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The prediction of the quasi-static response of industrial
laminate structures requires to use fine descriptions of the
material, especially when debonding is involved. Even
when modeled at the mesoscale, the computation of these
structures results in very large numerical problems. In this
paper, the exact mesoscale solution is sought using parallel
iterative solvers. The LaTIn-based mixed domain decom-
position method makes it very easy to handle the complex
description of the structure; moreover the provided multi-
scale features enable us to deal with numerical difficulties
at their natural scale; we present the various enhancements
we developed to ensure the scalability of the method. An
extension of the method designed to handle instabilities is
also presented.

1 Introduction

Since the early 1980’s, a very large number of studies has
been conducted on the prediction of debonding in compos-
ite laminates, resulting in better understanding of the fail-
ure processes of composites. As a result, micromechanics-
based models have been shown to enable accurate predic-
tions of the debonding phenomenon.

The industrialists’ wish to replace expensive experiments
by virtual tests for the design of their composite structures
has brought about a new issue. Currently, the analysis of in-
dustrial problems using previously referenced micromodels
is infeasible because the memory size and computing time
requirements are far too large. Therefore, most applica-
tions to predict the initiation and propagation of debonding
in laminates rely on mesoscale modeling [7, 18] which are
also rooted in the analysis of micromechanics phenomena.
In this paper we retain the model described in [2, 3]; it de-
scribes the behavior of the laminates distinctly in the plies,
3D entities, and in the interfaces, 2D entities, the debonding
ability being localized in the interfaces and handled through
a cohesive behavior.

Even for small test cases, the numerical problem result-
ing from the mesomodeling of laminate structures is huge.
Nevertheless, the latest advances in domain decomposition
and multiscale methods provide powerful tools enabling the

calculation of laminate structures of reasonable size. We
can distinguish two families of solvers able to handle such
large numerical problems. The first one consists in us-
ing a nonlinear homogenized strategy [29, 11, 10] coupled
with local enrichment methods [23, 16, 25, 24, 13, 26]. In
this paper we focus on the prediction of debonding in pro-
cess zones within the structure of the laminate, in which
we consider that the debonding processes leading to fi-
nal failure can be circumscribed. Though, within these
potentially large process zones, no low gradient zone can
be identified a priori. Thus, the enrichment-based strat-
egy might be difficult to use. Instead, we wish to use
the second family of solvers for large numerical problems,
which consists in computing the exact mesosolution every-
where in the process zones, using parallel iterative solvers
[9, 22, 17, 14, 12, 8]. Coupling the solution with a reduced
model such as a plate model [31, 4] will be the subject of
further work, and is not dealt with in this paper.

The mixed domain decomposition strategy described in
[21] uses an original concept which consists in splitting the
structure in volume substructures separated by surface inter-
faces. Consequently, the reference problem resulting from
the chosen mesomodeling is very naturally substructured,
the cohesive interfaces of the model being handled within
the interfaces of the domain decomposition method. This
idea is developed in Section (2). Furthermore, the resolu-
tion of the substructured problem by a LaTlIn iterative solver
exhibits very interesting numerical properties: the nonlin-
earities are dealt with through local problems and very few
re-assembling steps are required. The incremental micro-
macro LaTIn algorithm is presented in Section (2.2) with-
out any improvement. As shown in Section (2.3) several
numerical difficulties are encountered when directly apply-
ing the method. The core of the paper (Sections 3 to 6)
presents and assesses improvements and adaptations of the
method to efficiently handle delamination computations.

The substructured LaTIn method is parametrized by two
interface search direction operators. Optimal values have
been determined and practical values have been assessed
for many mechanical problems (perfect interfaces, contact
with or without friction), though for cohesive interfaces an



adaptation is required in order the method to be efficient
(and in some case feasible), as explained in Section (3).

The method is granted a multiscale nature by the sepa-
ration of a macroscopic part and a microscopic part of the
interface fields. This separation, coupled with continuity
conditions, leads to the construction of an automatic ho-
mogenization procedure. This concept has been success-
fully applied in the cases of crack propagation problems in
homogeneous media in [15], of composite structures mod-
eled at the microscale [19], and of multiscale problems in
time and space [20]. Though, in the case of singularities re-
sulting from the crack tips being localized on the interfaces
of the domain decomposition strategy, the homogeneous so-
lution is too poor to represent accurately the solution. It re-
sults in a loss of extensibility of the strategy. Therefore, we
enhance the method with a specific technique for the calcu-
lation of the quantities in the process zone with increased
accuracy, which results in a significant improvement of the
convergence rate, which is the topic of Section (4).

A consequence to the substructuring naturally introduced
to solve the reference problem is that the number of sub-
structures required to solve large delamination problems be-
comes huge. Hence, the macroscopic problem can not be
solved using direct solvers. The introduction of a third-level
problem is required to quickly propagate the very-high-wa-
velength part of the solution. This is achieved by solving the
second-scale problem using the balancing domain decom-
position method described in [22], as explained in Section
(5).

When trying to predict the very final residual strength
of the structure, which is of the industrialist’s interest, one
has to deal with instabilities and limit-points problems re-
sulting from the local softening behavior. Hence, an adap-
tation of the three-scale domain decomposition method to
arc-length-type algorithms with local control of the load-
ing amplitude has been developed, which is the subject of
Section (6).

2 The reference problem and strat-
egy

2.1 Reference problem and substructuring

F,

Figure 1: Reference problem

The laminate structure E occupying the domain Q is

made out of Np adjacent plies P occupying Domain Qp,
separated by Np — 1 cohesive interfaces Ipps (see Figure (1)).
An external traction field F; (respectively a displacement
field U,) is applied to the structure on Part dQ (respec-
tively dQ,,) of the boundary dQ of Domain Q = |Jp Qp.
The normal to the boundary dQp of Ply P, external to P, is
np. The volume force is denoted f ,. Let up be the displace-
ment field, o, the Cauchy stress tensor and €, the symmet-
ric part of the displacement gradient in Ply P.

The simulation is performed under the assumption of
small perturbations and the evolution over time is consid-
ered to be quasi-static and isothermal. The problem is
solved using an implicit time integration scheme. At each
time step of the analysis, the reference equilibrium problem
is:

Find syof = (sp)pek, where sp = (G, up), which verifies
the following equations:

e Kinematic admissibility on dQp N JQ,:
up=U, (1)
e Global equilibrium of Structure E:
Y(up*)peg € %° % ... x Un,°,

; /QPTr(g §(zp*))d9
—Z/QP £ oupt dQ— Z/a Fup* dT

P Qm&Q/

+;P§P /mpﬂaﬂ Zetyp Lt ul } ar=0
2
e Linear orthotropic behavior of the plies:
at each point of Qp, 0, =K¢(up) 3)
o Constitutive equation of the interfaces:
at each point of Ippr, pp (MP ,0,np) =0 (4)

The gap of displacement [u] ] of Interface Ipp such that
P < P’ has arbitrarily been 1ntroduced as [u], = up — up.
The operator .@pp: establishes a relation between the pri-
mal interface unknown [u] > and the dual interface unknown
O, lp, which reads :

O ,np = Kpp'.[u],, 5)

The expression of the local stiffness operator K, , of Inter-
face Ipp can be made explicit in the basis (np,t;,t,,) (see
Figure (2)):

(1=hs(,mp) ds) kS0 0
K, = 0 (1—dy)K° 0
0 0 (1—do)k?

h is here the positive indicator function.



Figure 2: The mesomodel entities

The local damage variables d; are introduced into the in-
terface model in order to simulate its softening behavior
when the structure is loaded. Their values range from 0
(healthy interface point) to 1 (completely damaged inter-
face point). The parameters d; are related to the local en-
ergy release rates Y; of the interface’s degradation modes.
Denoting e, the surface strain energy of the cohesive inter-
face,

; n o= %k? ([u]11)?
Yi=— Ta:j where , = ? k9 (MP.IQ])Z i
o= 3 ke (h+ (MP-EP))

(6)

e is here the surface strain energy of the cohesive interface.

We assume that the damage variables are functions of a

single quantity: the maximum Y|, over time of a combina-
tion of the energy release rates Y; 7, 7 <1

1
Y|, = maxc<p (Y3\O; +nhif+ }’zYzm (7

Thus, the evolution laws are:
dy=dy=ds=w(Y) (8)

where in general w(Y) =

n Y\"
n+1 (YC )

This model has the advantage of using a single damage
variable to handle several macroscopic delamination modes
of the interface (traction along np and shear along ¢, and ¢,).
However, when setting Parameters y; and 7> to identified
physical values such that 71 # v # 1, the energy dissipated

due to the propagation of the crack is different for the three
modes.

2.1.1 Substructured formulation of the reference prob-
lem

The laminates structure E is decomposed into substructures
and interfaces as represented in Figure (3). Each of these
mechanical entities possesses its own kinematic and static
unknown fields linked by its behavior. The substructuring
is driven by the will to match domain decomposition in-
terfaces with material cohesive interfaces, so that each sub-
structure belongs to a unique ply P and has a constant linear

(Fp, Wg)

3 g
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Figure 4: Substructuring of the laminated composite struc-
ture

behavior. A substructure E defined in Domain QF is con-
nected to an adjacent substructure E’ through an interface
Tppr = 0QE N IQg (Figure (4)). The surface entity T'gg
applies force distributions F, Fg as well as displacement
distributions W, Wy to E and E' respectively. We write
e =Upeelee

On a substructure E such that I'r N (dQf U JQ,) #
{0}, the boundary condition (U ,F,) is applied through a
boundary interface I'g,.

Let o, be the Cauchy stress tensor and €, the symmetric
part of the displacement gradient in substructure E.

Then, the substructured quasi-static problem consists in
finding s = (sg)geg at a given step of the time integration
scheme, where sg = (gE,EE,gE,EE), which verifies the
following equations:

e Kinematic admissibility of Substructure E:

at each point of I'g,

(€))

up=Wg

Static admissibility of Substructure E:
V(ug"\ Wg") € U X W [ ug™ o, = Wg™,

QETr( u")) 4O :/QEfd'ﬂE aQ

+/ EEEE* dr’
I'eg
(10)

Linear orthotropic behavior of Substructure E:

at each point of Qg, o8 :Kg(gE) an

e Behavior of the interfaces I'gg:

at each point of I'gpr € I'g,

Rt (W W, F, Fgr) =0 (12)

Behavior of the interface at the boundary:

ateach point of I'g,, g, (Wy,Fg)=0  (13)
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The formal relation Zgg: = 0 and Zg, = 0 named "in-
terface behavior” can be made explicit in the two cases that
we have to handle:

e Perfect interface:

EE +EE’ =0
AT a4
e Cohesive interface:
Fpp (W — W, Fg) =0

where Substructure E (respectively E’) belongs to Ply
P (respectively P'), such that P < P'.

In the same manner, and for instance in the case of a pre-
scribed displacement boudary interface I'g,, the formal re-
lation Zg, = 0 reads:

(16)

2.2 Two-scale iterative resolution of the sub-
structured problem

2.2.1 Introduction of the macroscopic scale

In order the scalability of the method to be ensured, a global
coarse grid problem is solved at each iteration of the solver.
The definition of the macroscopic fields required to con-
struct this problem is done on the interface only.

At each interface I'gg/, the interface fields are split into
a macro part M and a micro part ™, the former belonging
to a small-dimension subspace (e.g. 4 macro degrees of
freedom per interface in 2D, 9 in 3D).

Fp=FY+Fp

17
Wp =Wy + W )

Given the macrospaces # and .Z¥ on Interface Iz, the
unicity of the decomposition of the interface fields in macro
and micro data is ensured by uncoupling the interface vir-
tual works:

V(EEvEE) € ‘QE X WEv EEEE dar
Tppr

= [ Erwiars [ Fpwyar
Tppr

EE (18)
Usually, a common macro basis for both the kinematic and
static interface macro fields is chosen. Numerical tests
showed that in order to ensure the numerical scalability of
the method the macro basis should extract at least the linear
part of the interface forces (see Figures (5) and (7)). Indeed,
this macro space contains the part of the interface fields
with the highest wavelength. Consequently, according to
the Saint-Venant principle, the micro complement (which,
as explained in next subsection, is found iteratively through
the resolution of local problems) has only local influence.

2.2.2 The iterative algorithm

The iterative LaTIn algorithm, which enables the resolution
of nonlinear problems, is here applied to the resolution of
the substructured reference problem with nonlinearities lo-
calized in the interfaces.

The equations of the problem are split into two groups:

e linear equations in substructure and macroscopic inter-
face variables:
e static admissibility of the substructures
e kinematic admissibility of the substructures
e linear behavior of the substructures

e cquilibrium of the macro interface forces
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e local equations in interface variables:
e interface behavior

The interface solutions s = (sg)geg = Wy, Fr)EcE to
the first set of equations belong to Space Aq, while the in-
terface solutions § = (g )geg = (W, F 5 ek to the second
set of equations belong to I'. The converged interface solu-
tion Spef is such that:

Sref € Aq[ T (19)

The resolution scheme consists in seeking the interface
solution sy alternatively in these two spaces: first, one

finds a solution s, in Aq, then a solution s, ot ) in . In or-

der for the two problems to be well-posed, search directions
E™ and E linking the solutions s and § through the itera-
tive process are introduced (see Figure (6)).

Hence, an iteration of the resolution scheme consists of
two stages:

e alocal stage:

Finds,, €T such that (5,1 ~s,) €E*  (20)

e a linear stage:

Find sp.1 € Aq such that (s,,+1 —§n+%) cE- (1)

In the following sections, the subscript n will be dropped.
Local stage In the local stage, local problems are solved
at each point of the interfaces I'gp::

Find (F g, W, F g, W) such that:

%EE/(WE,WE/ FE,FE/) = 0
(FE FE) kE (WE EE):O
(Fgr —Fp) — kg (Wg —Wg) =0

(22)

the two last equations of this system being the search direc-
tion E*. In the case of a cohesive interface, Problem (22)
is nonlinear, and solved by a modified Newton-Raphson
scheme.

Local linear problems are also solved at each point of the
boundary interfaces I'g,:

Find (I?E, WE)such that:
{ ‘%)Ed(WE7FE) 0
(Ep—Fg)—kf(Wg —

(23)
EE) =0

Linear stage The linear stage consists in solving linear
systems on each substructure under the constraint of macro-
scopic equilibrium of the interface forces.

on interface 'gg/, E% + F % =0 24)



Macroscopic admissibility of displacements could also be
enforced. In the case of perfect interfaces, it would be easy
to derive. In the case of non-homogeneous or nonlinear be-
havior at the interfaces, the macro condition would not be
practically (and sometimes theoretically) feasible.

Condition (24) is incompatible with the monoscale
search direction E™ coupling the interface displacement and
forces fields at the linear stage, which reads:

(Eg—Fg)+ky Wg—Wg)=0

(25)
Hence this search direction is weakened and verified at best
under the macroscopic constraint. Technically this is real-
ized using a Lagrangian whose stationarity leads to a mod-
ified local search direction:

on interface I'g,

V. Wit e, /F(EE—EE).EE*CJF
E

+/ (kE Wy~ Wp) —kg@M) Wp*dl =0
e

(26)
and to an equation expressing the continuity of the macro-
forces:

v e,

Z/ Fp " ar=Y [ p,@" ar

@7

where QM is unique for Interface ['rp and set to zero on
9, Q.

A way to solve this set of equations consists in introduc-
ing a relation coupling F¥ and @M into (27). This relation
is derived from the local equilibrium of each substructure
(10) and from the local modified search direction (26). The
problem to be solved for Substructure E becomes:

V (ug™ \ Wg*) € Ue x Wk,

/QE Tr(g(ﬂE) KE(ZE*)) d‘Qj_ /FE kE EEEE* dr (28)

M

_ u *dQ+/ Ptk W W, * ar
/Qfde FE(*E W) Wg

E

where EE :EE —&—kE@E.

Equation (28) is linear. Therefore, one can write a linear
relation between the interface displacements and the load-
ing:

VW e W, /FEE.EE*dF
E

:/r (HE(EE +kg WM)‘FWEIJ) We*
: (29)
Operator Hf, is the dual Schur complement of Substructure
E modified by the search direction, while W§, 4 results from
the condensation of the volumic loading on interface I'z.
The corresponding interface forces are obtained through
the modified search direction (26) and projected onto the

macro space:

v e M.

Fp W' ar=
I'e I'e

Wy w" + Fy). W' ar

(30)
where

v wrewM, L w" W' ar

I'e

:/ (ki —k Hy k) W™ ™" ar
g
v wrewM,

Fr W™ ar

Tk = ~ Mx
:/ (Fe—kg (Hp Fp+ws,)) " ar
I'e

LY is classically viewed as a homogenized behavior of Sub-
structure E and is calculated explicitly for each substructure
by solving local subproblems (28) taking the vectors of the
macro basis as boundary conditions on I'g.

This relation is finally introduced into the equation ex-
pressing the admissibility of the macroforces (27), leading
to the so-called macro-problem:

v wrewM, Z/ 4w w* ar
E Tk

:Z/ Ed.@’”*dr—z/ Fp ™ ar
E /9% E Tk

€29
The macro-problem is discrete by nature. Hence, its an al-
gebraic form LMwM - pM , where WM is the vector of the
components of the Lagrange multiplier in the macro basis,
is also used in the following.

The right-hand side of Equation (31) can be interpreted
as a macroscopic static residual obtained from the calcula-
tion of a single-scale linear stage. In order to derive this
term, the problem (28) must be solved independently on

each substructure, setting QM to zero. The resolution of the
macroscopic problem (31) leads to the global knowledge

of Lagrange multiplier ﬁM, which is finally used as pre-
scribed displacement to solve the substructure independent
problems (28).

In order to perform the resolutions of (28) on the sub-
structures, finite element method is used. Since the behav-
ior of the substructures is linear, the stiffness operator of
each substructure can be factorized once at the beginning
of the calculation and reused without updating throughout
the analysis, which gives the method high numerical perfor-
mance.

Algorithm (2.1) sums up the iterative procedure which
has been described in this section.

2.3 Delamination analysis example

A first example of quasi-static delamination analysis is
shown in Figure (7). The problem consists in a [0/90];
double cantilever beam (DCB) case. The loading leading



Algorithm 2.1 The 2-scale domain decomposition solver
1: Substructures’ operators construction
2: Computation of the macroscopic homogenized behav-
ior LY on each substructure
3: Global assembly of the macroscopic operator LM
4: Initialization sy € T’
5: forn=0,...,Ndo
6:  Linear stage: computation of s, € Ag
O Computation of the macroscopic right-hand
term F
on each substructure
] Global assembly of the macroscopic right-hand
term
[ Macro problem resolution
U Micro problem resolution
7. Local stage: computation of s ! el

U Boundary interfaces I'g,

U] Internal interfaces I'gg
8:  Calculation of an error indicator
9: end for

Uy

Propagation of the delamination crack

Initially-delaminated interface

U,

Figure 7: Four-ply DCB test case

to mode I quasi-static crack’s propagation is increased lin-
early over 10 time steps. The first three of them correspond
to the initiation of the delamination and the remainder to the
crack’s propagation.

This assessment is realized with a C++ implementation
of the mixed domain decomposition method capable of han-
dling the quasi-static analysis of 3D nonlinear problems.
The parallel computations use the MPI library to exchange
data among several processors.

Each processor is assigned to a set of connected substruc-
tures (along with their interfaces); it calculates the associ-
ated operators and solves the local problems. This tends to
reduce the number of interfaces duplicated among several
processors (Figure (17)) and is achieved technically through
a METIS routine.

This very simple test case already exhibits numerical dif-
ficulties:

e The convergence rate of the LaTIn-based strategy is
highly dependant on the search direction parameters.

In the case of cohesive interfaces the iterative solver
can even stagnate when using too small values for the
search direction parameters. Hence, we describe in
next section the way we set them in order to ensure
convergence.

e The method loses its numerical scalability when the
crack’s tip propagates. This phenomenon appears
clearly in Figure (15) ("No sub resolution” label).
When the delamination process propagates (Time
steps 4 to 10), the number of LaTIn iterations to con-
vergence becomes very large. A solution to this prob-
lem is developed in Section (4)

3 Analysis of the iterative algorithm
parameters

The search direction parameters (k7 )geg)y and (kg )(gcr)
are introduced as positive definite symmetric operators. It
has been empirically shown in previous studies that an op-
timal set of these operators exists. Though, these optimal
operators are known to be difficult to interpret theoretically,
especially when using complex interface behaviors. In ad-
dition, they can be expensive to compute even in simplified
cases (perfect interface behavior). Our goal is here to find
an efficient local approximation of the search direction op-
erators for debonding analysis.

3.1 Search direction ET

Using too small a value for Parameters (klif)( EcE) can lead
to the stagnation or divergence of the algorithm. Actually,
in this case, the interface solution is seeked at the local stage
in a truncated space I', the solutions in the softening part of
the local cohesive behaviour being unreachable. Figure (8)
illustrates schematically this idea. The constitutive law of
a cohesive interface and the search direction equation E*
are projected on the normal direction to the interface, at a
given integration point. The solution seeked at the local
stage is the intersection of the two curves obtained. This so-
lution is computed by a Modified Newton-Raphson scheme.
It clearly appears here that the part of the constitutive law
within the dotted frame cannot be reached when using this
iterative procedure. Thus, the global minimum of the prob-
lem may not be found through the LaTIn iterations.

We thus choose to set (kj ) geg) to infinite values (see
Figure 9) and focus on the choice of Search direction E~
only. Although slightly improved convergence rate could
be obtained using classical conjugate search directions E™
and E™, the time costs of the local stage drop as the local
problems can be solved directly.
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3.2 Search direction E™: interpretation

The search direction E™ must be separated into a macro
part E~™ and a micro part E=™ in order to be interpreted.
Equation (26) can be rewritten:

YWyt ew, /((EE—EE))W%*C’T
rE

+/ k‘ Wy —Wp— )WM*dr 0

(32)
vwp ey, [ ((Ee-Ep) wprar
e

+/r (k" Wy~ Wp)) W ar =0 (33)

where %" is the space orthogonal to WEM with respect to
the L*(T'g) inner product.

Perfect interfaces Previous studies [17, 21] have focused
on the choice of the micro search direction parameter
(kz™)Eeg. Classically, when dealing with perfect inter-
faces, the optimal parameter kEm on interface ' can be
linked to the Schur complement of the structure occupy-
ing the domain Q\ Q. As the introduced microscopic in-
terface quantities have a local influence, this Schur com-
plement can be calculated in the vicinity of Interface I'g.
In the case of isotropic and homogeneous materials, The
scalar E/L has been shown to be a good approximation of

this local operator [21], E being the Young’s modulus of the
adjacent substructure and L a characteristic length of the in-
terface. As explained in paragraphs, computing this micro-
scopic optimal search direction parameter is not of primal
interest in our case.

The (kEM) geg search direction parameter can be inter-
preted by considering an interface I'z s separating two adja-
cent substructures E and E’. In order to simplify the expla-
nations, we consider here a unique search direction parame-
ters on I'gg for both substructures. Taking into account the
macroscopic equilibrium of the interface forces along the
interface I'gg/, on can derive from (32) :

v WM e M
1
/ (FE zkEE,(WE, WE)) WM gr
Uppr
_ / ( EE,(WE, We)).WM* dr

This equation means that &k, E/ is a macroscopic stiffness
of interface I'gg/. In the case of perfect interface, setting
kgg/ to the infinity equals to enforcing the macroscopic
displacement continuity through the interface. As the the
macroscopic equilibrium of the interface forces is ensured
by equation (27), this choice of the search direction param-
eter kE - leads to the complete enforcement of the interface
macroscopic behavior at the linear stage :

vWH" e / (Fp+Fg) WY dar =0

Uepr

(Wp—Wp) W™ dl =0

(35

Though, as the substructures are small compared to the
size of the structure, the characteristic length introduced to
approximate the microscopic optimal search direction pa-

VWY e V/EM

Tppr

rameter is very small. Hence, setting kgg, to kgg/ is close to
ensuring the macroscopic displacement continuity through
perfect interfaces. Moreover, as it will be explained further
on, the choice of a unique search direction paramater in-
creases the simplicity and efficienty of the iterative strategy.

In the case of more complex interface behaviors, like
softening, ignoring the influence of the macroscopic stift-
ness (kEM)(EeE) can lead to non physical solutions or even
to the divergence of the iterative process. This idea is il-
llustrated by the results in Figure (10). The test case pre-
sented is a four-plies composite beam, the black parts of
the cohesive interfaces corresponding to initial delamina-
tion. The third interface is artificially weakened. The solu-
tion labelled “Reference solution” is obtained by a modified
Newton algorithm, while the two following ones result from
a LaTIn computation, two different set of search direction
parameters being used.

Thus, an effort must be made to correctly set the inter-
face conditions prescribed at the linear stage. In the case
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Figure 10: Converged solutions reached by the LaTIn algo-
rithm using different sets of search direction parameters

of simple interface behaviors (including the perfect inter-
face behavior studied in the previous paragraph), a ’phys-
ical” macroscopic interface condition can be prescribed
beetween sub-structures at the linear stage. We will derive
the general case from the analysis of these specific studies.

Homogeneous isotropic elastic interface Let us set the
macroscopic search direction parameter kggl, of an elastic
interface Tz to 2k°(1 —d), where k° is the local scalar
stiffness of the interface. Equation (34) now reads :

v w%*G%M / (EE'FEE/).E%* dl'=0
Uppr
VoW e,
(Fg — k(1 —d) (W ~Wg)) ~w%4* dl'=0

Tpp
(36)
Hence, setting %kgg, to the interface stiffness equals to pre-
scribing the macroscopic interface behavior as an interface
condition at the linear stage.

Delaminated interfaces under traction In the case of a
completely damaged cohesive interface loaded with traction
(so that the gap of interface displacements is positive), the
converged interface force fields are null. Thus, both micro
and macro search direction parameters should optimaly be
set to zero. Indeed, F E= F = 0 on interface I'g s as these
quantities result from the local stage and verify the interface
behavior. Consequently, setting kgg, = kgg, =0 leads to the
enforcement of the relation Fp = Fyp = 0 (equations (32)
and (33)).

General case We can conclude from these three simpli-
fied cases that, as the macroscopic equilibrium of the inter-
face forces is enforced at the linear stage through the choice
of Admissibility space Ag, one can ensure the verification

of the complete linearized interface behavior by the macro-
scopic interface fields at this stage by setting the E™ inter-
face parameters to specific values. Thus, together with the
choice of a rigid E™ search direction, this choice leads to a
hybrid iterative strategy :

e a modified Newton-Raphson scheme on the macro-
part of the solution

e a Latin-type algorithm on the micro part, the search
directions E* and E~ being non-conjugated (which is
not classical)

Though, when dealing with cohesive interfaces with non-
constant stiffness, with interfaces partially delaminated, or
with delaminated interfaces loaded with both local traction
and local compression, the interface behavior that should be
verified by the macroscopic fields is not explicit. Yet a too
coarse approximation of this behavior might drive the algo-
rithm towards a local minimum of potential energy instead
of a ”more physical” global minimum.

Moreover, the mechanical interpretation of the search di-
rection parameters (kg )gcg) requires to introduce a mi-
cro search direction E-™ and a macro search direction
E-M. But when using this search direction separation,
we found out that the CPU time increased, because of the
large amount of projections of the interface fields in the
macrospace required through the iterative process.

A practical way to choose a common micro and macro
search direction parameter that ensures a good interface
condition is the subject of next subsection.

3.3 Search direction E™: practical choice

The (kz )(geg) search direction parameters are set with re-
spect to the interface behavior, as explained bellow:

e perfect interfaces: (ki )(gcr) are set to the optimal mi-
cro values described previsouly. As the characteristic
length L of the interface is very small, these values are
high enough to ensure the continuity of the macrodis-
placement through the perfect interfaces.

o undamaged or partially damaged cohesive interfaces:
(kg )(£er) are set to the optimal macro values for ini-
tially undamaged interfaces. In the case of an interface
I'rgr, we thus choose:

22 0 0
- 0
kgp={ 0 2k 0 (37
0 0 2i

(ng.tytp)

even though it cannot be shown theoritically, this strat-
egy has always led to the convergence of the iterative
algorithm. Moreover, as the interface conditions be-
tween substructures are connected to mechanical prop-
erties, no branching to non-physical solutions has been
observed in our cases.
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Figure 11: Use of small search direction parameters for delaminated interfaces

e delaminated interfaces: (kg )(ger) are set to the same
values used for undamaged interfaces, unless the con-
tact status of the interface is known (i.e.: unless all
integration points are in compression, or unless all in-
tegration points are in traction). In the last cases, the
search direction parameters are updated as follows :

e delaminated interface under compression

29 0 0
g = 0O 0 O (38)
000 (ng.ty:ty)
e delaminated interface under traction
kppr =0x14 (39)

Obviously, updating E* with respect to the contact sta-
tus of the cohesive interface requires a re-assembling
step of the macroscopic global operator. Potentially,
this method can be expensive, unless the macroscopic
problem is solved using a parallel strategy (see Section
5).

The results of this procedure for the cubic test case rep-
resented Figure (7) are shown in Figure (11). All the
interfaces between adjacent sub-structures are granted
a cohesive behavior. The prescribed loading leads to

initiation of the delamination (time steps 1 to 2), open-
ing of the cracks (time steps 3 to 7) and closing of the
cracks (time steps 8 to 10). In the first case, the search
direction parameters (kz )(gcg) are constant through-
out the analysis. In the second case, they are updated
as explained previously, the contact status of the de-
laminated interfaces being checked every ten LaTlIn
iterations. Clearly, the number of iterations to con-
vergence is significantly reduced when delamination
occurs, the delaminated interface being under traction.

e prescribed forces (respectively displacement) inter-

faces: (kg )EcE) are set to a very low (respectively
high) value so as to enforce the boundary condition
through penalization to the adjacent substructure.

In the end, it comes out that the retained parameters are
quite independant on the shape of the cohesive law. Thus,
good performance results can be expected from other dam-
aging interface models, without significant adaptation.

4 Subresolutions in the crack’s tip

vicinity

The drop in the convergence rate occurring when the cracks

propagate can be explained by two main phenomena:

10
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o the singularity near the tip of the crack is very poorly
represented by linear macro quantities (see Figure
(12)). Therefore the complementary “micro” parts
of these phenomena, which are calculated iteratively
through the resolution of local problems, have an in-
fluence on a significant part of the structure. In order
to maintain the scalability of the method, a method to
filter this global influence from the “micro” quantities
in the process zone and then transmit it to the whole
structure must be designed.

the prediction of the location of the crack’s tip at a
given time step requires the quasi-convergence of a
large number of consecutive equilibrium states. Con-
sequently, the propagation of the crack is very slow as
the iterations proceed.

A first solution would be to enlarge the macro space so that
the totality of the numerical influence of the crack would
be systematically transmitted over the whole structure. Be-
cause such a strategy would imply to update (reassembly
and refactorization) the macro problem at each evolution
of the crack, it is not computationally realistic. However,
the very-large-variation-length part of the solution is deter-
mined correctly in most of the structure since the very first
iterations. Therefore as exposed in this section, one can
choose to solve “exactly” the highly nonlinear problem in
the crack’s front vincinity at each global LaTIn iteration.

4.1 Principle of the sub-resolution strategy

The technique consists in extracting a part Qg,;, of Do-
main . The converged solution of the extracted nonlinear
subproblem on €, is sought using the two-scale domain
decomposition strategy described in Section 2 (see Figure
(13)) along with Algorithm (4.1)). This idea is similar to
the concept of nonlinear relocalization developed in [5, 27],
in which the authors used a domain decomposition method
and performed a nonlinear analysis in each substructure af-
ter a resolution of the condensed global linearized problem.
In our case, the nonlinear relocalization is carried out on a
set of substructures because the nonlinearities are localized
at the interfaces of the domain decomposition scheme.
Let us concentrate on two main difficulties:

o the choice of the boundary conditions for the subprob-
lem

o the choice of the size and position of the extracted sub-
domain

4.2 The boundary conditions of the subprob-
lem

The subresolution is carried out at each step of the global
iterative resolution, which results in unbalanced substruc-
ture and interface fields. Numerical tests showed that the
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Figure 14: Influence of the size of the subproblem

prescribed conditions applied on the boundary dQ,;, of do-
main Qg,;, must be in Space A; (i.e. they must result from
a linear stage of the resolution). Indeed these fields are in
global static equilibrium over the whole structure, whereas
the solutions in Space I" are in equilibrium only locally and
do not self-equilibriate Q.

Thus, subresolutions can be interpreted as an enhance-
ment of the linear stage. In order the process zone to keep
matching the remaining of the structure, Robin boundary
conditions are prescribed on dQy,;, using search direction
E™ as interface stiffness parameter.

4.3 Adaptivity of the subproblem

In order to extract the subproblem automatically, we choose
to select a set of substructures and interfaces in a box sur-
rounding the interface with the highest damage rate at the
end of the global step (see Figure (13)).

The influence of the size of the extracted subdomain is
shown in Figure (14).

4.4 Results

The resolution of a subproblem around the crack’s tip leads
to a convergence rate of the global resolution which is in-
dependent of the time step of the analysis (i.e. independent



Algorithm 4.1 The subresolution strategy algorithm

1: Substructures’ operators construction
2: Computation of the macroscopic homogenized behav-
ior LY on each substructure
Global assembly of the macroscopic operator LM
Initialization so € T’
forn=0,...,Ndo

Linear stage: computation of s, € Ag

Local stage: computation of §n +1 el

A A

Subproblem extraction

[J Location of the substructures requiring subres-
olution

] Application of mixed boundary conditions

] Assembly of the macro subproblem
9: for j=0,...,mdo

10: Subproblem linear stage

11: if j <m—1 then

12: Subproblem local stage

13: end if

14: Local error indicator

15:  end for

16:  Local stage on the boundary interfaces of the sub-
problem

17:  Calculation of an error indicator

18: end for

of the area of the interface which becomes delaminated in
one time step), which means that the numerical scalability
is restored.

As a result, the local inversion time for the problem
shown in Figure (13) (with the smaller subiteration domain)
was cut in half. This estimate does not take into account the
fact that the macroproblem is much smaller in the case of
the subiterations; furthermore the gain increases as the ra-
tio between the size of the process zone and the size of the
structure decreases.

Thus, this method can lead to a reduction in the number
of calculations. However, this reduction would be ineffec-
tive unless the subproblem is re-parallelized. Indeed, using
the initial allocation among the parallel processors would
adress the extracted subproblem to only a very small num-
ber of processors. Another solution, easier to implement but
potentially less efficient, would be to perform independent
subiterations systematically on all the processors.

5 Third-scale resolution

The substructuring described in Section 2 results in a very
large macro problem and in an unnecessarily refined macro-
scopic solution. In order to solve large problems such as the
one represented Figure (16), we need to focus on:

o the parallel resolution of the macroproblem,

o the selection and transmission of the large-wavelength
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part of the macro solution.

These two elements can be introduced into the method
through the use of any Schur-complement-based domain
decomposition method [14]. We chose to implement the
BDD method [22] to solve the macroproblem.

5.1 The balancing domain decomposition
method for the macroproblem

5.1.1 Partitioning of the macroproblem

The substructures of the initial partitioned problem are
grouped into super-substructures E separated by super-
interfaces I'zz (Figure (17)). Practically, each super-sub-
structure is made of the whole set of sub-structures assigned
to a given processor of the parallel computing architecture.
The algebraic problem to be solved within each of these
super-substructures reads:

( LM(E) LM(f) > ( W
£ wmE (E
M puE ] ;

b

(40)
where the M superscript has been omitted, the subscripts b
and i refer to the super-interface quantities and to the inter-
nal quantities of the super-substructures respectively. B(£)
and A) are signed Boolean localization operators. The
second equation of System (40) expresses the continuity of
the kinematic unknowns, while the third equation expresses
the equilibrium of the nodal reactions at the interfaces be-
tween super-substructures.
The local equilibria are condensed at the super-interfaces
through the introduction of Schur complements S\&) and
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condensed forces F, EE):

s wE 7B | B 1)

§E) _ yME) _ME) [ ME) | M(E)

where 7 b 3 bi_ i » 7ib

The continuity of displacement is achieved automati-
cally through the introduction of a unique super-interface
macrodisplacement ﬂh. Then, the continuity equation of
the interface reaction forces yields:

SW,=F, (42)

$=Y ABE) ABT
E

where F— ZA(E)EE-E)
E

5.1.2 Resolution of the super-interface problem

The condensed macroproblem is solved iteratively through
a conjugate gradient algorithm. Classically, this resolu-
tion requires only matrix-vector products and dot products,
which are compatible with parallel architectures.

Algorithm 5.1 Projected preconditioned conjugate gradient
Initialize Wy, = (PWp,,) +C(CTSC)~'CTF,
Calculate rg = F, —SWp,
Calculate zp = Pg’lro and set wy = 29
for j=0,...,mdo

o = (rj,z;)/(Swj, w))

ij+1 = ij +ow;

rjq1 = rj~_ ochwj

zjr1 =PS7rjp
B! =—(Swj,zjs1)/(wj,Sw))

= J k
Wit1 = Zjt1 + Yio Biwi
end for

R AN e

[—
—_= O

The recommended preconditioner for a parallel use of
this algorithm is what is called the Neumann precondi-
tioner:

5 T

S = ZA<E)S<E)+A<E) 43)
E

sE* being a generalized inverse of the Schur complement
of Super-substructure E.

The use of this preconditioner means that the inverse of
the global super-macro operator is approximated by the as-
sembly of the inverses of the local Schur complements.
Let us note that the description chosen for the interface
macrofields precludes the existence of degrees of freedom
belonging to more than two substructures; consequently, no
scaling is required in the preconditioner (at least when the
interfaces are not too heterogeneous).

monoscale

l
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conjugate gradient
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Figure 18: LaTIn convergence curves for different numbers
of macro iterations

Since the product AS’—ler consists in solving Neumann
problems for each super-substructure £ under the loading
7j+1, one must ensure that r;, 1 is self-balanced in the sense
of E. Therefore, we introduce a projector P which projects
the residual onto the space orthogonal to the kernel of the
super-substructure at each iteration of the conjugate gradi-
ent.

Thus, the solution is sought in the form:

Wy =Wy, +P W, 44)
where

C'(b—SWp)=0 = W, =C(C'SC)" ' CTF,

Cc’'sP=0 — P=I-C(C’sC)"'C’s

Matrix (CTSC) corresponds to a coarse representation of
the global stiffness of the structure. Operator C must con-
tain at least the rigid body modes of the super-substructure.
Then, the initialization W, is achieved as a combination
of the rigid body modes of the local stiffness operators
(range(C)), while the remaining part is sought iteratively
in the supplementary subspace ker(C’S) through the pro-
jector P.

5.2 Results

Figure (18) shows the convergence rate of the LaTIn al-
gorithm when the conjugate gradient scheme for the con-
densed macroproblem is stopped after a fixed number of it-
erations. The test case is the holed plate under traction load-
ing represented in Figure (16) with the super-substructuring
pattern given in Figure (17). The structure is divided into
520 substructures, separated by 1350 interfaces. The num-
ber of micro (respectively macro) degrees of freedom in-
volved in this problem is 3.4 x 10° (respectively 12150).
It appears clearly that only very few iterations of the con-
jugate gradient scheme are required to get the necessary

15
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part of the macrodisplacement Lagrange multiplier leading
to the multiscale convergence rate of the LaTIn algorithm.
Hence, high accuracy of the macroscopic resolution is not
necessary to transmit pertinent piece of information on the
whole structure. Typically, the algorithm is stopped when
the residual error (normalized by the initial error) falls be-
low 107!, The admissibility of the macroforces is thus en-
forced on a third level, which is sufficient to determine the
part of the solution which needs to be transmitted at each
iteration of the resolution.

Figures (19) and (20) show how well the method scales
both in computational time and memory usage when em-
ployed on modern hardware parallel architectures (dis-
tributed memory clusters).
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6 Control of the loading sequence

The incremental version of the LaTIn algorithm, like
Newton-Raphson algorithm encounters numerical difficul-
ties when used to carry on analysis beyond global limit-
points or snap-backs.

This section focuses on the discretized assembled nonlin-
ear problem :

K((Un)ms<n) Un = Fy (45)

Global equilibrium states are sought successively at each
time step n (0 < n < N) using an implicit time integration
scheme. The nonlinear equilibrium problems coupled with
a local arc-length control are solved by a modified Newton
algorithm, the linear prediction steps being handled by the
3-scale domain decomposition strategy, as described in next
subsection.

The control algorithm is activated locally during the time
analysis when the LaTIn strategy fails to converge. Con-
versely when the control algorithm results in a succession
of re-increasing loadings, the solution algorithm is switched
back to the LaTIn method.

6.1 Local control

As usual in arc-length methods [28, 6], the amplitude of the
loading A, is linked to the global displacement in such a
way that the norm of the (AU,,AA, F) takes a predefined
fixed value, the A. unknowns being the increments of these
quantities between time steps n — 1 and n. In our case, these
global unknowns are not of primary interest [30, 1]. Instead,
let us introduce the control equation as:

¢(U,) AU, = Al (46)

where ¢(U) is a Boolean operator extracting the maximum
value of the local displacement gap over all the cohesive
interfaces of the model, and Al is a given value. Thus, the
loading increment A is controlled by a local variable which
is closely related to the maximal local damage increment of
the structure.

6.2 The arc-length resolution

Thus, at each time step n, we seek the solution (Uy,A,) of
the following discrete system:

fUp2) =K(U,) Uy — Ay F =0 wn
(U, M) = ¢(U,) AU, — Al =0



The first-order expansion of the equilibrium equation
around the point (U;, ;) yields:

of

SO Y = fULA) + 90 (Wi U -uy)
8f R
s A Ay =0
8/1|<U,m;>( ! )
SO A = UL+ 55 (O - 0)
ag o
Y5 /'LH_l*)LI =0
+8/1|<u4,z,5>( " )
(48)

We use a modified Newton algorithm, which means that
is approximated by K(U?),
Ui

n

af
the tangent operator 55, ;; 3.,

while %I(UHZ) is approximated by ¢(U}). Using the re-
lations expressing that System (47) is verified at time step

(n—1), one gets:

{

The introduction of the linearized equilibrium into the lin-
earized control equation leads to the expression of the load-
ing parameter at Iteration (i 4 1), then to the displacement
solution:

AU = AT R(UD TV F - U,

. : 4
c(UH) AU = Al “9)

i1 _ Al+e(U;) Un-i
T (UK TF
Ut =24 K F

(50)

Then, Operators K(U,) and ¢(U,) are updated with re-
spect to the kinematic field U;y; found at the prediction
stage of the modified Newton algorithm (50) and, unless
the residuals of the updated equilibrium and control equa-
tion are small enough, a new iteration is performed. The
norm of the residual of the control equation is not used to
stop the Newton iterations. In facts, the given value of the
maximum local damage increment has no physical mean-
ing. Yet, using this numerical technique ensures that the
evolution of the loading permits to follow the global behav-
ior of the structure. Consequently, any converged equilib-
rium state found can be used to perform a new time-step
computation.

6.3 Parallel calculation

Our attempt to solve the linear problem (47) has been un-
successful. This can be explained by the fact that the con-
trol equation is global over the whole structure and non-
linear. Thus the classical separation of the linear equations
on one hand and the local non-linear equations on the other
hand, which is the basic idea of the LaTIn method, cannot
be made. Nevertheless, the prediction step of the Newton
algorithm described in the previous section requires the res-
olution of the linear system K(U})~! F. We propose to use
the LaTIn mixed three-scale domain decomposition method
to find the solution to this linear system. The method is still
efficient for two reasons :

35 T T T T T T

I Time step 1
1 Time step 2

Number of LaTIn iterations

[

3 4
Newton iteration

Figure 21: Influence of the initialization of the LaTIn linear
solver on the number of LaTIn iterations required to achieve
convergence at each Newton iteration

e The non-linearities being computed are still localized
on the interfaces of the domain decomposition method.
Consequently, no re-assembling step is required as the
Newton iterations proceed.

using a full nonlinear LaTIn solver or using a Riks
solver with a parallel LaTIn resolution of the predic-
tion step requires very similar computations, which
means that switching from the LaTIn algorithm to the
arc-length algorithm is straightforward

Nevertheless, one should notice that the linearity of the
prediction step of the Riks solver makes the subiteration
technique described in Section (4) non-relevant (or at best
less effective).

6.4 Numerical improvement of the Newton
algorithm using the LaTIn method as a
linear solver

Two elements can reduce the cost of the arc-length algo-
rithm significantly:

e the initialization of each iteration of the local arc-
control algorithm with the interface quantities found
after convergence of the LaTln resolution scheme in
the previous iteration. The number of LaTlIn iterations
decreases very rapidly as the iterations of the Newton
algorithm proceed because the changes in the secant
operators ¢(U,) and K(U,) become less and less sig-
nificant. On Figure (21), the two first time steps of the
holed plate test case (see Figure (16)), which corre-
spond to different levels of non-linearity, are computed
using a stopping criteria of the LaTIn linear solver set
to a given value. The drop of the number of LaTIn
iterations required as the Newton algorithm goes on
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appears clearly in these two cases. As this idea sys-
tematically improves convergence for no extra cost, it
is now used by default.

e the crossed-optimization of the stopping criteria of
(non-linear) Newton solver and (linear) LaTIn solver.
Basically, the LaTIn algorithm could be converged to
a very low value of the residual of the linear system at
each prediction step of the Newton scheme. Though,
our tests show that the first iterations of Newton, lead-
ing to a high value of the residual of the non-linear
system, do not require an exact resolution of the pre-
diction step. In order to illustrate this idea, the number
of Newton iterations for one time step of a DCB test
(Figure (13 top)), and the associated total number of
(linear) LaTIn iterations are plotted in Figure (22) as
functions of the ratio of these two errors . This shows
clearly that in order to use the method most efficiently
(i.e. with the smallest total number of LaTln itera-
tions), the convergence threshold of the LaTIn method
should be set to an error very close to the current New-
ton error.

6.5 Results

Figure (23) shows the global force vs. displacement curve
obtained for the holed plate test case (16) using the arc-
length algorithm described above. The damage in the inter-
faces loaded in shear mode (interfaces [0/90]) is also repre-
sented at four equilibirum states of the time analysis. Sev-
eral very sharp snap-backs appear in the global behavior
curve of the structure, and are efficiently handled by this
locally controlled Riks’ algorithm.
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7 Conclusion

The accurate prediction of delamination in large process
zones of laminate composite structures requires refined
models of the material behavior. Such descriptions lead to
the resolution of huge systems of equations. In order to cal-
culate the exact solution of such a refined model, we used a
two-scale domain decomposition strategy based on an itera-
tive resolution algorithm. This method is particularly well-
suited for laminate models in which 3D and 2D entities are
introduced separately.

This strategy has been improved in order to make it ca-
pable of handling very large delamination problems. A sys-
tematic analysis of the features of the method at the differ-
ent scales has been conducted. It has first been shown that
the classical scale separation was insufficient in the high
gradient zones to provide numerical scalability. We thus
developed a subresolution procedure which preserved the
numerical scalability of the crack propagation calculation.
This analysis has also proved that a third scale was required.
The second-scale problem is then solved using a parallel it-
erative algorithm, which enabled the fast transmission of
the very-large-wavelength part of the solution.

In order to perform the quasi-static analysis beyond the
global limit-points resulting from the local softening behav-
ior of the structure, we used an arc-length-type algorithm to
control the magnitude of the loading. We showed that the
computation steps required when using this algorithm were
very similar to those of the LaTIn technique. Therefore,
switching from one algorithm to the other was very easy.

In future developments, this 3D process zone analysis
technique should be associated with a plate model analy-
sis, which would be sufficient to obtain the solution in the
low-gradient zones.
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