
HAL Id: hal-00437063
https://hal.science/hal-00437063v1

Submitted on 7 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining Belief Functions using Mathematical
Morphology – Application to Image Fusion under

Imprecision
Isabelle Bloch

To cite this version:
Isabelle Bloch. Defining Belief Functions using Mathematical Morphology – Application to Image
Fusion under Imprecision. International Journal of Approximate Reasoning, 2008, 48, pp.437-465.
�hal-00437063�

https://hal.science/hal-00437063v1
https://hal.archives-ouvertes.fr


Defining belief functions using mathematical

morphology – Application to image fusion

under imprecision

Isabelle Bloch

Ecole Nationale Supérieure des Télécommunications (GET - Télécom Paris)
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Abstract

We address in this paper the problem of defining belief functions, typically for multi-
source classification applications in image processing. We propose to use mathemat-
ical morphology for introducing imprecision in the mass and belief functions while
estimating disjunctions of hypotheses. The basic idea relies on the similarity between
some properties of morphological operators and properties of belief functions. The
framework of mathematical morphology guarantees that the derived functions have
all required properties. We illustrate the proposed approach on synthetic and real
images.

Key words: Mathematical morphology, dilation, erosion, belief functions, image
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1 Introduction

Information fusion in image processing has led to an increased interest during
the last years, motivated by the development of multiple acquisition tech-
niques. These techniques are more and more jointly used to give access to a
better knowledge in many cases of experimental sciences. In image processing,
information fusion appears as a necessary stage for applications like medical
imaging, aerial and satellite imaging, quality control, robot vision, vehicle or
robot guidance. It allows solving problems that could not be solved by using
only one type of acquisition, due to its imperfections and incompleteness.

A main issue in this domain is to represent the different types of imperfec-
tions (imprecision, uncertainty, ambiguity, incompleteness, unreliability, con-
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flict, etc.) and to cope with them. Numerous approaches have been developed
in order to answer the difficult question of image fusion in different application
domains [1]. Among them, numerical methods (either based on probabilistic
models or on non-probabilistic ones) have gained a large interest because of
their ability (i) to model image information, the specificities of the informa-
tion provided by each image for each hypothesis, along with its imperfections,
and (ii) to reason under different types of imperfections. In particular, meth-
ods based on belief functions [2,3] have led to interesting developments and
promising results in the recent years. The typical scheme consists in (i) defin-
ing a set of discernment that represents the hypotheses of interest for the
decision making step (typically classes in a multi-source classification prob-
lem), (ii) estimating mass functions from characteristics of the classes in each
image, (iii) combining the mass functions of all images, (iv) making decision
based on computation of belief, plausibility or pignistic probability functions.

One of the difficulties when using belief functions theory for image fusion
consists in estimating mass functions on disjunctions, to provide a proper
representation of imprecision in the information provided by each image. This
can be imprecision in grey levels characterizing the classes of interest in each
image, or imprecision in the spatial domain (due for instance to preliminary
registration between the images, poor object delineation, partial volume effect,
noise, etc.). Examples where it is very useful to take disjunctions into account
in the modeling step, and where belief functions theory provides appropriate
answers, include the following situations:

• a source provides information concerning only a few of several classes;
• a source does not differentiate two classes: hesitation or ambiguity between

these two classes is then modeled as a mass on the disjunction of these two
classes;

• partial volume effect or mixed pixels due to the discrete nature of the images
(a situation that often occurs at the border of classes): it can also be taken
into account by assigning masses to the union of the two classes mixed in
the considered area;

• a global source reliability has to be taken into account: this may be done by
weakening all masses and reinforcing m(D), D being the set of discernment,
hence the largest disjunction, using a discounting process;

• knowledge of source reliability is available only for some classes: it can be
taken into account by modifying accordingly the masses assigned to these
classes and in order to take ignorance into account without forcing values
for something unknown.

Let us illustrate some of these issues on two simple examples. In the first
example in Figure 1, the two images represent degraded observations of a
two-classes image (a white square on a black background). Due to the noise,
making a decision about the membership of a point to one of the classes based
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only on the grey levels of this point in the two observations would lead to a very
noisy result. This can be corrected by introducing imprecision at the modeling
level, so as to guarantee a better spatial consistency in the final result. The
second example in Figure 1 concerns real images from the medical imaging
domain. Here, due to the limited resolution, a partial volume effect results
in intermediate grey levels at points composed of a mixture of several “pure”
classes (typically at the boundary of these classes). This can be modeled using
disjunctions of these classes, for instance by defining mass functions on a grey
level space. Another issue in this example is that a pathology (bright area) is
visible in the second image but not in the first one. Again this can be modeled
using a disjunction of the classes that are seen with similar grey levels in one
image. These two examples will be further detailed in this paper.

(a) (b)

(c) (d)

Fig. 1. (a-b) Two noisy observations of a two-classes image. (c-d) One axial slice of
dual-echo magnetic resonance imaging acquisitions (pathological brain image).

Let us summarize the main existing approaches for defining mass functions. It
should be noted that it remains a largely unsolved problem, which did not yet
find a general answer. The difficulty is even increased if masses have to be as-
signed to disjunctions [4,5]. In image processing, they may be derived at three
different levels. At the highest, most abstract and symbolic level, information
representation is used in a way similar to that in artificial intelligence and
masses are assigned to propositions, often provided by experts [6–8]. Up to
now, this kind of information is usually not derived from measures on the im-
ages. At an intermediate level, masses are computed from attributes, and may
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involve simple geometrical models [9–12]. This is well adapted to model-based
pattern recognition but it is difficult to use for image fusion classification of
complex structures without a model. At the pixel level, several methods can
be applied for mass assignment, and most of them are inspired by statistical
pattern recognition. The easiest way consists in computing masses on single-
tons in each source often based on a probabilistic estimation. Masses on all
other subsets of the frame of discernment D are then zero. This model is very
restricted and does not exploit the interesting features of belief function the-
ory. However, a lot of approaches are based on this initial model and then
assign masses on disjunctions (or on some of them) in a simple and often
quite heuristic way [10,13–15]. Recent work addressed the problem of estimat-
ing belief functions from sample data. For instance, in [16], belief functions
are estimated from realizations of a random variable, with the constraint that
they converge towards the probability distribution of this variable when the
sample size goes towards infinity.

Let us mention a few other possible models, which include disjunctions:

Modification of probabilistic models. The easiest and most used model
consists in using a discounting procedure [3]. In the case where initial masses
are learned on singletons only, for instance from probabilities, then a mass
on D is directly derived from the discounting factor. This technique is often
used in order to weaken a source depending on its reliability, and allows
assigning a mass to D which will be low if the source is reliable, and high if it
is not. This type of model is very simple. Learning masses on singletons can
benefit from classical statistical learning techniques. However, disjunctions
other thanD are not modeled, which strongly limits the power of this model.

Two probability-inspired models have been proposed in [17], and take into
account other disjunctions than D. These models assume an initial estima-
tion of conditional probabilities. The associated mass function is computed
by combining mass functions associated to each singleton, using discounting
and source reliability factors. This model is well adapted in cases where we
can learn a class against all the others, as is often the case in pattern recog-
nition in images, or in cases where each class is determined from an adapted
detector (for instance a road detector in an aerial image allows us to define
the probability of belonging to the road against all the other classes, but is
not able to distinguish between these other classes).

In [18], disjunctions are defined as a function of a significance criterion of
conditional probabilities. If several probability values are significant, then
the corresponding disjunctions are taken into account, based on differences
between the probability values.

Modification of distance models. A pattern recognition like approach is
proposed in [19]. If each class or hypothesis is represented by a prototype (or
a center), a mass function associated to each class can be defined, for which
this class and D are the only focal elements, based on a function of the
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distance of each element to the prototype. The masses are then combined
using Dempster rule in order to get a mass which takes into account the
information on all classes. This approach can also be applied to the k nearest
neighbors.

A priori on the disjunctions. In several applications, some a priori may
be available and allows determining in a supervised way which are the focal
elements that should be considered. These methods are used for instance in
[20–22]. In [20], brain images are combined in order to detect pathologies.
The mass functions are determined in an automatic way from grey levels [23]
and classes that are not distinguished in some images are grouped into dis-
junctions. In [22], results obtained from several detectors (for several types
of structures) are combined in order to interpret a radar image. The focal
elements are determined from the capabilities of detectors to differentiate or
not several classes. In [21], attributes extracted from images from different
sensors are combined in order to differentiate mines from non-dangerous
objects, in the context of humanitarian demining. The measures to be com-
bined can characterize either a class or the whole set of discernment.

This type of approach is very efficient if such information is available,
but it remains supervised, and therefore is applicable only to problems for
which the cardinality of D has a reasonably low value.

Learning the disjunctions. Methods for learning focal elements are often
based on preliminary classifications performed on each source separately.
For instance, from confusion matrices it is possible to identify classes which
are often mixed up in a source, and the union of such classes then constitutes
a focal element of the mass function attached to this source [24].

In a completely unsupervised way, intersections between classes detected
in a source and classes detected in another one can be used to define sin-
gletons of the space of discernment. The classes detected in each source are
then expressed as disjunctions of these singletons [25].

Measures of dissonance and consonance have been proposed in [26]. The
idea consists in modifying an initial mass function on singletons by dis-
counting the mass values according to the consonance between singletons,
and by assigning masses on disjunctions of two classes according to the
degree of dissonance between these classes. This method has been applied
to the fusion of several classifiers. The consonance of a class is computed
from the number of elements assigned to this class by all classifiers, and the
dissonance from the number of elements classified differently.

In the case where elements are characterized by a measurement in a one-
dimensional space (typically represented as an histogram), masses on com-
pound hypotheses can be defined in overlap or ambiguity areas between two
neighbor classes.

Another method, inspired by hierarchical thresholding methods, is pro-
posed in [27]: each histogram peak corresponds to a singleton. Then the his-
togram is progressively thresholded at decreasing heights, and disjunctions
are created when maxima are merged. This method is similar to component

5



tree used for instance in mathematical morphology [28]. It is also close to
the confidence intervals and their links with possibility distributions [29].

In this paper, we show that fuzzy mathematical morphology [30] provides use-
ful tools for introducing imprecision in the mass functions while estimating
compound hypotheses (disjunctions), in an original way. It extends and devel-
ops the ideas presented earlier in [31]. The underlying assumption is that it is
possible to represent imprecision by a set or a fuzzy set, called structuring ele-
ment. The proposed method consists then in a rigorous approach to introduce
this imprecision in belief function models. This approach can be applied in a
characteristics space, to account for imprecision on these characteristics (such
as grey levels for instance) or in the spatial domain, to account for spatial
information.

Another approach for introducing spatial information in belief functions con-
sists in merging them with a Markov random field, as proposed in [32,33]. This
approach relies on a probabilistic semantics and leads to a result which is also
a Markov field. Our approach differs on these two points: the semantics is
not necessarily of probabilistic nature and disjunctions are taken into account
until the last step.

In Section 2, we briefly summarize the basic concepts of mathematical mor-
phology and belief functions that are involved in the proposed method. In
Section 3, we propose the mathematical foundations of a new method for
computing belief and plausibility functions using morphological operators in
the case of two focal elements. In Section 4, we extend this method to more
than two hypotheses. In Section 5, we propose several schemes for applying
this method to image fusion problems, and provide illustrating examples on
synthetic and real images.

2 Mathematical morphology, belief functions and fuzzy sets

2.1 Background notions in mathematical morphology

Mathematical morphology [34–37] operators are defined on complete lattices,
i.e. partially ordered sets (T ,≤) in which every non-void part X has a supre-
mum, denoted by ∨X, and an infimum, denoted by ∧X. Typically T can be
the power set of a set E, ≤ being the inclusion, or the lattice of functions,
such as grey level functions defining images, ≤ being the classical partial order
on numerical functions. The two main operations are dilation δ and erosion
ε, defined as operators from T into T that commute with the supremum and
the infimum respectively.
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In image processing, sets and functions are defined on a underlying spatial
domain (an affine space), denoted by S (typically Rn or Zn in the digital
case), and T is the lattice of subsets of S or the lattice of functions on S. The
underlying space S can also represent a feature space, such as the grey level
axis for instance. Particular types of dilations and erosions, widely used in
image processing, are invariant by translation (in S) and can be expressed via
the definition of a structuring element. On the lattice of sets, for a structuring
element B (a subset of S), the morphological dilation of a set X is defined as:

δB(X) = {x ∈ X, B̌x ∩X 6= ∅}, (1)

where B̌x denotes the symmetrical of the structuring element translated at x
(in the following, we consider only structuring element which are symmetrical
with respect to the origin, i.e. B = B̌). The morphological erosion of X is
defined as:

εB(X) = {x ∈ X,Bx ⊆ X}. (2)

On the lattice of numerical functions defined on S, dilation and erosion by a
flat structuring element B (i.e. a subset of S) are expressed by:

δB(f)(x) = sup
y∈Bx

f(y), (3)

εB(f)(x) = inf
y∈Bx

f(y). (4)

In these equations, x denotes a point of S. The functions are defined on S and
take numerical values.

From dilation and erosion, two other operators are defined by composition:
morphological opening (γ = δε, i.e. ∀a ∈ T , γ(a) = δ(ε(a))) and closing
(ϕ = εδ).

Let us summarize the main properties of these operations. For general alge-
braic dilations and erosions, the following properties hold:

• By definition, ε commutes with the conjunction and δ with the disjunction:

∀(ai, i ∈ I) ⊆ T , ε
(

∧

i∈I

ai

)

=
∧

i∈I

ε(ai),

∀(ai, i ∈ I) ⊆ T , δ
(

∨

i∈I

ai

)

=
∨

i∈I

δ(ai).

• The pair (ε, δ) forms an adjunction:

∀a ∈ T ,∀b ∈ T , δ(a) ≤ b⇔ a ≤ ε(b).

• ε and δ are increasing with respect to ≤.
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• We have:
εδε = ε and δεδ = δ

hence the idempotence of δε (morphological opening, denoted by γ) and εδ
(morphological closing, denoted by ϕ).

• Opening is anti-extensive and closing is extensive:

δε ≤ Id and εδ ≥ Id,

where Id denotes the identity operator on T , mapping every element on
itself (i.e. ∀a ∈ T , Id(a) = a).

Some additional properties hold in the specific case of morphological opera-
tions, assuming an underlying affine space S and a structuring element B:

• Morphological dilation and erosion (using a structuring element) are dual
operators with respect to the complementation. Similarly, opening and clos-
ing are dual operators. For instance if T is the lattice of sets and B is a
symmetrical structuring element, then we have:

δB(X) = εB(X̄) (5)

where X̄ denotes the complement of X in the underlying space. Similarly,
if T is the lattice of functions of S into [0, 1], duality is expressed by:

∀x ∈ S, δB(f)(x) = 1− εB(1− f)(x). (6)

Similar relations hold between opening and closing.
• For definitions based on a structuring element, if the origin belongs to the

structuring element (O ∈ B), then εB is anti-extensive and δB is extensive,
i.e.:

εB ≤ Id and δB ≥ Id.

2.2 Links with properties of belief functions

Formally, the required properties for defining or characterizing belief (Bel)
and plausibility (Pls) functions defined on a set of discernment D are the
following [3,2,38]:

Bel(∅) = Pls(∅) = 0, Bel(D) = Pls(D) = 1, (7)

∀A1, ...An(Ai ⊆ D), Bel(∪i=1...nAi) ≥
∑

I⊆{1...n},I 6=∅

(−1)|I|+1Bel(∩i∈IAi), (8)

∀A ⊆ D,Bel(A) =
∑

B⊆A,B 6=∅

m(B), (9)

∀A ⊆ D,P ls(A) = 1−Bel(Ā), (10)
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∀A ⊆ D,Bel(A) ≤ Pls(A). (11)

Given a mass function, i.e. a function from 2D into [0, 1] such that
∑

A⊆D m(A) =
1, a belief function can be derived using Equation 9 and then satisfies proper-
ties expressed in Equations 7 and 8. Conversely, there exists a mass function
satisfying Equation 9 for any belief function defined by Equations 7 and 8. An
axiomatic justification of the use of belief functions as an appropriate modeling
of quantified beliefs can be found in [38].

These formulas assume an underlying closed-world assumption, in whichm(∅) =
0. If this constraint is relaxed (open-world assumption), then some of the for-
mulas are slightly modified: Bel(D) = 1 − m(∅) and Pls(A) = Bel(D) −
Bel(Ā).

When several sources have to be combined in a conjunctive way, the resulting
mass functionm is obtained from the masses of each sourcemi using Dempster
rule [3,2], expressed in its unnormalized form as:

m(A) = (m1 ⊕m2 ⊕ ...⊕mn)(A) =
∑

B1∩...∩Bn=A

m1(B1)m2(B2)...mn(Bn),

which may lead to a non-zero mass on the empty set.

The main idea of this paper is to exploit the similarities between some proper-
ties of mathematical morphology and of belief functions. In particular, duality
holds in both theories between some pairs of operators and functions (Equa-
tions 5 and 6 on the one hand, and Equation 10 on the other hand). Also
anti-extensivity of erosion and extensivity of dilation (when they hold, i.e.
when O ∈ B) lead to:

εB ≤ δB, (12)

which is similar to Equation 11 between belief and plausibility functions.
Similar resemblances exist when using opening (γB = δBεB) and closing
(ϕB = εBδB). Note that we always have γB ≤ ϕB, whatever the choice of
the structuring element B.

2.3 Fuzzy mathematical morphology

Let us now summarize extensions of mathematical morphology to fuzzy sets.
They are in particular interesting for dealing with functions taking values into
[0, 1] using operators based on non-flat structuring elements, i.e. which are
themselves functions into [0, 1]. Another advantage is for representing differ-
ent types of imprecision. Although interpretations of membership functions,
possibility distributions and mass or belief functions are undoubtedly quite
different (but links exist, see e.g. [3,39–42]), two aspects are interesting for the
proposed approach:
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• formally we can use membership functions or possibility distributions for
estimating mass functions using fuzzy mathematical morphology, since one
of the strongest constraints in this theory is to deal with functions taking
values in [0,1] with operations that are internal in [0,1]; we defined mathe-
matical morphology on fuzzy sets [30] based on membership functions, but
the formal derivations apply to mass functions as well;

• fuzzy notions are very useful for introducing imprecision on the objects or
classes in images, either on their characteristics (such as grey levels) or on
their spatial extent.

Several definitions have been recently proposed for fuzzy morphology, e.g.
[30,43–48]. A general principle for defining fuzzy mathematical morphology
relies on the translation of set equations defining morphological operations on
binary sets into their functional (or fuzzy) equivalents [30]. This leads to the
following definitions for the dilation δν(µ) and erosion εν(µ) of a fuzzy set µ
by a fuzzy structuring element ν defined on a space S (typically Rn):

∀x ∈ S, δν(µ)(x) = sup
y∈S

>[µ(y), ν(x− y)], (13)

∀x ∈ S, εν(µ)(x) = inf
y∈S
⊥[µ(y), c(ν(y − x))], (14)

where > is a t-norm and ⊥ the t-conorm dual of > with respect to a comple-
mentation c (which automatically guarantees the duality between δ and ε). In
the following, the following complementation is used:

∀t ∈ [0, 1], c(t) = 1− t. (15)

Fuzzy opening and closing are then defined as the combination of an erosion
followed by a dilation (resp. a dilation followed by an erosion) using the same
structuring element, as in the classical case.

These definitions for the basic operators have excellent properties with respect
to mathematical morphology and with respect to fuzzy sets [30]. At first,
these operations are internal in [0,1] (as opposed to the classical definitions on
functions using functions as structuring elements [34]). Secondly, all properties
of mathematical morphology are satisfied (for the basic operations and for the
ones derived by combination like opening and closing), at least for particular
t-norms and t-conorms. Most of them are satisfied whatever the choice of >
and ⊥. Here the condition for having anti-extensivity of ε and extensivity
of δ is ν(O) = 1, where O denotes the origin. This is the equivalent of the
condition O ∈ B in the crisp case. Note that Equations 13 and 14 reduce
to Equations 3 and 4 in the particular case where ν is a crisp set (i.e. a flat
structuring element), and to Equations 1 and 2 when both µ and ν are crisp.
Therefore, in the following we always denote the structuring element by ν, for
both the crisp and the fuzzy cases.
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A second type of approach for fuzzy morphology is based on the notion of
adjunction and fuzzy implications. Here the algebraic framework is the main
guideline, which contrasts with the previous approach where duality was im-
posed in first place. The derivation of fuzzy morphological operators from
residual implication has been proposed in [43], and then developed e.g. in
[46,47]. This approach was formalized from the algebraic point of view of ad-
junction, as developed in [48]. The conditions under which the two approaches
are equivalent have been proved in [49]. Here we use the first approach, since
duality is a property of prime importance in order to derive belief and plausi-
bility functions (Equation 10).

As a summary, the useful definitions for our purpose are the ones where op-
erators are dual and applied with a structuring element such that ν(O) = 1.

3 Belief functions from mathematical morphology in the case of

two initial focal elements

In this section, we show how belief functions can be built from mathemati-
cal morphology operators in a consistent way. We first consider the case of
two initial focal elements, which can be singletons of D or disjunctions of
hypotheses.

With the aim of applying the following formalism to image fusion, we assume
that all values of the functions (mass, belief, plausibility functions) are actually
themselves functions defined over the considered space S. This is perhaps a
non conventional way to deal with belief functions, but this can be interpreted
in two ways. For each x ∈ S, the set of values m(A)(x), Bel(A)(x), P ls(A)(x)
for all subsets A satisfy the properties of mass, belief and plausibility func-
tions. Conversely, for each A ⊆ D, m(A) is considered as a function from
S to [0,1] (which can be interpreted as a membership function or a possi-
bility distribution for instance). As an example, Equation 10 should be read
∀A ⊆ D,∀x ∈ S, P ls(A)(x) = 1−Bel(Ā)(x).

3.1 Construction

Fuzzy erosion and dilation (respectively opening and closing) are dual with
respect to complementation, which suggests that they can be interpreted as
belief and plausibility functions. Starting from an initial estimate of disjoint
hypotheses (as usually obtained in image processing using probabilistic or
fuzzy learning), it is possible to derive expressions for belief and plausibility
by computing fuzzy erosion and dilation (or fuzzy opening and closing), from
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which new mass functions are deduced, both on singletons and on disjunc-
tions of hypotheses, while taking into account the imprecision modeled as a
structuring element.

Let us assume that we have an initial mass function m0 defined over a frame
of discernment D, and having only A and Ā as focal elements, with A ⊆ D
and Ā = D \ A, such that:

m0(A) +m0(Ā) = 1. (16)

In the case of D = {C1, C2}, we have A = {C1} and Ā = {C2}, but the
assumption here is somewhat more general.

Imprecision on the definition of m0 can be introduced through a structuring
element ν defined on S (it can be crisp or fuzzy), using mathematical mor-
phology, by interpreting m0(A) and m0(Ā) as functions from S into [0, 1]. We
define belief and plausibility functions using two dual operators (typically ero-
sion and dilation, or opening and closing). For erosion and dilation, we thus
define:

Bel(A) = εν(m0(A)), P ls(A) = δν(m0(A)), (17)

Bel(Ā) = εν(m0(Ā)), P ls(Ā) = δν(m0(Ā)). (18)

Similarly, using opening and closing, we can define:

Bel(A) = γν(m0(A)), P ls(A) = ϕν(m0(A)), (19)

Bel(Ā) = γν(m0(Ā)), P ls(Ā) = ϕν(m0(Ā)). (20)

In the following, properties are derived for erosion and dilation, but they also
hold for opening and closing. We always assume that the pairs of operators
are chosen using dual definitions, and with ν(O) = 1. This guarantees the
properties of belief and plausibility functions.

3.2 Properties

Using the duality property between erosion and dilation, we have:

∀x ∈ S, Bel(Ā)(x)= εν(m0(Ā))(x) = εν(1−m0(A))(x) (21)

= 1− δν(m0(A))(x) = 1− Pls(A)(x). (22)

Similarly, we have Bel(A)(x) = 1−Pls(Ā)(x). Therefore, the expected duality
between belief and plausibility holds (Equation 10). A similar result holds if
we use opening and closing instead of erosion and dilation, or any other pair
of dual operators.
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Due to the property expressed by Equation 12, we also have Bel(A) ≤ Pls(A),
which is a required property of belief functions (Equation 11).

In order to prove that Equation 8 holds, we just have to show in this case that
Bel(A) +Bel(Ā) ≤ 1. This is straightforward, since we have:

Bel(A) +Bel(Ā)= εν(m0(A)) + 1− δν(m0(A))

= 1− [δν(m0(A))− εν(m0(A))].

Since both fuzzy erosion and dilation are internal into [0,1], and due to prop-
erty 12, we have (Bel(A)+Bel(Ā)) ∈ [0, 1]. This result also holds if we derive
Bel and Pls from opening and closing.

If we set additionally ∀x ∈ S, Bel(∅)(x) = Pls(∅)(x) = 0 and Bel(D)(x) =
Pls(D)(x) = 1, we have all properties that should be satisfied by belief func-
tions. They prove the consistency of our approach for defining belief and plau-
sibility functions, according to the required properties as reviewed in Section
2.

The new mass function, derived according to Equation 9, is easy to compute,
∀x ∈ S:

m(A)(x)=Bel(A)(x),

m(Ā)(x)=Bel(Ā)(x) = 1− Pls(A)(x),

m(A ∪ Ā)(x)= 1−Bel(A)(x)−Bel(Ā)(x)

= δν(m0(A))(x)− εν(m0(A))(x)

= δν(m0(Ā))(x)− εν(m0(Ā))(x). (23)

This mass function includes the imprecision represented by ν, and allows defin-
ing a mass value on the disjunction A∪Ā (note that we have 0 ≤ m(A∪Ā) ≤ 1
because of Equation 12). Note that this mass function corresponds exactly to
the morphological gradient (difference between dilation and erosion), which is
consistent with its interpretation in terms of transition between A and Ā.

These results prove the following theorem.
Theorem 1. Based on a normalized mass function on two focal elements,
Equations 17 and 18 (respectively Equations 19 and 20) provide belief, plau-
sibility and mass functions that are consistent with belief function theory and
that satisfy all required properties.

Additional properties are directly derived from the properties of morphological
operators (see Section 2). These properties (adjunction, etc.) are usually not
considered in belief function theory, but it would be interesting to investigate
to which extent they bring some new insights.
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Interpretation of these formal derivations will be given in Section 3.4. As it
appears from the above formulas, the proposed method is particularly suited
for problems where we have to take a decision among two possible hypotheses
(A or Ā, A being either a singleton of D or a disjunction). In Sections 4 and 5,
we will investigate how this approach can be used in a more general context.

3.3 Example

An example of such a construction where S is a 1D space is presented in
Figure 2. The initial mass function is defined on two disjoint hypotheses A1

and A2 such that D = A1 ∪ A2. Each mass m0(Ai) is a function from S into
[0, 1]. At each point x of S we have m0(A1)(x) + m0(A2)(x) = 1. Erosion
is performed using two different structuring elements, in order to illustrate
the influence of its extension on the resulting belief functions and masses.
For a structuring element ν (chosen as a fuzzy structuring element having a
paraboloid shape in this example), we have:

Bel(A1)(x) = εν(m0(A1))(x) = inf
y∈S
⊥(m0(A1)(y), 1− ν(y − x)),

Bel(A2)(x) = εν(m0(A2))(x) = inf
y∈S
⊥(m0(A2)(y), 1− ν(y − x)),

P ls(A1)(x) = δν(m0(A1))(x) = sup
y∈S

>(m0(A1)(y), ν(x− y),

P ls(A2)(x) = δν(m0(A2))(x) = sup
y∈S

>(m0(A2)(y), ν(x− y)).

Due to the duality between ⊥ and > with respect to the complementation
and to the symmetry of ν with respect to the origin (i.e. ν(y−x) = ν(x− y)),
we have:

Pls(A1)(x) = 1− inf
y∈S
⊥(1−m0(A1)(y), 1− ν(y − x)) = 1−Bel(A2)(x),

P ls(A2)(x) = 1−Bel(A1)(x).

Finally m(D) is derived as m(D)(x) = 1−Bel(A1)(x)−Bel(A2)(x).

The resulting mass functions are shown in Figure 3. Since the structuring
element represents imprecision between the two hypotheses, it is consistent to
observe that using a larger structuring element results in a larger mass on D.

3.4 Interpretation

The main interpretation of the previous development concerns introduction of
imprecision. This can be done at two different levels.
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Fig. 2. Example of deriving belief and plausibility functions using fuzzy erosion
(dotted lines) and dilation (dashed lines) using a paraboloid structuring element.
The second example is obtained with a larger structuring element, leading to a
larger effect on the transformed functions.15
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Fig. 3. Resulting mass functions on A1 and A2 and on D. In the second example,
obtained with a larger structuring element, more imprecision is included in the mass
function, resulting in a higher mass value on D = A1 ∪A2 in the ambiguity area.

(1) Let us consider that belief functions of each subset of D are defined on
a space of characteristics of image points. Typically, they can be the
grey levels of each image (then S = [0, 255]), as is the case of the exam-
ple in Figure 2. This is very often used when classes or objects can be
characterized from their grey levels. Then, erosion or dilation by a fuzzy
structuring element can be used to represent imprecision on the limits
of classes on the grey level scale. This leads to a mass function on the
disjunction of two classes that have high values in the ambiguity area (i.e.
on the grey levels that are intermediate between those of the two classes).
This is illustrated for instance in Figure 3. Fusion of several images will
then help in solving the ambiguity between both classes in this area. An
example will be shown in Section 5.8.

(2) Now, if we consider that belief functions of each subset of D are de-
fined directly on the image space (S = Z2 or Z3), then they are endowed
with a spatial meaning, which is the basic information in images. In this
case, spatial imprecision in the delineation of classes or objects is in-
troduced using a fuzzy structuring element defined on the image space.
An example is provided by the images (a) and (b) in Figure 1 and will
be developed in Section 5.7. Appropriate choices of the structuring el-
ement allow propagating information in a controlled way. For instance,
the structuring element can represent imprecision due to registration, and
can be derived from an estimation of the possible errors in the estimation
of geometric parameters for instance [50]. More generally, the structuring
element should introduce all prior (or learned) knowledge we may have
on the imprecision attached to the problem at hand. Fuzzy structuring
elements can be appropriate for this aim. Also a contextual spatial infor-
mation is introduced. For instance, if the plausibility that a point belongs
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to a class is high, then the effect of dilation will be to increase the plau-
sibility that its neighbors belong to the same class. In that sense, the
proposed approach constitutes a new formalism for introducing spatial
context in image fusion. Compared to Markov random fields in a proba-
bilistic framework, it has the advantages of a better control of the spatial
extent of the influence of operations, using an appropriate representation
of imprecision. Moreover, it allows dealing with disjunctions, which are
difficult to handle in a probabilistic framework.

The choice of the morphological operations has little consequences from a
theoretical point of view, as soon as they satisfy the properties of duality and
extensivity/anti-extensivity (hence the choice of dual versions of the operators
in the fuzzy case, and of structuring elements such that ν(O) = 1). However,
from a practical point of view, important aspects should be considered. Since
we have γν(µ) ≥ εν(µ) and ϕν(µ) ≤ δν(µ), using opening and closing instead
of erosion and dilation have globally less effect on the transformed mass func-
tions. However, since they are filters in a morphological sense (increasing and
idempotent operators), they have an additional effect of reducing noise in the
first mass function estimate. This will be illustrated in Section 5.7. This ef-
fect can be interesting for instance in the case where the initial estimates are
obtained experimentally in a non parametric way. Another point concerns the
choice of the structuring element, which has a direct influence on the level of
imprecision in the resulting mass function (in particular on m(D), as illus-
trated in Figure 3). Its extent should be defined according to the imprecision
to be introduced. It can be based on prior information (often available from
the characteristics of the acquisitions and of the images), or on a learning
procedure. Its influence will be further illustrated in Sections 5.7 and 5.8.

3.5 Consequences on the combination using Dempster rule

Applying the proposed method in a fusion process using Dempster rule has
several consequences. At the modeling level, the introduction of imprecision
using fuzzy morphological operators enlarges the belief intervals, as expected
from a more imprecise mass function. On the other hand, the introduction
of imprecision related to each source prior to the combination reduces the
conflict between sources. This imprecision is translated in terms of disjunction
of hypotheses and therefore increases ambiguity on each source, which will be
solved thanks to the conjunctive behavior of the combination operator. When
combining two images that carry information on different classes, say A and
Ā for the first image, B and B̄ for the second one, then using the belief
functions derived from morphological transforms leads to more focal elements
after combination. This is important in the sense that ambiguity between
classes is therefore better represented, in particular via the disjunctions. This
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leads to a more complete model, where more features of the information are
represented (not only information on the classes themselves, but also on their
ambiguity). Decision can then be taken with more information. These fusion
aspects will be further detailed in Section 5.

4 Extension to more than two focal elements

In this Section, we extend the method to the case where the initial estimatem0

has more than two disjoint focal elements. For the sake of clarity, let us first
detail the example of three disjoint focal elements A1, A2, A3. We assume that
we have an initial estimatem0 such thatm0(A1)+m0(A2)+m0(A3) = 1 (known
for instance from a probabilistic or fuzzy method). Let ν be the structuring
element representing the imprecision to be introduced in m0 (ν can be fuzzy or
crisp). Let us note that all focal elements have to be processed in the same way,
using the same structuring element (simple counter-examples can be found for
which consistency of belief functions would be lost otherwise, as in Figure 4).

S
0

1
m  (A  ) m  (A  )m  (A  )0 0 01 32

∆

Fig. 4. An example with three initial mass functions on a 1D space. The two
first ones are eroded with the same structuring element, while the last one is
not transformed. The plain black line corresponds to 1 − δν(m0(A2)). Comput-
ing m(A1 ∪A3) = 1− δν(m0(A2))− εν(m0(A1))−m0(A3) leads to a negative value
in the area of S indicated by ∆, which is inconsistent.

From m0 and ν, we then define:

∀i, Bel(Ai) = εν(m0(Ai)), P ls(Ai) = δν(m0(Ai)). (24)

In order to satisfy duality of belief functions (Equation 10), we have to define
the belief of disjunctions as:

Bel(A1 ∪A2) = 1− Pls(A3) = εν(1−m0(A3)) = εν(m0(A1) +m0(A2)) (25)

and similar expressions for Bel(A1 ∪A3) and Bel(A2 ∪A3). The derived mass
function, according to Equation 9, is then:

∀i, m(Ai) = Bel(Ai) = εν(m0(Ai)), (26)
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∀i 6= j, m(Ai ∪Aj) = εν(m0(Ai) +m0(Aj))− εν(m0(Ai))− εν(m0(Aj)). (27)

The proof of the following results requires a simple technical lemma 1 .
Lemma 2. For two functions f and g defined over the same space S, the
following property holds:

inf
x∈S

[f(x) + g(x)] ≥ inf
x∈S

f(x) + inf
x∈S

g(x). (28)

Theorem 3. In the case of three disjoint focal elements A1, A2, A3, and for
a crisp structuring element ν, defining masses on Ai as erosions of the initial
normalized masses leads to masses on disjunctions of two hypotheses that are
consistent (i.e. take values in [0, 1]).

Proof. Assume a normalized initial mass function m0 on the Ai:

m0(A1) +m0(A2) +m0(A3) = 1.

We note m0(Ai) = µi.

As proposed in this paper, we define a belief function taking into account
imprecision (represented by a structuring element ν) as:

Bel(Ai) = m(Ai) = εν(µi).

We also define Pls(Ai) = δν(µi), by choosing a dual pair of erosion and dila-
tion.

Then we derive the masses on disjunctions of two hypotheses from their belief
value. For instance for A1 ∪ A2, we have:

Bel(A1 ∪ A2) = m(A1) +m(A2) +m(A1 ∪ A2) = 1− Pls(A3) = 1− δν(µ3),

and therefore

m(A1 ∪ A2) = 1− δν(µ3)− εν(µ1)− εν(µ2).

If ν is a binary structuring element, from εν(µi)(x) = infy∈νx
µi(y) and from

Lemma 2, we derive:

εν(µ1) + εν(µ2) ≤ εν(µ1 + µ2)

Since 1 − δν(µ3) = εν(µ1 + µ2), this shows that m(A1 ∪ A2) ≥ 0. Since all
erosion values are in [0, 1], we also have m(A1 ∪ A2) ≤ 1, and

m(A1 ∪ A2) ∈ [0, 1].

1 The proof of this lemma is straightforward: ∀y ∈ S, infx∈S f(x) ≤
f(y) and infx∈S g(x) ≤ g(y), therefore infx∈S f(x) + infx∈S g(x) ≤ f(y) + g(y)
and infx∈S f(x) + infx∈S g(x) ≤ infy∈S [f(y) + g(y)].
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The same reasoning holds for any disjunction of two hypotheses.

Let us denote M =
∑

A⊂D,A6=D m(A) ≥ 0 (M ≥ 0). Since this sum is not
always in [0, 1] 2 , two solutions are possible for defining m(D). The first one
consists in setting m(D) = 0, and normalizing all other masses by M. This
solution is adapted to cases where we have no information on a global reli-
ability or global ignorance on the images (this is often the case in medical
imaging for instance). The second solution consists in setting m(D) = 1−M
if M ≤ 1. Both solutions guarantee that

∑

A⊆D m(D) = 1. Since m is then a
mass functions with all its properties, the belief function, which satisfies Equa-
tion 9 according to our construction, also satisfies Equation 8. Equation 11 is
satisfied too (this is directly derived from Equation 12).

Let us now consider the case of a fuzzy structuring element. We prove a
somewhat less general result, by assuming that ambiguity occurs between at
most two hypotheses.
Theorem 4. In the case of three initial focal elements A1, A2, A3, and for a
fuzzy structuring element ν, if there is locally ambiguity between at most two
hypotheses, expressed formally as:

∃i, j, i 6= j, δSupp(ν)(Supp(µi)) ∩ δSupp(ν)(Supp(µj)) = ∅, (29)

where µi = m0(Ai) and Supp(µ) = {x ∈ S, µ(x) > 0}, then, using the proposed
construction, masses on disjunctions of two hypotheses are consistent (i.e. take
values in [0, 1]), m(D) = 0, and

∑

A⊆D m(A) = 1. Thus all required properties
are satisfied.

The condition expressed in Equation 29 is illustrated in Figure 5.

S
0

1

Si Sj

Fig. 5. Three initial mass functions (plain lines) defined on a 1D space, in the case
of three hypotheses, where the first and the third one are separated according to
Equation 29, i.e. there is no ambiguity between these two classes, and they remain
separated after dilation (dashed lines), as shown by their supports Si and Sj.

2 It is difficult to exhibit realistic examples, but very particular situations may lead
to M > 1.
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Proof. We use the same notations as before, and assume i = 1 and j = 3
(without loss of generality). Since for any t-norm chosen in the definition of
the dilation, we have:

Supp(δν(µ)) ⊆ δSupp(ν)(Supp(µ))

(with an equality for some t-norms such as minimum or product), the condition
expressed in Equation 29 implies that

Supp(δν(µ1)) ∩ Supp(δν(µ3)) = ∅

and
Supp(δν(µ1)) ∩ Supp(εν(µ3)) = ∅.

Let us compute m(A2 ∪ A3):

m(A2 ∪ A3) = 1− δν(µ1)− εν(µ2)− εν(µ3)

• At points of S where δν(µ1) = 0, we have:

m(A2 ∪ A3) = 1− εν(µ2)− εν(µ3)

Since ε ≤ Id, 0 ≤ εν(µ2) + εν(µ3) ≤ µ2 + µ3 ≤ 1, and 0 ≤ m(A2 ∪ A3) ≤ 1.
• At each point of S where δν(µ1) 6= 0, then ε(µ3) = 0, µ3 = 0 and µ2 = 1−µ1,

according to Equation 29, and this holds at least in a neighborhood of size
Supp(ν) of the point. Therefore εν(µ2) = εν(1 − µ1) = 1 − δν(µ1) and
m(A2 ∪ A3) = 0.

A similar reasoning applies to m(A1 ∪ A2).

As for m(A1 ∪ A3), we have:

m(A1 ∪ A3) = 1− δν(µ2)− εν(µ1)− εν(µ3)

The condition in Equation 29 implies that the supports of εν(µ1) and εν(µ3)
are disjoint, therefore at each point, at least one of the values of the erosion
is 0. Let us assume that εν(µ1) = 0. The same reasoning as above leads to
m(A1 ∪ A3) = 0. The case where εν(µ3) = 0 leads to the same result.

Let us now compute m(D) = m(A1 ∪ A2 ∪ A3).

m(D)= 1−m(A1)−m(A2)−m(A3)−m(A1 ∪ A2)−m(A2 ∪ A3)−m(A1 ∪ A3)

= δν(µ1) + δν(µ3) + εν(µ2)− 1,

since m(A1 ∪ A3) = 0.

• At each point of S where δν(µ1) = 0, using the same reasoning as above,
we have:
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m(D)= δν(µ3) + εν(µ2)− 1

= δν(µ3) + εν(1− µ3)− 1

= δν(µ3) + 1− δν(µ3)− 1 = 0.

• At each point of S where δν(µ1) 6= 0, we have δν(µ3) = 0, and:

m(D)= δν(µ1) + εν(µ2)− 1

= δν(µ1) + εν(1− µ1)− 1

= δν(µ1) + 1− δν(µ1)− 1 = 0.

This shows that we always have m(D) = 0, and
∑

A⊆D m(A) = 1. Thus m is
a mass function with all properties. Since Bel is linked to m by Equation 9,
it follows that all properties of belief functions are satisfied too, in particular
Equation 8.

Theorem 4 extends to the case of any number n of hypotheses, as follows.
Theorem 5. Let m0 be a normalized mass function having n focal elements
A1, ...An, and denote µi = m0(Ai). The proposed construction, using a fuzzy
structuring element ν, is consistent under the condition that the functions µi

are “ordered” such that:

∀j, j ≥ 3, δSupp(ν)(Supp(µ1)) ∩ δSupp(ν)(Supp(µj)) = ∅,

∀i, 1 < i < n,∀j, j /∈ [i− 1, i+ 1], δSupp(ν)(Supp(µi)) ∩ δSupp(ν)(Supp(µj)) = ∅,

∀j, j ≤ n− 2, δSupp(ν)(Supp(µn)) ∩ δSupp(ν)(Supp(µj)) = ∅.

Under this condition, we have:

∀i, j, i 6= j, 0 ≤ m(Ai ∪ Aj) ≤ 1,

∀i, j, |i− j| > 1,m(Ai ∪ Aj) = 0,

∀I ⊆ {1, ...n}, |I| ≥ 3,m(
⋃

i∈I

Ai) = 0.

This means that ambiguity between hypotheses can only occur between “suc-
cessive” hypotheses, according to the defined order. In particular, m(D) = 0.

Proof. The proof is similar as the one of Theorem 4.

Figure 6 illustrates the condition expressed in this result.

In the case where the initial focal elements are not disjoint, the same con-
struction can be performed, by taking a null mass on the intersections of the
focal elements and on the disjunctions involving these intersections. However,
we are mainly interested in initial disjoint focal elements, since it corresponds
to most learning methods used in image processing.
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Fig. 6. Illustration of the condition expressed in Theorem 5: each initial mass func-
tion (plain lines) presents ambiguity with at most the preceding one and the follow-
ing one. The support of its dilation (dashed lines) intersects at most the supports
of the dilations of the two neighboring functions.

As a summary, the following sequence reviews the main steps of our approach:

(1) normalized initial mass m0;
(2) derivation of Bel and Pls on the initial focal elements (and their com-

plements) using dual morphological operators;
(3) duality ensures Equation 10;
(4) Equation 12 ensures Equation 11;
(5) derivation of the new mass function, which incorporates the imprecision

represented by the structuring element used in the morphological opera-
tions (for m(D), different possibilities exist);

(6) the normalization condition on D is satisfied;
(7) since Bel and m are linked by Equation 9 and m satisfies all properties

of a mass function, Bel satisfies Equation 8.

5 Applications to image fusion

Since the theoretical development presented in Section 3 is particularly straight-
forward if the initial mass functions are non zero on two complementary hy-
potheses, we will present several possible schemes applying this approach. A
last scheme relies on a direct application of the method extended to the case
where the initial mass functions have more than two focal elements.

5.1 Two hypotheses

If each image provides information on one hypothesis and its contrary, then
the proposed method applies directly (Section 3). It should be noted that this
hypothesis has not necessarily to be a singleton. It can also be a disjunction
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of classes, which is very useful for practical applications in image processing
(see the example in Section 5.8).

5.2 Estimating each class or disjunction of classes against all the others

One possible scheme consists in deriving, from each image, several mass func-
tions, where each of them has only two complementary focal elements. This
amounts to increase the number of information sources, and calls for specific
image processing methods for estimating each class (or disjunction of classes)
against all the others. However, this is a process that is widely used in pattern
recognition methods, and, in most image processing applications, tools have
been developed for extracting one type of objects from the rest of the scene.
For instance, a lot of algorithms have been proposed for extracting roads, ur-
ban areas, or vegetation from satellite images. Therefore, we can derive from
the output of these algorithms the required initial mass functions. One of the
advantage in using this scheme is that we can process imprecision related to
each image or each extraction result independently, and according to the de-
tection algorithm that has been used. More formally, from a set of images,
we derive initial mass functions mi

0 (1 ≤ 1 ≤ N) on Ai and Āi, and a struc-
turing element νi representing the imprecision associated with this estimate.
The number of mass functions N will generally be greater than the number of
images. Then a set of mass functions mi is derived from fuzzy erosion and dila-
tion of mi

0 by the structuring element νi, according to Equations 17, 18 and 23.
The fusion is performed using Dempster rule of combination m = ⊕i=1...Nm

i,
from which the final decision is taken.

Note that in the case where the focal elements of the initial masses are single-
tons and their complementary, we recover Barnett’s structure [51]. This results
in particular in a linear complexity in the computation of the combination.

5.3 Successive refinements

Another possible scheme consists in performing successive refinements of the
mass function. Let us assume that a first mass function m0 is estimated from
an image on A and Ā. We first introduce the imprecision on this estimate using
a fuzzy structuring element ν, thus obtaining a mass m on A, Ā and A ∪ Ā.
Then Ā is refined in B and Ā \B, with B ⊆ Ā. The same process as before is
applied in Ā, and the resulting mass on B, Ā\B and Ā is normalized such that
the sum is equal to m(Ā). This process is recursively applied until we get a
refinement as precise as we want. The main problem with this approach is that
not all subsets of D appear in the decomposition. Therefore, an appropriate
order has to be chosen in order that the interesting disjunctions appear. For
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instance, let us consider a 3-class problem, i.e. D = {C1, C2, C3}. If we first
try to estimate C1 against the other classes, and then refine C̄1, the following
focal elements are obtained:

(1) first estimate: C1, C̄1 = {C2, C3},
(2) after erosion/dilation by ν: C1, C̄1 = {C2, C3}, D,
(3) after refinement: C1, C2, C3, D,
(4) after erosion/dilation by ν ′ (which does not need to be equal to ν) of the

masses on C2 and C3: C1, C2, C3, {C2, C3}, D.

The disjunctions {C1, C2} and {C1, C3} do not appear directly in this decom-
position.

Post-processing of the obtained mass function can be performed in order to
overcome this problem, again using morphological operators, for instance by
dilating the area of ambiguity between two classes (taken e.g. as a t-norm
between the mass functions) and normalizing the result. For the previous
example, δν [>(m(C1),m(C2))] can be computed in order to derive a mass on
{C1, C2}.

5.4 Direct method

The last scheme consists in applying directly the method extended to the case
of n focal elements in the initial estimate, as presented in Section 4. Here
again, each of these focal elements can be either a singleton or a disjunction of
hypotheses. This scheme can also be combined for instance to the refinement
scheme, in order to obtain more discrimination between classes.

5.5 Comparison between schemes

It appears that these schemes have different properties and behaviors, and
therefore can be chosen depending on the application at hand.

The first scheme increases the number of sources but the complexity may be
linear in the case of Barnett’s structure. It allows adapting the structuring
element to each type of information and to each algorithm (representation of
imprecision induced by an algorithm). It is necessary to have an algorithm for
extracting the information on the hypotheses of interest, but all hypotheses
can be considered.

The successive refinements scheme provides a hierarchical structure, which
may give rise to different levels of interpretation. However, the order in which
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the decomposition is performed is very important, since the resulting focal
elements depend on it.

The direct method does not increase the number of sources. The same struc-
turing element has to be used for all hypotheses (representation of global
imprecision on the limits of classes or objects, that may be intrinsic to the im-
ages and does not necessarily depends on a preliminary processing algorithm).
Imprecision on the initial focal elements is directly taken into account. This
approach is more systematic, and needs less information in order to be appli-
cable.

5.6 Some properties

It is interesting to note a few properties of the proposed approach on the fusion
results, in particular:

• new focal elements (disjunctions) appear with the morphological operations;
• this results in a decrease of conflict with respect to the combination of the

initial mass functions;
• this results also in larger belief intervals [Bel, P ls];
• decision can account for the imprecision, as will be seen in the examples of

Sections 5.7 and 5.8.

Let us take some simple examples to illustrate these properties. We first con-
sider the case of two initial focal elements A and Ā. Let us denote by a1 and
a2 the initial masses on A in each image, and by a′1 and a′2 the masses on A
after erosion (with a′1 ≤ a1 and a′2 ≤ a2), and ā′1 and ā′2 the masses on Ā after
erosion (with ā′1 ≤ 1− a1 and ā′2 ≤ 1− a2).

• The focal elements after the morphological operations are A, Ā,D.
• The conflict is equal to a1(1 − a2) + a2(1 − a1) when combining the initial

masses. It then becomes a′1ā
′
2+ ā′1a

′
2, which is lower than the initial conflict.

• The belief interval is initially [a1, a1] for image 1 (i.e. of length equal to
zero), and then becomes [a′1, 1− ā′1]. The same holds for the second source.

• The fusion on the initial mass functions leads to a decision in favor of A if
a1a2 ≥ (1− a1)(1− a2). It depends noticeably on a t-norm (product). After
the morphological operations, combining the resulting mass functions leads
to a decision in favor of A if a′1 + a′2− a′1a

′
2 ≥ ā′1 + ā′2− ā′1ā

′
2, i.e. it depends

on a t-conorm (algebraic sum).

Let us now consider the example of two initial focal elements A and Ā for
source 1, and B and B̄ for source 2.

• The focal elements after combination of the initial mass functions (m0) are
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A, B and D \ (A∪B) if A∩B = ∅, and A∩B, A \B, B \A and D \A \B
if A ∩ B 6= ∅. After combination of the transformed mass functions using
erosions, the focal elements are A, B, Ā, B̄, D\ (A∪B) and D if A∩B = ∅,
and A, B, Ā, B̄, A∩B, A \B, B \A, and D \ (A∪B) and D if A∩B 6= ∅
(more focal elements appear).

• Again the conflict is reduced after the erosions.
• Decision rules also change, but the expressions are not as simple as in the

previous example.

5.7 Example on a synthetic image

Let us now illustrate the proposed approach in the spatial domain. We consider
a synthetic image, and two noisy observations of it, that are considered as the
two sources of information (see Figure 7). The image contains two classes (the
white square C1, and the background C2), the frame of discernment being
simply D = {C1, C2}. The ideal decision image should be as close as possible
to this image. We use directly the grey levels of each pixel, normalized on the
[0, 1] scale, as mass values at this pixel. The two noisy observations provide
directly the initial masses on C1, m

1
0(C1) and m2

0(C1), and there complement
the initial masses on C2, m

1
0(C2) = 1 − m1

0(C1) and m2
0(C2) = 1 − m2

0(C1)
(Figure 8).

Fig. 7. Original scene (with two classes: the white square and the background) and
two noisy observations, simulating two information sources, and defining m1

0(C1)
and m2

0(C1).

Fig. 8. Masses for the second class for the two sources m1
0(C2) = 1 −m1

0(C1) and
m2

0(C2) = 1−m2
0(C1).

Figure 9 illustrates the decision taken on each image separately, without fusion.
The decision images are in both cases noisy and do not show a clear separation
between the two classes.
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Fig. 9. Decision without fusion, on source 1 (left) and on source 2 (right).

Applying Dempster combination rule on the initial mass functions leads to the
mass functions and decision images displayed in Figure 10. Although there is
a small improvement due to the fusion, leading to a slightly less noisy result,
the final decision is still not satisfactory.

Fig. 10. Fusion of m1
0 and m2

0: resulting masses for C1 and C2 and decision after
fusion.

Let us now apply morphological erosion and dilation, in the spatial domain, on
the initial mass functions. This leads to belief and plausibility of each class, as
shown in Figure 11 for the first image, and in Figure 12 for the second image.
It can be observed that erosion induces noise removal in the background, while
dilation has a similar effect in the white square.

(a) (b) (c) (d)

Fig. 11. Introducing imprecision with mathematical morphology for source 1. (a)
Bel1(C1) from erosion ofm1

0(C1). (b) Pls1(C1) from dilation ofm1
0(C1). (c)Bel1(C2)

from erosion of m1
0(C2). (d) Pls1(C2) from dilation of m1

0(C2).

The mass values on D are illustrated in Figure 13 for both images. The ob-
tained values are high in particular in the intermediate area between the two
classes, which is consistent with the fact that the boundary is imprecise, and
therefore adequately represented by high values on D.

The fusion, using Dempster rule, leads to the masses on C1, C2 and D and the
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(a) (b) (c) (d)

Fig. 12. Introducing imprecision with mathematical morphology using erosion and
dilation for source 2.

(a) (b)

Fig. 13. m1(D) (a) and m2(D) (b). Highest values are obtained around the boundary
between both classes, representing the imprecision of the limit.

decision image illustrated in Figure 14. The results are much better thanks
to the morphological operations. The final decision, taking according to the
highest mass value at each point (i.e. a point x is assigned to the white square
if m(C1)(x) > m(C2)(x) and to the background otherwise), is much closer to
the initial image. Only a few irregularities appear on the boundary between
the two classes.

The imprecision at the boundary can be taken into account in the decision,
by not assigning points with a high value of m(D) to one of the two classes.
This is illustrated in Figure 14 (e).

To show experimentally the benefit of the proposed approach, the images
have been first filtered using a spatial filter, and then combined before making
the decision (as in Figure 10). The result, obtained with a median filter and
displayed in Figure 14 (f), is spatially less consistent than the one obtained
with the proposed approach. Similar results are observed using other filters
(local average or morphological filters for instance).

The size of the structuring element directly influences the extent of the spa-
tial imprecision that is taken into account, and is cleary visible on m(D). For
instance, using a smaller (respectively larger) structuring element results in
a reduced (respectiveley extended) imprecision area between the two classes.
This also leads to a more restricted (respectively stronger) filtering effect on
the mass functions. This is illustrated in Figure 15. The shape of the struc-
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Fusion of m1 and m2. Resulting masses for C1 (a), C2 (b) and D (c). (d)
Decision after fusion by choosing at each point the class with the highest mass value.
(e) Decision taking into account the imprecision at the boundary: points with high
values of m(D) (in medium grey) are too ambiguous to be assigned to any of the
two classes. (f) Result obtained by first filtering the images and then combining
them and making decision.

turing element also has an influence. Here isotropic structuring elements are
chosen. But if the type of imprecision to be taken into account has privileged
directions, the structuring element can be adapted (for instance using segments
in these directions). This is a classical feature of mathematical morphology.

Other dual pairs of morphological operators can be used as well, such as
opening and closing. Figures 16–19 represent the same steps as previously, by
replacing erosion by opening and dilation by closing. Now the final decision
(Figure 19 (d)) has a regular boundary, and is almost everywhere even better
than the one obtained with erosion and dilation. This is due to the filtering
effect of opening and closing operators. Note that the corners of the square
are slightly smoothed too, and the limit between the two classes is not as good
in these areas as using erosion and dilation.

This very simple example illustrates the interest of the proposed approach
to represent and overcome spatial imprecision on a classification and on the
boundary between classes.
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(a) (b) (c)

(d) (e) (f)

Fig. 15. Resulting masses for C1 (a,d), C2 (b,e) and D (c,f) after fusion, using differ-
ent structuring elements. (a–c) Smaller structuring element. (d–f) Larger structuring
element.

(a) (b) (c) (d)

Fig. 16. Introducing imprecision with mathematical morphology for source 1. (a)
Bel1(C1) from opening ofm1

0(C1). (b) Pls1(C1) from closing ofm1
0(C1). (c)Bel1(C2)

from opening of m1
0(C2). (d) Pls1(C2) from closing of m1

0(C2).

(a) (b) (c) (d)

Fig. 17. Introducing imprecision with mathematical morphology using opening and
closing for source 2.

31



(a) (b)

Fig. 18. m1(D) (a) and m2(D) (b), obtained after opening and closing.

(a) (b) (c) (d)

Fig. 19. Fusion of m1
0 and m2

0 obtained by opening. Resulting masses for C1 (a),
C2 (b) and D (c), and decision after fusion (d). Compared to the results obtained
with erosion and dilation, opening and closing achieve an additional filtering effect,
which results in a smoother boundary between the two classes in the decision image
(however, corners of the square are smoothed too).
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5.8 Application on medical images

We illustrate now the proposed approach on a simple example in medical imag-
ing, addressing the problem of multi-source brain image classification. Images
are acquired using magnetic resonance imaging (MRI) using two different sets
of acquisition parameters (dual-echo MRI). These images constitute the two
sources to be combined in order to improve the classification. In this applica-
tion, we consider pathological brains, as previously addressed in [20], for which
the proposed method using morphological operations will prove its interest.

Figure 20 shows an example of initial images. The first echo does not allow
seeing the pathology, but the ventricles and the cerebro-spinal-fluid (CSF)
are well delineated and separated from the rest of the brain. The second echo
shows a bright area corresponding to the pathology. The thickness of the slices
results in a lot of partial volume effect around the pathology, evidenced by
intermediate grey levels. Ventricles and CSF are difficult to separate from the
brain in the second image.

Fig. 20. One axial slice of the original dual-echo MR acquisitions. The pathology is
only visible in the second echo (bright area).

These differences between the images also appear on the grey level histograms
(Figure 21). The first one has two peaks, one corresponding to the ventricles
and the CSF, and the second one to the other brain tissues. The second his-
togram shows generally lower grey levels. The first peak corresponds to the
brain and the ventricles and CSF, while the second one clearly shows the
characteristic grey levels of the pathology.

These observations lead to a simple modeling of the classification problem.
Three classes can be exhibited: C1 corresponds to the normal brain tissues,
C2 to the ventricles and CSF, and C3 to the pathology. The focal elements
are {C1, C3} and C2 for the first image, and {C1, C2} and C3 for the second
image. Initial masses are defined from the histogram as in [23], on the grey
level space. They are shown in Figure 22.

The combination of these mass functions using Dempster rule leads to focal
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Fig. 21. Grey level histograms of two initial images (without the background).

0 128 255
grey levels

0

0.5

1

normal brain and pathologyventricles and CSF

0 128 255
grey levels

0

0.5

1

ventricles and CSF, and normal brain pathology

Fig. 22. Initial mass functions for the two images.

elements reduced to singletons. In this example, the ambiguity between classes
in each image is solved by the information contained in the other image. The
decision image is shown in Figure 23. In this result, the pathology class only
includes pixels composed of almost pure pathological tissue. Pixels in the
intermediate area, composed of a mixture of pathological and normal tissues
are to a large part assigned to the normal brain class. Note that the boundary
between the two classes depends on the estimation of the initial mass functions,
which can be seen as a drawback. This problem is overcome by modeling
explicitly imprecision between classes using mathematical morphology.

Let us now apply the proposed approach on these initial mass functions. The
size of the erosion is derived from the range of ambiguous grey levels between
classes in the histograms. Erosions and dilations are applied in the grey level
domain. The results of erosion of the initial masses and the mass on D are
displayed in Figure 24.

Now the combination with Dempster rule provides focal elements that also
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Fig. 23. Decision image based on the fusion of the initial masses (yellow: normal
brain tissues; blue: ventricles and CSF; red: pathology).
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Fig. 24. Eroded mass functions and mass on D for the two images.

include disjunctions, as shown by the intersection table (Table 1).

C2 {C1, C3} D

{C1, C2} C2 C1 {C1, C2}

C3 ∅ C3 C3

D C2 {C1, C3} D

Table 1
Intersections between the focal elements of the two sources after erosion.

Figure 25 illustrates three types of decision images:

(1) The first one is based on maximum of pignistic probability rule [52]. It
does not show much difference with respect to Figure 23.

(2) The second decision rule is based on maximum of belief over the single-
tons. The result includes more of the intermediate region in the pathol-
ogy area. Also the cortical sulci, which are thin with respect to the slice
thickness and therefore also prone to partial volume effect, are better de-
lineated and included in the CSF class. This constitutes an improvement.

(3) The third decision is based on maximum of belief over all hypotheses (in-
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cluding disjunctions, except D). It is the most interesting one, since the
results show that the use of mathematical morphology operators allow
modeling explicitly the imprecision in grey levels due to the partial vol-
ume effect. The decision in favor of {C1, C3} (green area) clearly shows
the intermediate area around the pathology, which is consistent with the
medical interpretation. Similarly, the sulci are included in the decision
area for {C1, C2} (i.e. mixture of brain and CSF), which is again consis-
tent.

A typical application of these results is to improve the computation of the
volume of the pathology by taking into account not only the purely patho-
logical tissues, but also the mixture areas. The decision for {C1, C3} provides
these areas, in which a further processing can lead to an estimation of the
percentage of the pathological tissues. Such evaluations are much more robust
to the positioning of the slices during the acquisition than evaluations based
on crisp decisions.

(a) (b) (c)

Fig. 25. Decision images based on the fusion of the masses obtained after mor-
phological operations. (a) Decision based on maximum of pignistic probability. (b)
Decision based on maximum of belief over all singletons. (c) Decision based on max-
imum of belief over all subsets of D except D (green: intermediate area between
pathology and normal brain, highlighting the partial volume effect; cyan: intermedi-
ate area between CSF and normal brain, illustrating the influence of slice thickness
on narrow structures such as cortical sulci).

The influence of the size of the structuring element is illustrated in Figure 26,
where the results can be compared to those in Figure 25. It appears that the
results are quite robust with respect to the choice of the structuring element.
The decision based on pignistic probability remains the same. A few differences
can be observed on the images showing the decision taken for maximum of
belief over all subsets of D except D. Using a smaller structuring element
the intermediate area between pathology and normal brain is slightly smaller,
while using a larger structuring element, it is larger. The main change is in the
repartition between pure pathological class and the mixed class. Noticeably,
the union of the mixed class and the pure pathological class (i.e. all pixels
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containing at least some pathological tissue) remains stable when changing
the structuring element. This is an interesting result in terms of robustness of
the proposed approach.

(a) (b) (c)

(d) (e) (f)

Fig. 26. Decision images based on the fusion of the masses obtained after mor-
phological operations with different structuring elements. (a,d) Decision based on
maximum of pignistic probability. (b,e) Decision based on maximum of belief over
all singletons. (c,f) Decision based on maximum of belief over all subsets of D except
D. (a–c) Smaller structuring element. (d–f) Larger structuring element

6 Conclusion

With the aim of fusing images under imprecision, we proposed in this paper
a new method which introduces imprecision on the mass functions in the
framework of belief functions, by using dual fuzzy morphological operators,
such as erosion and dilation, or opening and closing. We have proved the
consistency of the proposed approach, in terms of properties that have to be
fulfilled by belief functions, in the case of crisp and fuzzy structuring elements.
This method leads to an estimation of disjunctions of hypotheses that takes
into account the imprecision inherent to images and the considered classes
or objects. The morphological operations can be applied either in the spatial
domain, to represent spatial imprecision, or in a feature space (grey levels for
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instance), to represent the imprecision on the characteristics of the classes.
Examples have been shown to illustrate both types of imprecision.

Acknowledgments: This paper is dedicated to Philippe Smets, with the
warmest thanks for his encouraging support.
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utilisation pour l’interprétation automatique des images satellites, Thèse de
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