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A DERIVED EQUIVALENCE BETWEEN CLUSTER EQUIVALENT

ALGEBRAS

CLAIRE AMIOT

Abstract. Let Q be an acyclic quiver. Associated with any element w of the Coxeter group of
Q, triangulated categories SubΛw were introduced in [BIRS09a]. There are shown to be triangle
equivalent to generalized cluster categories CΓw

associated to algebras Γw of global dimension
≤ 2 in [ART09]. For w satisfying a certain property, called co-c-sortable, other algebras Aw of
global dimension ≤ 2 are constructed in [AIRT09] with a triangle equivalence CAw

≃ SubΛw.
The main result of this paper is to prove that the algebras Γw and Aw are derived equivalent
when w is co-c-sortable. The proof uses the 2-APR-tilting theory introduced in [IO09].
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Introduction

Let k be an algebraically closed field. The cluster category CQ associated to an acyclic quiver
Q has been introduced in [BMR+06]. It is defined as the orbit category Db(kQ)/S2, where S2 is
the composition of the Serre functor S of the bounded derived category Db(kQ) of finitely pre-
sented kQ-modules with [−2]. This is a triangulated category [Kel05], with finite dimensional
spaces of morphisms (Hom-finite for short), and with the 2-Calabi-Yau property: for any two
objects X and Y in CQ there is a functorial isomorphism HomCQ

(X, Y ) ≃ DHom(Y, X[2]) where

supported by the Storforsk-grant 167130 from the Norwegian Research Council.
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D is Homk(−, k). This construction was motivated, via [MRZ03], by the theory of cluster alge-
bras initiated by Fomin and Zelevinsky [FZ02]. Following another point of view, Geiss, Leclerc
and Schröer have related in [GLS07a] and [GLS06] certains cluster algebras with the stable
categories modΛ where Λ is the preprojective algebra associated with a Dynkin quiver. These
categories are also Hom-finite, triangulated and 2-Calabi-Yau. Cluster categories CQ and stable
categories modΛ have both a special kind of objects called cluster-tilting. These are defined to
be objects without selfextension and maximal for this property. They are very important since
they are the analogs of clusters.

Therefore it is interesting to study Hom-finite, 2-Calabi-Yau triangulated categories with
cluster-tilting objects in general, and to find new such categories. To an acyclic quiver Q and
to an element w of the Coxeter group of Q, Buan, Iyama, Reiten and Scott have associated
in [BIRS09a] (see also [GLS08], [GLS07b]) a triangulated category SubΛw where SubΛw is a
subcategory of the category of finite length modules over the preprojective algebra Λ associated
with Q. These categories are Hom-finite, 2-Calabi-Yau and have cluster-tilting objects. More-
over they generalize the previous categories: If Q is Dynkin and w is the element of maximal
length of the Coxeter group, SubΛw is equivalent to modΛ. For any acyclic Q which is not
An with the linear orientation, if w is cc where c is the Coxeter element associated with the
orientation of Q then SubΛw is equivalent to the cluster category CQ.

More recently cluster categories have been generalized in [Ami08], replacing the finite dimen-
sional hereditary algebras kQ by finite dimensional algebras A of global dimension ≤ 2. The
orbit category Db(A)/S2 is not triangulated in general. Therefore the generalized cluster cate-
gory CA is defined to be the triangulated hull of the orbit category Db(A)/S2. This construction
generalizes again the previous constructions. Indeed in [ART09] given an acyclic quiver Q and
an element w in the Coxeter group, an algebra Γw of global dimension ≤ 2 is constructed with
a triangle equivalence

CΓw
≃ SubΛw.

The algebra Γw is contructed by using a natural grading on the preprojective algebra Λ. With a
very different point of view, it is shown in [AIRT09] that for a certain kind of words (containing
the adaptable words in the sens of [GLS07b]), called co-c-sortable, where c is a Coxeter element,
it is possible to construct a triangle equivalence

CAw
≃ SubΛw

where Aw is the Auslander algebra of a finite torsion class in modkQ naturally associated with
the word w.

The aim of this paper is to link the algebras Γw and Aw when w is co-c-sortable. By definition
of the generalized cluster category, if two algebras of global dimension ≤ 2 are derived equivalent
their generalized cluster categories are triangle equivalent. However the converse is not true.
Two algebras of global dimension ≤ 2 can have the same generalized cluster categories without
being derived equivalent. We say in this case that they are cluster equivalent (see [AO]). The
main result of this paper is that the algebras Γw and Aw are derived equivalent (Theorem 2.5).
Moreover we explicitly describe this equivalence using 2-APR-tilting introduced in [IO09].

The paper is organized as follows. Section 1 is devoted to background definitions and results
from [Ami08], [BIRS09a] and [BIRS09b]. We recall the definitions of the generalized cluster
categories and of the categories SubΛw and state some of their properties. In section 2 we recall
results of [ART09] and [AIRT09]. We give the explicit construction of the algebra Γw of global
dimension ≤ 2 and we described the finite torsion class associated to a co-c-sortable word w.
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Sections 3 and 4 are devoted to the proof of the main theorem. We construct a tilting module
over the algebra Aw in section 3, and we prove that its endomorphism algebra is isomorphic to
Γw in section 4. In section 5 we give an example to illustrate the main theorem.

Acknowledgements. The author would like to thank Idun Reiten for helpful comments and
corrections on this paper, and the Research Council of Norway for financial support.

Notations. Throughout k is a algebraically closed field and D is the usual duality Homk(?, k).
By triangulated category, we mean k-linear triangulated category satisfying the Krull-Schmidt

property. For all triangulated categories we will denote the shift functor by [1]. By Frobenius
category we mean an exact k-category with enough projectives and injectives and where pro-
jectives and injectives coincide.

For a finite-dimensional k-algebra A, we denote by modA the category of finite-dimensional
right A-modules. The category Db(A) will be the bounded derived category of modA. Its Serre

functor −
L

⊗ADA will be denoted by SA (or S if there is no danger of confusion). More generally,
for an additive k-categoryM we denote by modM the category of finitely presented functors
Mop → modk.

1. Background: Preprojective algebras and generalized cluster categories

1.1. Generalized cluster categories. This section is devoted to recalling some results of
[Ami08].

Let Γ be a finite dimensional k-algebra of global dimension ≤ 2. We denote by Db(Γ) the
bounded derived category of finite dimensional Γ-modules. It has a Serre functor that we denote
by S. We denote by S2 the composition S[−2].

The generalized cluster category CΓ of Γ has been defined in [Ami08] as the triangulated hull
of the orbit category Db(Γ)/S2. We will denote by πΓ (or π if there is no danger of confusion)
the triangle functor

πΓ : Db(Γ) // // Db(Γ)/S2
�

� // CΓ

Theorem 1.1 (Theorem 4.10 of [Ami08]). Let Γ be a finite dimensional algebra of global
dimension ≤ 2, and assume that the endomorphism algebra EndC(πΓ) is finite dimensional.
Then CΓ is a Hom-finite, triangulated 2-Calabi-Yau category and π(Γ) is a cluster-tilting object.

The construction of CΓ depends only on the derived category Db(Γ). Thus we have the
following consequence.

Proposition 1.2. Let Γ and Γ′ be two derived equivalent finite dimensional k-algebras of global
dimension ≤ 2. Then the categories CΓ and CΓ′ are triangle equivalent.

However, the converse is not true in general.

Example 1.1. Let A be the algebra given by the quiver

2
a

����
��

��

1 // 3

b
^^======

with the relation ab = 0. Using Theorem 2.1 of [KR08], it is not hard to check that the

generalized cluster category CA is triangle equivalent to the cluster category of Ã2. However,
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the alegbra A is not derived equivalent to the hereditary algebra kÃ2. Indeed, since the quiver
of A has an oriented cycle, A cannot be derived equivalent to Db(kÃ2).

This example leads us to introduce the following definition.

Definition 1.3. [AO] Two finite dimensional algebras A and B of global dimension ≤ 2 will be
called cluster equivalent if there exists a triangle equivalence between their generalized cluster
categories CA and CB.

1.2. Categories associated to a word. This section is devoted to recalling some results of
[BIRS09a] and [BIRS09b].

Let Q be a finite quiver without oriented cycles. We denote by Q0 = {1, . . . , n} the set of
vertices and by Q1 the set of arrows. The preprojective algebra associated to Q is the algebra

kQ/〈
∑

a∈Q1

aa∗ − a∗a〉

where Q is the double quiver of Q, which is obtained from Q by adding to each arrow a : i→
j ∈ Q1 an arrow a∗ : i← j pointing in the opposite direction. We denote by Λ the completion
of the preprojective algebra associated to Q and by f.l.Λ the category of right Λ-modules of
finite length.

For a vertex i in Q0 we denote by Ii the two-sided ideal Λ(1− ei)Λ, where ei is the primitive
idempotent of Λ associated to the vertex i. Let CQ be the Coxeter group associated to Q. It is
defined by the generators si, where i ∈ Q0, and by the relations

• s2
i = 1,

• sisj = sjsi if there is no arrow between i and j,
• sisjsi = sjsisj if there is exactly one arrow between i and j.

A reduced expression w = su1 . . . sul
of an element of CQ is an expression of w with l as small

as possible. When su1 . . . sul
is a reduced expression of w, the integer l is said to be the length

l(w) of w.
Let w = su1 . . . sul

be a reduced expression of an element in CQ. For p ≤ l we denote by
Iwp

the two sided ideal Iup
Iup−1 . . .Iu1 . We denote by Λw the algebra Λ/Iwl

and by SubΛw the
subcategory of f.l.Λ of finite direct sums of copies of submodules of Λw.

Let us recall Theorem III.2.8 of [BIRS09a].

Theorem 1.4 (Buan-Iyama-Reiten-Scott). The category SubΛw is a Hom-finite Frobenius cat-

egory and its stable category SubΛw is 2-Calabi-Yau. The object Cw =
⊕l

p=1 eup
(Λ/Iwp

) is a
cluster-tilting object.

The endomorphism algebra of Cw is described in terms of a quiver with relations in [BIRS09b].
Let us define the quiver Qw as follows:

• vertices: 1, . . . , l(w).
• for each i ∈ Q0, one arrow t ← s if t and s are two consecutive vertices of type i (i.e.

us = ut = i) and t < s (we call them arrows going to the left);
• for each a : i→ j ∈ Q1, put a : t→ s if t is a vertex of type i, s of type j, and if there

is there is no vertex of type i between t and s and if s is the last vertex of type j before
the next vertex of type i in the expression w = su1 . . . sul

(we call them Q-arrows)
• for each a : i→ j ∈ Q1, put a∗ : t→ s if t is of type j, s is of type i, if there is no vertex

of type j between t and s and if s is the last vertex of type i before the next vertex of
type j in the expression of w (we call them Q∗-arrows).
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For i in Q0 we define li to be the maximal integer such that uli = i. We denote by Q̄w the
full subquiver of Qw whose vertices are not li.

For each Q-arrow a : t→ s in Q̄w we denote by Wa the composition aa∗p if there is a (unique)
Q∗-arrow a∗ : r → t in Q̄w where ur = us and where p is the composition of arrows going to the
left r ← · · · ← s. Otherwise we put Wa = 0. For each Q∗-arrow a∗ : t→ r in Q̄w, we denote by
Wa∗ the composition a∗ap if there exists a (unique) Q-arrow a : s→ t in Q̄w with us = ur and
where p is the composition of arrows going to the left s← · · · ← r. Otherwise we put Wa∗ = 0.
Then let Ww be the sum

Ww =
∑

a Q-arrow

Wa −
∑

a∗ Q∗-arrow

Wa∗ .

It is a potential in the sense of [DWZ08], that is, a linear combination of cycles in Q̄w. For
a cycle p in Q̄w and an arrow a in Q̄w, it is possible to define the partial derivative ∂ap as the
sum ∂ap :=

∑
p=uav vu. The definition of the partial derivative can be extended by linearity to

any potential.
The Jacobian algebra (see [DWZ08]) is defined as the algebra

Jac(Q̄w, Ww) := kQ̄w/〈∂aWw, a ∈ Q̄w1〉.

Let us recall Theorem 6.8 of [BIRS09b].

Theorem 1.5 (Buan-Iyama-Reiten-Smith). Let w = su1 . . . sul
be a reduced expression of an

element w of the Coxeter group CQ. Let Cw be the cluster-tilting object of Sub (Λw) (defined in
Theorem 1.4) associated to this reduced expression. Then there is an algebra isomorphism

Jac(Q̄w, Ww) ≃ EndSub Λw
(Cw).

2. Categories associated to a word as generalized cluster categories

In this section we recall some results of [ART09] and [AIRT09] which describe some categories
SubΛw as generalized cluster categories.

2.1. General words: Results of [ART09]. In [ART09] it is shown that for any element w
of the Coxeter group, the category SubΛw is triangle equivalent to some generalized cluster
category.

Let Q and Λ be as in the previous section. Let w = su1 . . . sul
be a reduced expression of an

element in the Coxeter group CQ. Since the category SubΛw and the object Cw do not depend
on the orientation of Q, we can assume that the orientation of Q satisfies the property

(∗) if there exists i→ j, then li < lj ,

where li is the maximal integer such that uli = i.
We define a grading on the quiver Q̄w. All arrows going to the left and all Q-arrows are

defined to have degree 0. All Q∗-arrows are defined to have degree 1. It is then easy to see that
the potential Ww is homogeneous of degree 1. Hence we get a grading on the Jacobian algebra
Jac(Q̄w, Ww), so on the algebra B = EndSub Λw

(Cw) by Theorem 1.5. Let Γ := B0 be its part
of degree zero.

Theorem 2.1 (Theorem 4.4 of [ART09]). For any acyclic quiver Q and any element w in the
Coxeter group of Q, the algebra Γ is of global dimension ≤ 2 and there exists a commutative
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diagram of triangle functors:

Db(Γ)
FΓ //

πΓ

��

SubΛw

CΓ

fΓ

66mmmmmmmmmmmmmmm

,

where fΓ is an equivalence, and where FΓ(Γ) = Cw.

2.2. Co-c-sortable words. In this section we recall some results of [AIRT09].
Let Q be a quiver without oriented cycles with n vertices. We assume that the orientation

of Q satisfies
(∗∗) if there exists i→ j, then i < j.

We denote by c the Coxeter element s1 . . . sn.

Definition 2.2. An element w of the Coxeter group of Q is called co-c-sortable if there exists
a reduced expression of w of the form w = c(m) . . . c(1)c(0), where all c(t) are subwords of c whose
supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0.

If i ∈ Q0 is in the support of c(t), by abuse of notation, we will write i ∈ c(t).

Remark 2.1. The word w is co-c-sortable if and only if w−1 is c−1-sortable in the sense of
[Rea07].

Let w = c(m) . . . c(1)c(0) be a co-c-sortable word. Let Q(1) be the full subquiver of Q whose
support is the same as c(1). Then the word w′ = c(m) . . . c(1) is co-c(1)-sortable as an element of
the Coxeter group CQ(1). For t ≥ 1 and i in c(t), we define kQ(1)-modules T(i,t) by induction as
follows:

• We put T(i,1) = eiD(kQ(1)) for all i ∈ c(1).

• For t ≥ 2, assume that we have defined T(j,s) for 1 ≤ s ≤ t − 1 and j ∈ c(s), and
T(n,t), . . . , T(i+1,t). Then T(i,t) is defined to be the kernel of the map

f : E → T(i,t−1)

where f is a minimal right add (
⊕

j<i T(j,t−1) ⊕
⊕

j>i T(j,t))-approximation.

For i in Q
(1)
0 , we define mi such that i is in c(mi) but not in c(mi+1). We define the kQ(1)-module

T :=
⊕

i∈Q
(1)
0

T(i,mi).

Here is the dual version of results of [AIRT09].

Theorem 2.3. Let w′, Q(1) and T be as above. Then

• T is a tilting kQ(1)-module with finite torsion class;
• the torsion class M := FacT = {X ∈ modkQ s.t. Ext

1
kQ(1)(T, X) = 0} is the additive

category add{T(i,t), t ≥ 1, i ∈ c(t)};

• the sequences 0 // T(i,t)
// E

f // T(i,t−1)
// 0 are exact and are the almost split

sequences of M = Fac (T ).

We have also the following result which is a generalization of Theorem 5.21 of [Ami08].
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Theorem 2.4 ([AIRT09]). Let Q, w = c(m) . . . c(0), w′ = c(m) . . . c(1), Q(1) and T(i,t) (for t ≥ 1

and i ∈ c(t)) be as above. Define the endomorphism algebra

A := EndkQ(1)(
⊕

t≥1

⊕

i∈c(t)

T(i,t)).

Then the algebra A is of global dimension ≤ 2 and there exists a commutative diagram of
triangle functors:

Db(A)
FA //

πA

��

SubΛw

CA

fA

66mmmmmmmmmmmmmmm

,

where fA is an equivalence, and where FA(A) = Cw.

2.3. Main result. From now on we assume that w = c(m) . . . c(1)c(0) is a co-c-sortable word.
Combining Theorems 2.1 and 2.4, we get two algebras A and Γ of global dimension ≤ 2, with
the following diagram

Db(A)
? //

πA

��

FA

$$JJJJJJJJJ
Db(Γ)

πΓ

��

FΓ

zzuuuuuuuuu

CA
∼ // SubΛw CΓ

∼oo

.

As we have seen in the first section, we do not automatically get a derived equivalence
between A and Γ. The aim of this paper is to prove that there is an equivalence in this case
and that this derived equivalence is given by a tilting module which is easy to describe. More
precisely we will show the following.

Theorem 2.5. Let w = c(m) . . . c(0) be a co-c-sortable element in the Coxeter group of Q. Let
Γ and A be the algebras of global dimension ≤ 2 associated to w defined in section 2.

For p ≥ 1 and j ∈ c(p) define the indecomposable projective A-module

P(j,p) := HomkQ(1)(
⊕

t≥1

⊕

i∈c(t)

T(i,t), T(j,p)),

and the complex

M =

m⊕

p=1

⊕

j∈c(p)

S
−p+1
2 (P(j,p)),

where S2 is the autoequivalence S[−2] of Db(A). Then we have

(1) M is a tilting module;
(2) EndA(M) ≃ Γ;
(3) the functor RHomA(M,−) makes the following diagram commute

Db(A)
RHomA(M,−)

//

FA $$JJJJJJJJJ
Db(Γ)

FΓzzuuuuuuuuu

SubΛw

.



8 CLAIRE AMIOT

Remark 2.2. Note that we have equivalences

gl. dimA = 1 ⇔ m = 1
⇔ gl. dimΓ = 1
⇔ A ≃ Γ

Therefore we can assume from now that m ≥ 2.

3. Construction of a tilting module

This section consists of the proof of (1) of Theorem 2.5. We assume that w = c(m) . . . c(0) is
a co-c-sortable word with m ≥ 2. For t ≥ 1 and i ∈ c(t), we define kQ(1)-modules T(i,t) as in

subsection 2.1. We define the tilting kQ(1)-module T :=
⊕

i∈c(1) T(i,mi), where mi is the maximal

integer such that i ∈ c(mi). We define

M := Fac (T ) = add{T(i,t), 1 ≤ t ≤ m, i ∈ c(t)}, and A := EndkQ(1)(
⊕

t≥1,i∈c(t)

T(i,t)).

The first subsection is devoted to basic lemmas on the category modA: Lemma 3.1 describes
the spaces of morphisms between objects in modA, and Lemma 3.2 describes the action of the
functor AS2 on the projective indecomposables A-modules. It permits to prove (1) of Theorem
2.5 using 2-APR-tilting in subsection 3.2.

3.1. The category modA. The algebra A is defined as the endomorphism algebra of the
sum of pairwise non-isomorphic indecomposable kQ(1)-modules in Fac (T ) = M. Thus the
category modA is equivalent to the category modM of finitely presented functors Mop →
modk. Through this equivalence, indecomposable projective A-modules are the functors of
the form M(−, X) where X is an indecomposable object in M and indecomposable injective
A-modules are the functors of the form DM(X,−) where X is an indecomposable object in
M.

The category M, as a torsion class, has almost split sequences (cf Theorem 2.4). We will
denote by τ its Auslander-Reiten translation. Moreover, since M is a finite torsion class, any
indecomposable object X of M is isomorphic to some τp(eiDkQ(1)) for some p ≥ 0 and some

i ∈ Q
(1)
0 .

Let T be a full subcategory of M and X be an object of M. We define the M-module
M(−, X)/[T ] as the cokernel of

M(−, T )→M(−, X)

induced by a minimal right T -approximation T → X.
We first state a lemma which describes morphisms between objects in modM of the form

M(−, X)/[T ] in terms of morphisms inM.

Lemma 3.1. Let M be a k-linear category with finitely many indecomposables. Let A be the
Auslander algebra ofM. Let T and S be full subcategories ofM, then we have an isomorphism
for any X and Y in M between

HomA(M(−, X)/[T ],M(−, Y )/[S])
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and the space of commutative squares up to homotopy

T
t //

��

X

��
S

s // Y

where t (resp. s) is a minimal right T (resp. S) -approximation.

Proof. Let t : T → X be a minimal T - approximation of X. Then the projective presentation
of the moduleM(−, X)/[T ] is

M(−, T )
M(−,t)

//M(−, X) //M(−, X)/[T ] // 0

Thus the space of morphisms

HomA(M(−, X)/[T ],M(−, Y )/[S])

is isomorphic to the space of commutative squares

M(−, T )
M(−,t)

//

��

M(−, X)

��
M(−, S)

M(−,s)
//M(−, Y )

up to homotopy, where s : S → Y is a minimal right S-approximation. By the Yoneda lemma,
this is isomorphic to the space of commutative squares

T
t //

��

X

��
S

s // Y

up to homotopy.
�

For t ≥ 1 we define the subcategory Tt ofM as

Tt := add (T ⊕ τ−1T ⊕ · · · ⊕ τ−t+1T ).

Note that Tm =M and by convention T0 = ∅.
We then have the following lemma which is a variant of Lemma 5.9 of [Ami08].

Lemma 3.2. Let X be an object of M and n ≥ 0 such that τ−nX 6= 0, where τ is the AR-
translation of the category M. Then we have an isomorphism in modM:

S
−n
2 (M(−, X)) ≃M(−, τ−nX)/[Tn]

Proof. We prove this lemma by induction on n.
Let X be an indecomposable inM such that τ−1X is not zero. Since τ−1X is inM we have

a short exact sequence

(1) 0 // T1
// T0

f // τ−1X // 0
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with T0 and T1 in T1 = add (T ) and f a minimal right add(T )-approximation. The objects T0

and T1 are not zero since X is not zero and inM. Thus we get an exact sequence in modM

0 //M(−, T1) //M(−, T0) //M(−, τ−1X) //M(−, τ−1X)/[T1] // 0

which gives a projective resolution of the module M(−, τ−1X)/[T1]. Therefore the object

S2(M(−, τ−1X)/[T1])

is quasi-isomorphic to the complex

DM(T1,−) // DM(T0,−) // DM(τ−1X,−)

By the short exact sequence (1) we get a long exact sequence in modM:

DExt
1
kQ(1)(T0,−)|M // DExt

1
kQ(1)(τ−1X,−)|M // DM(T1,−) // DM(T0,−) // DM(τ−1X,−) // 0 .

By definition we have Ext
1
kQ(1)(T0,M) = 0. Hence using the Auslander-Reiten formula

DExt
1
M(τ−1X,−) ≃M(−, X),

we get the desired isomorphism

S
−1
2 (M(−, X)) ≃M(−, τ−1X)/[T1].

Thus we have the assertion for n = 1.
Now let n ≥ 2 and assume that for any Y such that τ−n+1Y is not zero we have

S
−n+1
2 (M(−, Y )) ≃M(−, τ−n+1Y )/[Tn−1].

Let X be in M such that τ−nX is not zero. Then by the assertion for n = 1, we have an
isomorphism

S
−n
2 (M(−, X)) ≃ S

−n+1
2 (M(−, τ−1X)/[T1]).

Since τ−nX is not zero, the short exact sequence (1) yields a short exact sequence

0 // τ−n+1T1
// τ−n+1T0

// τ−nX // 0 .

The objects τ−n+1T0 and τ−n+1T1 cannot be zero since X, τ−1X, . . . τ−nX are not zero.
By definition, the moduleM(−, τ−1X)/[T1] is quasi-isomorphic to the complex of projectives:

M(−, T1) //M(−, T0) //M(−, τ−1X)

thus by the induction hypothesis S
−n+1
2 (M(−, τ−1X)/[T1]) is quasi-isomorphic to the complex

M(−, τ−n+1T1)/[Tn−1] //M(−, τ−n+1T0)/[Tn−1] //M(−, τ−nX)/[Tn−1]

which is quasi-isomorphic to the module

M(−, τ−nX)/[Tn].

Hence we get the assertion for any n ≥ 1.
�
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3.2. 2-APR-tilting. The object M of Theorem 2.5 is constructed by applying powers of the
functor S2 to summands of A. To prove that it is tilting, we will use the tool of 2-APR-tilting
introduced by Iyama and Oppermann. The following result is Theorem 4.5 with Proposition
4.7 of [IO09].

Theorem 3.3 (Iyama-Oppermann). Let Γ be a finite dimensional k-algebra of global dimension
≤ 2. Suppose we can decompose Γ = P ⊕Q as Γ-module in such a way that

(1) HomΓ(Q, P ) = 0;
(2) Ext

−1
Γ (Q, S−1

2 (P )) = 0.

Then T = S
−1
2 (P )⊕Q is a tilting complex over Γ and EndΓ(T ) is of global dimension ≤ 2.

Applying recursively this theorem, we get the following.

Proposition 3.4. Let Γ be a finite dimensional k-algebra of global dimension ≤ 2. Suppose
that we can decompose Γ as the sum Pm ⊕ · · · ⊕ P1 ⊕ P0 of Γ-modules in such a way that

(1) for any s, t, j such that s− j − t ≥ 1 and j ≥ 0 the space HomΓ(Pt, S
−j
2 Ps) vanishes;

(2) S
−j
2 Ps is a module for 0 ≤ j ≤ s.

Then T = S
−m
2 Pm ⊕ . . . S−1

2 P1 ⊕ P0 is a tilting module and the algebra EndΓ(T ) is of global
dimension ≤ 2.

Proof. We prove by induction on i ≥ 0 that the object

Ti = S
−i
2 (Pm ⊕ · · · ⊕ Pi)⊕ S

−i+1
2 Pi−1 ⊕ · · · ⊕ S

−1
2 P1 ⊕ P0

is a tilting module over Γ and that the endomorphism algebra Γi := EndΓ(Ti) has global
dimension ≤ 2. This holds for i = 0 by hypothesis. Let us assume that this holds for an i ≥ 0.
The functor Fi = RHomΓ(Ti,−) yields a triangle equivalence

Fi : Db(Γ)

S2=−
L
⊗Γ[−2]

TT
∼ // Db(Γi)

iS2=−
L
⊗Γi

DΓi[−2]

TT

which sends Ti to Γi. By the uniqueness of the Serre functor we have an isomorphism

Fi ◦ S2 = RHomΓ(Ti,−
L

⊗Γ DΓ[−2]) ≃ RHomΓ(Ti,−)
L

⊗Γi
DΓi[−2] =i S2 ◦ Fi.

We want to apply Theorem 3.3 to

P := Fi(S
−i
2 (Pm ⊕ · · · ⊕ Pi+1)) and Q := Fi(S

−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0).

We have

HomΓi
(Q, P ) = HomΓi

(Fi(S
−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0), Fi(S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)))

≃ HomΓ(S−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0, S

−i
2 (Pm ⊕ · · · ⊕ Pi+1))

= 0 by (1).

Moreover, we have

Ext
−1
Γi

(Q,i S
−1
2 P ) = Ext

−1
Γi

(Fi(S
−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0),i S

−1
2 Fi(S

−i
2 (Pm ⊕ · · · ⊕ Pi+1)))

≃ Ext
−1
Γi

(Fi(S
−i
2 (Pi)⊕ · · · ⊕ S

−1
2 (P1)⊕ P0), Fi(S

−(i+1)
2 (Pm ⊕ · · · ⊕ Pi+1)))

≃ Ext
−1
Γ (S−i

2 (Pi)⊕ · · · ⊕ S
−1
2 (P1)⊕ P0, S

−(i+1)
2 (Pm ⊕ · · · ⊕ Pi+1))

By (2), for 1 ≤ j ≤ s the object S
−j
2 Ps is a module, hence the space Ext

−1
Γ (Pl, S

−j
2 Ps) vanishes

for any l. Therefore the space Ext
−1
Γi

(Q,i S
−1
2 P ) vanishes.
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Thus by Theorem 3.3, iS
−1
2 (P ) ⊕ Q ≃ Fi(Ti+1) is a tilting complex in Db(Γi), hence Ti+1

is a tilting complex in Db(Γ), and a module by (2), and its endomorphism algebra Γi+1 =
EndΓ(Ti+1) ≃ EndΓi

(Fi(Ti+1)) is of global dimension ≤ 2. Thus we get the proposition. �

We want to apply this result to the decomposition A =
⊕m

t=1(
⊕

i∈c(t) P(i,t)) where P(i,t) :=
M(−, T(i,t)) is the projective indecomposable A-module defined in Theorem 2.5.

Proposition 3.5. The complex M =
⊕m

t=1

⊕
i∈c(t) S

−t+1
2 (P(i,t)) is a tilting A-module.

Proof. If i is in c(t), then τ−t+1(T(i,t)) is isomorphic to eiD(kQ(1)). Now for t = 1, . . . , m, we

denote by Pt the projective A-module
⊕

i∈c(t) P(i,t). For i in c(t), the indecomposable projective

P(i,t) is of the form M(−, T(i,t)). Thus we have P(i,t) = M(−, τ t−1(eiDkQ(1))). Therefore we
can write

Pt =M(−, τ t−1(DkQ(1))).

Note that if i is not in c(t) then τ t−1(eiDkQ(1)) is zero, thus the decomposition of Pt into
indecomposables is given by

Pt =
⊕

i∈c(t)

M(−, τ t−1(eiDkQ(1))) =
⊕

i∈c(t)

M(−, T(i,t)).

We want to apply Proposition 3.4 to the decomposition A = Pm ⊕ · · · ⊕ P1. By Lemma 3.2,
we know that for any 0 ≤ j ≤ s− 1, we have

S
−j
2 Ps ≃M(−, τ s−1−jDkQ(1))/[Tj]

which is a module. Thus we have condition (2) of Proposition 3.4.
For s− j − t ≥ 1 we have isomorphisms

HomA(Pt, S
−j
2 Ps) = HomA(M(−, τ t−1(DkQ(1))), S−j

2 (M(−, τ s−1(DkQ(1)))))
= HomA(M(−, τ t−1(DkQ(1))),M(−, τ s−1−j(DkQ(1)))/[Tj]) by Lemma 3.2
≃ M(τ t−1(DkQ(1)), τ s−j−1(DkQ(1)))/[Tj] by Lemma 3.1
≃ M(DkQ(1), τ s−j−t(DkQ(1)))/add(τ 1−tT ⊕ · · · ⊕ τ 2−t−j(T ))

Since s− j − t ≥ 1 the spaceM(DkQ(1), τ s−j−tDkQ(1)) vanishes. Hence we have condition (1)
of Proposition 3.4. Therefore the complex

M =
m⊕

t=1

S
−t+1
2 (Pt) =

m⊕

t=1

⊕

i∈c(t)

S
1−t
2 (P(i,t))

is a tilting module.
�

4. Computation of the endomorphism algebra

In this section, we prove (2) of Theorem 2.5, that is that the endomorphism algebra EndA(M)
is isomorphic to the algebra Γ defined in section 2.1. The strategy consists of describing these
two algebras with a quiver and an ideal of relations.

Let w = c(m) . . . c(0) be a co-c-sortable word, and define w′ = c(m) . . . c(1). Let Rw′ be the
following quiver:

• its vertices are (i, t) where i is in c(t);

• for i ∈ Q
(1)
0 , for t ≥ 1 such that i is in c(t+1), we have an arrow qi

t : (i, t)→ (i, t + 1);

• for any a : i→ j in Q
(1)
1 such that i, j ∈ c(t) we have an arrow at : (i, t)→ (j, t).
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We define an ideal Jw′ of relations on the path algebra kRw′ generated by commutative
squares

(i, t)
qi
t //

at

��

(i, t + 1)

at+1

��
(j, t)

q
j
t // (j, t + 1)

when all these arrows are defined, and by zero relations

(i, t)
ai

t // (j, t)
q

j
t // (j, t + 1)

when i is not in c(t+1).

Lemma 4.1. The algebra Γ is isomorphic to the algebra kRw′/Jw′.

Proof. In the case where w is co-c-sortable, the quivers Qw and Q̄w described in section 1 are
much simpler. The orientation of Q satisfies condition (∗) of section 2.1 if and only if it satisfies
(∗∗) of section 2.2. It is routine to check that if we remove the Q∗-arrows of Q̄w we get Rw′, and
that the partial derivatives ∂a∗Ww where a∗ is a Q∗-arrow are exactly the relations generating
Jw′. �

Proposition 4.2. There exists an algebra isomorphism

G : kRw′/Jw′ → EndA(
m⊕

t=1

⊕

i∈c(t)

S
−t+1
2 (P(i,t))) = EndA(M).

Proof. We divide the proof in several steps.

Step 1: Definition of the map G : kRw′/Jw′ → EndA(M).

We define G on the vertices of Rw′. For i in c(t) we put

G(i, t) = S
−t+1
2 (P(i,t)).

Let t be integers ≤ m, i be in c(t) and j be in c(s). By Lemma 3.2, we have an isomorphism

HomA(S−t+1
2 (P(i,t)), S

−s
2 (P(j,s)) ≃ HomA(M(−, ei(DkQ(1)))/[Tt−1],M(−, ej(DkQ(1)))/[Ts−1]).

It is isomorphic, by Lemma 3.1, to the space of commutative squares

Tt−1
//

��

ei(DkQ(1))

��
Ts−1

// ej(DkQ(1))

up to homotopy, where horizontal maps are minimal right Tt−1 (resp. Ts−1)-approximations.
Here is an easy result which will often be used in the proof.

Lemma 4.3. For t ≥ 1 we have equivalences

• i /∈ c(t+1),
• τ t(eiDkQ(1)) = 0,
• eiDkQ(1) ∈ Tt.
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Let i be in Q
(1)
0 and t be an integer ≥ 1. Let f : Tt−1 → ei(DkQ(1)) be a minimal right

Tt−1-approximation and let g : Tt → ei(DkQ(1)) be a minimal right Tt-approximation. Since we
have the inclusion Tt−1 ⊂ Tt, then there exists a commutative square

U i
t := Tt−1

f //

��

ei(DkQ(1))

Tt

g // ei(DkQ(1))

.

It is homotopic to zero if and only if ei(DkQ(1)) is in Tt. This is equivalent to the fact that
i is not in c(t+1) by Lemma 4.3. Thus for i in c(t+1) we define

G(qi
t) = U i

t 6= 0.

Let a : i → j be an arrow in Q
(1)
1 and t be an integer ≥ 1. Let f : Tt−1 → ei(DkQ(1)) and

g : T ′
t−1 → ej(DkQ(1)) be minimal right Tt−1-approximations. Then we have a commutative

square

S(a)t := Tt−1
f //

��

ei(DkQ(1))

a

��
T ′

t−1

g // ej(DkQ(1))

If this square is homotopic to zero then there exists a map h : ei(DkQ(1))→ T ′
t−1 such that

a = g ◦ h. Since a is an irreducible map, h is a section or g is a retraction. Thus ei(DkQ(1)) or
ej(DkQ(1)) are in Tt−1. By Lemma 4.3, this means that either i /∈ c(t) or j /∈ c(t).

Therefore for any a : i→ j in Q1 and for t ≥ 1 such that i, j ∈ c(t), we put

G(at) = S(a)t 6= 0.

Moreover for any i, j in c(t) we have a commutative diagram:

Tt−1
//

��

((PPPPPP ei(DkQ(1))
++VVVVV

T ′
t−1

//

��

ej(DkQ(1))

Tt
//

((PPPPPPPP ei(DkQ(1))
++VVVVV

T ′
t

// ej(DkQ(1))

This implies that in EndA(M) we have the relations:

U j
t ◦ S(a)t = S(a)t+1 ◦ U i

t

if S(a)t+1 is not zero, thus if i and j are in c(t+1). And we have the relation

U j
t ◦ S(a)t = 0

if i is not in c(t+1).
Thus we get a morphism G : kRw′/Jw′ → EndA(

⊕
t

⊕
i∈c(t) S

−t+1
2 (P(i,t)) = EndA(M).

Step 2: The map G is surjective.

We will show that the squares of the form S(a)t and U i
t generate the algebra EndA(M).
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Let α be a path in Q(1) from i to j. We denote by length(α) its length. For a commutative
square

S := Tt−1
//

��

ei(DkQ(1))

α

��
Ts−1

// ej(DkQ(1))

let us define the size of S by

size(S) = s− t + length(α).

We have for all integers t ≥ 1, all i in Q
(1)
0 and all a in Q

(1)
1 , size(U i

t ) = size(S(a)t) = 1.

We will first show that the only non zero squares S with size(S) ≤ 0 are the isomorphism
and then size(S) = 0.

Let s ≤ t be two integers, i be in c(t) and j be in c(s). Suppose there is a commutative square

S := Tt−1
t //

u

��

ei(DkQ(1))

α

��
Ts−1

s // ej(DkQ(1))

where α is non zero path, and where t (resp. s) is a minimal right Tt−1 (resp. Ts−1)-
approximation. Since s ≤ t, we have Ts−1 ⊂ Tt−1. The approximation t is not zero, hence
u is not zero and Tt−1 must be in Ts−1. Let g : T ′

s−1 → ei(DkQ(1)) be a minimal right Ts−1-
approximation, then we have such a factorization:

Tt−1
t //





ei(DkQ(1))

T ′
s−1

g //

JJ

ei(DkQ(1))

This square gives an isomorphism betweenM(−, ei(DkQ(1)))/[Ts−1] andM(−, ei(DkQ(1)))/[Tt−1],
thus we have s = t.

Finally we get that all squares of size < 0 are zero. Moreover, all squares of size 0 are
isomorphisms and all squares of size 1 which are not homotopic to zero are the S(a)t and U i

t .

Now we will show that all square S such that size(S) ≥ 2 can be written as a composition
of squares of size stricly smaller. Let s ≥ t be positive integers, α 6= 0 be a path from i to j in
Q(1). Let S be a non zero commutative square non homotopic to zero with size(S) ≥ 2:

Tt−1
t //

u

��

ei(DkQ(1))

α

��
Ts−1

s // ej(DkQ(1))

where t (resp. s) is a minimal right Tt−1 (resp. Ts−1)-approximation. Assume that s is ≥ t + 1.
Then we have a commutative diagram
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Tt−1

xxqqqqqq

t //

��

ei(DkQ(1))

α

��

iiiiiiiiiiii

Tt

&&MMMMMM
t′ // ei(DkQ(1))

**UUUUUU

Ts−1
s // ej(DkQ(1))

where t′ is a minimal right Tt approximation. Thus the square S is the composition B ◦ U i
t

where

B := Tt
t′ //

��

ei(DkQ(1))

α

��
Ts−1

s // ej(DkQ(1))

.

We have size(B) = s− t− 1 + length(α) and size(U i
t ) = 1.

If s = t and if α is a composition of arrows a1 ◦ · · · ◦ an of Q
(1)
1 with n ≥ 2, then we have

S = S(a1)t ◦ B where size(B) = length(α) − 1. Therefore (U i
t , S(a)t) generate the algebra

End(
⊕

t

⊕
i∈c(t) S

−t+1
2 (P(i,t)) and the morphism G is surjective.

Step 3: The map G is injective

Let x be a linear combination of paths from (i, t) to (j, s) in Rw′ which is non zero in kRw′/Jw′.
Then we have s ≥ t, i ∈ c(t) and j ∈ c(s). The element x can be written as a sum

∑
u xu where

for each u there is a path

αu := i = i1
a1

// i2
a2

// · · ·
an−1

// in
an

// j

in Q(1) such that il ∈ c(s) for l = 1, . . . , n and

xu = λuq
i
tq

i
t+1 . . . qi

s−1a
n
s an−1

s . . . a1
s

where λu is in the field k.
Now assume that G(x) is a commutative square homotopic to zero

Tt−1
//

��

ei(DkQ(1))

hyy
α

��
Ts−1

// ej(DkQ(1))

where α =
∑

u λuαu and where horizontal maps are minimal right Tt−1 and Ts−1-approximations.
Since s ≥ t, we have a facorization:

Tt−1

||yy
yy

yy
y

//

��

ei(DkQ(1))
h

��

α

��

nnnnnnnnn

nnnnnnnnn

T ′
s−1

""EE
EE

EE
E

// ei(DkQ(1))

''PPPPPPPPP

Ts−1
// ej(DkQ(1))
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Thus the square

T ′
s−1

//

��

ei(DkQ(1))

hyy
α

��
Ts−1

// ej(DkQ(1))

is homotopic to zero.
Therefore for all u there exists a factorization

αu : ei(DkQ(1))
βu // eil(u)

(DkQ(1))
γu // ej(DkQ(1))

with eil(u)
in Ts−1. Thus by Lemma 4.3 il(u) is not in c(s) for all u. This is a contradiction.

Therefore the morphism G is injective.
�

We are now able to prove Theorem 2.5. Combining Proposition 3.5 with Lemma 4.1 and
Proposition 4.2, we get that M is a tilting module over A and that EndA(M) ≃ Γ. Therefore
by Theorem 1.6 of [Hap87] we have a derived equivalence

RHomA(M,−) : Db(A)
∼ // Db(Γ) .

We still have to prove that the diagram

Db(A)

πA

��

RHomA(M,−)
//

FA $$JJJJJJJJJ
Db(Γ)

FΓzzuuuuuuuuu

CA // SubΛw

commutes. The tilting A-module M is sent to Γ by the functor RHomA(M,−), and thus to
the cluster-tilting object Cw in SubΛw by Theorem 2.1. By definition of the generalized cluster
category, the objects πA(S2(X)) and πA(X) are isomorphic in the category CA, therefore we
have an isomorphism in CA

πA(M) ≃ πA(A).

Hence by Theorem 2.4 the object M is sent to the cluster-tilting object Cw in SubΛw. The
triangle functors Db(A) → SubΛw and Db(Γ) → SubΛw are given by tensor products (see
[AIRT09] and [ART09]). We can now conclude using the fact that two triangle functors which
are tensor products and which coincide on a tilting object are isomorphic. Therefore the
diagram above is commutative. And we finish the proof of Theorem 2.5.

5. Example

Let Q be the quiver

2
��<

<<

1

@@���
// 3

.

Let w be the following word w := s3s2s3s1s2s3s1s2s3. Then we have w′ = s3s2s3s1s2s3 and the
quiver Q(1) is Q. The endomorphism algebra in SubΛw of the standard cluster-tilting object
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Cw of Theorem1.4 is the Jacobian algebra Jac(Q̄w, Ww) (Theorem 1.5) where

2 oo p

c

��<
<<

<<
<<

<

b

--

5
h

��<
<<

<<
<<

<

Q̄w := 1 oo
q

a

AA��������
3 oo r

e

88qqqqqqqqqqqqqq

d

��<
<<

<<
<<

< 6

4

f

HH
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

g

88qqqqqqqqqqqqqq

and Ww := gdr + her + fbp − ecp + caq. The arrows {c, f, g, h} are the Q-arrows, {a, b, d, e}
are the Q∗-arrows, and {p, q, r} are the arrows going to the left.

Then T is the module

T =
3

2 3
1
⊕

3
3 2

3 2 1
1

⊕ 3
1 = I1 ⊕ τkQ(1)(I2)⊕ T3

The torsion class M = Fac (T ) has finitely many indecomposables, namely we have

M = { 3 , 3
2 ,

3
2 3

1
,

3
3 2

2 1
,

3
3 2

3 2 1
1

, 3
1 } = {I1, I2, I3, τkQ(I3), τkQ(I2), T3}

The Auslander-Reiten quiver ofM is

τkQ(I2)

%%LLL
LLL

L

--

I2

��=
==

==

T3

;;wwwwwww
τkQ(I3)

66mmmmmmmmmmm

##GGGGGG
I3

I1

GG
������������

77ppppppppppp

Therefore the algebra A is given by the quiver

2
c

��=
==

==

b
..

5
h

��=
==

==

1

a
@@�����

3

e
88pppppppppp

d

��=
==

==
6

4

f

HH
�����������

g
88pppppppppp

with the relations he− gd = 0, fb− ec = 0 and ca = 0.
The projective indecomposable A-modules are

P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5 ⊕ P6 = 1 ⊕ 2
1 ⊕

3
2 ⊕

4
3 2

2 1
⊕

5
3 4

2 3
2
⊕

6
5 4

4 3 2
3 2 1

2

.

The injective indecomposable A-modules are

I1 ⊕ I2 ⊕ I3 ⊕ I4 ⊕ I5 ⊕ I6 =
6
4
2
1
⊕

6
5 6

4 5 6
3 4

2

⊕
6

5 6
4 5

3
⊕

6
5 6

4
⊕ 6

5 ⊕ 6 .

Let us compute S
−1
2 (P1) = S

−1
2 ( 1 ). The minimal injective resolution of P1 is:

(
6
4
2
1

//
6

5 6
4 5 6

3 4
2

//
6

5 6
4 5

3
) = (I1

// I2
// I3)
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Thus we get

S
−1
2 P1 = (P1

// P2
// P3) = ( 1 // 2

1
// 3
2 )

which is quasi-isomorphic to the simple 3 . Note that P1 ≃M(−, T3), and that the support of
the functor

M(−, τ−1
M (T3))/[addT ] =M(−, τkQ(I3))/[add(I1 ⊕ τkQ(I2)⊕ T3)]

is just τkQ(I3) so viewed as a A-module, it is the simple 3 . Therefore we have

S
−1
2 (M(−, T3)) ≃M(−, τ−1

M T3)/[addT ] (cf. Lemma 3.2).

In the same way, we can check that

S
−2
2 (P1) = 6 , S

−1
2 (P2) = 5

3 and S
−1
2 (P3) = 6

5 .

The object M of Theorem 2.5 is

M := S
−2
2 (P1)⊕ S

−1
2 (P2 ⊕ P3)⊕ (P4 ⊕ P5 ⊕ P6).

The endomorphism algebra EndA(M) is given by the quiver

S
−1
2 P2

oo p

c

$$II
II

II
P5

h

��>
>>

>>
>

S
−2
2 P1

oo
q S

−1
2 P3

oo r
P6

P4

f

GG
��

����
����

�� g

77oooooooooooo

with relations rh− cp = 0, rg = 0, qc = 0 and pf = 0. It is isomorphic to the algebra Γ defined
in section 2.1.
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