such as edges. The internal energy corresponds to the
first and second derivatives of v(l, t) and aims at keeping the
curve smooth and preventing the appearance of corners. The
external energy is computed on the image gray-levels and at-
tracts the curve to strong gradients. The energy of the snakes

(a) (b)

(c)

Fig. 1. Example of shape alignment using Fourier Descrip-
tors: (a) and (b) are the two curves; (c) is the plot of g(l). The
l0 value minimizing f is plot in red.

is given by:

E (v(l, t)) =
∫ 1

0

w1 |v′(l, t)|
2 + w2 |v′′(l, t)|

2

−w3 |∇ (Gσ ∗ I)|2 dl.
(7)

Coefficients w1, w2 and w3 weight the different energies.
Their value is set experimentally.

The snakes equation was first solved by Kass & al. using
Euler-Lagrange framework, which gives, after discretization

(IN + τA) v(t) = v(t− 1) + τFext (v(t− 1)) , (8)

where A denotes the stiffness matrix, representing all internal
elasticity relations of the snake, which is pentadiagonal and
symmetric. τ denotes the time step,N the number of nodes of
the snakes, IN the identity matrix and Fext the forces derived
from the external energy:

Fext = −∇ |∇(Gσ ∗ I)|2 . (9)

3.2. Adding Shape Prior to the Model of Snakes

At each iteration t, parameters l0 and θ are estimated between
the snakes and the template, using the algorithm described in
Section 2. The two curves do not have the same shape but the
two estimated parameters correspond to the “best” transfor-
mation to align one shape with the other. That way, we have
a correspondance between each node of the snake and each
node of the template, assuming the two curves are sampled
with the same number of nodes N .

Hence, it becomes possible to compute an Euclidean dis-
tance between each corresponding nodes, and to add new
forces which are weighted by the distance between the two



curves. These forces make the evolving snakes to have the
same shape than the template.

Let vt represents the template shape. Once l0 and θ are
retrieved, we can align the two shapes to obtain vtr where the
DFT of vtr is given by

Ck(vtr) = e−iθ eikl0 Ck(vt). (10)

External energy remains the principal energy of the model
; the prior forces act especially in the absence of this energy.
This situation can occur in presence of occlusions or at the
entrance of a concave boundary. If we denote

Fprior =
vtr(l, t)− v(l, t)
|vtr(l, t)− v(l, t)|

, (11)

the new force of the snakes becomes :

Fsnakes = c1Fprior + c2Fext, (12)

with c1 and c2 two constant weights set experimentally (a big-
ger importance is given to gradient-driven energy). Internal
energies do not appear in eq. (12) since they are already in-
cluded in matrix A, see eq. (8).

3.3. Case of Multiple Templates

In presence of many templates, we propose to choose itera-
tively the most suitable one using as criterion the distance be-
tween the set of invariants of the evolving snake and the one
of available templates. We use the complete and stable set of
invariant Fourier descriptors introduced by Ghorbel in [9]:

Ik0(γ) = |Ck0(γ)|, for k0 such that Ck0(γ) 6= 0
Ik1(γ) = |Ck1(γ)|, for k1 6= k0 such that Ck1(γ) 6= 0

Ik(γ) =
Ck(γ)k0−k1 Ck0(γ)

k−k1 Ck1(γ)
k0−k

Ik0(γ)k−k1−p Ik1(γ)k0−k−q
,

∀k 6= k0, k1, with p, q > 0. (13)

This set is invariant to desired transformations, especially ro-
tation and starting description point of the curve. The stability
property of the set ensures that a slight modification of in-
variants does not induce a noticeable shape distortion, which
is interesting for the stability of the snakes. To compare the
snakes and templates, we use the following distance:

d(γ1, γ2) =

(∑
k

|Ik(γ1)− Ik(γ2)|
1
2

)2

. (14)

Giving many templates, we compute the invariants of
the snakes and all the available shapes according to eq. (13).
Then, we compute the distance between the invariants of the
snake and each shape according to eq. (14). The shape having
the minimum distance to the snake is used as template.

(a) Initialisation (b) Result

Fig. 2. Result on a shape with two deep concavities.

(a) Noisy image (b) Partly occluded object

Fig. 3. Results of the proposed method on the U form when
confronted to noise (a) and to partly occluded objects (b).

4. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results and
discuss parameter effects. The method is then applied on my-
ocardial scintigraphy images.

The classical snakes model is not able to evolve in concav-
ities due to absence of forces at the entrance of the concavity.
Only a few models coping with this problem have been pre-
sented such as GVF [11], but their success depends on the
concavity deepness. Our model is able to cope with such con-
cavities, as illustrated in Fig. 2.

We also test our method robustness to noise and to partial
occlusion, some results are reported in Fig. 3. Despite an
high noise rate (a), the U form is well detected. The method
also succeeds to find the desired shape in presence of partial
occlusion (b).

To illustrate the influence of the prior force only, Fig. 4
exhibits some iterations of our method on the 5 digit, when

(a) (b) (c) (d)

Fig. 4. Some iterations of our model under the prior forces
Fprior only.



(a) (b) (c) (d)

Fig. 5. Application of the method to the segmentation of four
myocardial scintigraphy slices.

using Fig. 4(d) as a template. As expected, the curve evolves
iteratively to produce the same shape than the template.

Compared to classical snakes methods [1], our method
give better results, especially for noisy image and partly oc-
cluded object. Indeed, prior forces help the snakes to escape
noisy points having strong gradients and making the final re-
sult not similar to template. In addition, in absence of gra-
dient (concave boundary and partly occluded objects), the
snake is guided by prior forces which makes the snake to have
the same shape than the proposed template. We also com-
pared our method with a recent method of snakes with shape
prior [5] using Fourier invariants and we get better results in
presence of noise and occlusion.

The complexity of our method is higher than the algo-
rithm of Kass & al. but remains lower than level set meth-
ods [2]. At each iteration, we compute the FFT of the evolv-
ing snake and estimate the transformation parameters. To re-
duce the complexity of parameters estimation we can truncate
the Fourier coefficients. Indeed, it has been experimented
in [9] that, for relatively smooth contours, 20 Fourier coef-
ficients are sufficient enough to get a good approximation of
θ and l0. In addition, at advanced stages of the iterative algo-
rithm, the parameters estimation becomes more reliable and
we can reduce the search space.

We applied our method to the segmentation of myocardial
scintigraphy images. As template, we used a sketch repre-
senting a shape similar to the structure to be detected. The
initial snakes position was set around the myocarduim. The
segmentation results are shown in Fig. 5 and seem visually
satisfactory. To take into account pathological cases, we can
automatically reduce the influence of the prior force (coeffi-
cient c1 in eq. (12)) as the snake converges, increasing the
influence of image data on the snakes.

5. CONCLUSION & PERSPECTIVES

A new method of snakes with shape prior has been presented.
A shape alignment method is used the estimate the transfor-
mation (rotation angle and starting point) between the snake
and template. Parameters estimation is performed by mini-
mizing the Hausdorff distance in the Fourier domain. This
allowed the introduction of a new force that moves the snake

to have the same shape than the provided template. Experi-
mental results show the method ability to make snake evolve
in deep concave boundaries. In addition, partially occluded
objects can be detected. We now plan to apply the method
to level set methods assuming that the image contains only
one object and extend the prior to affine transformations [12]
which are more general than the Euclidean ones.
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