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A DERIVED EQUIVALENCE BETWEEN CLUSTER EQUIVALENT

ALGEBRAS

CLAIRE AMIOT

Abstract. Let Q be an acyclic quiver. Associated with any element w of the Coxeter group of
Q, triangulated categories SubΛw were introduced in [BIRS09]. For any reduced expression w

of w, the categories SubΛw are shown to be triangle equivalent to generalized cluster categories
CΓw

associated to algebras Γw of global dimension ≤ 2 in [ART11]. For w satisfying a certain
property, called co-c-sortable, other algebras Aw of global dimension ≤ 2 are constructed in
[Ami09, AIRT11] with a triangle equivalence CAw

≃ SubΛw. The main result of this paper
is that the algebras Γw and Aw are derived equivalent when w is co-c-sortable. The proof
constructs explicitly a tilting module using the 2-APR-tilting theory introduced in [IO09].

Introduction

Let k be an algebraically closed field. The cluster category CQ associated to an acyclic

quiver Q has been introduced in [BMR+06]. It is defined as the orbit category Db(kQ)/S2,
where S2 is the composition of the Serre functor S of the bounded derived category Db(kQ)
of finitely presented kQ-modules with the second desuspension [−2]. This is a triangulated
category [Kel05], with finite dimensional spaces of morphisms (Hom-finite for short), and with
the 2-Calabi-Yau property: for any two objects X and Y in CQ there is a functorial isomorphism
HomCQ(X,Y ) ≃ DHom(Y,X[2]) where D is Homk(−, k). This construction was motivated, via
[MRZ03], by the theory of cluster algebras initiated by Fomin and Zelevinsky [FZ02]. Following
another point of view, Geiss, Leclerc and Schröer have related in [GLS07a] and [GLS06] certain
cluster algebras with the stable categories modΛ where Λ is the preprojective algebra associated
with a Dynkin quiver. These categories are also Hom-finite, triangulated and 2-Calabi-Yau.
Cluster categories CQ and stable categories modΛ have both a special kind of objects called
cluster-tilting. These are defined to be objects without selfextension and maximal with respect
to this property. They are very important since they are the analogs of clusters.

Therefore it is interesting to study Hom-finite, 2-Calabi-Yau triangulated categories with
cluster-tilting objects in general, and to find new such categories. To an acyclic quiver Q and
to an element w of the Coxeter group of Q, Buan, Iyama, Reiten and Scott have associated
in [BIRS09] (see also [GLS08], [GLS07b]) a triangulated category SubΛw where SubΛw is a
subcategory of the category of finite length modules over the preprojective algebra Λ associated
with Q. These categories are Hom-finite, 2-Calabi-Yau and have cluster-tilting objects. Moreover
they generalize the previous categories: If Q is Dynkin and w is the element of maximal length
of the Coxeter group, SubΛw is equivalent to modΛ. For any acyclic Q (which is not An with
the linear orientation), if w = cc where c is the Coxeter element associated with the orientation
of Q then SubΛw is equivalent to the cluster category CQ.

More recently cluster categories have been generalized in [Ami09], replacing the finite dimen-
sional hereditary algebras kQ by finite dimensional algebras A of global dimension ≤ 2. The
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orbit category Db(A)/S2 is not triangulated in general. Therefore the generalized cluster cate-
gory CA is defined to be the triangulated hull of the orbit category Db(A)/S2. This construction
generalizes again the previous constructions. Indeed in [ART11] given an acyclic quiver Q and a
reduced expression w of an element w in the Coxeter group, an algebra Γw of global dimension
≤ 2 is constructed with a triangle equivalence

CΓw
≃ SubΛw.

The algebra Γw is constructed by using a natural grading on the preprojective algebra Λ.
With a very different point of view, it is shown in [Ami09, AIRT11] that for a certain kind of

words called co-c-sortable, where c is a Coxeter element, (containing the adaptable words w in
the sense of [GLS07b]), it is possible to construct a triangle equivalence

CAw
≃ SubΛw

where Aw is the Auslander algebra of a finite torsion class in modkQ naturally associated with
the word w.

The aim of this paper is to link the algebras Γw and Aw whenw is co-c-sortable. By definition
of the generalized cluster category, if two algebras of global dimension ≤ 2 are derived equivalent
their generalized cluster categories are triangle equivalent. However the converse is not true.
Two algebras of global dimension ≤ 2 can have the same generalized cluster categories without
being derived equivalent. We say in this case that they are cluster equivalent. The main result
of this paper is that the algebras Γw and Aw are derived equivalent (Theorem 2.6). Moreover
we explicitly describe a tilting module yielding this equivalence using 2-APR-tilting introduced
in [IO09].

The paper is organized as follows. Section 1 is devoted to background definitions and results
from [Ami09], [BIRS09] and [BIRS11]. We recall the definitions of the generalized cluster cat-
egories and of the categories SubΛw and state some of their properties. In section 2 we recall
results of [ART11] and [AIRT11]: We give the explicit construction of the algebra Γw of global
dimension ≤ 2 and we describe the finite torsion class associated to a co-c-sortable word w.
Sections 3 and 4 are devoted to the proof of the main theorem. We construct a tilting module
over the algebra Aw in section 3, and we prove that its endomorphism algebra is isomorphic to
Γw in section 4. In section 5 we give an example to illustrate the main theorem.

Acknowledgements. The author would like to thank Idun Reiten for helpful comments and
corrections on this paper, and the Research Council of Norway for financial support. She also
would like to thank an anonymous referee for thoroughly reading the paper and useful comments.

1. Background: Preprojective algebras and generalized cluster categories

We assume all our algebras to be finite dimensional algebras over an algebraically closed field
k. All modules are finite dimensional right modules unless otherwise stated, and the composition
of arrows in a quiver is from right to left.

1.1. Generalized cluster categories. This section is devoted to recalling some results of
[Ami09].

Let Γ be a finite dimensional k-algebra of global dimension ≤ 2. We denote by Db(Γ) the

bounded derived category of finite dimensional right Γ-modules. It has a Serre functor −
L
⊗ΓDΓ

that we denote by S. We denote by S2 the composition S[−2].
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The generalized cluster category CΓ of Γ has been defined in [Ami09] as the triangulated hull
of the orbit category Db(Γ)/S2. We will denote by πΓ (or π if there is no danger of confusion)
the triangle functor

πΓ : Db(Γ) // // Db(Γ)/S2
�

� // CΓ .

The case when EndC(πΓ) is finite dimensional is especially nice since in this case the generalized
cluster category contains special objects called cluster-tilting (that is objects T ∈ C satisfying
add (T ) = {X ∈ C, HomC(X,T [1]) = 0} where addT is the additive closure of T ).

Theorem 1.1 (Theorem 4.10 of [Ami09]). Let Γ be a finite dimensional algebra of global di-
mension ≤ 2, and assume that the endomorphism algebra EndC(πΓ) is finite dimensional. Then
CΓ is a Hom-finite, triangulated 2-Calabi-Yau category and π(Γ) is a cluster-tilting object.

The construction of CΓ depends only on the derived category Db(Γ).

Proposition 1.2. [AO10, Cor. 7.16] Let Γ and Γ′ be two derived equivalent finite dimensional
k-algebras of global dimension ≤ 2 and assume that the endomorphism algebra EndCΓ(πΓ) is
finite dimensional. Then the categories CΓ and CΓ′ are triangle equivalent.

However, the converse is not true in general (see Example 5.7 in [AO10]). This leads us to
state the following definition.

Definition 1.3. Two finite dimensional algebras A and B of global dimension ≤ 2 are called
cluster equivalent if there exists a triangle equivalence between their generalized cluster cate-
gories CA and CB .

1.2. Categories associated to elements in the Coxeter group. This section is devoted to
recalling some results of [BIRS09] and [BIRS11].

Let Q be a finite quiver without oriented cycles. We denote by Q0 = {1, . . . , n} the set of
vertices and by Q1 the set of arrows. The preprojective algebra associated to Q is the algebra

kQ/〈
∑

a∈Q1

aa∗ − a∗a〉

where Q is the double quiver of Q, which is obtained from Q by adding to each arrow a : i →
j ∈ Q1 an arrow a∗ : i← j pointing in the opposite direction. We denote by Λ the completion of
the preprojective algebra associated to Q and by f.l.Λ the category of right Λ-modules of finite
length.

For a vertex i in Q0 we denote by Ii the two-sided ideal Λ(1− ei)Λ, where ei is the primitive
idempotent of Λ associated to the vertex i. Let CQ be the Coxeter group associated to Q. It is
defined by the generators si, where i ∈ Q0, and by the relations

• s2i = 1,
• sisj = sjsi if there is no arrow between i and j,
• sisjsi = sjsisj if there is exactly one arrow between i and j.

A reduced expression w = su1 . . . sul
of an element w of CQ is an expression of w with l as

small as possible. When w = su1 . . . sul
is reduced, the integer l is said to be the length l(w) of

w.
Let w = su1 . . . sul

be a reduced expression of an element in CQ. For p ≤ l we denote by Iwp

the two sided ideal IupIup−1 . . . Iu1 . We denote by Λw the algebra Λ/Iwl
. As shown in [BIRS09],

the algebra Λw depends only on the element w and not on the choice of the reduced expression.
We denote by SubΛw the category of submodules of finite dimensional free Λw-modules.

Let us recall Theorem III.2.8 of [BIRS09].
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Theorem 1.4 (Buan-Iyama-Reiten-Scott). The category SubΛw is a Hom-finite Frobenius cat-
egory and its stable category SubΛw is 2-Calabi-Yau. For any reduced expression w of w, the

image C
w

of the object Cw =
⊕l

p=1 eup(Λ/Iwp) ∈ SubΛw through the stabilisation SubΛw →
SubΛw is a cluster-tilting object in SubΛw.

The endomorphism algebra of Cw is described in terms of a quiver with relations in [BIRS11].
Let us define the quiver Qw as follows:

• vertices: 1, . . . , l(w).
• for each i ∈ Q0, one arrow t ← s if t and s are two consecutive vertices of type i (i.e.
us = ut = i) and t < s (we call them arrows going to the left);
• for each a : i→ j ∈ Q1, put a : t→ s if t is a vertex of type i, s of type j, and if there is
no vertex of type i between t and s and if s is the last vertex of type j before the next
vertex of type i in the expression w = su1 . . . sul

(we call them Q-arrows)
• for each a : i→ j ∈ Q1, put a

∗ : t→ s if t is of type j, s is of type i, if there is no vertex
of type j between t and s and if s is the last vertex of type i before the next vertex of
type j in the expression w = su1 . . . sul

(we call them Q∗-arrows).

For i in Q0 we define li to be the maximal integer such that uli = i. We denote by Q′
w

the
full subquiver of Qw whose vertices are not li.

For each Q-arrow a : t→ s in Q′
w
we denote by Wa the composition aa∗p if there is a (unique)

Q∗-arrow a∗ : r → t in Q′
w

where ur = us and where p is the composition of arrows going to the
left r← · · · ← s. Otherwise we put Wa = 0. For each Q∗-arrow a∗ : t→ r in Q′

w
, we denote by

Wa∗ the composition a∗ap if there exists a (unique) Q-arrow a : s→ t in Q′
w

with us = ur and
where p is the composition of arrows going to the left s← · · · ← r. Otherwise we put Wa∗ = 0.
Then let Ww be the sum

Ww =
∑

a Q-arrow

Wa −
∑

a∗ Q∗-arrow

Wa∗ .

It is a potential in the sense of [DWZ08], that is, a linear combination of cycles in Q′
w
. For

a cycle p in Q′
w

and an arrow a in Q′
w
, it is possible to define the partial derivative ∂ap as the

sum ∂ap :=
∑

p=uav vu. The definition of the partial derivative can be extended by linearity to
any potential.

The Jacobian algebra (see [DWZ08]) is defined as the algebra

Jac(Q′
w
,Ww) := kQ′

w
/〈∂aWw, a ∈ (Q′

w
)1〉.

Let us recall Theorem 6.6 of [BIRS11].

Theorem 1.5 (Buan-Iyama-Reiten-Smith). Let w = su1 . . . sul
be a reduced expression of an

element w of the Coxeter group CQ. Let C
w
∈ SubΛw be the cluster-tilting object (defined in

Theorem 1.4) associated to this reduced expression. Then there is an algebra isomorphism

Jac(Q′
w
,Ww) ≃ EndSubΛw

(C
w
).

2. Categories associated to a word as generalized cluster categories

In this section we recall some results of [ART11] and [AIRT11] which describe some categories
SubΛw as generalized cluster categories.
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2.1. General words: Results of [ART11]. For any reduced expression w of any element w of
the Coxeter group, the authors construct in [ART11] an algebra Γw of global dimension 2 and
an equivalence of triangulated categories SubΛw ≃ CΓw

. We recall here the construction of Γw.
Let Q and Λ be as in the previous section. Let w = su1 . . . sul

be a reduced expression of
an element w in the Coxeter group CQ. Since the category SubΛw and the object Cw do not
depend on the orientation of Q, we can assume that the orientation of Q satisfies the property

(∗) if there exists i→ j, then li < lj,

where li is the maximal integer such that uli = i.
We define a grading on the quiver Q′

w
. All arrows going to the left and all Q-arrows are

defined to have degree 0. All Q∗-arrows are defined to have degree 1. It is then easy to see that
the potential Ww is homogeneous of degree 1. Hence we get a grading on the Jacobian algebra
Jac(Q′

w
,Ww), and therefore on the algebra EndSubΛw

(C
w
) by Theorem 1.5. We denote by Γw

its part of degree zero.

Theorem 2.1 (Theorem 4.4 of [ART11]). For any acyclic quiver Q and any element w in the
Coxeter group of Q, the algebra Γ = Γw is of global dimension ≤ 2 and there exists a commutative
diagram of triangle functors:

Db(Γ)
FΓ //

πΓ

��

SubΛw

CΓ

fΓ
66mmmmmmmmmmmmmmm

,

where CΓ is the generalized cluster category associated to Γ. The functor fΓ is an equivalence,
and we have FΓ(Γ) = C

w
.

2.2. Co-c-sortable words. This subsection is devoted to recalling some results of [AIRT11].
Let Q be a quiver without oriented cycles with n vertices. We assume that the orientation of

Q satisfies

(∗∗) if there exists i→ j, then i < j.

We denote by c the Coxeter element s1 . . . sn.

Definition 2.2. An element w of the Coxeter group of Q is called co-c-sortable if there exists
a reduced expression w of w of the form w = c(m) . . . c(1)c(0), where all c(t) are subwords of c
whose supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0.

If i ∈ Q0 is in the support of c(t), by abuse of notation, we will write i ∈ c(t).

Remark 2.1. (1) The word w is co-c-sortable if and only if w−1 is c−1-sortable in the sense
of [Rea07].

(2) The co-c-sortable expression w is unique for a co-c-sortable element w (cf [Rea07]).
(3) If w is co-c-sortable, the conditions (∗) and (∗∗) for the orientation of Q are the same.

Let w = c(m) . . . c(1)c(0) be a co-c-sortable word. Let Q(1) be the full subquiver of Q whose
support is the same as c(1). Then the word w′ = c(m) . . . c(1) is co-c(1)-sortable as an element of
the Coxeter group CQ(1) .

Construction 2.3. For t ≥ 1 and i in c(t), we define kQ(1)-modules T(i,t) by induction as
follows:

• We put T(i,1) = eiD(kQ(1)) for all i ∈ c(1).
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• For t ≥ 2, assume that we have defined T(j,s) for 1 ≤ s ≤ t − 1 and j ∈ c(s), and
T(n,t), . . . , T(i+1,t). Then T(i,t) is defined to be the kernel of the map

f : E → T(i,t−1)

where f is a minimal right add (
⊕

j<i T(j,t−1) ⊕
⊕

j>i T(j,t))-approximation.

For i in Q
(1)
0 , we define mi such that i is in c(mi) but not in c(mi+1). We define the kQ(1)-module

T :=
⊕

i∈Q
(1)
0

T(i,mi).

Here are some results shown in [AIRT11].

Theorem 2.4. [AIRT11, Thm 3.20] Let w′, Q(1) and T be as above. Then the following holds:

(a) the modules T(i,t) are indecomposable and pairwise non-isomorphic;

(b) T is a tilting kQ(1)-module with finite torsion class;
(c) the torsion class FacT = {X ∈ modkQ s.t. Ext1

kQ(1)(T,X) = 0} is the additive category

add{T(i,t), t ≥ 1, i ∈ c(t)};

(d) the sequences 0 // T(i,t) // E
f // T(i,t−1) // 0 are exact and are the almost

split sequences of Fac (T ).

We have also the following result which is a generalization of Theorem 5.21 of [Ami09].

Theorem 2.5. [AIRT11, Thm 3.23] Let Q, w = c(m) . . . c(0), w′ = c(m) . . . c(1), Q(1) and T(i,t)

(for t ≥ 1 and i ∈ c(t)) be as above. Define the endomorphism algebra

A := EndkQ(1)(
⊕

t≥1

⊕

i∈c(t)

T(i,t)).

Then the algebra A is of global dimension ≤ 2 and there exists a commutative diagram of triangle
functors:

Db(A)
FA //

πA

��

SubΛw

CA

fA
66mmmmmmmmmmmmmmm

,

where CA is the generalized cluster category associated with the algebra A. The functor fA is an
equivalence, and we have FA(A) = C

w
.

2.3. Main result. From now on we assume that w = c(m) . . . c(1)c(0) is a co-c-sortable word.
Combining Theorems 2.1 and 2.5, we get two algebras A and Γ of global dimension ≤ 2, with
the following diagram

Db(A)
? //

πA

��

FA

$$JJJJJJJJJ
Db(Γ)

πΓ

��

FΓ

zzuuuuuuuuu

CA
∼ // SubΛw CΓ

∼oo

.

As we have seen in the first section, we do not automatically get a derived equivalence between
A and Γ. The aim of this paper is to prove that there is an equivalence in this case and that
this derived equivalence is given by a tilting module which is easy to describe. More precisely
we will show the following in the next two sections.
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Theorem 2.6. Let w = c(m) . . . c(0) be a co-c-sortable element in the Coxeter group of Q. For
t ≥ 1 and i in c(t), define kQ(1)-modules T(i,t) as in Construction 2.3. Let A = EndkQ(1)(

⊕
t≥1

⊕
i∈c(t) T(i,t))

be the algebra as in Theorem 2.5. And let Γ be the degree zero part of the graded algebra
Jac(Q′

w
,Ww) as defined in subsection 2.1.

For p ≥ 1 and j ∈ c(p) define the indecomposable projective A-module

P(j,p) := HomkQ(1)(
⊕

t≥1

⊕

i∈c(t)

T(i,t), T(j,p)),

and the complex

M =

m⊕

p=1

⊕

j∈c(p)

S
−p+1
2 (P(j,p)) ∈ D

b(A),

where S2 is the autoequivalence S[−2] of Db(A). Then the following holds:

(1) M is a tilting module;
(2) EndA(M) ≃ Γ;
(3) the functor RHomA(M,−) makes the following diagram commute

Db(A)
RHomA(M,−)

//

FA $$JJJJJJJJJ
Db(Γ)

FΓzzuuuuuuuuu

SubΛw

.

Remark 2.2. Note that we have equivalences

gldimA = 1 ⇔ m = 1 ⇔ gldimΓ = 1⇔ A ≃ Γ.

Therefore we can assume from now that m ≥ 2.

3. Construction of a tilting module

This section is devoted to the proof of Theorem 2.6(1). We start in subsection 3.1 with
preliminaries on module categories over Auslander algebras. Then we state some general lemmas
on tilting modules over hereditary algebras in subsection 3.2. In subsection 3.3 we describe
explicitely the repeated action of S2 on indecomposable projective A-modules. Finally we recall
results on 2-APR-tilting of [IO09] in subsection 3.4 and prove Theorem 2.6(1) in subsection 3.5.

3.1. Module categories over Auslander algebras. Let M be an additive k-category with
finite dimensional Hom-spaces and with finitely many indecomposables up to isomorphism. We
denote by indM a set of representative of each isomorphism class of indecomposables inM. Let
A be the Auslander algebra of M, that is, the endomorphism algebra A = End(

⊕
X∈indMX).

This is a finite-dimensional basic algebra. Denote by modA the category of finite dimensional
right A-modules and by modM the category of finitely presented functorsMop → modk. Then
the functor

Hom(
⊕

X∈indMm

X,−) : modM→ modA

is an equivalence of category. Through this equivalence, indecomposable projective A-modules
are isomorphic to the functors of the formM(−,X) where X is an indecomposable object inM
and indecomposable injective A-modules are isomorphic to the functors of the form DM(X,−)
where X is an indecomposable object inM.
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For T a full subcategory ofM and X an object ofM, we define theM-moduleM(−,X)/[T ]
as the cokernel of

M(−, T )→M(−,X)

induced by a minimal right T -approximation T → X.
We first state a lemma which describes morphisms between objects in modM of the form

M(−,X)/[T ] in terms of morphisms inM.

Lemma 3.1. Let M be an additive k-category with finitely many indecomposables. Let T and
S be full subcategories of M, then we have an isomorphism for any X and Y inM between

HommodM(M(−,X)/[T ],M(−, Y )/[S])

and the space of commutative squares up to homotopy

T
t //

��

X

��
S

s // Y

where t (resp. s) is a minimal right T (resp. S) -approximation in M.

Proof. Let t : T → X be a minimal T - approximation of X. Then the projective presentation
of the moduleM(−,X)/[T ] is

M(−, T )
M(−,t)

//M(−,X) //M(−,X)/[T ] // 0

Thus the space of morphisms HomA(M(−,X)/[T ],M(−, Y )/[S]) is isomorphic to the space of
commutative squares

M(−, T )
M(−,t)

//

��

M(−,X)

��
M(−, S)

M(−,s)
//M(−, Y )

up to homotopy, where s : S → Y is a minimal right S-approximation. By the Yoneda lemma,
this is isomorphic to the space of commutative squares

T
t //

��

X

��
S

s // Y

up to homotopy.
�

3.2. The category Fac (T ). In the rest of the section, we assume that w = c(m) . . . c(0) is a

co-c-sortable word with m ≥ 2. For t ≥ 1 and i ∈ c(t), we define kQ(1)-modules T(i,t) and

T :=
⊕

i∈c(1) T(i,mi), where mi is the maximal integer such that i ∈ c(mi) as in Construction 2.3.
By Theorem 2.4, it is a tilting module and we have

Fac (T ) = {X ∈ modkQ(1), Ext1
kQ(1)(T,X) = 0} = add{T(i,t), 1 ≤ t ≤ m, i ∈ c(t)}.

Define A := EndkQ(1)(
⊕

t≥1,i∈c(t) T(i,t)) and M = Fac (T ). Since the T(i,t) are indecomposable

and pairwise non isomorphic (Theorem 2.4 (a)), A is the Auslander algebra ofM.
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The category M, as a torsion class, has almost split sequences (cf Theorem 2.4(d)). We will
denote by τ its Auslander-Reiten translation (which is a functor by [AS81, Section 3]). By
Theorem 2.4(d), for any 1 ≤ t ≤ m − 1 and i ∈ c(t) we have τT(i,t) = T(i,t+1) if i ∈ c(t+1)

and 0 else. Therefore by Construction 2.3 we have T(i,t) ≃ τ t−1(eiDkQ(1)) and since M =

add{T(i,t), 1 ≤ t ≤ m, i ∈ c(t)} any indecomposable object in M is in the τ -orbit of a direct

factor of DkQ(1).
The following lemma is classical from tilting theory, we include here the proof for the conve-

nience of the reader.

Lemma 3.2. Let X be an indecomposable object in Fac (T ). Then there exists a short exact

sequence 0 // T1
// T0

f // X // 0 where f is a minimal right add (T )-approximation

and T1, T0 ∈ add (T ).

Proof. Let f : T0 → X be a minimal right add (T )-approximation. It is surjective since Fac (T )
coincide with the set of modules generated by T . Then form the exact sequence

(3.1) 0 // T1
// T0

f // X // 0 .

It induces a long exact sequence

0 // HomkQ(1)(−, T1) // HomkQ(1)(−, T0)
f∗

// HomkQ(1)(−,X) // Ext1
kQ(1)(−, T1) // Ext1

kQ(1)(−, T0) .

Since f is an addT approximation the map f∗
|add T

is surjective. Moreover Ext1
kQ(1)(T, T0) vanishes.

Hence Ext1
kQ(1)(T, T1) vanishes.

From the sequence 3.1 we also obtain

0 = Ext1
kQ(1)(T0, T ) // Ext1

kQ(1)(T1, T ) // Ext2
kQ(1)(X,T ) = 0 .

Since T is a tilting kQ(1)-module, from Ext1
kQ(1)(T, T1) = Ext1

kQ(1)(T1, T ) = 0, we deduce T1 ∈

addT .
�

Lemma 3.3. Let X,Y ∈ M such that τ−1X 6= 0. Then we have a functorial isomorphism

DExt1
kQ(1)(τ

−1X,Y ) ≃M(Y,X).

Proof. The category M is functorially finite and extension closed. It has an Auslander-Reiten
formula by [EMM10], that is for any X and Y inM we have a functorial isomorphism

DExt1
kQ(1)(τ

−1X,Y ) ≃M(Y,X)/[addDkQ(1)].

A morphism M(Y,X) factors through an object in addDkQ(1) if and only if X ∈ addDkQ(1)

since DkQ(1) is a slice. But if τ−1X 6= 0 then X is not in addDkQ(1), thus we get the result. �

3.3. Action of S2 on projective A-modules. For t ≥ 1 we define the subcategory Tt of M
as

Tt := add (T ⊕ τ−1T ⊕ · · · ⊕ τ−t+1T ),

and by convention T0 = ∅. Note that T(i,t) = τ t−miT(i,mi) ∈ Tmi−t+1, thus we have Tm+1 =M.
The following lemma is a variant of Lemma 5.9 of [Ami09] and will be very useful in the rest

of the paper.
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Lemma 3.4. Let X be an object of M and n ≥ 0 such that τ−nX 6= 0, where τ is the AR-
translation of the category M. Then we have an isomorphism in modM:

S
−n
2 (M(−,X)) ≃M(−, τ−nX)/[Tn]

Proof. We prove this lemma by induction on n.
Let X be an indecomposable in M with τ−1X 6= 0. Since τ−1X is in M we have a short

exact sequence by Lemma 3.2

(3.2) 0 // T1
// T0

f // τ−1X // 0

with T0 and T1 in T1 = add (T ) and f a minimal right add (T )-approximation. The objects T0

and T1 are not zero since X is not zero and inM. Thus we get an exact sequence in modM

0 //M(−, T1) //M(−, T0) //M(−, τ−1X) //M(−, τ−1X)/[T1] // 0

which gives a projective resolution of the moduleM(−, τ−1X)/[T1]. Therefore the object

S2(M(−, τ−1X)/[T1])

is isomorphic in Db(modM) to the complex

DM(T1,−) // DM(T0,−) // DM(τ−1X,−) ,

where DM(T1,−) is in degree 0. From the short exact sequence (3.2) we get a long exact
sequence in modM:

DExt1
kQ(1)(T0,−)|M // DExt1

kQ(1)(τ
−1X,−)|M // DM(T1,−) // DM(T0,−) // DM(τ−1X,−) // 0 .

Since M = Fac (T ), we have Ext1
kQ(1)(T0,M) = 0. By Lemma 3.3 we have an isomorphism in

modM
DExt1M(τ−1X,−) ≃M(−,X).

Hence we get the desired isomorphism

S
−1
2 (M(−,X)) ≃M(−, τ−1X)/[T1],

which is the assertion for n = 1.
Now let n ≥ 2 and assume that for any Y with τ−n+1Y 6= 0 we have

S
−n+1
2 (M(−, Y )) ≃M(−, τ−n+1Y )/[Tn−1].

Let X be in M such that τ−nX is not zero. Then by the assertion for n = 1, we have an
isomorphism

(3.3) S
−n
2 (M(−,X)) ≃ S

−n+1
2 (M(−, τ−1X)/[T1]).

By the above short exact sequence (3.2), we obtain that M(−, τ−1X)/[T1] is isomorphic in
Db(modM) to the complex

M(−, T1) //M(−, T0) //M(−, τ−1X) .

Applying the induction hypothesis for Y = T0, T1, τ
−1X we obtain the isomorphisms

S
−n+1
2 (M(−, T1)) ≃M(−, τ−n+1T1)/[Tn−1]

S
−n+1
2 (M(−, T0)) ≃M(−, τ−n+1T0)/[Tn−1]

S
−n+1
2 (M(−,X)) ≃M(−, τ−n+1X)/[Tn−1].
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Hence S
−n+1
2 (M(−, τ−1X)/[T1]) is isomorphic in Db(modM) to the complex

(3.4) M(−, τ−n+1T1)/[Tn−1] //M(−, τ−n+1T0)/[Tn−1] //M(−, τ−nX)/[Tn−1]

Since τ−nX is not zero, the short exact sequence (3.2) yields a short exact sequence

0 // τ−n+1T1
// τ−n+1T0

// τ−nX // 0 .

The objects τ−n+1T0 and τ−n+1T1 cannot be zero since X, τ−1X, . . . τ−nX are not zero. As
above, we obtain an exact sequence in modM

0 //M(−, τ−n+1T1) //M(−, τ−n+1T0) //M(−, τ−nX) //M(−, τ−nX)/[add τ−n+1T ] // 0 .

Dividing by the ideal [Tn−1] we obtain an exact sequence

0 //M(−, τ−n+1T1)/[Tn−1] //M(−, τ−n+1T0)/[Tn−1] //M(−, τ−nX)/[Tn−1] //M(−, τ−nX)/[Tn] // 0 ,

that isM(−, τ−nX)/[Tn] is isomorphic in Db(modM) to the complex

(3.5) M(−, τ−n+1T1)/[Tn−1] //M(−, τ−n+1T0)/[Tn−1] //M(−, τ−nX)/[Tn−1] .

Combining the isomorphisms (3.3),(3.4) and (3.5), we obtain the isomorphisms

M(−, τ−nX)/[Tn] ≃ S
−n+1
2 (M(−, τ−1X)/[T1]) ≃ S

−n
2 (M(−,X)).

This finishes the induction. �

3.4. 2-APR-tilting. The object M of Theorem 2.6 is constructed by applying powers of the
functor S2 to summands of A. To prove that it is tilting, we use the tool of 2-APR-tilting in-
troduced by Iyama and Oppermann. The following result is Theorem 4.5 together with Propo-
sition 4.7 of [IO09].

Theorem 3.5 (Iyama-Oppermann). Let B be a finite dimensional k-algebra of global dimension
at most 2. Suppose we can decompose B = P ⊕Q as a B-module in such a way that

(1) HomB(Q,P ) = 0;
(2) Ext−1

Db(B)
(Q,S−1

2 (P )) = 0.

Then T = S
−1
2 (P )⊕Q is a tilting complex over B and EndB(T ) is of global dimension ≤ 2.

Applying recursively this theorem, we will prove the following.

Proposition 3.6. Let B be a finite dimensional k-algebra of global dimension ≤ 2. Suppose
that we can decompose B as the sum Pm ⊕ · · · ⊕ P1 ⊕ P0 of B-modules in such a way that

(a) for any s, t, j such that s− j − t ≥ 1 and j ≥ 0 the space HomDb(B)(Pt,S
−j
2 Ps) vanishes;

(b) S
−j
2 Ps is a module for 0 ≤ j ≤ s.

Then T = S
−m
2 Pm ⊕ . . . S−1

2 P1 ⊕ P0 is a tilting module and the algebra EndB(T ) is of global
dimension at most 2.

Proof. We prove by induction on i ≥ 0 that the object

Ti = S
−i
2 (Pm ⊕ · · · ⊕ Pi)⊕ S

−i+1
2 Pi−1 ⊕ · · · ⊕ S

−1
2 P1 ⊕ P0

is a tilting module over B and that the endomorphism algebra Bi := EndB(Ti) has global
dimension ≤ 2. This holds for i = 0 by hypothesis. Suppose that this holds for an i ≥ 0. The
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functor Fi = RHomB(Ti,−) yields a triangle equivalence

Fi : Db(B)

S2=−
L
⊗BDB[−2]

UU
∼ // Db(Bi)

iS2=−
L
⊗Bi

DBi[−2]

UU

which sends Ti to Bi. By the uniqueness of the Serre functor we have an isomorphism

Fi ◦ S2 = RHomB(Ti,−
L
⊗B DB[−2]) ≃ RHomB(Ti,−)

L
⊗Bi

DBi[−2] = iS2 ◦ Fi.

We want to apply Theorem 3.5 to

P := Fi(S
−i
2 (Pm ⊕ · · · ⊕ Pi+1)) and Q := Fi(S

−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0).

We have

HomDb(Bi)(Q,P ) = HomDb(Bi)(Fi(S
−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0), Fi(S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)))

≃ HomDb(B)(S
−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0,S

−i
2 (Pm ⊕ · · · ⊕ Pi+1))

= 0 by (1).

Moreover, we have

Ext−1
Db(Bi)

(Q, iS2
−1P ) = Ext−1

Db(Bi)
(Fi(S

−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0), iS2

−1Fi(S
−i
2 (Pm ⊕ · · · ⊕ Pi+1)))

≃ Ext−1
Db(Bi)

(Fi(S
−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0), Fi(S

−(i+1)
2 (Pm ⊕ · · · ⊕ Pi+1)))

≃ Ext−1
Db(B)

(S−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0,S

−(i+1)
2 (Pm ⊕ · · · ⊕ Pi+1))

By (b), for 1 ≤ j ≤ s the object S−j
2 Ps is a module, hence the space Ext−1

B (Pl,S
−j
2 Ps) vanishes

for any l. Therefore the space Ext−1
Db(Bi)

(Q, iS2
−1P ) vanishes.

Thus by Theorem 3.5, iS2
−1(P ) ⊕ Q ≃ Fi(Ti+1) is a tilting complex in Db(Bi). Therefore

Ti+1 is a tilting complex in Db(B). It is a module by (2), and its endomorphism algebra Bi+1 =
EndB(Ti+1) ≃ EndBi

(Fi(Ti+1)) is of global dimension ≤ 2. Thus we get the proposition. �

3.5. Application to our setup. In this subsection, we apply Proposition 3.6 for B = A =⊕m
t=1(

⊕
i∈c(t) P(i,t)) where P(i,t) :=M(−, T(i,t)) is the projective indecomposable A-module de-

fined in Theorem 2.6.

Proposition 3.7. The complex M =
⊕m

t=1

⊕
i∈c(t) S

−t+1
2 (P(i,t)) is a tilting A-module.

Proof. If i is in c(t), then τ−t+1(T(i,t)) is isomorphic to eiD(kQ(1)). Now for t = 1, . . . ,m, we

denote by Pt the projective A-module
⊕

i∈c(t) P(i,t). For i in c(t), the indecomposable projective

P(i,t) is of the form M(−, T(i,t)). Thus we have P(i,t) = M(−, τ t−1(eiDkQ(1))). Therefore we
can write

Pt =M(−, τ t−1(DkQ(1))).

Note that if i is not in c(t) then τ t−1(eiDkQ(1)) is zero, thus the decomposition of Pt into
indecomposables is given by

Pt =
⊕

i∈c(t)

M(−, τ t−1(eiDkQ(1))) =
⊕

i∈c(t)

M(−, T(i,t)).

We want to apply Proposition 3.6 to the decomposition A = Pm ⊕ · · · ⊕ P1. By Lemma 3.4,
we know that for any 0 ≤ j ≤ s− 1, we have

S
−j
2 Ps ≃M(−, τ s−1−jDkQ(1))/[Tj ]

which is a module. Thus we have condition (b) of Proposition 3.6.
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For s− j − t ≥ 1 we have isomorphisms

HomA(Pt,S
−j
2 Ps) = HomA(M(−, τ t−1(DkQ(1))),S−j

2 (M(−, τ s−1(DkQ(1)))))

= HomA(M(−, τ t−1(DkQ(1))),M(−, τ s−1−j(DkQ(1)))/[Tj ]) by Lemma 3.4

≃ M(τ t−1(DkQ(1)), τ s−j−1(DkQ(1)))/[Tj ] by Lemma 3.1

≃ M(DkQ(1), τ s−j−t(DkQ(1)))/add (τ1−tT ⊕ · · · ⊕ τ2−t−j(T ))

Since s− j − t ≥ 1 the spaceM(DkQ(1), τ s−j−tDkQ(1)) vanishes. Hence we have condition (a)
of Proposition 3.6. Therefore the complex

M =
m⊕

t=1

S
−t+1
2 (Pt) =

m⊕

t=1

⊕

i∈c(t)

S
−t+1
2 (P(i,t))

is a tilting module.
�

4. Computation of the endomorphism algebra

In this section, we prove Theorem 2.6(2), that is that the endomorphism algebra EndA(M) is
isomorphic to the algebra Γ defined in section 2.1. The strategy consists of describing these two
algebras with a quiver and an ideal of relations.

Let w = c(m) . . . c(0) be a co-c-sortable word, and define w′ = c(m) . . . c(1). Let R
w

′ be the
following quiver:

• its vertices are (i, t) where i is in c(t);

• for i ∈ Q
(1)
0 , for t ≥ 1 such that i is in c(t+1), we have an arrow qit : (i, t)→ (i, t + 1);

• for any a : i→ j in Q
(1)
1 such that i, j ∈ c(t) we have an arrow at : (i, t)→ (j, t).

We define an ideal J
w

′ of relations on the path algebra kR
w

′ generated by commutative
squares

(i, t)
qit //

at

��

(i, t+ 1)

at+1

��
(j, t)

q
j
t // (j, t+ 1)

when all these arrows are defined, and by zero relations

(i, t)
ait // (j, t)

q
j
t // (j, t + 1)

when i is not in c(t+1).

Lemma 4.1. The algebra Γ is isomorphic to the algebra kR
w

′/J
w

′.

Proof. In the case where w is co-c-sortable, the quivers Qw and Q′
w

described in section 1 are
much simpler. The orientation of Q satisfies condition (∗) of section 2.1 if and only if it satisfies
(∗∗) of section 2.2 (cf Remark 2.1(3)). It is routine to check that if we remove the Q∗-arrows of
Q′

w
we get R

w
′ , and that the partial derivatives ∂a∗Ww where a∗ is a Q∗-arrow are exactly the

relations generating J
w

′ . �

Proposition 4.2. There exists an algebra isomorphism

Ḡ : kR
w

′/J
w

′ → EndA(

m⊕

t=1

⊕

i∈c(t)

S
−t+1
2 (P(i,t))) = EndA(M).
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Proof. We divide the proof in several steps.

Step 1: Construction of Ḡ.

We first define G : kR
w

′ → EndA(M) on the vertices of R
w

′ . For i in c(t) we put

G(i, t) = S
−t+1
2 (P(i,t)) = S

−t+1
2 (M(−, τ t−1(eiDkQ(1))).

Let s, t be integers ≤ m, i ∈ c(t) and j ∈ c(s). By Lemma 3.4, we have an isomorphism

HomA(S
−t+1
2 (P(i,t)),S

−s+1
2 (P(j,s)) ≃ HomA(M(−, ei(DkQ(1)))/[Tt−1],M(−, ej(DkQ(1)))/[Ts−1]).

By Lemma 3.1, the above Hom-space is isomorphic to the space of commutative squares

Tt−1
//

��

ei(DkQ(1))

��
Ts−1

// ej(DkQ(1))

up to homotopy, where horizontal maps are minimal right Tt−1 (resp. Ts−1)-approximations.
Hence to define a morphism G : kR

w
′ → EndA(M) we have to construct for any arrow

qit : (i, t)→ (i, t + 1) a commutative square

U i
t := Tt−1

f //

��

ei(DkQ(1))

Tt

g // ei(DkQ(1))

,

and for any arrow at : (i, t)→ (j, t) a commutative square

S(a)t := Tt−1
f //

��

ei(DkQ(1))

a

��
T ′
t−1

g // ej(DkQ(1))

.

Here is an immediate result which will often be used in the proof.

Lemma 4.3. For t ≥ 1 we have equivalences

i /∈ c(t+1) ⇔ τ t(eiDkQ(1)) = 0 ⇔ eiDkQ(1) ∈ Tt.

Let i be in Q
(1)
0 and t be an integer ≥ 1. Let f : Tt−1 → ei(DkQ(1)) be a minimal right

Tt−1-approximation and let g : Tt → ei(DkQ(1)) be a minimal right Tt-approximation. Since we
have the inclusion Tt−1 ⊂ Tt, then there exists a commutative square

U i
t := Tt−1

f //

��

ei(DkQ(1))

Tt

g // ei(DkQ(1))

.

It is homotopic to zero if and only if ei(DkQ(1)) is in Tt. This is equivalent to the fact that i

is not in c(t+1) by Lemma 4.3. Thus for i in c(t+1) we define

G(qit) = U i
t 6= 0.
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Let a : i → j be an arrow in Q
(1)
1 and t be an integer ≥ 1. Let f : Tt−1 → ei(DkQ(1)) and

g : T ′
t−1 → ej(DkQ(1)) be minimal right Tt−1-approximations. Then we have a commutative

square

S(a)t := Tt−1
f //

��

ei(DkQ(1))

a

��
T ′
t−1

g // ej(DkQ(1))

If this square is homotopic to zero then there exists a map h : ei(DkQ(1)) → T ′
t−1 such that

a = g ◦ h. Since a is an irreducible map, h is a section or g is a retraction. Thus ei(DkQ(1)) or

ej(DkQ(1)) are in Tt−1. By Lemma 4.3, this means that either i /∈ c(t) or j /∈ c(t).

Therefore for any a : i→ j in Q1 and for t ≥ 1 such that i, j ∈ c(t), we put

G(at) = S(a)t 6= 0.

Now it remains to check that the map G : kR
w

′ → EndA(M) vanishes on J
w

′ . For any i, j in

c(t) we have a commutative diagram:

Tt−1
//

��

((QQQQQQ ei(DkQ(1))
++VVVVV

T ′
t−1

//

��

ej(DkQ(1))

Tt
//

((QQQQQQQQ ei(DkQ(1))
++VVVVV

T ′
t

// ej(DkQ(1))

This implies that in EndA(M) we have the relation U j
t ◦ S(a)t = S(a)t+1 ◦ U

i
t if S(a)t+1 is not

zero, that is if i and j are in c(t+1). Moreover we have the relation U j
t ◦ S(a)t = 0 if i is not in

c(t+1).
Therefore the morphism G : kR

w
′ → EndA(M) factors through morphism Ḡ : kR

w
′/J

w
′ →

EndA(M).

Step 2: The map Ḡ is surjective.

We will show that the squares of the form S(a)t and U i
t generate the algebra EndA(M).

Let α be a path in Q(1) from i to j. We denote by length(α) its length. For a commutative
square

S := Tt−1
//

��

ei(DkQ(1))

α

��
Ts−1

// ej(DkQ(1))

let us define the size of S by

size(S) = s− t+ length(α).

For all integers t ≥ 1, all i in Q
(1)
0 and all a in Q

(1)
1 , we have size(U i

t ) = size(S(a)t) = 1.

We first show that the only non zero squares S with size(S) ≤ 0 are the isomorphism and
then size(S) = 0.

Let s ≤ t be two integers, i be in c(t) and j be in c(s). Suppose there is a commutative square
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S := Tt−1
ft //

u

��

ei(DkQ(1))

α

��
Ts−1

gs // ej(DkQ(1))

where α is non zero path, and where ft (resp. gs) is a minimal right Tt−1 (resp. Ts−1)-
approximation. Since s ≤ t, we have Ts−1 ⊂ Tt−1. The approximation ft is not zero, hence
u is not zero and Tt−1 must be in Ts−1. Let fs : T ′

s−1 → ei(DkQ(1)) be a minimal right
Ts−1-approximation, then we have such a factorization:

Tt−1
ft //





ei(DkQ(1))

T ′
s−1

fs //

II

ei(DkQ(1))

The fact that the maps ft and fs gives an isomorphism betweenM(−, ei(DkQ(1)))/[Ts−1] and

M(−, ei(DkQ(1)))/[Tt−1], thus we have s = t.
Finally we get that all squares of size < 0 are zero. Moreover, all squares of size 0 are

isomorphisms and all squares of size 1 which are not homotopic to zero are the S(a)t and U i
t .

Now we will show that any square S such that size(S) ≥ 2 can be written as a composition
of squares of size strictly smaller. Let s ≥ t be positive integers, α 6= 0 be a path from i to j in
Q(1). Let S be a non zero commutative square non homotopic to zero with size(S) ≥ 2:

Tt−1
ft //

u

��

ei(DkQ(1))

α

��
Ts−1

gs // ej(DkQ(1))

where ft (resp. gs) is a minimal right Tt−1 (resp. Ts−1)-approximation. Assume that s ≥ t+ 1.
Then we have a commutative diagram

Tt−1

xxpppppp

ft //

��

ei(DkQ(1))

α

��

iiiiiiiiiiii

Tt

&&MMMMMM
ft+1 // ei(DkQ(1))

**UUUUUU

Ts−1
gs // ej(DkQ(1))

where ft+1 is a minimal right Tt approximation. Thus the square S is the composition B ◦ U i
t

where

B := Tt

ft+1 //

��

ei(DkQ(1))

α

��
Ts−1

gs // ej(DkQ(1))

.

We have size(B) = s− t− 1 + length(α) and size(U i
t ) = 1.
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If s = t and if α is a composition of arrows a1 ◦ · · · ◦ an of Q
(1)
1 with n ≥ 2, then we have

S = S(a1)t ◦ B where size(B) = length(α) − 1. Therefore (U i
t , S(a)t) generate the algebra

End(
⊕

t

⊕
i∈c(t) S

−t+1
2 (P(i,t)) and the morphism Ḡ is surjective.

Step 3: The map Ḡ is injective.

Let x be a linear combination of paths from (i, t) to (j, s) in R
w

′ which is non zero in kR
w

′/J
w

′ .

Then we have s ≥ t, i ∈ c(t) and j ∈ c(s). The element x can be written as a sum
∑

u xu where
for each u there is a path

αu := i = i1
a1 // i2

a2 // · · ·
an−1

// in
an // j

in Q(1) such that il ∈ c(s) for l = 1, . . . , n and

xu = λuq
i
tq

i
t+1 . . . q

i
s−1a

n
sa

n−1
s . . . a1s

where λu is in the field k.
Now assume that G(x) is a commutative square homotopic to zero

Tt−1
//

��

ei(DkQ(1))

hyy
α

��
Ts−1

// ej(DkQ(1))

where α =
∑

u λuαu and where horizontal maps are minimal right Tt−1 and Ts−1-approximations.
Since s ≥ t, we have a facorization:

Tt−1

||yy
yy

yy
y

//

��

ei(DkQ(1))
h

��

α

��

nnnnnnnnn

nnnnnnnnn

T ′
s−1

""EE
EE

EE
E

// ei(DkQ(1))

''PPPPPPPPP

Ts−1
// ej(DkQ(1))

Thus the square

T ′
s−1

//

��

ei(DkQ(1))

hyy
α

��
Ts−1

// ej(DkQ(1))

is homotopic to zero.
Therefore for all u there exists a factorization

αu : ei(DkQ(1))
βu // eil(u)(DkQ(1))

γu // ej(DkQ(1))

with eil(u) in Ts−1. Thus by Lemma 4.3 il(u) is not in c(s) for all u. This is a contradiction.

Therefore the morphism Ḡ is injective.
�
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Proof of Theorem 2.6. Combining Proposition 3.7 with Lemma 4.1 and Proposition 4.2, we get
that M is a tilting module over A and that EndA(M) ≃ Γ. Therefore by Theorem 1.6 of [Hap87]
we have a derived equivalence

RHomA(M,−) : Db(A)
∼ // Db(Γ) .

We still have to prove that the diagram

Db(A)

πA

��

RHomA(M,−) //

FA $$JJJJJJJJJ
Db(Γ)

FΓzzuuuuuuuuu

CA // SubΛw

commutes. The tilting A-module M is sent to Γ by the functor RHomA(M,−), and thus to
the cluster-tilting object C

w
in SubΛw by Theorem 2.1. By definition of the generalized cluster

category, the objects πA(S2(X)) and πA(X) are isomorphic in the category CA, therefore we
have an isomorphism in CA

πA(M) ≃ πA(A).

Hence by Theorem 2.5 the object M is sent to the cluster-tilting object C
w

in SubΛw. The
triangle functors Db(A) → SubΛw and Db(Γ) → SubΛw are given by tensor products (see
[Ami09] and [ART11]). We can now conclude using the fact that two triangle functors which are
tensor products and which coincide on a tilting object are isomorphic. Therefore the diagram
above is commutative. And we finish the proof of Theorem 2.6. �

5. Example

Let Q be the quiver 2
��=

==

1

@@���
// 3

and w := s3s2s3s1s2s3s1s2s3. The word w is co-c-sortable

with c = s1s2s3 and we have c(0) = c(1) = s1s2s3, c
(2) = s2s3, c

(3) = s3, w
′ = s3s2s3s1s2s3 and

the quiver Q(1) is Q. It satisfies the orientation conditions (∗) and (∗∗). The endomorphism
algebra in SubΛw of the standard cluster-tilting object C

w
of Theorem1.4 is the Jacobian algebra

Jac(Q′
w
,Ww) (Theorem 1.5) where

2 oo p

c

��<
<<

<<
<<

<

b

--

5
h

��<
<<

<<
<<

<

Q′
w
:= 1 oo

q

a

@@��������
3 oo r

e

88qqqqqqqqqqqqqq

d

��<
<<

<<
<<

< 6

4

f

HH
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

g

88qqqqqqqqqqqqqq

and Ww := gdr+ her+ fbp− ecp+ caq. The arrows {c, f, g, h} are the Q-arrows, {a, b, d, e} are
the Q∗-arrows, and {p, q, r} are the arrows going to the left.

Then T is the module

T =
3
2 3
1
⊕

3
3 2

3 2 1
1

⊕ 3
1 = I1 ⊕ τkQ(1)(I2)⊕ T3

The torsion classM = Fac (T ) has finitely many indecomposables, namely we have

M = { 3 , 3
2 ,

3
2 3
1

,
3

3 2
2 1

,
3

3 2
3 2 1
1

, 3
1 } = {I1, I2, I3, τkQ(I3), τkQ(I2), T3}
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The Auslander-Reiten quiver ofM is

τkQ(I2)

&&MMM
MMM

..

I2

��=
==

==

T3

;;vvvvvv
τkQ(I3)

66mmmmmmmmmm

$$HH
HH

HH
I3

I1

GG
�
�
�
�
�
�
�
�
�
�

77oooooooooo

Therefore the algebra A is given by the quiver

2
c

��=
==

==

b
..

5
h

��=
==

==

1

a
@@�����

3

e
77pppppppppp

d

��=
==

==
6

4

f

GG
�
�
�
�
�
�
�
�
�
�

g
77pppppppppp

with the relations he− gd = 0, fb− ec = 0 and ca = 0.

S
−2
2 (P1) = 6 , S

−1
2 (P2) = 5

3 and S
−1
2 (P3) = 6

5 .

We easily check that the A-module M of Theorem 2.6 is

M := S
−2
2 (P1)⊕ S

−1
2 (P2⊕P3)⊕ (P4⊕P5⊕P6) ≃ 6 ⊕ 5

3 ⊕
6
5 ⊕

4
3 2

2 1
⊕

5
3 4
2 3

2
⊕

6
5 4

4 3 2
3 2 1

2

.

The endomorphism algebra EndA(M) is given by the quiver

S
−1
2 P2

oo p

c

$$II
II

II
P5

h

��>
>>

>>
>

S
−2
2 P1

oo
q S

−1
2 P3

oo r
P6

P4

f

GG
�
�
�
�
�
�
�
�
�
�
�
� g

77oooooooooooo

with relations rh−cp = 0, rg = 0, qc = 0 and pf = 0. It is isomorphic to the algebra Γw defined
in section 2.1.
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[GLS08] C. Geiss, B. Leclerc, and J. Schröer, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier

(Grenoble) 58 (2008), no. 3, 825–876.
[Hap87] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987),

no. 3, 339–389.
[IO09] O. Iyama and S. Oppermann, n-representation-finite algebras and n-APR-tilting, Trans. Amer. Math. Soc.

363 (2011), no. 12, 6575–6614.
[Kel05] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581 (electronic).
[KR08] B. Keller and I. Reiten, Acyclic Calabi-Yau categories, Compos. Math. 144 (2008), no. 5, 1332–1348,

With an appendix by Michel Van den Bergh.
[MRZ03] R. Marsh, M. Reineke, and A. Zelevinsky, Generalized associahedra via quiver representations, Trans.

Amer. Math. Soc. 355 (2003), no. 10, 4171–4186 (electronic).
[Rea07] Nathan Reading, Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math.

Soc. 359 (2007), no. 12, 5931–5958.
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