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ON THE SPECTRAL ANALYSIS OF MANY-BODY SYSTEMS

MONDHER DAMAK AND VLADIMIR GEORGESCU

ABSTRACT. We describe the essential spectrum and prove the Mourre estimate for quantum particle systems
interacting throughk-body forces and creation-annihilation processes which donot preserve the number of
particles. For this we compute the “Hamiltonian algebra” of the system, i.e. theC∗-algebraC generated by
the Hamiltonians we want to study, and show that, as in theN -body case, it is graded by a semilattice. Hilbert
C∗-modules graded by semilattices are involved in the construction of C . For example, if we start with an
N -body system whose Hamiltonian algebra isCN and then we add field type couplings between subsystems,
then the many-body Hamiltonian algebraC is the imprimitivity algebra of a graded HilbertCN -module.
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1. INTRODUCTION

1.1. The quantum systems studied in this paper are obtained by coupling a certain number (finite or infi-
nite) of N -body systems. A (standard)N -body system consists of a fixed numberN of particles which
interact throughk-body forces which preserveN (arbitrary1 ≤ k ≤ N ). The many-body type interac-
tions include forces which allow the system to make transitions between states with different numbers of
particles. These transitions are realized by creation-annihilation processes as in quantum field theory.

The Hamiltonians we want to analyze are rather complex objects and standard Hilbert space techniques
seem to us inefficient in this situation. Our approach is based on the observation that theC∗-algebra
C generated by a class of physically interesting Hamiltonians often has a quite simple structure which
allows one to describe its quotient with respect to the idealof compact operators in rather explicit terms
[GI1, GI2]. From this one can deduce certain important spectral properties of the Hamiltonians. We refer
to C as theHamiltonian algebra(or C∗-algebra of Hamiltonians) of the system.

The main difficulty in this algebraic approach is to isolate the correctC∗-algebra. This is especially
problematic in the present situations since it is not a priori clear how to define the couplings between
the variousN -body systems but in very special situations. It is rather remarkable that theC∗-algebra
generated by a small class of elementary and natural Hamiltonians will finally prove to be a fruitful
choice. These elementary Hamiltonians are analogs of the Pauli-Fierz Hamiltonians.
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2 MONDHER DAMAK AND VLADIMIR GEORGESCU

The purpose of the preliminary Section 2 is to present this approach in the simplest but physically im-
portant case when the configuration spaces of theN -body systems are Euclidean spaces. We start with
a fundamental example, the standardN -body case. Then we describe the many-body formalism in the
Euclidean case and we state our main results on the spectral analysis of the corresponding Hamiltonians.

There is one substantial simplification in the Euclidean case: each subspace has a canonical supplement,
the subspace orthogonal to it. This plays a role in the way we present the framework in Section 2.
However, the main constructions and results do not depend onthe existence of a supplement but to
see this requires more sophisticated tools from the theory of crossed productC∗-algebras and Hilbert
C∗-modules which are not apparent in this introductory part. In the rest of the paper we consider many-
body type couplings of systems whose configuration space is an arbitrary abelian locally compact group.
One of the simplest nontrivial physically interesting cases covered by this framework is that when the
configuration spaces of theN -body systems are discrete groups, e.g. discretizationsZD of RD.

1.2. We summarize now the content of the paper. Section 2 starts with a short presentation of the standard
N -body formalism, the rest of the section being devoted to a rather detailed description of our framework
and main results in the case when the configuration spaces of the N -body subsystems are Euclidean
spaces. These results are proven in a more general and natural setting in the rest of the paper. In Section
3 we recall some facts concerningC∗-algebras graded by a semilatticeS (we take here into account
the results of Athina Mageira’s thesis [Ma1]) and then we present some results onS-graded Hilbert
C∗-modules. This notion, due to Georges Skandalis [Ska], proved to be very natural and useful in our
context: thanks to it many results can be expressed in a simple and systematic way thus giving a new
and interesting perspective to the subject (this is discussed in more detail in [DaG4]). The heart of the
paper is Section 4, where we define the many-body HamiltonianalgebraC in a general setting and prove
that it is naturally graded by a certain semilatticeS. In Section 5 we give alternative descriptions of the
components ofC which are important for the affiliation criteria presented in Section 6, where we point
out a large class of self-adjoint operators affiliated to themany-body algebra. TheS-graded structure of
C gives then an HVZ type description of the essential spectrumfor all these operators. The main result
of Section 7 is the proof of the Mourre estimate for nonrelativistic many-body Hamiltonians. Finally,
an Appendix is devoted to the question of generation of some classes ofC∗-algebras by ”elementary”
Hamiltonians.

1.3. Notations. We recall some notations and terminology. IfE ,F are normed spaces thenL(E ,F) is
the space of bounded operatorsE → F andK(E ,F) the subspace consisting of compact operators. IfG
is a third normed space and(e, f) 7→ ef is a bilinear mapE ×F → G thenEF is the linear subspace ofG
generated by the elementsef with e ∈ E , f ∈ F andE ·F is its closure. IfE = F then we setE2 = E ·E .
Two unusual abbreviations are convenient: bylspanandclspanwe mean “linear span” and “closed linear
span” respectively. IfAi are subspaces of a normed space then

∑c
i Ai is the clspan of∪iAi. If X is a

locally compact topological space thenCo(X) is the space of continuous complex functions which tend
to zero at infinity andCc(X) the subspace of functions with compact support.

By ideal in aC∗-algebra we mean a closed self-adjoint ideal. A∗-homomorphism between twoC∗-algebras
will be calledmorphism. We writeA ≃ B if the C∗-algebrasA ,B are isomorphic andA ∼= B if they
are canonically isomorphic (the isomorphism should be clear from the context).

A self-adjoint operatorH on a Hilbert spaceH is affiliated to a C∗-algebraA of operators onH if
(H + i)−1 ∈ A ; thenϕ(H) ∈ A for all ϕ ∈ Co(R). If A is the closed linear span of the elements
ϕ(H)A with ϕ ∈ Co(R) andA ∈ A , we say thatH is strictly affiliated toA . TheC∗-algebra generated
by a setE of self-adjoint operators is the smallestC∗-algebra such that eachH ∈ E is affiliated to it.

We now recall the definition ofS-gradedC∗-algebras following [Ma2]. HereS is asemilattice, i.e. a set
equipped with an order relation≤ such that the lower boundσ ∧ τ of each couple of elementsσ, τ exists.
We say that a subsetT of S is asub-semilatticeof S if σ, τ ∈ T ⇒ σ ∧ τ ∈ T . The setS of all closed
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subgroups of a locally compact abelian group is a semilattice for the order relation given by set inclusion.
The semilattices which are of main interest for us are (inductive limits of) sub-semilattices ofS .

A C∗-algebraA is calledS-gradedif a linearly independent family{A (σ)}σ∈S of C∗-subalgebras of
A has been given such that

∑c
σ∈S A (σ) = A andA (σ)A (τ) ⊂ A (σ ∧ τ) for all σ, τ . The algebras

A (σ) are thecomponents ofA . It is useful to note that some of the algebrasA (σ) could be zero. IfT
is a sub-semilattice ofS andA (σ) = {0} for σ /∈ T we say thatA is supportedby T ; thenA is in fact
T -graded. Reciprocally, anyT -gradedC∗-algebra becomesS-graded if we setA (σ) = {0} for σ /∈ T .

1.4. Note. The preprint [DaG4] is a preliminary version of this paper. We decided to change the title
because the differences between the two versions are ratherimportant: the preliminaries concerning the
theory of HilbertC∗-modules and the role of the imprimitivity algebra of a Hilbert C∗-module in the
spectral analysis of many-body systems are now reduced to a minimum; on the other hand, the Euclidean
case and the spectral theory of the corresponding Hamiltonians are treated in more detail.

Acknowledgement. The authors thank Georges Skandalis for very helpful suggestions and remarks.

2. EUCLIDEAN FRAMEWORK: MAIN RESULTS

2.1. The Hamiltonian algebra of a standardN -body system.Consider a system ofN particles mov-
ing in the physical spaceRd. In the nonrelativistic case the Hamiltonian is of the form

H =
∑N

j=1 P 2
j /2mj +

∑N
j=1 Vj(xj) +

∑
j<k Vjk(xj − xk) (2.1)

wherem1, . . . ,mN are the masses of the particles,x1, . . . , xN ∈ Rd their positions, andPj = −i∇xj

their momenta. In the simplest situation the potentialsVj , Vjk are real continuous functions with compact
support onRd. The state space of the system is the Hilbert spaceL2(X) with X = (Rd)N .

Let P = (P1, . . . , PN ), this is a set of commuting self-adjoint operators onL2(X) and soh(P ) is a well
defined self-adjoint operator for any real Borel functionh on X. In what follows we replace the kinetic
energy part

∑
j P 2

j /2mj in (2.1) by an operatorh(P ) with h continuous and divergent at infinity. Denote
x = (x1, . . . , xN ) the points ofX and let us consider the linear subspaces ofX defined as follows:
Xj = {x ∈ X | xj = 0} if 1 ≤ j ≤ N andXjk = {x ∈ X | xj = xk} for j < k. Let πj andπjk be
the natural maps ofX onto the quotient spacesX/Xj andX/Xjk respectively (the Euclidean structure
of X allows us to identify these abstract spaces with the subspaces ofX orthogonal toXj andXjk, but
this is irrelevant here). ThenH may be written in the form

H = h(P ) +
∑

j vj ◦ πj(x) +
∑

j<k vjk ◦ πjk(x) (2.2)

for some real functionsvj ∈ Cc(X/Xj) andvjk ∈ Cc(X/Xjk). Thus Hamiltonians of the form (2.2) are
natural objects in theN -body problem. Note that there should be no privileged origin in the momentum
space, so if we accepth(P ) as an admissible kinetic energy operator thenh(P + p) should also be
admissible for anyp = (p1, . . . , pN ) ∈ (Rd)N .

Let S ≡ S (X) be the set of linear subspaces ofX equipped with the order relationY ≤ Z ⇔
Y ⊂ Z. ThenS is a semilattice withY ∧ Z = Y ∩ Z. If Y ∈ S then we realizeCo(X/Y ) as a
C∗-algebra of operators onL2(X) by associating tov the operator of multiplication byv ◦ πY , where
πY : X → X/Y is the canonical surjection. The following fact is easy to prove: if S ⊂ S is finite
thenC(S) :=

∑
Y ∈S Co(X/Y ) is a direct topological sum and is an algebra if and only ifS is a sub-

semilattice ofS ; in this case,C(S) is anS-gradedC∗-algebra.

In the next propositionS is the semilattice of subspaces ofX generated by theXj andXjk, i.e. the set
of subspaces ofX obtained by taking arbitrary intersections of subspaces ofthe formXj andXjk. We
denoteTX theC∗-algebra of operators onL2(X) of the fromϕ(P ) with ϕ ∈ Co(X).
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Proposition 2.1. Leth : X → R be continuous withh(x) → ∞ if x → ∞ and letHp be the self-adjoint
operator (2.2) with h(P ) replaced byh(P + p). Then theC∗-algebra generated by the operatorsHp

whenp runs over(Rd)N andvj andvjk run over the set of real functions inCc(X/Xj) andCc(X/Xjk)
respectively isC = C(S)·TX =

∑
Y ∈S Co(X/Y )·TX . Moreover,C isS-graded by this decomposition.

This has been proved in [DaG1]. More general results of this nature are presented in Appendix 8. Observe
that we decided to fix the functionh which represents the kinetic energy but not the potentialsvj , vjk.
However, as a consequence of Proposition 2.1, if we allowh to vary we get the same algebra.

Proposition 2.1 provides a basic example of “Hamiltonian algebra”. We mention thatC is the crossed
product of theC∗-algebraC(S) by the natural action of the additive groupX, so it is a natural mathemat-
ical object. We shall see in a more general context that the set of self-adjoint operators affiliated to it is
much larger than expected (cf. Theorem 2.13 for example).

If we are in the nonrelativistic case andVj = 0 for all j then the center of mass of the system moves
freely and it is more convenient to eliminate it and to take asorigin of the reference system the center of
mass of theN particles. Then the configuration spaceX is the set of pointsx = (x1, . . . , xN ) ∈ (Rd)N

such that
∑

k mkxk = 0. Proposition 2.1 remains valid ifS is conveniently defined, see§2.3.

The following “generalized” class ofN -body systems is suggested by results from [Ma1, Ma3].

Definition 2.2. An N -body structure on a locally compact abelian groupX is a setSX of closed sub-
groups such thatX ∈ SX and such that for allY,Z ∈ SX the following three conditions are satisfied:
(i) Y ∩ Z ∈ S; (ii) the subgroupsY,Z of X are compatible; (iii) ifY ) Z thenY/Z is not compact.

X must be thought as configuration space of the system. The notion of compatible subgroups is defined
in Subsection 4.3 (ifX is aσ-compact topological space this means thatY + Z is a closed subgroup).
We shall see that the Hamiltonian algebra associated to suchanN -body system is an interesting object:

CX(SX) := C(SX) · TX
∼= C(SX) ⋊ X where C(SX) =

∑c
Y ∈SX

Co(X/Y ). (2.3)

HereTX
∼= Co(X

∗) is the groupC∗-algebra ofX and⋊ means crossed product.

Example 2.3. This framework covers an interesting extension of the standardN -body setting. Assume
that X is a finite dimensional real vector space. In the standard framework the semilatticeS consists
of linear subspaces ofX but here we allow them to be closed additive subgroups. The closed additive
subgroups ofX are of the formY = E + L whereE is a vector subspace ofX andL is a lattice in a
vector subspaceF of X such thatE ∩ F = {0}. More precisely,L =

∑
k Zfk where{fk} is a basis in

F . ThusF/L is a torus and ifG is a third vector subspace such thatX = E ⊕ F ⊕ G then the space
X/Y ≃ (F/L) ⊕ G is a cylinder withF/L as basis.

2.2. The Euclidean many-body algebra.We introduce here an abstract framework which allows us to
study couplings between severalN -body systems of the type considered above. A concrete and physically
interesting example may be found in§2.3.

Let X be a real prehilbert space. LetS (X ) be the set of finite dimensional subspaces ofX equipped
with the order relation given by set inclusion. This is a lattice withX∧Y = X∩Y andX∨Y = X +Y ,
but only the semilattice structure is relevant for what follows.

Each finite dimensional subspaceX ⊂ X is equipped with the Euclidean structure induced byX hence
the Hilbert spaceHX = L2(X) and theC∗-algebrasLX = L(HX) andKX = K(HX) are well
defined. The group algebraTX is defined as the closure inLX of the set of operators of convolution with
functions of classCc(X). If O = {0} thenHO = C andLO = KO = TO = C by convention.

We denoteh(P ) the operator onHX given byF−1
X MhFX , whereFX is the Fourier transformation and

Mh is the operator of multiplication by the functionh : X → C. ThenTX = {ψ(P ) | ψ ∈ Co(X)}. We
use the notationP = PX if the spaceX has to be specified.
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If X,Y are finite dimensional subspaces ofX we setLXY = L(HY ,HX) andKXY = K(HY ,HX).
We define a closed subspaceTXY ⊂ LXY as follows. Ifϕ ∈ Cc(X +Y ) then one may easily check that
(TXY (ϕ)f)(x) =

∫
Y

ϕ(x − y)f(y)dy defines a continuous operatorHY → HX . Let

TXY = norm closure of the set of operatorsTXY (ϕ) with ϕ ∈ Cc(X + Y ). (2.4)

ClearlyTXX = TX . The spaceTXY is a “concrete” realization of the HilbertC∗-module introduced by
Philip Green to show the Morita equivalence of the crossed productsCo(Z/Y ) ⋊ X andCo(Z/X) ⋊ Y
whereZ = X + Y (this has been noticed by Georges Skandalis, see Remark 4.8 for more details).

Now we fix a sub-semilatticeS ⊂ S , i.e. we assume thatX ∩ Y ∈ S if X,Y ∈ S. This set completely
determines the many-body system and the class of Hamiltonians that we intend to study. For eachX ∈ S
the Hilbert spaceHX is thought as the state space of anN -body system withX as configuration space.
We define the state space of the many-body system as the Hilbertian direct sum

H ≡ HS = ⊕X∈SHX . (2.5)

We have a natural embeddingLXY ⊂ L(H) for all X,Y ∈ S. Let L ≡ LS be the closed linear span
of the subspacesLXY . ClearlyL is aC∗-subalgebra ofL(H) which is equal toL(H) if and only if S
is finite. We will be interested in subspacesR of L constructed as follows: for each coupleX,Y we
are given a closed subspaceRXY ⊂ LXY andR ≡ (RXY )X,Y ∈S =

∑c
X,Y ∈SRXY where

∑c means
closure of the sum. Note thatK ≡ KS = (KXY )X,Y ∈S = K(H).

Theorem 2.4. Let T ≡ TS = (TXY )X,Y ∈S . ThenT is a closed self-adjoint subspace ofL and
C ≡ CS = T 2 is a non-degenerateC∗-algebra of operators onH.

We say thatC is the Hamiltonian algebra of the many-body systemS. This terminology will be justified
later on: we shall see that physically interesting many-body Hamiltonians are self-adjoint operators af-
filiated toC . Moreover, in a quite precise way,C is the smallestC∗-algebra with this property. For the
purposes of this paperwe define a many-body Hamiltonian as a self-adjoint operatoraffiliated toC .

We now equipC with anS-gradedC∗-algebras structure. This structure will play a central role in the
spectral analysis of self-adjoint operators affiliated toC . We often say “graded” instead ofS-graded.

To define the grading we need new objects. IfY 6⊂ X we setCX(Y ) = {0}. If Y ⊂ X then we define
CX(Y ) as the set of continuous functions onX which are invariant under translations in theY directions
and tend to zero in theY ⊥ directions. This is aC∗-algebra of bounded uniformly continuous functions
onX canonically isomorphic withCo(X/Y ) whereX/Y is the orthogonal ofY in X. Thus

CX(Y ) ∼= Co(X/Y ) if Y ⊂ X and CX(Y ) = {0} if Y 6⊂ X. (2.6)

Let CX ≡ CX(S) :=
∑c

Y ∈S CX(Y ), this is aC∗-algebra of bounded uniformly continuous functions on
X. We embed it inLX by identifying a functionϕ with the operator onHX of multiplication byϕ. Then

C ≡ CS = ⊕X∈SCX (2.7)

is aC∗-algebra of operators onH included inL . For eachZ ∈ S we define aC∗-subalgebra ofC by

C(Z) ≡ CS(Z) = ⊕XCX(Z) = ⊕X⊃ZCX(Z). (2.8)

It is easy to see that the family{C(Z)}Z∈S defines a gradedC∗-algebra structure onC.

Theorem 2.5. We haveC = T · C = C · T . For eachZ ∈ S the spaceC (Z) = T · C(Z) = C(Z) · T
is aC∗-subalgebra ofC and the family{C (Z)}Z∈S defines a gradedC∗-algebra structure onC .

In particular we getC = (CXY )X,Y ∈S with (the second and fourth equalities are not obvious):

CXY = TXY · CY =
∑c

Z⊂X∩Y TXY · CY (Z) (2.9)

= CX · TXY =
∑c

Z⊂X∩Y CX(Z) · TXY . (2.10)

TheC∗-algebrasC(Z) andC (Z) “live” in the closed subspaceH≥Z = ⊕X⊃ZHX of H. More precisely,
they leave invariantH≥Z and their restriction to its orthogonal subspace is zero. Moreover, if we denote
L≥Z = (LX,Y )X,Y ⊃Z ⊂ L(H≥Z) then clearlyC(Z) andC (Z) are subalgebras ofL≥Z .
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Remark 2.6. The diagonal elementCXX ≡ CX of the “matrix” C is given by

CX = CX · TX =
∑c

Z⊂X Co(X/Z) · TX ⊂ LX . (2.11)

This C∗-algebra isthe Hamiltonian algebra of the (generalized)N -body systemassociated to the semi-
latticeSX = {Z ∈ S | Z ⊂ X} of subspaces ofX, cf. (2.3). The non-diagonal elementsCXY are
Hilbert C∗-bimodules which define the coupling between theN -body type systemsX andY .

Remark 2.7. Note that if we takeS equal to the set of all finite dimensional subspaces ofX then we get
a gradedC∗-algebraC canonically associated to the prehilbert spaceX . According to a remark in§1.3,
any other choice ofS would give us a gradedC∗-subalgebra of this one.

Remark 2.8. The algebraC is not adapted to symmetry considerations, in particular inapplications
to physical systems consisting of particles one has to assume them distinguishable. The Hamiltonian
algebra for systems of identical particles interacting through field type forces (both bosonic and fermionic
case) is constructed in [Geo]. We mention that a quantum fieldmodel without symmetry considerations
corresponds to the case whenS is a distributive relatively ortho-complemented lattice.

2.3. Particle systems with conserved total mass.We give now a physically interesting example of the
preceding abstract construction. We shall describe the many-body system associated toN “elementary
particles” of massesm1, . . . ,mN moving in the physical spaceRd without external fields. We shall get
a system in which the the total mass is conserved but not the number of particles.

We go back the framework of§2.1 but assume that the particles interact only through 2-body forces. Then

H =
∑N

j=1 P 2
j /2mj +

∑
j<k Vjk(xj − xk). (2.12)

and the center of mass of the system moves freely so it is convenient to eliminate it. This is a standard
procedure that we sketch now, cf. [ABG, DeG1] for a detailed discussion of the formalism. We take as
origin of the reference system the center of mass of theN particles so the configuration spaceX is the
set of pointsx = (x1, . . . , xN ) ∈ (Rd)N such that

∑
k mkxk = 0. We equipX with the scalar product

〈x|y〉 =
∑N

k=1 2mkxkyk. The advantage is that the reduced Hamiltonian, the operator acting inL2(X)
naturally associated to the expression (2.12), is∆X +

∑
j<k Vjk(xj − xk) where∆X is the Laplacian

associated to this scalar product. We denote by the same symbol H this reduced operator.

The first step is to describe theC∗-algebra generated by these Hamiltonians, i.e. to get the analog of
Proposition 2.1 in the present context. Thus we have to describe the semilattice of subspaces ofX
generated by theX(jk) := Xjk ∩ X. We give the result below and refer to the Appendix§8.2 for proofs.

A partition σ of the set{1, . . . , N} is also called cluster decomposition. Then the sets of the partition
are called clusters. A clustera ∈ σ is thought as a “composite particle” of massma =

∑
k∈a mk. Let

|σ| be the number of clusters ofσ. We interpretσ as a system of|σ| particles with massesma hence its
configuration space should be the set ofx = (xa)a∈σ ∈ (Rd)|σ| such that

∑
a maxa = 0 equipped with

a scalar product similar to that defined above.

Let Xσ be the set ofx ∈ X such thatxi = xj if i, j belong to the same cluster and let us equipXσ

with the scalar product induced byX. Then there is an obvious isometric identification ofXσ with the
configuration space of the systemσ as defined above. The advantage now is that all the spacesXσ are
isometrically embedded in the sameX. We equip the setS of partitions with the order relation:σ ≤ τ
if and only if “τ is finer thanσ” (this is opposite to the usual convention). Thenσ ≤ τ is equivalent
to Xσ ⊂ Xτ andXσ ∩ Xτ = Xσ∧τ . Thus we see thatS is isomorphic as semilattice with the set
S = {Xσ | σ ∈ S} of subspaces ofX with inclusion as order relation. Now it is easy to check thatS
coincides with the semilattice of subspaces ofX generated by theX(jk).

We abbreviateHσ = HXσ
= L2(Xσ). According to the identifications made above, this is the state

space of a system of|σ| particles with masses(ma)a∈σ.

Now we may apply our construction toS. We get a system whose state space isH = ⊕σHσ. If the
system is in a stateu ∈ Hσ then it consists of|σ| particles of massesma. Note thatmin S is the partition
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consisting of only one cluster{1, . . . , N} with massM = m1 + · · · + mN . Since there are no external
fields and we decided to eliminate the motion of the center of mass, this system must be the vacuum. And
its state space is indeedHmin S = C. The algebraC in this case predicts usual inter-cluster interactions
associated, for examples, to potentials defined onXσ = X/Xσ, but also interactions which force the
system to make a transition from a “phase”σ to a “phase”τ . In other terms, the system of|σ| particles
with masses(ma)a∈σ is transformed into a system of|τ | particles with masses(mb)b∈τ . Thus the number
of particles varies from1 to N but the total mass is constant and equal toM .

2.4. Natural morphisms and essential spectrum.We return to the general case. Sub-semilatticesT of
S define many-body type subsystems (this is discussed in more detail in§2.5). The spectral properties of
the total many-body Hamiltonian are described in terms of a special class of such subsystems.

EachX ∈ S determines a new many-body systemS≥X = {Y ∈ S | Y ⊃ X} whose state space isH≥X .
Let C≥X be the corresponding Hamiltonian algebraCS≥X

. It is easy to see thatC≥X =
∑c

Y ⊃X C (Y ).
ThusC≥X is aC∗-subalgebra ofC which lives and is non-degenerate on the subspaceH≥X of H. We
mention one fact: ifΠ≥X is the orthogonal projectionH → H≥X , thenΠ≥XC Π≥X is anS-graded
C∗-subalgebra ofCS and we haveC≥X ⊂ Π≥XC Π≥X strictly in general.

Then the general theory of gradedC∗-algebras implies thatthere is a unique linear continuous projection
P≥X : C → C≥X such thatP≥X(T ) = 0 if T ∈ C (Y ) with Y 6⊃ X and this projection is a morphism.
These are thenatural morphismsof the graded algebraC .

This extends to unbounded operators as follows: ifH is a self-adjoint operator onH strictly affiliated
to C then there is a unique self-adjoint operatorH≥X ≡ P≥X(H) onH≥X such thatP≥X(ϕ(H)) =
ϕ(H≥X) for all ϕ ∈ Co(R). If H is only affiliated toC thenH≥X could be not densely defined.

Assume that the semilatticeS has a smallest elementminS. ThenX ∈ S is calledatom if the only
element ofS strictly included inX is minS. LetP(S) be the set of atoms ofS. We say thatS is atomic
if each of its elements distinct fromminS contains an atom. The following HVZ type theorem is an
immediate consequence Theorem 3.2. The symbol∪ means “closure of union”.

Theorem 2.9. If H is a self-adjoint operator onH strictly affiliated toC then for eachX ∈ S there is
a unique self-adjoint operatorH≥X ≡ P≥X(H) onH≥X such thatP≥X(ϕ(H)) = ϕ(H≥X) for all
ϕ ∈ Co(R). The operatorH≥X is strictly affiliated toC≥X . If O ∈ S andS is atomic then

Spess(H) =
⋃

X∈P(S)Sp(H≥X). (2.13)

The theorem remains valid for operators which are only affiliated toC but then we must allow them to
be non-densely defined.

2.5. Subsystems and subhamiltonians.If T is an arbitrary subset ofS then the Hilbert spaceHT =
⊕X∈T HX is well defined and naturally embedded as a closed subspace ofHS . LetΠT be the orthogonal
projection ofH ontoHT . Note that the definition ofTS makes sense for any setS of finite dimensional
subspaces , in particular we may replaceS by T . Then we have:

TT = ΠT TSΠT , CT
S := ΠT CSΠT = ⊕X∈T CX(S), (2.14)

C
T
S := ΠT CSΠT = ΠT TS · CSΠT = TT · CT

S (2.15)

From this we easily get thatC T
S =

∑c
X,Y ∈T CXY is anS-gradedC∗-subalgebra ofC supported by the

ideal generated byT in S (an ideal is a subsetJ of S such thatX ⊂ Y ∈ J ⇒ X ∈ J ). The operators
affiliated toC T

S are affiliated toCS , so are many-body Hamiltonians in our sense.

The case whenT is a sub-semilattice ofS is interesting. Indeed, thenT defines a many-body system
whose Hamiltonian algebraCT is a T -gradedC∗-algebra of operators on the Hilbert spaceHT . We
emphasize thatthis algebra does not coincide withC T

S . We always haveCT ⊂ C T
S but the inclusion is

strict unlessT is an ideal ofS. This is clear becauseCT ⊂ CT
S strictly in general.
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The simplest sub-semilattices are the chains (totally ordered subsets). ThenHT has a structure analogous
to a Fock space. Nonrelativistic Hamiltonians affiliated tosuchC∗-algebrasC T

S have been studied before
in [SSZ]. If we takeT = {X} for an arbitraryX ∈ S then the associated subsystem hasHX as state
space and its Hamiltonian algebra is justCX = CX(S) ·TX , the Hamiltonian algebra of the (generalized)
N -body system determined by the semi-latticeSX . We refer to§4.6 and to the Example 2.12 for other
simple but instructive examples of subsystems.

2.6. Intrinsic descriptions. We give two explicit descriptions ofC (Z) as an algebra of operators on
H≥Z . SinceC is the closure of the sum of the algebrasC (Z), these descriptions allow one to check
rather easily whether a self-adjoint operator is affiliatedto C or not. Both theorems are consequences of
more general results in Section 5.

For any vectora ∈ X and any finite dimensional subspaceX of X we define two unitary operators in
HX by (Uaf)(x) = f(x + aX) and(Vaf)(x) = ei〈a|x〉f(x) whereaX is the orthogonal projection of
x onX. Then{Ua}a∈X and{Va}a∈X are strongly continuous representations of (the additive group)X
onHX such thatUa = 1 ⇔ Va = 1 ⇔ a ⊥ X. The direct sum overX ∈ S of these representations give
representations ofX onH for which we use the same notations.

Theorem 2.10. C (Z) is the set ofT ∈ L≥Z such that

(i) U∗
aTUa = T for all a ∈ Z and‖T (Va − 1)‖ → 0 if a → 0 in Z⊥ ,

(ii) ‖T (Ua − 1)‖ → 0 and‖V ∗
a TVa − T‖ → 0 if a → 0 in X .

Let S/Z be the set of subspaces ofX/Z = Z⊥ of the formX/Z with X ∈ S,X ⊃ Z. ClearlyS/Z is
a semilattice of finite dimensional subspaces ofX/Z so the Hilbert spaceHS/Z and the corresponding
algebra of compact operatorsKS/Z are well defined. IfX ⊃ Z thenX = Z ⊕ X/Z so we have a
canonical factorizationHX = HZ ⊗HX/Z . ThusH≥Z = HZ ⊗HS/Z .

Theorem 2.11. C (Z) = TZ ⊗ KS/Z relatively to the factorizationH≥Z = HZ ⊗HS/Z .

2.7. Factorization properties. ForZ ⊂ X ∩ Y we haveX = Z ⊕ (X/Z) andY = Y ⊕ (Y/Z) hence
we have canonical factorizations

HX = HZ ⊗HX/Z and HY = HZ ⊗HY/Z . (2.16)

Relatively to these factorizations, we get from Theorem 2.11:

CXY (Z) = TZ ⊗ KX/Z,Y/Z
∼= Co(Z

∗;KX/Z,Y/Z). (2.17)

The tensor product (and those below) is in the category of Hilbert modules, cf.§3.4. We have written
Z∗ above in spite of the canonical Euclidean isomorphismZ∗ ∼= Z in order to stress that we consider
functions of momentum not of position. For anyX,Y we set

X/Y = X/(X ∩ Y ) = X ⊖ (X ∩ Y ) (2.18)

and so we have
X/Z = X/(X ∩ Y ) ⊕ (X ∩ Y )/Z = X/Y ⊕ (X ∩ Y )/Z (2.19)

and similarly forY/Z. Then from (2.17) and (7.16) we get the finer factorization:

CXY (Z) = TZ ⊗ K(X∩Y )/Z ⊗ KX/Y,Y/X . (2.20)

In particular, we get
CXY = CX∩Y ⊗ KX/Y,Y/X (2.21)

relatively to the tensor factorizations

HX = HX∩Y ⊗HX/Y and HY = HX∩Y ⊗HY/X . (2.22)

SinceKX/Y,O
∼= HX/Y in the special caseZ ⊂ Y ⊂ X we have

CXY = CY ⊗HX/Y and CXY (Z) = TZ ⊗ KY/Z ⊗HX/Y . (2.23)
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Example 2.12. These factorizations give us the possibility of expressingquite explicitly the Hamilton-
ian algebra of some subsystems. We refer to§4.6 for more general situations and consider here sub-
semilattices of the formT = {X,Y } with X ⊃ Y . This is a toy model, anN -body system coupled to
one of its subsystems, and can be nicely formulated in a purely abstract setting, cf. Proposition 3.10. We
haveHT = HX ⊕HY with HX = HY ⊗HX/Y . From (2.23) we have

C
T
S =

(
CX CY ⊗HX/Y

CY ⊗H∗
X/Y CY

)
.

whereH∗
X/Y has a natural meaning (see§2.9). The grading is defined forZ ∈ SX by

(1) If Z ⊂ Y then

C
T
S (Z) =

(
CX(Z) CY (Z) ⊗HX/Y

CY (Z) ⊗H∗
X/Y CY (Z)

)
.

(2) If Z 6⊂ Y then

C
T
S (Z) =

(
CX(Z) 0

0 0

)
.

If T = {X,O} we get a version of the Friedrichs model: anN -body system coupled to the vacuum. The
case whenT is an arbitrary chain (a totally ordered subset ofS) is very similar. The caseT = {X,Y }
with not comparableX,Y is more complicated and is treated in§4.6 in a more general setting.

2.8. Examples of many-body Hamiltonians.Here we use Theorems 2.11 and 2.10 to construct self-
adjoint operators strictly affiliated toC . For simplicity, in this and the next subsectionsS is assumed
finite. If S is infinite then an assumption of the same nature as the non-zero mass condition in quantum
field theory models is needed to ensure that the kinetic energy operatorK is affiliated toC .

The Hamiltonians will be of the formH = K + I where the self-adjoint operatorK is the kinetic energy
andI is an interaction term bounded in form sense byK. More precisely,I is a symmetric sesquilinear
form on the domain of|K|1/2 which is continuous, i.e. satisfies

±I ≤ µ|K + ia| for some real numbersµ, a. (2.24)

H andK are matrices of operators, e.g.H = (HXY )X,Y ∈S whereHXY is defined on a subspace ofHY

and has values inHX and the relationH∗
XY = HY X holds at least formally. By constructionK is given

by a diagonal matrix, soKXY = 0 if X 6= Y , and we setKX = KXX . The interaction will be a matrix
of sesquilinear forms. ThenHXX = KX + IXX will be anN -body type Hamiltonian, i.e. a self-adjoint
operator affiliated toCX , cf. Remark 2.6. The non-diagonal elementsHXY = IXY define the interaction
between the systemsX andY . We give now a rigorous construction of such Hamiltonians.

(a) For eachX we choose a kinetic energy operatorKX = hX(P ) for the system havingX as configura-
tion space. The functionhX : X → R is continuous and such thathX(x) → ∞ if x → ∞. We stress that
there are no relations between the kinetic energies of the systems corresponding to differentX. Denote
G2

X the domain ofKX equipped with the graph norm and letGs
X (s ∈ R) be the scale of Hilbert spaces

associated to it, e.g.G0
X = HX , G1

X = D(K
1/2
X ) is the form domain ofKX , andG−1

X its adjoint space.

(b) The total kinetic energy of the system is by definitionK = ⊕XKX . We call this astandard kinetic
energy operator. Then the spacesGs of the scale determined by the domainG2 of K can be identified
with direct sumsGs ≃ ⊕XGs

X . In particular this holds for the form domainG1 = D(K1/2) and for its
adjoint spaceG−1. Note that we may also introduce the operatorsK≥X = ⊕Y ⊃XKY and the associated
spacesGs

≥X . If s > 0 we haveGs
≥X = Gs ∩H≥X .

(c) The simplest type of interactions that we may consider are given by symmetric elementsI of the
multiplier algebra ofC . ThenH = K + I is strictly affiliated toC andP≥X(H) = K≥X + P≥X(I)
whereP≥X is extended to the multiplier algebras as explained in [Lac,p. 18].
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(d) In order to cover singular interactions (form bounded but not necessarily operator bounded byK) we
assume that the functionshX are equivalent to regular weights. This is a quite weak assumption, cf. page
40. For example, it suffices thatc′|x|α ≤ hX(x) ≤ c′′|x|α for largex wherec′, c′′, α > 0 are numbers
depending onX. ThenUa, Va induce continuous operators in each of the spacesGs

X , Gs, Gs
≥X .

(e) The interaction will be of the formI =
∑

Z∈S I(Z) where theI(Z) are continuous symmetric
sesquilinear forms onG1 such thatI(Z) ≥ −µZK − ν for some positive numbersµZ and ν with∑

Z µZ < 1. Then the form sumK + I defines a self-adjoint operatorH onH.

(f) We identify I(Z) with a symmetric operatorG1 → G−1 and we assume thatI(Z) is supported
by the subspaceH≥Z . In other terms,I(Z) is the sesquilinear form onG1 associated to an operator
I(Z) : G1

≥Z → G−1
≥Z . Moreover, we assume that this last operator satisfies

UaI(Z) = I(Z)Ua if a ∈ Z, I(Z)(Va − 1) → 0 if a → 0 in Z⊥, V ∗
a I(Z)Va → I(Z) if a → 0 (2.25)

where the limits hold in norm inL(G2
≥Z ,G−1

≥Z).

Note that the first part of condition(f), saying thatI(Z) is supported byH≥Z , is equivalent to an estimate
of the form±I(Z) ≤ µK≥Z + νΠ≥Z for some positive numbersµ, ν. See also Remark 2.15.

Theorem 2.13. The HamiltonianH is a self-adjoint operator strictly affiliated toC , we haveH≥X =
K≥X +

∑
Z≥X I(Z), andSpess(H) =

⋃
X∈P(S)Sp(H≥X).

Remark 2.14. We required thehX to be bounded from below only for the simplicity of the statements.
Moreover, a simple extension of the formalism allows one to treat particles with arbitrary spin. Indeed,
if E is a complex Hilbert then Theorem 2.5 remains true ifC is replaced byC E = C ⊗ K(E) and the
C (Z) by C (Z) ⊗ K(E). If E is the spin space then it is finite dimensional and one obtainsC E exactly
as above by replacing theH(X) by H(X) ⊗ E = L2(X;E). Then one may consider instead of scalar
kinetic energy functionsh self-adjoint operator valued functionsh : X∗ → L(E). For example, we may
take as one particle kinetic energy operators the Pauli or Dirac Hamiltonians.

Remark 2.15. We give here a second, more explicit version of condition(f). SinceI(Z) is a continuous
symmetric operatorG1 → G−1 we may represent it as a matrixI(Z) = (IXY (Z))X,Y ∈S of continuous
operatorsIXY (Z) : G1

Y → G−1
X with IXY (Z)∗ = IY X(Z). We takeIXY (Z) = 0 if Z 6⊂ X ∩ Y and if

Z ⊂ X ∩ Y we assumeV ∗
a IXY (Z)Va → IXY (Z) if a → 0 in X + Y and

UaIXY (Z) = IXY (Z)Ua if a ∈ Z, IXY (Z)(Va − 1) → 0 if a → 0 in Y/Z. (2.26)

The limits should hold in norm inL(G2
Y ,G−1

X ).

The operatorsIXY (Z)satisfying (2.26) are described in more detail in Proposition 7.7. In the next exam-
ple we consider the simplest situation which is useful in thenonrelativistic case.

If E is an Euclidean space ands is a real number letHs
E be the Sobolev space defined by the norm

‖u‖Hs = ‖(1 + ∆E)s/2u‖

where∆E is the (positive) Laplacian associated to the Euclidean spaceE. The spaceHs
E is equipped

with two continuous representations ofE, a unitary one induced by{Ux}x∈E and a non-unitary one
induced by{Vx}x∈E . If E = O := {0} we defineHs

E = C.

Definition 2.16. If E,F are Euclidean spaces andT : Hs
E → Ht

F is a linear map, we say thatT is small
at infinity if there isε > 0 such that when viewed as a mapHs+ε

E → Ht
F the operatorT is compact.

By the closed graph theoremT is continuous and the compactness property holds for allε > 0. If E = O
or F = O then we consider that all the operatorsT : Hs

E → Ht
F are small at infinity.

Example 2.17.Due to assumption(d) the form domains ofKX andKY are Sobolev spaces, for example
G1

X = Hs
X andG1

Y = Ht
Y . Let IZ

XY : Ht
Y/Z → H−s

X/Z be a linear small at infinity map. Then we may

takeIXY (Z) = 1Z ⊗ IZ
XY relatively to the tensor factorizations (2.16).
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We make now some comments to clarify the conditions(a) - (f). Assume, more generally, thatC is aC∗-
algebra of operators on a Hilbert spaceH and thatK is a self-adjoint operator onH affiliated toC . Let
I be a continuous symmetric sesquilinear form on the domain of|K|1/2. Then for small realν the form
sumK+νI is a self-adjoint operatorHν . If Hν is affiliated toC for smallν, and since the derivative with
respect toν at zero of(Hν + i)−1 exists in norm, we get(K + i)−1I(K + i)−1 ∈ C . This clearly implies
〈K〉−2I〈K〉−2 ∈ C . Since〈K〉−1/2I〈K〉−1/2 is a bounded operator, the mapz 7→ 〈K〉−zI〈K〉−z is
holomorphic onℜz > 1/2 hence we get

〈K〉−αI〈K〉−α ∈ C if α > 1/2. (2.27)

Reciprocally, ifK is strictly affiliated toC (andK as defined at (b) has this property) then Theorem 2.8
from [DaG3] says that〈K〉−1/2I〈K〉−α ∈ C suffices to ensure thatH = K + I is strictly affiliated toC
under a quite general condition needed to make this operatorwell defined (this is the role of assumption
(e) above). Condition (f) is formulated such as to imply〈K〉−1/2I〈K〉−1 ∈ C . To simplify the statement
we added condition (d) which implies that the spacesGs are stable under the groupVa. Formally

(〈K〉−1/2I〈K〉−1)XY = 〈KX〉−1/2IXY 〈KY 〉−1.

So this should belong toCXY =
∑

Z⊂X∩Y CXY (Z). ThusIXY must be a sum of termsIXY (Z) with

〈KX〉−1/2IXY (Z)〈KY 〉−1 ∈ CXY (Z).

Conditions (d) and (f) are formulated such as this to hold, cf. Remark 2.15 and Theorem 2.10.

2.9. Pauli-Fierz Hamiltonians. The next result is an a priori argument which supports our interpretation
of C as Hamiltonian algebra of a many-body system: we show thatC is theC∗-algebra generated by a
simple class of Hamiltonians which have a natural quantum field theoretic interpretation. For simplicity
we state this only for finiteS.

For each coupleX,Y ∈ S such thatX ⊃ Y we haveHX = HY ⊗HX/Y . Then we defineΦXY ⊂ LXY

as the closed linear subspace consisting of “creation operators” associated to states fromHX/Y , i.e.
operatorsa∗(θ) : HY → HX with θ ∈ HX/Y which act asu 7→ u ⊗ θ. We setΦY X = Φ∗

XY ⊂ LY X ,
this is the space of “annihilation operators”a(θ) = a∗(θ)∗ defined byHX/Y . This definesΦXY when
X,Y are comparable, i.e.X ⊃ Y or X ⊂ Y , which we abbreviate byX ∼ Y . If X 6∼ Y then we take
ΦXY = 0. Note thatΦXX = C1X , where1X is the identity operator onHX . We have

TX · ΦXY = ΦXY · TY = TXY if X ∼ Y. (2.28)

Now let Φ = (ΦXY )X,Y ∈S ⊂ L . This is a closed self-adjoint linear space of bounded operators onH.
A symmetric elementφ ∈ Φ will be calledfield operator. Giving such aφ is equivalent to giving a family
θ = (θXY )X⊃Y of elementsθXY ∈ HX/Y , the components of the operatorφ ≡ φ(θ) being given by:
φXY = a∗(θXY ) if X ⊃ Y , φXY = a(θY X) if X ⊂ Y , andφXY = 0 if X 6∼ Y .

The operators of the formK + φ, whereK is a standard kinetic energy operator andφ ∈ Φ is a field
operator, will be calledPauli-Fierz Hamiltonians.

Theorem 2.18. If S is finite thenC is theC∗-algebra generated by the Pauli-Fierz Hamiltonians.

ThusC is generated by a class of Hamiltonians involving only elementary field type interactions. On the
other hand, we have seen before that the class of Hamiltonians affiliated toC is very large and covers
N -body systems interacting between themselves with field type interactions. We emphasize that the
k-body type interactionsinsideeach of theN -body subsystems are generated by pure field interactions.
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2.10. Nonrelativistic Hamiltonians and Mourre estimate. We prove the Mourre estimate only for non-
relativistic many-body systems. There are serious difficulties when the kinetic energy is not a quadratic
form even in the much simpler case ofN -body Hamiltonians, but see [Der1, Ger1, DaG2] for some par-
tial results which could be extended to our setting. Note that the quantum field case is much easier from
this point of view because of the special nature of the interactions [DeG2, Ger2, Geo].

LetS be a finite semilattice of subspaces ofX . Recall that forX ∈ S we denoteS/X the set of subspaces
Y/X = Y ∩X⊥ with Y ∈ S≥X . This is a finite semilattice of subspaces ofX which containsO. Hence
the Hilbert spaceHS/X and theC∗-algebraCS/X are well defined by our general rules and (cf.§2.7):

H≥X = HX ⊗HS/X and C≥X = TX ⊗ CS/X . (2.29)

Denote∆X the (positive) Laplacian associated to the Euclidean spaceX with the convention∆O = 0.
We have∆X = hX(P ) with hX(x) = ‖x‖2. We set∆ ≡ ∆S = ⊕X∆X and define∆≥X similarly. If
Y ⊃ X then∆Y = ∆X ⊗ 1 + 1 ⊗ ∆Y/X hence∆≥X = ∆X ⊗ 1 + 1 ⊗ ∆S/X . The domain and form
domain of the operator∆S are given byH2

S andH1
S whereHs

S ≡ Hs = ⊕XHs(X) for any reals.

We define nonrelativistic many-body Hamiltonian by extending to the present setting [ABG, Def. 9.1].
We consider only strictly affiliated operators to avoid working with not densely defined operators. Note
that the general case of affiliated operators covers interesting physical situations (hard-core interactions).

Definition 2.19. A nonrelativistic many-body Hamiltonian of typeS is a bounded from below self-adjoint
operatorH = HS onH = HS which is strictly affiliated toC = CS and has the following property: for
eachX ∈ S there is a bounded from below self-adjoint operatorHS/X onH≥X such that

P≥X(H) ≡ H≥X = ∆X ⊗ 1 + 1 ⊗ HS/X (2.30)

relatively to the tensor factorizationH≥X = HX ⊗HS/X .

TheneachHS/X is a nonrelativistic many-body Hamiltonian of typeS/X. Indeed, the argument from
[ABG, p. 415] extends in a straightforward way to the presentsituation.

Remark 2.20. If X is a maximal element inS thenS/X = {O} henceHS/X = HO = C andHO will
necessarily be a real number. Then we getH≥X = HX , C≥X = TX , andH≥X = ∆X + HO onHX .

Remark 2.21. SinceS is a finite semilattice, it has a least elementminS. If So = S/minS, we get

HS = HminS ⊗HSo
, CS = TX ⊗ CSo

, HS = ∆minS ⊗ 1 + 1 ⊗ HSo
. (2.31)

Now we give an HVZ type description of the essential spectrumof a nonrelativistic many-body Hamil-
tonian. For a more detailed statement, see the proof.

Theorem 2.22. DenoteτX = inf HS/X the bottom of the spectrum ofHS/X . Then

Spess(H) = [τ,∞[ with τ = min{τX | X is minimal inS \ {O}}. (2.32)

Proof: From (2.30) we get

Sp(H≥X) = [0,∞[ + Sp(HS/X) = [τX ,∞[ if X 6= O. (2.33)

In particular, ifO /∈ S then by takingX = minS in (2.31) we get

Sp(H) = Spess(H) = [inf HSo
,∞[. (2.34)

If O ∈ S then Theorem 2.9 implies

Spess(H) = [τ,∞[ with τ = min
X∈P(S)

τX . (2.35)

The relation (2.32) expresses (2.34) and (2.35) in a unified way.

ForX ∈ S we consider the dilation groupWτ = eiτD defined onHX by (setn = dimX):

(Wτu)(x) = enτ/4u(eτ/2x), 2iD = x · ∇x + n/2 = ∇x · x − n/2. (2.36)
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Let DO = 0. We keep the same notation for the unitary operator⊕XWτ on the direct sumH = ⊕XHX

and we do not indicate explicitly the dependence onX or S of Wτ andD unless this is really needed.
Note thatD has factorization properties similar to that of the Laplacian, e.g.D≥X = DX⊗1+1⊗DS/X .

We refer to Subsection 7.1 for terminology related to the Mourre estimate. We takeD as conjugate
operator and we denote bŷρ H(λ) the best constant (which could be infinite) in the Mourre estimate at
pointλ. Thethreshold setτ(H) of H with respect toD is the set wherêρ H(λ) ≤ 0. If A is a real set then
we defineNA : R → [−∞,∞[ by NA(λ) = sup{x ∈ A | x ≤ λ} with the conventionsup ∅ = −∞.
Denoteev(T ) the set of eigenvalues of an operatorT .

Theorem 2.23. LetH = HS be a nonrelativistic many-body Hamiltonian of typeS and of classC1
u(D).

Thenτ(H) is a closedcountablereal set given by

τ(H) =
⋃

X 6=Oev(HS/X). (2.37)

The eigenvalues ofH which do not belong toτ(H) are of finite multiplicity and may accumulate only to
points fromτ(H). We havêρ H(λ) = λ − Nτ(H)(λ) for all real λ.

We emphasize that ifO /∈ S the threshold set

τ(H) =
⋃

X∈Sev(HS/X) (2.38)

is very rich although the spectrum ofH = ∆minS ⊗ 1 + 1 ⊗ HSo
is purely absolutely continuous.

Remark 2.24. We thus see that there is no difference between nonrelativistic N -body and many-body
Hamiltonians from the point of view of their channel structure. The formulas which give the essential
spectrum and the threshold set relevant in the Mourre estimate are identical, cf. (2.35) and (2.37). This is
due to the fact that both Hamiltonian algebras are graded by the same semilatticeS.

2.11. Examples of nonrelativistic many-body Hamiltonians. Let H = K + I with kinetic energy
K = ∆. HenceG1 = H1 = ⊕XH1

X andG−1 = H−1 = ⊕XH−1
X with the notations of§2.8. The

interaction term is an operatorI : H1 → H−1 given by a sumI =
∑

Z∈S I(Z) where eachI(Z) is
defined with the help of the tensor factorizationH≥Z = HZ ⊗HS/Z .

Proposition 2.25. Let IZ : H1
S/Z → H−1

S/Z be symmetric and small at infinity and letI(Z) := 1Z ⊗ IZ

which is naturally defined as a symmetric operatorH1 → H−1. Assume thatI(Z) ≥ −µZ∆ − ν for
some numbersµZ , ν ≥ 0 with

∑
µZ < 1. ThenH = ∆ + I defined in the quadratic form sense is a

nonrelativistic many-body Hamiltonian of typeS and we haveH≥X = ∆≥X +
∑

Z⊃X I(Z).

The first condition onIZ can be stated in terms of its coefficients as follows: ifZ ⊂ X ∩ Y then the
operatorIZ

XY : H1
Y/Z → H−1

X/Z is small at infinity and such that(IZ
XY )∗ = IZ

Y X . On the other hand,

note that if the operatorsIZ : H1
S/Z → H−1

S/Z are compact then they are small at infinity and for any
µ > 0 there is a numberν such that±I(Z) ≤ µ∆S + ν for all Z. The more general smallness at infinity
condition covers second order perturbations of∆S .

In the next proposition we give examples of nonrelativisticoperators of classC1
u(D). The operatorH

is constructed as in Proposition 2.25 but we consider only interactions which are relatively bounded in
operatorsense with respect to the kinetic energy such as to force the domain ofH to be equal to the
domain of∆, hence toH2 = ⊕XH2

X . Since this space is stable under the action of the operatorsWτ , we
shall get a simple condition forH to be of classC1

u(D).

Proposition 2.26. For eachZ ∈ S assume thatIZ : H2
S/Z → HS/Z is compact and symmetric as

operator onHS/Z and that[D, IZ ] : H2
S/Z → H−2

S/Z is compact. Then the conditions of Proposition

2.25 are fulfilled and each operatorI(Z) : H2 → H is ∆-bounded with relative bound zero. The
operatorH is self-adjoint onH2 and of classC1

u(D).
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So for the coefficientsIZ
XY we askIZ

XY = 0 if Z 6⊂ X ∩ Y and ifZ ⊂ X ∩ Y then(IZ
XY )∗ ⊃ IZ

Y X and

IZ
XY : H2

Y/Z → HX/Z and[D, IZ
XY ] : H2

Y/Z → H−2
X/Z are compact operators. (2.39)

The expression[D, IZ
XY ] = DX/ZIZ

XY − IZ
XY DY/Z is not really a commutator. Indeed, if we denote

E = (X ∩ Y )/Z, soY/Z = E ⊕ (Y/X) andX/Z = E ⊕ (X/Y ), thenHX/Z = HE ⊗ HX/Y and
HY/Z = HE ⊗HY/X . Hence the relationDX/Z = DE ⊗ 1 + 1⊗DX/Y and a similar one forY/Z give

[D, IZ
XY ] = [DE , IZ

XY ] + DX/Y IZ
XY − IZ

XY DY/X .

The first term above is a commutator and so is of a different nature than the next two. SinceIZ
XY DY/X

is a restriction of(DY/XIZ
Y X)∗ it is clear that the second part of condition (2.39) follows from:

[DE , IZ
XY ] andDX/Y IZ

XY are compact operatorsH2
Y/Z → H−2

X/Z for all X,Y,Z. (2.40)

We consider some simple examples of operatorsIZ
XY to clarify the difference with respect to theN -body

situation (see§7.4 for details and generalizations). IfE,F are Euclidean spaces we denote

K
2

FE = K(H2
E ,HF ) and K

2
E = K

2
E,E = K(H2

E ,HE). (2.41)

DenoteX ⊞ Y = X/Y ⊕ Y/X and embedL2(X ⊞ Y ) ⊂ KX/Y,Y/X by identifying a Hilbert-Schmidt
operator with its kernel. Then

L2(X ⊞ Y ;K 2
E ) ⊂ K

2
E ⊗ KX/Y,Y/X ⊂ K

2
X/Z,Y/Z .

ThusIZ
XY ∈ L2(X ⊞Y ;K 2

E ) is a simple example of operator satisfying the first part of condition (2.39).
Such anIZ

XY acts as follows: ifu ∈ H2
Y/Z ⊂ L2(Y/X;H2

E) then

IZ
XY u ∈ HX/Z = L2(X/Y ;HE) is given by (IZ

XY u)(x′) =
∫

Y/X
IZ
XY (x′, y′)u(y′)dy′.

Now we consider (2.40). Since(x′, y′) 7→ [DE , IZ
XY (x′, y′)] is the kernel of the operator[DE , IZ

XY ], if

[DE , IZ
XY ] ∈ L2(X ⊞ Y ;K(H2

E ,H−2
E )

then[DE , IZ
XY ] is a compact operatorH2

Y/Z → H−2
X/Z . For the termDX/Y IZ

XY it suffices to require the
compactness of the operator

DX/Y IZ
XY = 1E ⊗ DX/Y · IZ

XY : H2
Y/Z → HE ⊗H−2

X/Y .

From (2.36) we see that this is a condition on the kernelx′ · ∇x′IZ
XY (x′, y′). For example, it suffices that

the operator〈QX/Y 〉IZ
XY : H2

Y/Z → HX/Z be compact, which is a short range assumption. In summary:

Example 2.27.For eachZ ⊂ X∩Y let IZ
XY ∈ L2(X⊞Y ;K 2

E ) such that the adjoint ofIZ
XY (x′, y′) is an

extension ofIZ
Y X(y′, x′). Assume that kernel[DE , IZ

XY (x′, y′)] belongs toL2(X⊞Y ;K(H2
E ,H−2

E ) and
that the kernelx′ · ∇x′IZ

XY (x′, y′) defines a compact operatorH2
Y/Z → H−2

X/Z . Then (2.39) is fulfilled.

Example 2.28.Here we consider the particular caseY ⊂ X to see the structure of a generalized creation
operator which appears in this context. For eachZ ⊂ Y let IZ

XY ∈ K 2
Y/Z ⊗ HX/Y , where the tensor

product is a kind of weak version ofL2(X/Y ;K 2
Y/Z) discussed in§3.4. Furthermore, assume that

[DY/Z , IZ
XY ] ∈ K(H2(Y/Z),H−2

Y/Z) ⊗HX/Y andDX/Y IZ
XY ∈ K 2

Y/Z ⊗H−2
X/Y . Then (2.39) holds.

2.12. Boundary values of the resolvent.Theorem 2.23 has important consequences in the spectral the-
ory of the operatorH: we shall use it together with [ABG, Theorem 7.4.1] to show that H has no
singular continuous spectrum and to prove the existence of the boundary values of its resolvent in the
class of weightedL2 spaces that we define now. LetHs,p = ⊕XL2

s,p(X) where theL2
s,p(X) are the

Besov spaces associated to the position observable onX (these are obtained from the usual Besov spaces
associated toL2(X) by a Fourier transformation). Note thatHs = Hs,2 is the Fourier transform of the
Sobolev spaceHs. Let C+ be the open upper half plane andCH

+ = C+ ∪ (R \ τ(H)). If we replace
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the upper half plane by the lower one we similarly get the setsC− andCH
− . We define two holomorphic

mapsR± : C± → L(H) by R±(z) = (H − z)−1 and note that we have continuous embeddings

L(H) ⊂ L(H1/2,1,H−1/2,∞) ⊂ L(Hs,H−s) if s > 1/2

so we may considerR± as maps with values inL(H1/2,1,H−1/2,∞).

Theorem 2.29. If H is of classC1,1(D) then its singular continuous spectrum is empty and the holo-
morphic mapsR± : C± → L(H1/2,1,H−1/2,∞) extend to weak∗ continuous functions̄R± on CH

± . The
mapsR̄± : CH

± → L(Hs,H−s) are norm continuous ifs > 1/2.

This result is optimal both with regard to the regularity of the Hamiltonian relatively to the conjugate
operatorD and to the Besov spaces in which we establish the existence ofthe boundary values of the
resolvent. The classC1,1(D) will be discussed and its optimality will be made precise in§7.6 but we
give some examples below.

We state first the simplest sufficient condition:assume thatH is as in Proposition 2.25 and that its
domain is equal toH2;if [D, [D, IZ ]] ∈ L(H2

S/Z ,H−2
S/Z) for all Z thenH is of classC1,1(D). This

follows from Theorem 6.3.4 in [ABG]. The condition on[D, [D, IZ ]] can easily be written in terms of
the coefficientsIZ

XY by arguments similar to those of§2.11. Refinements allow the addition of long range
and short range interactions as in [ABG,§9.4.2].

Let ξ : R → R be of classC∞ and such thatξ(λ) = 0 if λ ≤ 1 andξ(λ) = 1 if λ ≥ 2. For each Euclidean
spaceX and realr ≥ 1 we denoteξr

X the operator of multiplication by the functionx 7→ ξ(|x|/r) on any
Sobolev space overX. Then we defineξr

S = ⊕X∈Sξr
X considered as operator onHs

S for any reals.

Definition 2.30. Let T : H2
S → HS be a symmetric operator. We say thatT is a long range interaction

if [D,T ] ∈ L(H2
S ,H−1

S ) and
∫ ∞

1
‖ξr

S [D,T ]‖H2

S
→H−1

S
dr/r < ∞. We say thatT is a short range

interactionif
∫ ∞

1
‖ξr

S [D,T ]‖H2

S
→HS

dr < ∞.

Theorem 2.31. Assume thatH = ∆S +
∑

Z∈S 1Z ⊗ IZ where eachIz : H2
S/Z → HS/Z is symmetric,

compact, and is the sum of a long range and a short range interaction. ThenH is a nonrelativistic
many-body Hamiltonian of classC1,1(D), hence the conclusions of Theorem 2.29 are true.

Scattering channels may be defined in a natural way in the context of the theorem. If the long range
interactions are absent we expect that asymptotic completeness holds.

3. GRADED HILBERT C∗-MODULES

3.1. GradedC
∗-algebras. The natural framework for the systems considered in this paper is that of

C∗-algebras graded by semilattices. We refer to [Ma2, Ma3] fora detailed study of this class of algebras.

Let S be a semilattice andA a gradedC∗-algebra. Following [Ma2] we say thatB ⊂ A is agraded
C∗-subalgebraif B is a C∗-subalgebra ofA equal to

∑c
σ B ∩ A (σ). ThenB has a natural graded

C∗-algebra structure:B(σ) = B ∩ A (σ). If B is also an ideal ofA thenB is agraded ideal.

A subsetT of a semilatticeS is asub-semilattice ofS if σ, τ ∈ T ⇒ σ∧τ ∈ T . We say thatT is anideal
of S if σ ≤ τ ∈ T ⇒ σ ∈ T . If A is anS-gradedC∗-algebra andT ⊂ S let A (T ) =

∑c
σ∈T A (σ)

(if T is finite the sum is already closed). IfT is a sub-semilattice or an ideal then clearlyA (T ) is a
C∗-subalgebra or an ideal ofA respectively.

We say thatA is supported by a sub-semilatticeT if A = A (T ), i.e. A (σ) = {0} for σ /∈ T . ThenA

is alsoT -graded. The smallest sub-semilattice with this property will be calledsupport ofA . If T is a
sub-semilattice ofS andA is aT -graded algebra thenA is S-graded: setA (σ) = {0} for σ ∈ S \ T .

The next result is obvious ifS is finite. For the general case, see the proof of Proposition 3.3 in [DaG3].
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Proposition 3.1. Let T be a sub-semilattice ofS such thatT ′ = S \ T is an ideal. ThenA (T ) is a
C∗-subalgebra ofA , A (T ′) is an ideal ofA , andA = A (T ) + A (T ′) with A (T ) ∩ A (T ′) = {0}.
In particular, the natural linear projectionP(T ) : A → A (T ) is a morphism.

If T is a sub-semilattice thenT ′ is an ideal if and only ifT is a filter (i.e.σ ≥ τ ∈ T ⇒ σ ∈ T ). Thus
if S is finite then the only sub-semilattices which have this property are theS≥σ introduced below.

The simplest sub-semilattices are the chains (totally ordered subsets). Ifσ ∈ S and

S≥σ = {τ ∈ S | τ ≥ σ}, S6≥σ = S ′
≥σ = {τ ∈ S | τ 6≥ σ}, S≤σ = {τ ∈ S | τ ≤ σ} (3.1)

thenS≥σ is a sub-semilattice andS6≥σ andS≤σ are ideals. SoA≥σ ≡ A (S≥σ) is a gradedC∗-subalgebra
of A supported byS≥σ andA (S6≥σ) is a graded ideal supported byS6≥σ such that

A = A≥σ + A (S6≥σ) with A≥σ ∩ A (S6≥σ) = {0}. (3.2)

The projection morphismP≥σ : A → A≥σ defined by (3.2) is the unique linear continuous map
P≥σ : A → A such thatP≥σA = A if A ∈ A (τ) for someτ ≥ σ andP≥σA = 0 otherwise.

S is calledatomicif it has a smallest elemento ≡ minS and if eachσ 6= o is minorated by an atom. We
denote byP(S) the set of atoms ofS. If T is an ideal ofS andS is atomic thenT is atomic, we have
min T = minS, andP(T ) = P(S) ∩ T . This next result is also easy to prove [DaG3].

Theorem 3.2. If S is atomic thenPA = (P≥αA)α∈P(S) defines a morphismP : A →
∏

α∈P(S) A≥α

with A (o) as kernel. This gives us a canonical embedding

A /A (o) ⊂
∏

α∈P(S) A≥α. (3.3)

We call this “theorem” because it has important consequences in the spectral theory of many-body Hamil-
tonians: it allows us to compute their essential spectrum and to prove the Mourre estimate.

We assume thatS is atomic so thatA comes equipped with a remarkable idealA (o). Then forA ∈ A

we define itsessential spectrum(relatively toA (o)) by the formula

Spess(A) ≡ Sp(PA). (3.4)

In our concrete examplesA is represented on a Hilbert spaceH andA (o) = K(H), so we get the usual
Hilbertian notion of essential spectrum.

In order to extend this to unbounded operators it is convenient to define anobservable affiliated toA as
a morphismH : Co(R) → A . We setϕ(H) ≡ H(ϕ). If A is realized onH then a self-adjoint operator
onH such that(H + i)−1 ∈ A is said to be affiliated toA ; thenH(ϕ) = ϕ(H) defines an observable
affiliated toA (see Appendix A in [DaG3] for a precise description of the relation between observables
and self-adjoint operators affiliated toA ). The spectrum of an observable is by definition the support of
the morphismH:

Sp(H) = {λ ∈ R | ϕ ∈ Co(R), ϕ(λ) 6= 0 ⇒ ϕ(H) 6= 0}. (3.5)

Now note thatPH ≡ P ◦ H is an observable affiliated to the quotient algebraA /A (o) so we may
define the essential spectrum ofH as the spectrum ofPH. Explicitly, we get:

Spess(H) = {λ ∈ R | ϕ ∈ Co(R), ϕ(λ) 6= 0 ⇒ ϕ(H) /∈ A (o)}. (3.6)

Now the first assertion of the next theorem follows immediately from Theorem 3.2. For the second
assertion, see the proof of Theorem 2.10 in [DaG2]. By∪ we denote the closure of the union.

Theorem 3.3. Let S be atomic. IfH is an observable affiliated toA then H≥α = P≥αH is an
observable affiliated toA≥α and we have:

Spess(H) =
⋃

α∈P(S)Sp(H≥α). (3.7)

If for eachA ∈ A the set ofP≥αA with α ∈ P(S) is compact inA then the union in(3.7) is closed.
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3.2. Hilbert C∗-modules. Some basic knowledge of the theory of HilbertC∗-modules is useful but
not indispensable for understanding our constructions. Wetranslate here the necessary facts in a purely
Hilbert space language. Our main reference for the general theory of HilbertC∗-modules is [Lac] but see
also [Bla, RW]. The examples of interest in this paper are the “concrete” HilbertC∗-modules described
below as HilbertC∗-submodules ofL(E ,F). We recall, however, the general definition.

If A is aC∗-algebra then aBanachA -moduleis a Banach spaceM equipped with a continuous bilinear
mapA × M ∋ (A,M) 7→ MA ∈ M such that(MA)B = M(AB). We denoteM · A the clspan of
the elementsMA with A ∈ A andM ∈ M . By the Cohen-Hewitt theorem [FeD] for eachN ∈ M ·A
there areA ∈ A andM ∈ M such thatN = MA, in particularM · A = MA . Note that by module
we mean “right module” but the Cohen-Hewitt theorem is also valid for left Banach modules.

Let A be aC∗-algebra. A (right)Hilbert A -moduleis a BanachA -moduleM equipped with an
A -valued sesquilinear map〈·|·〉 ≡ 〈·|·〉A which is positive (i.e. 〈M |M〉 ≥ 0) A -sesquilinear (i.e.
〈M |NA〉 = 〈M |N〉A) and such that‖M‖ ≡ ‖〈M |M〉‖1/2. ThenM = MA . The clspan of the
elements〈M |M〉 is an ideal ofA denoted〈M |M 〉. One says thatM is full if 〈M |M 〉 = A . If A

is an ideal of aC∗-algebraC thenM is equipped with an obvious structure of HilbertC -module. Left
Hilbert A -modules are defined similarly.

If M ,N are HilbertA -modules and(M,N) ∈ M × N thenM ′ 7→ N〈M |M ′〉 is a linear continuous
mapM → N denoted|N〉〈M | or NM∗. The closed linear subspace ofL(M ,N ) generated by these
elements is denotedK(M ,N ). There is a unique antilinear isometric mapT 7→ T ∗ of K(M ,N ) onto
K(N ,M ) which sends|N〉〈M | into |M〉〈N |. The spaceK(M ) ≡ K(M ,M ) is aC∗-algebra called
imprimitivity algebraof the HilbertA -moduleM .

Assume thatN is a closed subspace of a HilbertA -moduleM and let〈N |N 〉 be the clspan of the
elements〈N |N〉 in A . If N is anA -submodule ofM then it inherits an obvious HilbertA -module
structure fromM . If N is not anA -submodule ofM it may happen that there is aC∗-subalgebra
B ⊂ A such thatN B ⊂ N and〈N |N 〉 ⊂ B. Then clearly we get a HilbertB-module structure
on N . On the other hand, it is clear that such aB exists if and only ifN 〈N |N 〉 ⊂ N and then
〈N |N 〉 is aC∗-subalgebra ofA . Under these conditions we say thatN is a Hilbert C∗-submodule
of the HilbertA -moduleM . ThenN inherits a Hilbert〈N |N 〉-module structure and this defines the
C∗-algebraK(N ). Moreover, ifB is as above thenK(N ) = KB(N ).

If N is a closed subspace of a HilbertA -moduleM then letK(N |M ) be the closed subspace ofK(M )
generated by the elementsNN∗ with N ∈ N . It is easy to prove thatif N is a HilbertC∗-submodule of
M thenK(N |M ) is aC∗-subalgebra ofK(M ) and the mapT 7→ T |N sendsK(N |M ) ontoK(N )
and is an isomorphism ofC∗-algebras. Then we identifyK(N |M ) with K(N ).

If E ,F are Hilbert spaces then we equipL(E ,F) with the HilbertL(E)-module structure defined as
follows: theC∗-algebraL(E) acts to the right by composition and we take〈M |N〉 = M∗N as inner
product, whereM∗ is the usual adjoint of the operatorM . Note thatL(E ,F) is also equipped with a
natural left HilbertL(F)-module structure: this time the inner product isMN∗.

If M ⊂ L(E ,F) is a linear subspace thenM ∗ ⊂ L(F , E) is the set of adjoint operatorsM∗ with
M ∈ M . ClearlyM1 ⊂ M2 ⇒ M ∗

1 ⊂ M ∗
2 . If G is a third Hilbert spaces andN ⊂ L(F ,G) is a linear

subspace then(N · M )∗ = M ∗ · N ∗. In particular, ifE = F = G, M = M ∗, andN = N ∗ then
M · N ⊂ N · M is equivalent toM · N = N · M .

Now let M ⊂ L(E ,F) be a closed linear subspace. ThenM is a Hilbert C∗-submodule ofL(E ,F) if
and only ifMM ∗M ⊂ M .

These are the “concrete” HilbertC∗-modules we are interested in. It is clear thatM ∗ will be a Hilbert
C∗-submodule ofL(F , E). We mention thatM ∗ is canonically identified with the left HilbertA -module
K(M ,A ) dual toM .
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Proposition 3.4. Let E ,F be Hilbert spaces and letM be a HilbertC∗-submodule ofL(E ,F). Then
A ≡ M ∗ · M and B ≡ M · M ∗ are C∗-algebras of operators onE andF respectively andM is
equipped with a canonical structure of(B,A ) imprimitivity bimodule.

For the needs of this paper the last assertion of the proposition could be interpreted as a definition.

Proposition 3.5. LetN be aC∗-submodule ofL(E ,F) such thatN ⊂ M andN ∗ · N = M ∗ · M ,
N · N ∗ = M · M ∗. ThenN = M .

Proof: If M ∈ M andN ∈ N thenMN∗ ∈ B = N · N ∗ andN N ∗N ⊂ N henceMN∗N ∈
N . SinceN ∗ · N = A we getMA ∈ N for all A ∈ A . Let Ai be an approximate identity for
the C∗-algebraA . Since one can factorizeM = M ′A′ with M ′ ∈ M andA′ ∈ A the sequence
MAi = M ′A′Ai converges toM ′A′ = M in norm. ThusM ∈ N .

Proposition 3.6. Let E ,F ,H be Hilbert spaces and letM ⊂ L(H, E) andN ⊂ L(H,F) be Hilbert
C∗-submodules. LetA be aC∗-algebra of operators onH such thatM ∗ · M andN ∗ · N are ideals
of A and let us viewM and N as Hilbert A -modules. ThenK(M ,N ) ∼= N · M ∗ the isometric
isomorphism being determined by the condition|N〉〈M | = NM∗.

3.3. Graded Hilbert C∗-modules. This is due to Georges Skandalis [Ska] (see also Remark 4.28).

Definition 3.7. Let S be a semilattice andA anS-gradedC∗-algebra. A HilbertA -moduleM is an
S-graded HilbertA -moduleif a linearly independent family{M (σ)}σ∈S of closed subspaces ofM is
given such that

∑
σ M (σ) is dense inM and:

M (σ)A (τ) ⊂ M (σ ∧ τ) and 〈M (σ)|M (τ)〉 ⊂ A (σ ∧ τ) for all σ, τ ∈ S. (3.8)

Note thatA equipped with its canonical HilbertA -module structure is anS-graded HilbertA -module.
(3.8) implies that eachM (σ) is a HilbertA (σ)-module and ifσ ≤ τ thenM (σ) is anA (τ)-module.

From (3.8) we also see thatthe imprimitivity algebraK(M (σ)) of the HilbertA (σ)-moduleM (σ) is
naturally identified with the clspan inK(M ) of the elementsMM∗ with M ∈ M (σ). ThusK(M (σ))
is identified with aC∗-subalgebra ofK(M ). We use this identification below.

Theorem 3.8. If M is a graded HilbertA -module thenK(M ) becomes a gradedC∗-algebra if we
defineK(M )(σ) = K(M (σ)). If M ∈ M (σ) andN ∈ M (τ) then there are elementsM ′ andN ′ in
M (σ ∧ τ) such thatMN∗ = M ′N ′∗; in particular MN∗ ∈ K(M )(σ ∧ τ).

Proof: As explained before,K(M )(σ) areC∗-subalgebras ofK(M ). To show that they are linearly
independent, letT (σ) ∈ K(M )(σ) such thatT (σ) = 0 but for a finite number ofσ and assume∑

σ T (σ) = 0. Then for eachM ∈ M we have
∑

σ T (σ)M = 0. Note that the range ofT (σ) is
included inM (σ). Since the linear spacesM (σ) are linearly independent we getT (σ)M = 0 for all σ
andM henceT (σ) = 0 for all σ.

We now prove the second assertion of the proposition. SinceM (σ) is a HilbertA (σ)-module there are
M1 ∈ M (σ) andS ∈ A (σ) such thatM = M1S, cf. the Cohen-Hewitt theorem or Lemma 4.4 in
[Lac]. Similarly,N = N1T with N1 ∈ M (τ) andT ∈ A (τ). ThenMN∗ = M1(ST ∗)N∗

1 andST ∗ ∈
A (σ∧τ) so we may factorize it asST ∗ = UV ∗ with U, V ∈ A (σ∧τ), henceMN∗ = (M1U)(N1V )∗.
By using (3.8) we see thatM ′ = M1U andN ′ = N1V belong toM (σ ∧ τ). In particular, we have
MN∗ ∈ K(M )(σ ∧ τ) if M ∈ M (σ) andN ∈ M (τ).

Observe that the assertion we just proved implies that
∑

σ K(M )(σ) is dense inK(M ). It remains to
see thatK(M )(σ)K(M )(τ) ⊂ K(M )(σ∧ τ). For this it suffices thatM〈M |N〉N∗ be inK(M )(σ∧ τ)
if M ∈ M (σ) and N ∈ M (τ). Since〈M |N〉 ∈ A (σ ∧ τ) we may write〈M |N〉 = ST ∗ with
S, T ∈ A (σ ∧ τ) soM〈M |N〉N∗ = (MS)(NT )∗ ∈ K(M )(σ ∧ τ) by (3.8).
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We recall that the direct sum of a family{Mi} of Hilbert A -modules is defined as follows:⊕iMi is the
space of elements(Mi)i ∈

∏
i Mi such that the series

∑
i〈Mi|Mi〉 converges inA equipped with the

naturalA -module structure and with theA -valued inner product defined by

〈(Mi)i|(Ni)i〉 =
∑

i〈Mi|Ni〉. (3.9)

The algebraic direct sum of theA -modulesMi is dense in⊕iMi.

It is easy to check that if eachMi is graded and if we setM (σ) = ⊕iMi(σ) thenM becomes a graded
Hilbert A -module. For example, ifN is a graded HilbertA -module thenN ⊕ A is a graded Hilbert
A -module and so thelinking algebraK(N ⊕A ) is equipped with a graded algebra structure. We recall
[RW, p. 50-52] that we have a natural identification

K(N ⊕ A ) =

(
K(N ) N

N ∗ A

)
(3.10)

and by Theorem 3.8 this is a graded algebra whoseσ-component is equal to

K(N (σ) ⊕ A (σ)) =

(
K(N (σ)) N (σ)
N (σ)∗ A (σ)

)
. (3.11)

If N is aC∗-submodule ofL(E ,F) and if we setN ∗ ·N = A ,N ·N ∗ = B then the linking algebra(
B M

M ∗ A

)
of M is aC∗-algebra of operators onF ⊕ E .

Some of the graded HilbertC∗-modules which we shall use later on will be constructed as follows.

Proposition 3.9. Let E ,F be Hilbert spaces and letM ⊂ L(E ,F) be a HilbertC∗-submodule, so that
A ≡ M ∗ · M ⊂ L(E) is a C∗-algebra andM is a full Hilbert A -module. LetC be aC∗-algebra of
operators onE graded by the family ofC∗-subalgebras{C(σ)}σ∈S . Assume that we have

A · C(σ) = C(σ) · A ≡ C (σ) for all σ ∈ S (3.12)

and that the family{C (σ)} of subspaces ofL(F) is linearly independent. Then theC (σ) areC∗-algebras
of operators onE andC =

∑c
σ C (σ) is aC∗-algebra graded by the family{C (σ)}. If N (σ) ≡ M ·C(σ)

thenN =
∑c

σ N (σ) is a full Hilbert C -module graded by{N (σ)}.

Proof: We have

C (σ) · C (τ) = A · C(σ) · A · C(τ) = A · A · C(σ) · C(τ) ⊂ A · C(σ ∧ τ) = C (σ ∧ τ).

This proves that theC (σ) areC∗-algebras and thatC is S-graded. Then:

N (σ) ·C (τ) = M ·C(σ) ·C(τ) ·A ⊂ M ·C(σ∧τ) ·A = M ·A ·C(σ∧τ) = M ·C(σ∧τ) = N (σ∧τ)

and

N (σ)∗ ·N (τ) = C(σ) ·M ∗ ·M ·C(τ) = C(σ) ·A ·C(τ) = A ·C(σ) ·C(τ) ⊂ A ·C(σ∧τ) = C (σ∧τ).

Observe that this computation also givesN (σ)∗ · N (σ) = C (σ). Then
(∑

σN (σ)∗
)(∑

σN (σ)
)

=
∑

σ,τN (σ)∗N (τ) ⊂
∑

σ,τC (σ ∧ τ) ⊂
∑

σC (σ)

and by the preceding remark we getN ∗ ·N = C soN is a full HilbertC -module. To show the grading
property it suffices to prove that the family of subspacesN (σ) is linearly independent. Assume that∑

N(σ) = 0 with N(σ) ∈ N (σ) andN(σ) = 0 for all but a finite number ofσ. Assuming that there
are non-zero elements in this sum, letτ be a maximal element of the set ofσ such thatN(σ) 6= 0. From∑

σ1,σ2
N(σ1)

∗N(σ2) = 0 and sinceN(σ1)
∗N(σ2) ∈ C (σ1∧σ2) we get

∑
σ1∧σ2=σ N(σ1)

∗N(σ2) = 0

for eachσ. Take hereσ = τ and observe that ifσ1∧σ2 = τ andσ1 > τ or σ2 > τ thenN(σ1)
∗N(σ2) =

0. ThusN(τ)∗N(τ) = 0 soN(τ) = 0. But this contradicts the choice ofτ , soN(σ) = 0 for all σ.



20 MONDHER DAMAK AND VLADIMIR GEORGESCU

3.4. Tensor products. In this subsection we collect some facts concerning tensor products which are
useful in what follows. We recall the definition of the tensorproduct of a Hilbert spaceE and aC∗-algebra
A in the category of HilbertC∗-modules, cf. [Lac]. We equip the algebraic tensor productE ⊙ A with
the obvious rightA -module structure and with theA -valued sesquilinear map given by

〈
∑

u∈Eu ⊗ Au|
∑

v∈Ev ⊗ Bv〉 =
∑

u,v〈u|v〉A
∗
uBv (3.13)

whereAu = Bu = 0 outside a finite set. Then the completion ofE ⊙ A for the norm‖M‖ :=
‖〈M |M〉‖1/2 is a full HilbertA -module denotedE ⊗ A . Clearly its imprimitivity algebra is

K(E ⊗ A ) = K(E) ⊗ A . (3.14)

If A is S-graded thenE ⊗ A is equipped with an obvious structure ofS-graded HilbertA -module.

If A is realized on a Hilbert spaceF then one has a natural isometric embeddingE ⊗A ⊂ L(F , E ⊗F).
Indeed, there is a unique linear mapE ⊗ A → L(F , E ⊗ F) which associates tou ⊗ A the function
f 7→ u ⊗ (Af) and due to (3.13) this map is an isometry. Thus the HilbertA -moduleE ⊗ A is realized
as a HilbertC∗-submodule ofL(F , E ⊗ F), the dual module is realized as the set of adjoint operators
(E ⊗ A )∗ ⊂ L(E ⊗ F , E), and one clearly has

(E ⊗ A )∗ · (E ⊗ A ) = A , (E ⊗ A ) · (E ⊗ A )∗ = K(E) ⊗ A . (3.15)

If X is a locally compact space equipped with a Radon measure thenL2(X) ⊗ A is the completion of
Cc(X;A ) for the norm‖

∫
X

F (x)∗F (x)dx‖1/2. Note thatL2(X;A ) ⊂ L2(X)⊗A strictly in general,
cf. the example below. IfA ⊂ L(F) then the norm onL2(X) ⊗ A is

‖
∫

X
F (x)∗F (x)dx‖2 = supf∈F,‖f‖=1

∫
X
‖F (x)f‖2dx. (3.16)

If Y is a locally compact space thenE ⊗ Co(Y ) ∼= Co(Y ; E). HenceL2(X) ⊗ Co(Y ) is the completion
of Cc(X × Y ) for the normsupy∈Y (

∫
X
|F (x, y)|2dx)1/2. Assume thatX = Y is a locally compact

abelian group and letf ∈ L∞(X) with compact support andg ∈ L2(X). It is easy to check that
F (x, y) = f(x)g(x + y) is an element ofCo(X;L2(X)) = L2(X)⊗Co(X) but if F (x, ·) = f(x)Uxg is
not zero then it does not belong toCo(X) and is not even a bounded function ifg is not. Thus the elements
of L2(X) ⊗ A can not be realized as bounded operator valued (equivalenceclasses of) functions onX.

More generally, ifF ′, F ′′ are Hilbert spaces andM ⊂ L(F ′,F ′′) is a closed subspace then we define
L2(X) ⊗ M as the completion of the spaceCc(X;M ) for a norm similar to (3.16). We clearly have
L2(X) ⊗ M ⊂ L(F ′, L2(X) ⊗F ′′) isometrically andL2(X;M ) ⊂ L2(X) ⊗ M continuously.

If E ,F ,G,H are Hilbert spaces andM ⊂ L(E ,F) andN ⊂ L(G,H) are closed linear subspaces then
we denoteM ⊗ N the closure inL(E ⊗ G,F ⊗ H) of the algebraic tensor product ofM andN .
Now suppose thatM is aC∗-submodule ofL(E ,F) and thatN is aC∗-submodule ofL(G,H) and let
A = M ∗ · M andB = N ∗ · N . ThenM is a HilbertA -module andN is a HilbertB-module
hence the exterior tensor product, denoted temporarilyM ⊗ext N , is well defined in the category of
Hilbert C∗-modules [Lac] and is a HilbertA ⊗ B-module. On the other hand, it is easy to check that
(M ⊗ N )∗ = M ∗ ⊗ N ∗ and then thatM ⊗ N is a HilbertC∗-submodule ofL(E ⊗ G,F ⊗H) such
that(M ⊗N )∗ · (M ⊗N ) = A ⊗B. Finally, it is clear thatL(E ⊗G,F ⊗H) andM ⊗ext N induce
the sameA ⊗ B-valued inner product on the algebraic tensor product ofM andN . Thus we we get a
canonical isometric isomorphismM ⊗ext N = M ⊗ N .

As an application we give now an abstract version of the ”toy models” described in Example 2.12. Let
E ,F be Hilbert spaces and let us defineH = (E ⊗F)⊕F . LetA andB beC∗-algebras of operators on
F andE ⊗F respectively. We embedE ⊗A ⊂ L(F , E ⊗F) as above. We simplify notation and denote
E∗ ⊗ A := (E ⊗ A )∗ ⊂ L(E ⊗ F ,F) the dual module.

Proposition 3.10. LetS be a semilattice andT an ideal ofS. Assume that theC∗-algebrasA andB

areS-graded and that we haveA (σ) = {0} if σ /∈ T andB(τ) = K(E) ⊗ A (τ) for τ ∈ T . Then

C =

(
B E ⊗ A

E∗ ⊗ A A

)
. (3.17)
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is anS-gradedC∗-algebra if we define its components as follows:

C (σ) =

(
B(σ) E ⊗ A (σ)

E∗ ⊗ A (σ) A (σ)

)
for all σ ∈ S. (3.18)

Proof: Observe that if we setT ′ = S \ T then

C =

(
K(E) ⊗ A E ⊗ A

E∗ ⊗ A A

)
+

(
B(T ′) 0

0 0

)
= K(N ⊕ A ) +

(
B(T ′) 0

0 0

)
(3.19)

whereN = E ⊗ A is anS-graded HilbertA -module, cf. (3.10) and (3.14). It is easy to see that the
family {C (σ)} is linearly independent and thatC is the closure of its sum. By taking into account (3.11)
we see that it suffices to show thatC (σ)C (τ) ⊂ C (σ ∧ τ) if σ ∈ T ′ andτ ∈ T . After computing the
coefficients of the matrices we see that it suffices to check thatB(σ) · E ⊗ A (τ) ⊂ E ⊗ A (σ ∧ τ). But:

B(σ) · E ⊗ A (τ) = B(σ) · K(E) ⊗ A (τ) · E ⊗ A (τ) = B(σ) · B(τ) · E ⊗ A (τ)

⊂ B(σ ∧ τ) · E ⊗ A (τ) = K(E) ⊗ A (σ ∧ τ) · E ⊗ A (τ) ⊂ E ⊗ A (σ ∧ τ)

which finishes the proof.

The extension to an increasing family of idealsT1 ⊂ T2 · · · ⊂ S is straightforward.

4. THE MANY-BODY C∗-ALGEBRA

In this section we introduce the many-bodyC∗-algebra and describe its main properties (in particular, we
prove the theorems 2.4 and 2.5). Subsection 4.4 contains some preparatory material on concrete realiza-
tions of HilbertC∗-modules which implement the Morita equivalence between some crossed products.

4.1. Notations. Let X be a locally compact abelian group with operation denoted additively equipped
with a Haar measures dx. We abbreviate this by saying thatX is an lca group. We setLX ≡ L(L2(X))
andKX ≡ K(L2(X)) and note that these areC∗-algebras independent of the choice of the measure on
X. If Y is a second lca group we shall use the abbreviations

LXY = L(L2(Y ), L2(X)) and KXY = K(L2(Y ), L2(X)). (4.1)

We denote byϕ(Q) the operator inL2(X) of multiplication by a functionϕ and ifX has to be explicitly
specified we setQ = QX . The bounded uniformly continuous functions onX form aC∗-algebraCu

b(X)
which contains the algebrasCc(X) andCo(X). The mapϕ 7→ ϕ(Q) is an embeddingCu

b(X) ⊂ LX .

The groupC∗-algebraTX of X is the closed linear subspace ofLX generated by the convolution opera-
tors of the form(ϕ ∗ f)(x) =

∫
X

ϕ(x − y)f(y)dy with ϕ ∈ Cc(X). Observe thatf 7→ ϕ ∗ f is equal to∫
X

ϕ(−a)Ua da whereUa is the unitary translation operator onL2(X) defined by(Uaf)(x) = f(x+a).

Let X∗ be the group dual toX with operation denoted additively†. If k ∈ X∗ we define a unitary
operatorVk on L2(X) by (Vku)(x) = k(x)u(x). The Fourier transform of an integrable measureµ
on X is defined by(Fµ)(k) =

∫
k̄(x)µ(dx). ThenF induces a bijective mapL2(X) → L2(X∗)

hence a canonical isomorphismS 7→ F−1SF of LX∗ onto LX . If ψ is a function onX∗ we set
ψ(P ) ≡ ψ(PX) = F−1MψF , whereMψ = ψ(QX∗) is the operator of multiplication byψ onL2(X∗).
The mapψ 7→ ψ(P ) gives an isomorphismCo(X

∗) ∼= TX .

If Y ⊂ X is a closed subgroup thenπY : X → X/Y is the canonical surjection. We embedCu
b(X/Y ) ⊂

Cu
b(X) with the help of the injective morphismϕ 7→ ϕ ◦ πY . SoCu

b(X/Y ) is identified with the set of
functionsϕ ∈ Cu

b(X) such thatϕ(x + y) = ϕ(x) for all x ∈ X andy ∈ Y .

In particular,Co(X/Y ) is identified with the set of continuous functionsϕ on X such thatϕ(x + y) =
ϕ(x) for all x ∈ X andy ∈ Y and such that for eachε > 0 there is a compactK ⊂ X such that

† Then(k +p)(x) = k(x)p(x), 0(x) = 1, and the element−k of X∗ represents the function̄k. In order to avoid such strange
looking expressions one might use the notationk(x) = [x, k].
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|ϕ(x)| < ε if x /∈ K + Y . By x/Y → ∞ we meanπY (x) → ∞, so the last condition is equivalent to
ϕ(x) → 0 if x/Y → ∞. For coherence with later notations we set

CX(Y ) = Co(X/Y ) (4.2)

Observe that to an elementy ∈ Y we may associate a translation operatorUy in L2(X) and another
translation operator inL2(Y ). However, in order not to overcharge the writing we shall denote the second
operator also byUy. The restriction mapk 7→ k|Y is a continuous surjective group morphismX∗ → Y ∗

with kernel equal toY ⊥ = {k ∈ X∗ | k(y) = 1 ∀y ∈ Y } which defines the canonical identification
Y ∗ ∼= X∗/Y ⊥. We denote by the same symbolVk the operator of multiplication by the characterk ∈ X∗

in L2(X) and by the characterk|Y ∈ Y ∗ in L2(Y ).

We shall writeX = Y ⊕ Z if X is the direct sum of the two closed subgroupsY,Z equipped with
compatible Haar measures, in the sense that dx = dy ⊗ dz. ThenL2(X) = L2(Y ) ⊗ L2(Z) as Hilbert
spaces andKX = KY ⊗ KZ andCX(Y ) = 1 ⊗ Co(Z) asC∗-algebras.

Let O = {0} be the trivial group equipped with the Haar measure of total mass1. ThenL2(O) = C.

4.2. Crossed products.Let X be a locally compact abelian group. AC∗-subalgebraA ⊂ Cu
b(X) stable

under translations will be calledX-algebra. Thecrossed product ofA by the action ofX is an abstractly
definedC∗-algebraA ⋊ X canonically identified with theC∗-algebra of operators onL2(X) given by

A ⋊ X ≡ A · TX = TX · A. (4.3)

Crossed products of the formCX(Y ) ⋊ X whereY is a closed subgroup ofX play an important role in
the many-body problem. To simplify notations we set

CX(Y ) = CX(Y ) ⋊ X = CX(Y ) · TX = TX · CX(Y ). (4.4)

If X = Y ⊕ Z and if we identifyL2(X) = L2(Y ) ⊗ L2(Z) thenTX = TY ⊗ TZ hence

CX(Y ) = TY ⊗ KZ . (4.5)

A useful “symmetric” description ofCX(Y ) is contained in the next lemma. LetY (2) be the closed
subgroup ofX2 ≡ X ⊕ X consisting of elements of the form(y, y) with y ∈ Y .

Lemma 4.1. CX(Y ) is the closure of the set of integral operators with kernelsθ ∈ Cc(X
2/Y (2)).

Proof: Let C be the norm closure of the set of integral operators with kernelsθ ∈ Cu
b(X2) having the

properties: (1)θ(x + y, x′ + y) = θ(x, x′) for all x, x′ ∈ X andy ∈ Y ; (2) suppθ ⊂ Kθ + Y for some
compactKθ ⊂ X2. We showC = CX(Y ). Observe that the map inX2 defined by(x, x′) 7→ (x−x′, x′)
is a topological group isomorphism with inverse(x1, x2) 7→ (x1 + x2, x2) and sends the subgroupY (2)

onto the subgroup{0} ⊕ Y . This map induces an isomorphismX2/Y (2) ≃ X ⊕ (X/Y ). Thus any
θ ∈ Cc(X

2/Y (2)) is of the formθ(x, x′) = θ̃(x − x′, x′) for someθ̃ ∈ Cc(X ⊕ (X/Y )). ThusC is the
closure inLX of the set of operators of the form(Tu)(x) =

∫
X

θ̃(x − x′, x′)u(x′)dx′. Since we may

approximatẽθ with linear combinations of functions of the forma⊗ b with a ∈ Cc(X), b ∈ Cc(X/Y ) we
see thatC is the clspan of the set of operators of the form(Tu)(x) =

∫
X

a(x − x′)b(x′)u(x′)dx′. But
this clspan isTX · CX(Y ) = CX(Y ).

4.3. Compatible subgroups.If X,Y is an arbitrary pair of lca groups thenX ⊕ Y is the setX × Y
equipped with the product topology and group structure. IfX,Y are closed subgroups of an lca group
G and if the mapY ⊕ Z → Y + Z defined by(y, z) 7→ y + z is open, we say that they arecompatible
subgroups ofG. In this caseY + Z is a closed subgroup ofX.

Remark 4.2. If G is σ-compact thenX,Y are compatible if and only ifX + Y is closed. Indeed, a
continuous surjective morphism between two locally compact σ-compact groups is open and a subgroup
H of a locally compact groupG is closed if and only ifH is locally compact for the induced topology,
see Theorems 5.11 and 5.29 in [HRe]. We thank Loı̈c Dubois and Benoit Pausader for enlightening
discussions on this matter.



ON THE SPECTRAL ANALYSIS OF MANY-BODY SYSTEMS 23

The importance of the compatibility condition in the context of gradedC∗-algebras has been pointed out
in [Ma1, Lemma 6.1.1] and one may find there several descriptions of this condition (see also Lemma 3.1
from [Ma3]). We quote two of them. LetX/Y be the image ofX in G/Y considered as a subgroup of
G/Y equipped with the induced topology. The groupX/(X ∩ Y ) is equipped with the locally compact
quotient topology and we have a natural mapX/(X ∩ Y ) → X/Y which is a bijective continuous group
morphism. ThenX,Y are compatible if and only if the following equivalent conditions are satisfied:

the natural mapX/(X ∩ Y ) → X/Y is a homeomorphism, (4.6)

the natural mapG/(X ∩ Y ) → G/X × G/Y is closed. (4.7)

If A is aG-algebra letA|X be the set of restrictions toX of the functions fromA. This is anX-algebra.

Lemma 4.3. If X,Y are compatible subgroups ofG then

CG(X) · CG(Y ) = CG(X ∩ Y ) (4.8)

CG(Y )|X = CX(X ∩ Y ). (4.9)

The second relation remains valid for the subalgebrasCc.

Proof: The fact that the inclusion⊂ in (4.8) is equivalent to the compatibility ofX andY is shown in
Lemma 6.1.1 from [Ma1], so we only have to prove that the equality holds. LetE = (G/X) × (G/Y ).
If ϕ ∈ Co(G/X) andψ ∈ Co(G/Y ) thenϕ⊗ψ denotes the function(s, t) 7−→ ϕ(s)ψ(t), which belongs
to Co(E). The subspace generated by the functions of the formϕ ⊗ ψ is dense inCo(E) by the Stone-
Weierstrass theorem. IfF is a closed subset ofE then, by the Tietze extension theorem, each function in
Cc(F ) extends to a function inCc(E), so the restrictions(ϕ ⊗ ψ)|F generate a dense linear subspace of
Co(F ). Let us denote byπ the mapx 7→ (πX(x), πY (x)), soπ is a group morphism fromG to E with
kernelV = X ∩ Y . Then by (4.7) the rangeF of π is closed and the quotient map̃π : G/V → F is a
continuous and closed bijection, hence is a homeomorphism.Soθ 7→ θ ◦ π̃ is an isometric isomorphism
of Co(F ) ontoCo(G/V ). Hence forϕ ∈ Co(G/X) andψ ∈ Co(G/Y ) the functionθ = (ϕ ⊗ ψ) ◦ π̃
belongs toCo(G/V ), it has the propertyθ ◦πV = ϕ◦πX ·ψ ◦πY , and the functions of this form generate
a dense linear subspace ofCo(G/V ).

Now we prove (4.9). Recall that we identifyCG(Y ) with a subset ofCu
b(G) by usingϕ 7→ ϕ ◦ πY so in

terms ofϕ the restriction map which definesCG(Y )|X is justϕ 7→ ϕ|X/Y . Thus we have a canonical
embeddingCG(Y )|X ⊂ Cu

b(X/Y ) for an arbitrary pairX,Y . Then the continuous bijective group
morphismθ : X/(X ∩ Y ) → X/Y allows us to embedCG(Y )|X ⊂ Cu

b(X/(X ∩ Y )). That the range of
this map is notCX(X ∩ Y ) in general is clear from the exampleG = R,X = πZ, Y = Z. But if X,Y
are compatible thenX/Y is closed inG/Y , soCG(Y )|X = Co(X/Y ) by the Tietze extension theorem,
andθ is a homeomorphism, hence we get (4.9).

Lemma 4.4. If X,Y are compatible subgroups ofG thenX2 = X ⊕ X andY (2) = {(y, y) | y ∈ Y } is
a compatible pair of closed subgroups ofG2 = G ⊕ G.

Proof: Let D = X2 ∩ Y (2) = {(x, x) | x ∈ X ∩ Y }. Due to to (4.6) it suffices to show that the
natural mapY (2)/D → Y (2)/X2 is a homeomorphism. HereY (2)/X2 is the image ofY (2) in G2/X2 ∼=
(G/X)⊕(G/X), more precisely it is the subset of pairs(a, a) with a = πX(z) andz ∈ Y , equipped with
the topology induced by(G/X)⊕(G/X). Thus the natural mapY/X → Y (2)/X2 is a homeomorphism.
On the other hand, the natural mapY/(X ∩ Y ) → Y (2)/D is clearly a homeomorphism. To finish the
proof note thatY/(X ∩ Y ) → Y/X is a homeomorphism becauseX,Y is a regular pair.

Lemma 4.5. LetX,Y be compatible subgroups of an lca groupG and letX⊥, Y ⊥ be their orthogonals
in G∗. Then(X ∩ Y )⊥ = X⊥ + Y ⊥ and the closed subgroupsX⊥, Y ⊥ of G∗ are compatible.

Proof: X +Y is closed and, since(x, y) 7→ (x,−y) is a homeomorphism, the mapS : X ⊕Y → X +Y
defined byS(x, y) = x + y is an open surjective morphism. Then from the Theorem 9.5, Chapter 2
of [Gur] it follows that the adjoint mapS∗ is a homeomorphism between(X + Y )∗ and its range. In
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particular its range is a locally compact subgroup for the topology induced byX∗ ⊕Y ∗ hence is a closed
subgroup ofX∗ ⊕Y ∗, see Remark 4.2. We have(X + Y )⊥ = X⊥ ∩Y ⊥, cf. 23.29 in [HRe]. Thus from
X∗ ∼= G∗/X⊥ and similar representations forY ∗ and(X + Y )∗ we see that

S∗ : G∗/(X⊥ ∩ Y ⊥) → G∗/X⊥ ⊕ G∗/Y ⊥

is a closed map. ButS∗ is clearly the natural map involved in (4.7), hence the pairX⊥, Y ⊥ is regular.
Finally, note that(X ∩Y )⊥ is always equal to the closure of the subgroupX⊥ +Y ⊥, cf. 23.29 and 24.10
in [HRe], and in our caseX⊥ + Y ⊥ is closed.

4.4. Green Hilbert C∗-modules. Let X,Y be a compatible pair of closed subgroups of a locally com-
pact abelian groupG. Then the subgroupX + Y of G generated byX ∪ Y is also closed. If we identify
X∩Y with the closed subgroupD of X⊕Y consisting of the elements of the form(z, z) with z ∈ X∩Y
then the quotient groupX ⊎ Y ≡ (X ⊕ Y )/(X ∩ Y ) is locally compact and the map

φ : X ⊕ Y → X + Y defined by φ(x, y) = x − y (4.10)

is an open continuous surjective group morphismX ⊕ Y → X + Y with X ∩ Y as kernel. Hence the
group morphismφ◦ : X ⊎ Y → X + Y induced byφ is a homeomorphism.

SinceCc(X ⊎ Y ) ⊂ Cu
b(X ⊕ Y ) the elementsθ ∈ Cc(X ⊎ Y ) are functionsθ : X × Y → C and we may

think of them as kernels of integral operators.

Lemma 4.6. If θ ∈ Cc(X ⊎ Y ) then(Tθu)(x) =
∫

Y
θ(x, y)u(y)dy defines an operator inLXY with

norm‖Tθ‖ ≤ C sup |θ| whereC depends only on a compact which contains the support ofθ.

Proof: By the Schur test

‖Tθ‖
2 ≤ supx∈X

∫

Y

|θ(x, y)dy · supy∈Y

∫

X

|θ(x, y)dx.

Let K ⊂ X andL ⊂ Y be compact sets such that(K × L) + D contains the support ofθ. Thus if
θ(x, y) 6= 0 thenx ∈ z + K andy ∈ z + L for somez ∈ X ∩ Y hence

∫
Y
|θ(x, y)dy ≤ sup |θ|λY (L).

Similarly
∫

X
|θ(x, y)dx ≤ sup |θ|λX(K).

Definition 4.7. TXY is the norm closure inLXY of the set of operatorsTθ as in Lemma 4.6.

Remark 4.8. If X ⊃ Y thenTXY is a “concrete” realization of the HilbertC∗-module introduced by
Rieffel in [Rie] which implements the Morita equivalence between the groupC∗-algebraC∗(Y ) and the
crossed productCo(X/Y ) ⋊ X. More precisely,TXY is a HilbertC∗(Y )-module and its imprimitivity
algebra is canonically isomorphic withCo(X/Y ) ⋊ X. If X,Y is an arbitrary couple of compatible sub-
groups ofG then we definedTXY such thatTXY = TXG ·TGY . On the other hand, from (4.24) we get
TXY = TXE ·TEY with E = X ∩Y , henceTXY is naturally a Hilbert(Co(X/E)⋊X, Co(Y/E)⋊Y )
imprimitivity bimodule. It has been noticed by Georges Skandalis thatTXY is in fact a “concrete” real-
ization of a HilbertC∗-module introduced by Green to show the Morita equivalence of the C∗-algebras
Co(Z/Y ) ⋊ X andCo(Z/X) ⋊ Y where we takeZ = X + Y , cf. [Wil, Example 4.13].

We give now an alternative definition ofTXY . If ϕ ∈ Cc(G) we defineTXY (ϕ) : Cc(Y ) → Cc(X) by

(TXY (ϕ)u)(x) =

∫

Y

ϕ(x − y)u(y)dy. (4.11)

This operator depends only the restrictionϕ|X+Y hence, by the Tietze extension theorem, we could take
ϕ ∈ Cc(Z) instead ofϕ ∈ Cc(G), whereZ is any closed subgroup ofG containingX ∪ Y .

Proposition 4.9. TXY (ϕ) extends to a bounded operatorL2(Y ) → L2(X), also denotedTXY (ϕ), and
for each compactK ⊂ G there is a constantC such that ifsuppϕ ⊂ K

‖TXY (ϕ)‖ ≤ C supx∈G |ϕ(x)|. (4.12)

The adjoint operator is given byTXY (ϕ)∗ = TY X(ϕ∗) whereϕ∗(x) = ϕ̄(−x). The spaceTXY coin-
cides with the closure inLXY of the set of operators of the fromTXY (ϕ).
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Proof: The setX + Y is closed inG hence the restriction mapCc(G) → Cc(X + Y ) is surjective. On
the other hand, the mapφ◦ : X ⊎ Y → X + Y , defined after (4.10), is a homeomorphism so it induces
an isomorphismϕ → ϕ ◦ φ◦ of Cc(X + Y ) ontoCc(X ⊎ Y ). ClearlyTXY (ϕ) = Tθ if θ = ϕ ◦ φ, so the
proposition follows from Lemma 4.6.

We discuss now some properties of the spacesTXY . We setT ∗
XY ≡ (TXY )∗ ⊂ LY X .

Proposition 4.10. We haveTXX = TX and:

T
∗

XY = TY X (4.13)

TXY = TXY · TY = TX · TXY (4.14)

A|X · TXY = TXY · A|Y (4.15)

whereA is an arbitraryG-algebra.

Proof: The relationsTXX = TX and (4.13) are obvious. Now we prove the first equality in (4.14)
(then the second one follows by taking adjoints). IfC(η) is the operator of convolution inL2(Y ) with
η ∈ Cc(Y ) then a short computation gives

TXY (ϕ)C(η) = TXY (TGY (ϕ)η) (4.16)

for ϕ ∈ Cc(G). SinceTGY (ϕ)η ∈ Cc(G) we getTXY (ϕ)C(η) ∈ TGX , soTXY · TY ⊂ TXY . The
converse follows by a standard approximation argument.

Let ϕ ∈ Cc(G) andθ ∈ A. We shall denote byθ(QX) the operator of multiplication byθ|X in L2(X)
and byθ(QY ) that of multiplication byθ|Y in L2(Y ). Choose someε > 0 and letV be a compact
neighborhood of the origin inG such that|θ(z) − θ(z′)| < ε if z − z′ ∈ V . There are functions
αk ∈ Cc(G) with 0 ≤ αk ≤ 1 such that

∑
k αk = 1 on the support ofϕ and suppαk ⊂ zk + V for some

pointszk. Below we shall prove:

‖TXY (ϕ)θ(QY ) −
∑

kθ(QX − zk)TXY (ϕαk)‖ ≤ ε‖TXY (|ϕ|)‖. (4.17)

This impliesTXY · A|Y ⊂ A|X · TXY . If we take adjoints, use (4.13) and interchangeX andY in the
final relation, we obtainA|X · TXY = TXY · A|Y hence the proposition is proved. Foru ∈ Cc(X) we
have:

(TXY (ϕ)θ(QY )u)(x) =

∫

Y

ϕ(x − y)θ(y)u(y)dy =
∑

k

∫

Y

ϕ(x − y)αk(x − y)θ(y)u(y)dy

=
∑

k

∫

Y

ϕ(x − y)αk(x − y)θ(x − zk)u(y)dy + (Ru)(x)

=
∑

k

(θ(QX − zk)TXY (ϕαk)u) (x) + (Ru)(x).

We can estimate the remainder as follows

|(Ru)(x)| =

∣∣∣∣∣
∑

k

∫

Y

ϕ(x − y)αk(x − y)[θ(y) − θ(x − zk)]u(y)dy

∣∣∣∣∣ ≤ ε

∫

Y

|ϕ(x − y)u(y)|dy.

becausex − zk − y ∈ V . This proves (4.17).

Proposition 4.11. TXY is a HilbertC∗-submodule ofLXY and

T
∗

XY · TXY = CY (X ∩ Y ), TXY · T ∗
XY = CX(X ∩ Y ). (4.18)

ThusTXY is a (CX(X ∩ Y ),CY (X ∩ Y )) imprimitivity bimodule.

Proof: Due to (4.13), to prove the first relation in (4.18) we have to compute the clspanC of the operators
TXY (ϕ)TY X(ψ) with ϕ,ψ in Cc(G). We recall the notationG2 = G ⊕ G, this is a locally compact
abelian group andX2 = X ⊕ X is a closed subgroup. Let us choose functionsϕk, ψk ∈ Cc(G) and let
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Φ =
∑

k ϕk ⊗ ψk ∈ Cc(G
2). If ψ†

k(x) = ψk(−x), then
∑

k TXY (ϕk)TY X(ψ†
k) is an integral operator

onL2(X) with kernelθX = θ|X2 whereθ : G2 → C is given by

θ(x, x′) =

∫

Y

Φ(x + y, x′ + y)dy.

Since the set of decomposable functions is dense inCc(G
2) in the inductive limit topology, an easy

approximation argument shows thatC contains all integral operators with kernels of the same form asθX

but with arbitraryΦ ∈ Cc(G
2). Let Y (2) be the closed subgroup ofG2 consisting of the elements(y, y)

with y ∈ Y . ThenK = suppΦ ⊂ G2 is a compact,θ is zero outsideK+Y (2), andθ(a+b) = θ(a) for all
a ∈ G2, b ∈ Y (2). Thusθ ∈ Cc(G

2/Y (2)), with the usual identificationCc(G
2/Y (2)) ⊂ Cu

b(G2). From
Proposition 2.48 in [Foll] it follows that reciprocally, any functionθ in Cc(G

2/Y (2)) can be represented
in terms of someΦ in Cc(G

2) as above. ThusC is the closure of the set of integral operators onL2(X)
with kernels of the formθX with θ ∈ Cc(G

2/Y (2)). According to Lemma 4.4, the pair of subgroups
X2, Y (2) is regular, so we may apply Lemma 4.3 to getCc(G

2/Y (2))|X2 = Cc(X
2/D) whereD =

X2 ∩ Y (2) = {(x, x) | x ∈ X ∩ Y }. But by Lemma 4.1 the norm closure inLX of the set of integral
operators with kernel inCc(X

2/D) is CX/(X ∩ Y ). This proves (4.18).

It remains to prove thatTXY is a HilbertC∗-submodule ofLXY , i.e. that we have

TXY · T ∗
XY · TXY = TXY . (4.19)

The first identity in (4.18) and (4.14) imply

TXY · T ∗
XY · TXY = TXY · TY · CY (X ∩ Y ) = TXY · CY (X ∩ Y ).

From Lemma 4.3 we get

CY (X ∩ Y ) = CG(X ∩ Y )|Y = CG(X)|Y · CG(Y )|Y = CG(X)|Y

becauseCG(Y )|Y = C. Then by using Proposition 4.10 we obtain

TXY · CY (X ∩ Y ) = TXY · CG(X)|Y = CG(X)|X · TXY = TXY

becauseCG(X)|X = C.

Corollary 4.12. We have

TXY = TXY TY = TXY CY (X ∩ Y ) (4.20)

= TXTXY = CX(X ∩ Y )TXY . (4.21)

Proof: If M is a HilbertA -module thenM = MA henceTXY = TXY CY (X ∩ Y ) by Proposition
4.11. The spaceCY (X ∩ Y ) is aTY -bimodule andCY (X ∩ Y ) = CY (X ∩ Y ) · TY by (4.4) hence we
getCY (X ∩ Y ) = CY (X ∩ Y )TY by the Cohen-Hewitt theorem. This proves the first equality in (4.20)
and the other ones are proved similarly.

If G is a set of closed subgroups ofG then thesemilattice generated byG is the set of finite intersections
of elements ofG.

Proposition 4.13. LetX,Y,Z be closed subgroups ofG such that any two subgroups from the semilattice
generated by the family{X,Y,Z} are compatible. Then:

TXZ · TZY = TXY · CY (Y ∩ Z) = CX(X ∩ Z) · TXY (4.22)

= TXY · CY (X ∩ Y ∩ Z) = CX(X ∩ Y ∩ Z) · TXY . (4.23)

In particular, if Z ⊃ X ∩ Y then

TXZ · TZY = TXY . (4.24)
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Proof: We first prove (4.24) in the particular caseZ = G. As in the proof of Proposition 4.11 we see that
TXG · TGY is the the closure inLXY of the set of integral operators with kernelsθXY = θ|X×Y where
θ : G2 → C is given by

θ(x, y) =

∫

G

∑

k

ϕk(x − z)ψk(z − y)dz =

∫

G

∑

k

ϕk(x − y − z)ψk(z)dz ≡ ξ(x − y)

whereϕk, ψk ∈ Cc(G) andξ =
∑

k ϕk ∗ ψk convolution product onG. SinceCc(G) ∗ Cc(G) is dense
in Cc(G) in the inductive limit topology, the spaceTXG · TGY is the the closure of the set of integral
operators with kernelsθ(x, y) = ξ(x − y) with ξ ∈ Cc(G). By Proposition 4.9 this isTXY .

Now we prove (4.22). From (4.24) withZ = G and (4.18) we get:

TXZ · TZY = TXG · TGZ · TZG · TGY = TXG · CG(Z) · TG · TGY .

Then from Proposition (4.10) and Lemma 4.3 we get:

CG(Z) · TG · TGY = CG(Z) · TGY = TGY · CG(Z)|Y = TGY · CY (Y ∩ Z).

We obtain (4.22) by using once again (4.24) withZ = G and taking adjoints. On the other hand, the
relationTXY = TXY · CY (X ∩ Y ) holds because of (4.20), so we have

TXY · CY (Y ∩ Z) = TXY · CY (X ∩ Y ) · CY (Y ∩ Z) = TXY · CY (X ∩ Y ∩ Z)

where we also used (4.8) and the fact thatX ∩ Y , Z ∩ Y are compatible. Finally, to get (4.24) for
Z ⊃ X ∩ Y we use once again (4.18).

The object of main interest for us is introduced in the next definition.

Definition 4.14. If X,Y are compatible subgroups andZ is a closed subgroup ofX ∩ Y then we set

CXY (Z) := TXY · CY (Z) = CX(Z) · TXY . (4.25)

The equality above follows from (4.15) withA = CG(Z). We clearly haveCXY (X ∩ Y ) = TXY and
CXX(Y ) = CX(Y ) if X ⊃ Y . Moreover

C
∗
XY (Z) := CXY (Z)∗ = CY X(Z) (4.26)

because of (4.13).

Theorem 4.15. CXY (Z) is a HilbertC∗-submodule ofLXY such that

C
∗
XY (Z) · CXY (Z) = CY (Z) and CXY (Z) · C ∗

XY (Z) = CX(Z). (4.27)

In particular, CXY (Z) is a (CX(Z),CY (Z)) imprimitivity bimodule.

Proof: By using (4.26), the definition (4.25), and (4.8) we get

CXY (Z) · CY X(Z) = CX(Z) · TXY · TY X · CX(Z)

= CX(Z) · CX(X ∩ Y ) · TX · CX(Z)

= CX(Z) · TX · CX(Z) = CX(Z) · TX

which proves the second equality in (4.27). The first one follows by interchangingX andY .

4.5. Many-body systems.Here we give a formal definition of the notion of “many-body system” then
define and discuss the Hamiltonian algebra associated to it.

Let S be a set of locally compact abelian groups with the followingproperty: for anyX,Y ∈ S there
is Z ∈ S such thatX andY are compatible subgroups ofZ. Note that this implies the following: if
Y ⊂ X then the topology and the group structure ofY coincide with those induced byX.

If S is a set ofσ-compact locally compact abelian groups then the compatibility assumption is equivalent
to the following more explicit condition: for anyX,Y ∈ S there isZ ∈ S such thatX andY are closed
subgroups ofZ andX + Y is closed inZ.
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Definition 4.16. A many-body systemis a couple(S, λ) where:

(i) S ⊂ S is a subset such thatX,Y ∈ S ⇒ X ∩ Y ∈ S and ifX ) Y thenX/Y is not compact,
(ii) λ is a mapX 7→ λX which associates a Haar measuresλX onX to eachX ∈ S.

We identifyS = (S, λ) so the choice of Haar measures is implicit. Note that the Hilbert spaceHS and
theC∗-algebraCS that we introduce below depend onλ but different choices give isomorphic objects.
EachX ∈ S is equipped with a Haar measure so the Hilbert spacesHX = L2(X) are well defined. If
Y ⊂ X are inS thenX/Y is equipped with the quotient measure soHX/Y = L2(X/Y ) is well defined.

Example: Let S the set of all finite dimensional vector subspaces of a vectorspace over an infinite
locally compact field and letS be any subset ofS such thatX,Y ∈ S ⇒ X ∩ Y ∈ S.

For eachX ∈ S let SX be the set ofY ∈ S such thatY ⊂ X. This is anN -body system withX as
configuration space in the sense of Definition 2.2. Then by Lemma 4.3 the space

CX :=
∑c

Y ∈SX
CX(Y ) (4.28)

is anX-algebra so the crossed productCX ⋊ X is well defined and we clearly have

CX := CX ⋊ X ≡ CX · TX =
∑c

Y ∈SX
CX(Y ). (4.29)

TheC∗-algebraCX is realized on the Hilbert spaceHX and we think of it as the Hamiltonian algebra of
theN -body system determined bySX .

Theorem 4.17. TheC∗-algebrasCX andCX areSX -graded by the decompositions(4.28)and (4.29).

The theorem is a particular case of results due to A. Mageira,cf. Propositions 6.1.2, 6.1.3 and 4.2.1 in
[Ma1] (or see [Ma3]). We mention that the results in [Ma1, Ma3] are much deeper since the groups are
allowed to be noncommutative and the treatment is so that thesecond part of condition (i) is not needed.
The case whenS consists of linear subspaces of a finite dimensional real vector space has been considered
in [BG1, DaG1] and the corresponding version of Theorem 4.17is proved there by elementary means.

Definition 4.18. If X,Y ∈ S thenCXY := TXY · CY = CX · TXY .

In particularCXX = CX is aC∗-algebra of operators onHX . For X 6= Y the spaceCXY is a closed
linear space of operatorsHY → HX canonically associated to the semilattice of groupsSX∩Y , cf. (4.34).
We call these spacescoupling modulesbecause they are HilbertC∗-modules and determine the way the
systems corresponding toX andY are allowed to interact.

For each pairX,Y ∈ S with X ⊃ Y we set

CY
X :=

∑c
Z∈SY

CX(Z). (4.30)

This is also anX-algebra so we may defineC Y
X = CY

X ⋊ X and we have

C
Y
X := CY

X ⋊ X =
∑c

Z∈SY
CX(Z). (4.31)

If X = Y ⊕ Z thenCY
X ≃ CY ⊗ 1 andC Y

X ≃ CY ⊗ TZ .

Lemma 4.19. LetX ∈ S andY ∈ SX . Then

CY
X = CX(Y ) · CX and C

Y
X = CX(Y ) · CX = CX · CX(Y ). (4.32)

Moreover, for allY,Z ∈ SX we have

CY
X · CZ

X = CY ∩Z
X and C

Y
X · C Z

X = C
Y ∩Z
X . (4.33)

Proof: The abelian case follows from (4.8) and a straightforward computation. For the crossed product
algebras we useCX(Y ) · CX = CX(Y ) · CX · TX and the first relation in (4.32) for example.

Lemma 4.20. For arbitrary X,Y ∈ S we have

CX · TXY = TXY · CY = TXY · CX∩Y
Y = CX∩Y

X · TXY . (4.34)
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Proof: If G ∈ S containsX ∪ Y then clearly

CX · TXY =
∑c

Z∈SX
CX(Z) · TXY =

∑c
Z∈SX

CG(Z)|X · TXY .

From (4.15) and (4.9) we get

CG(Z)|X · TXY = TXY · CY (Y ∩ Z).

SinceY ∩ Z runs overSX∩Y whenZ runs overSX we obtainCX · TXY = TXY · CX∩Y
Y . Similarly

TXY · CY = CX∩Y
X · TXY . On the other handCX∩Y

X = CX∩Y
G |X and similarly withX,Y interchanged,

henceCX∩Y
X · TXY = TXY · CX∩Y

Y because of (4.15).

Proposition 4.21. LetX,Y,Z ∈ S. ThenC ∗
XY = CY X and

CXZ · CZY = CXY · CX∩Y ∩Z
Y = CX∩Y ∩Z

X · CXY ⊂ CXY . (4.35)

In particular CXZ · CZY = CXY if Z ⊃ X ∩ Y .

Proof: The first assertion follows from (4.13). From the Definition 4.18 and Proposition 4.13 we then get

CXZ · CZY = CX · TXZ · TZY · CY = CX · TXY · CY (X ∩ Y ∩ Z) · CY

= TXY · CY · CY (X ∩ Y ∩ Z) · CY = TXY · CY (X ∩ Y ∩ Z) · CY .

But CY (X ∩Y ∩Z) · CY = CX∩Y ∩Z
Y by Lemma 4.19. For the last inclusion in (4.35) we use the obvious

relationCX∩Y ∩Z
Y · CY ⊂ CY . The last assertion of the proposition follows from (4.34).

The following theorem is a consequence of the results obtained so far.

Theorem 4.22. CXY is a HilbertC∗-submodule ofLXY such that

C
∗
XY · CXY = C

X∩Y
Y andCXY · C ∗

XY = C
X∩Y
X . (4.36)

In particular, CXY is a (C X∩Y
X ,C X∩Y

Y ) imprimitivity bimodule.

We recall the conventions

X,Y ∈ S andY 6⊂ X ⇒ CX(Y ) = CX(Y ) = {0}, (4.37)

X,Y,Z ∈ S andZ 6⊂ X ∩ Y ⇒ CXY (Z) = {0}. (4.38)

From now on by “graded” we meanS-graded. ThenCX =
∑c

Y ∈S CX(Y ) is a gradedC∗-algebras
supported by the idealSX of S, in particular it is a graded ideal inCX . With the notations of Subsection
3.1 the algebraC Y

X = CX(SY ) is a graded ideal ofCX supported bySY . Similarly for CX andCY
X .

SinceC X∩Y
X andC X∩Y

Y are ideals inCX andCY respectively, Theorem 4.22 allows us to equipCXY

with (right) HilbertCY -module and left HilbertCX -module structures (which are not full in general).

Theorem 4.23.The HilbertCY -moduleCXY is graded by the family ofC∗-submodules{CXY (Z)}Z∈S .

Proof: We use Proposition 3.9 withM = TXY andCY (Z) as algebrasC(σ). ThenA = CY (X ∩ Y )
by (4.18) henceA · CY (Z) = CY (Z) and the conditions of the proposition are satisfied.

Remark 4.24. The following more precise statement is a consequence of theTheorem 4.23: the Hilbert
C X∩Y

Y -moduleCXY is SX∩Y -graded by the family ofC∗-submodules{CXY (Z)}Z∈SX∩Y
.

Finally, we may construct theC∗-algebraC which is of main interest for us, the many-body Hamiltonian
algebra. We shall describe it as an algebra of operators on the Hilbert space

H ≡ HS = ⊕X∈SHX (4.39)

which is a kind of Boltzmann-Fock space (without symmetrization or anti-symmetrization) determined
by the semilatticeS. Note that if the zero groupO = {0} belongs toS thenH containsHO = C as a
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subspace, this is the vacuum sector. LetΠX be the orthogonal projection ofH ontoHX and let us think
of its adjointΠ∗

X as the natural embeddingHX ⊂ H. Then for any pairX,Y ∈ S we identify

CXY ≡ Π∗
XCXY ΠY ⊂ L(H). (4.40)

Thus we realize{CXY }X,Y ∈S as a linearly independent family of closed subspaces ofL(H) such that
C ∗

XY = CY X andCXZCZ′Y ⊂ CXY for all X,Y,Z, Z ′ ∈ S. Then by what we proved before, especially
Proposition 4.21, the space

∑
X,Y ∈S CXY is a∗-subalgebra ofL(H) hence its closure

C ≡ CS =
∑c

X,Y ∈SCXY . (4.41)

is aC∗-algebra of operators onH. Note that one may viewC as a matrix(CXY )X,Y ∈S .

In a similar way one may associate to the spacesTXY a closed self-adjoint subspaceT ⊂ L(H). It is
also useful to define a new subspaceT ◦ ⊂ L(H) by T ◦

XY = TXY if X ∼ Y andT ◦ = {0} if X 6∼ Y .
HereX ∼ Y meansX ⊂ Y or Y ⊂ X . ClearlyT ◦ is a closed self-adjoint linear subspace ofT .
Finally, letC be the diagonalC∗-algebraC ≡ ⊕XCX of operators onH.

Theorem 4.25. We haveC = T · C = C · T = T · T = T ◦ · T ◦.

Proof: The first two equalities are an immediate consequence of the Definition 4.18. To prove the third
equality we use Proposition 4.13, more precisely the relation

TXZ · TZY = TXY · CY (X ∩ Y ∩ Z) = CXY (X ∩ Y ∩ Z)

which holds for anyX,Y,Z. Then
∑c

ZTXZ · TZY =
∑c

ZCXY (X ∩ Y ∩ Z) =
∑c

ZCXY (Z) = CXY

which is equivalent toT · T = C . Now we prove the last equality in the proposition. We have
∑c

ZT
◦

XZ · T ◦
ZY = closure of the sum

∑
Z∼X
Z∼Y

TXZ · TZY .

In the last sum we have four possibilities:Z ⊃ X ∪ Y , X ⊃ Z ⊃ Y , Y ⊃ Z ⊃ X, andZ ⊂ X ∩ Y . In
the first three cases we haveZ ⊃ X ∩ Y henceTXZ · TZY = TXY by (4.24). In the last case we have
TXZ · TZY = TXY · CY (Z) by (4.22). This provesT ◦ · T ◦ = C .

Finally, we are able to equipC with anS-gradedC∗-algebra structure.

Theorem 4.26. For eachZ ∈ S the spaceC (Z) :=
∑c

X,Y ∈S CXY (Z) is a C∗-subalgebra ofC . The
family{C (Z)}Z∈S defines a gradedC∗-algebra structure onC .

Proof: We first prove the following relation:

CXZ(E) · CZY (F ) = CXY (E ∩ F ) if X,Y,Z ∈ S andE ⊂ X ∩ Z,F ⊂ Y ∩ Z. (4.42)

From Definition 4.14, Proposition 4.13, relations (4.8) and(4.15), andF ⊂ Y ∩ Z, we get

CXZ(E) · CZY (F ) = CX(E) · TXZ · TZY · CY (F )

= CX(E) · TXY · CY (Y ∩ Z) · CY (F )

= CX(E) · TXY · CY (F )

= TXY · CY (Y ∩ E) · CY (F )

= TXY · CY (Y ∩ E ∩ F ).

At the next to last step we usedCX(E) = CG(E)|X for someG ∈ S containing bothX andY and then
(4.15), (4.9). Finally, we useCY (Y ∩ E ∩ F ) = CY (E ∩ F ) and the Definition 4.14. This proves (4.42).
Due to the conventions (4.37), (4.38) we now get from (4.42) for E,F ∈ S

∑
Z∈SCXZ(E) · CZY (F ) = CXY (E ∩ F ).

ThusC (E)C (F ) ⊂ C (E∩F ), in particularC (E) is aC∗-algebra. It remains to be shown that the family
of C∗-algebras{C (E)}E∈S is linearly independent. LetA(E) ∈ C (E) such thatA(E) = 0 but for a
finite number ofE and assume that

∑
E A(E) = 0. Then for allX,Y ∈ S we have

∑
E ΠXA(E)Π∗

Y =
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0. ClearlyΠXA(E)Π∗
Y ∈ CXY (E) hence from Theorem 4.23 we getΠXA(E)Π∗

Y = 0 for all X,Y so
A(E) = 0 for all E.

4.6. Subsystems.We now point out some interesting subalgebras ofC . If T ⊂ S is any subset let

C
T
S ≡

∑c
X,Y ∈T CXY and HT ≡ ⊕X∈T HX . (4.43)

Note that the sum definingC T
S is already closed ifT is finite and thatC T

S is aC∗-algebra which lives on
the subspaceHT of H. In fact, if ΠT is the orthogonal projection ofH ontoHT then

C
T
S = ΠT CSΠT (4.44)

and this is aC∗-algebra becauseC ΠT C ⊂ C by Proposition 4.21. It is easy to check thatC T
S is a graded

C∗-subalgebra ofC supported by the ideal
⋃

X∈T SX generated byT in S. Indeed, we have

C
T
S

⋂
C (E) =

(∑c
X,Y ∈T CXY

) ⋂ (∑c
X,Y ∈SCXY (E)

)
=

∑c
X,Y ∈T CXY (E).

It is clear thatC is the inductive limit of the increasing family ofC∗-algebrasC T
S with finite T .

If T = {X} thenC T
S is just CX . If T = {X,Y } with distinct X,Y we get a simple but nontrivial

situation. Indeed, we shall haveHT = HX ⊕HY andC T
S may be thought as a matrix

C
T
S =

(
CX CXY

CY X CY

)
.

The grading is now explicitly defined as follows:

(1) If E ⊂ X ∩ Y then

C
T
S (E) =

(
CX(E) CXY (E)
CY X(E) CY (E)

)
.

(2) If E ⊂ X andE 6⊂ Y then

C
T
S (E) =

(
CX(E) 0

0 0

)
.

(3) If E 6⊂ X andE ⊂ Y then

C
T
S (E) =

(
0 0
0 CY (E)

)
.

The case whenT is of the formSX for someX ∈ S is especially interesting. We denoteC
#
X ≡ CSX

and we say that theSX -gradedC∗-algebra is theunfoldingof the algebraCX . More explicitly

C
#
X ≡

∑c
Y,Z∈SX

CY Z . (4.45)

The self-adjoint operators affiliated toCX live on the Hilbert spaceHX and are (an abstract version of)
Hamiltonians of anN -particle systemS with a fixedN (the configuration space isX andN is the
number of levels of the semilatticeSX ). The unfoldingC #

X lives on the “Boltzmann-Fock space”HSX

and is obtained by adding interactions which couple the subsystems ofS which have the groupsY ∈ SX

as configuration spaces andCY as Hamiltonian algebras.

Clearly C
#
X ⊂ C

#
Y if X ⊂ Y andC is the inductive limit of the algebrasC #

X . Below we give an
interesting alternative description ofC

#
X .

Theorem 4.27. Let NX = ⊕Y ∈SX
CY X be the direct sum of the HilbertCX -modulesCY X equipped

with the direct sum graded structure. ThenK(NX) ∼= C
#
X the isomorphism being such that the graded

structure onK(NX) defined in Theorem 3.8 is transported into that ofC
#
X . In other terms,C #

X is the
imprimitivity algebra of the full HilbertCX -moduleNX andCX andC

#
X are Morita equivalent.
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Proof: If Y ⊂ X thenC ∗
Y X · CY X = C Y

X andCY X is a full Hilbert C Y
X -module. Since theC Y

X are
ideals inCX and their sum overY ∈ SX is equal toCX we see thatNX becomes a full Hilbert graded
CX -module supported bySX , cf. Section 3. By Theorem 3.8 the imprimitivityC∗-algebraK(NX) is
equipped with a canonicalSX -graded structure.

We shall make a comment onK(M ) in the more general the case whenM = ⊕iMi is a direct sum of
Hilbert A -modulesMi, cf. §3.3. First, it is clear that we have

K(M ) =
∑c

ijK(Mj ,Mi) ∼= (K(Mj ,Mi))ij .

Now assume thatE , Ei are Hilbert spaces such thatA is a C∗-algebra of operators onE andMi is a
Hilbert C∗-submodule ofL(E , Ei) such thatAi ≡ M ∗

i · Mi is an ideal ofA . Then by Proposition 3.6
we haveK(Mj ,Mi) ∼= Mi · M

∗
j ⊂ L(Ej , Ei).

In our case we take

i = Y ∈ SX , Mi = CY X , A = CX , E = HX , Ei = HY , Ai = C
Y
X .

Then we get
K(Mj ,Mi) ≡ K(CZX ,CY X) ∼= CY X · C ∗

ZX = CY X · CXZ = CY Z

by Proposition 4.21.

Remark 4.28. We understood the role in our work of the imprimitivity algebra of a HilbertC∗-module
thanks to a discussion with Georges Skandalis: he recognized (a particular case of) the mainC∗-algebra
C we have constructed as the imprimitivity algebra of a certain Hilbert C∗-module. Theorem 4.27 is
a reformulation of his observation and of his abstract construction of graded HilbertC∗-modules in the
present framework (at the time of the discussion our definition of C was rather different because we
were working in a tensor product formalism). More generally, if M is a full Hilbert A -module then
the imprimitivity C∗-algebraK(M ) could also be interpreted as Hamiltonian algebra of a systemrelated
in some natural way to the initial one. For example, this is a natural method of “second quantizing”
N -body systems, i.e. introducing interactions which couplesubsystems corresponding to different cluster
decompositions of theN -body systems. This is clear in the physicalN -body situation discussed in§2.3

5. AN INTRINSIC DESCRIPTION

We begin with some preliminary facts on crossed products. Let X be a locally compact abelian group.
The next result, due to Landstad [Lad], gives an “intrinsic”characterization of crossed products of
X-algebras by the action ofX. We follow the presentation from [GI3, Theorem 3.7] which takes ad-
vantage of the fact thatX is abelian.

Theorem 5.1. A C∗-algebraA ⊂ LX is a crossed product if and only for eachA ∈ A we have:

• if k ∈ X∗ thenV ∗
k AVk ∈ A andlimk→0 ‖V

∗
k AVk − A‖ = 0,

• if x ∈ X thenUxA ∈ A andlimx→0 ‖(Ux − 1)A‖ = 0.

In this case one hasA = A ⋊ X for a uniqueX-algebraA ⊂ Cu
b(X) and this algebra is given by

A = {ϕ ∈ Cu
b(X) | ϕ(Q)S ∈ A and ϕ̄(Q)S ∈ A for all S ∈ TX}. (5.1)

Note that the second condition above is equivalent toTX · A = A , cf. Lemma 8.1.

The following consequence of Landstad’s theorem is an intrinsic description ofCX(Y ).

Theorem 5.2. CX(Y ) is the set ofA ∈ LX such thatU∗
y AUy = A for all y ∈ Y and:

(1) ‖U∗
xAUx − A‖ → 0 if x → 0 in X and‖V ∗

k AVk − A‖ → 0 if k → 0 in X∗,
(2) ‖(Ux − 1)A‖ → 0 if x → 0 in X and‖(Vk − 1)A‖ → 0 if k → 0 in Y ⊥.
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By “k → 0 in Y ⊥” we mean:k ∈ Y ⊥ andk → 0. Note that the second condition above is equivalent to:

there areθ ∈ TX , ψ ∈ CX(Y ) andB,C ∈ LX such thatA = θ(P )B = ψ(Q)C. (5.2)

For the proof, useY ⊥ ∼= (X/Y )∗ and apply Lemma 8.1. In particular, the last factorization shows that
for eachε > there is a compact setM ⊂ X such that‖χV (Q)A‖ < ε, whereV = X \ (M + Y ).

Proof of Theorem 5.2: Let A ⊂ LX be the set of operatorsA satisfying the conditions from the
statement of the theorem. We first prove thatA satisfies the two conditions of Theorem 5.1. LetA ∈ A .
We have to show thatAp ≡ V ∗

p AVp ∈ A and‖V ∗
p AVp − A‖ → 0 asp → 0. From the commutation

relationsUxVp = p(x)VpUx we get‖(Ux − 1)Ap‖ = ‖(Ux − p(x))A‖ → 0 if x → 0 and the second part
of condition 1 of the theorem is obviously satisfied byAp. Then fory ∈ Y

U∗
y ApUy = U∗

y V ∗
p AVpUy = V ∗

p U∗
y AUyVp = V ∗

p AVp = Ap.

Condition 2 is clear so we haveAp ∈ A and the fact that‖V ∗
p AVp − A‖ → 0 asp → 0 is obvious.

That A satisfies the second Landstad condition, namely that for each a ∈ X we haveUaA ∈ A and
‖(Ua − 1)A‖ → 0 asa → 0, is also clear because‖[Ua, Vk]‖ → 0 ask → 0.

Now we have to find the algebraA defined by (5.1). Assume thatϕ ∈ Cu
b(X) satisfiesϕ(Q)S ∈ A for

all S ∈ TX . SinceU∗
y ϕ(Q)Uy = ϕ(Q − y) we get(ϕ(Q) − ϕ(Q − y))S = 0 for all suchS and all

y ∈ Y , henceϕ(Q) − ϕ(Q − y) = 0 which meansϕ ∈ Cu
b(X/Y ). We shall prove thatϕ ∈ CX(Y ) by

reductio ad absurdum.

If ϕ /∈ CX(Y ) then there isµ > 0 and there is a sequence of pointsxn ∈ X such thatxn/Y → ∞
and |ϕ(xn)| > 2µ. From the uniform continuity ofϕ we see that there is a compact neighborhoodK
of zero inX such that|ϕ| > µ on

⋃
n(xn + K). Let K ′ be a compact neighborhood of zero such that

K ′ + K ′ ⊂ K and let us choose two positive not zero functionsψ, f ∈ Cc(K
′). We defineS ∈ TX by

Su = ψ ∗ u and recall that suppSu ⊂ suppψ + suppu. Thus suppSU∗
xn

f ⊂ K ′ + xn + K ′ ⊂ xn + K.
Now letV be as in the remarks after (5.2). SinceπY (xn) → ∞ we havexn +K ⊂ V for n large enough,
hence

‖χV (Q)ϕ(Q)SU∗
xn

f‖ ≥ µ‖SU∗
xn

f‖ = µ‖Sf‖ > 0.

On the other hand, for eachε > 0 one can chooseV such that‖χV (Q)ϕ(Q)S‖ < ε. Then we shall have
‖χV (Q)ϕ(Q)SU∗

xn
f‖ ≤ ε‖f‖ soµ‖Sf‖ ≤ ε‖f‖ for all ε > 0 which is absurd.

We now give a similar characterization ofCXY (Z) whereX,Y is a compatible pair of closed subgroups
of an lca groupG.

Theorem 5.3. CXY (Z) is the set ofT ∈ LXY satisfying the following conditions:

(1) U∗
z TUz = T if z ∈ Z and‖V ∗

k TVk − T‖ → 0 if k → 0 in (X + Y )∗

(2) ‖(Ux − 1)T‖ → 0 if x → 0 in X and‖T (Uy − 1)‖ → 0 if y → 0 in Y ,
(3) ‖(Vk − 1)T‖ → 0 if k → 0 in (X/Z)∗ and‖T (Vk − 1)‖ → 0 if k → 0 in (Y/Z)∗.

Before the proof we make some preliminary comments. We thinkof X + Y as a closed subgroup of
G ∈ S which containsX and Y as closed subgroups. Each characterk ∈ (X + Y )∗ defines by
restriction a characterk|X ∈ X∗ and the mapk 7→ k|X is a continuous open surjection. And similarly
if X is replaced byY . In (1) the operatorVk acts inL2(X) as multiplication byk|X and inL2(Y ) as
multiplication byk|Y . In the first part of (3) we takek ∈ X∗ and identify(X/Z)∗ with the orthogonal of
Z in X∗ and similarly for the second part.

Assumptions (2) and (3) of Theorem 5.3 are decay conditions in certain directions inP andQ space.
Indeed, by Lemma 8.1 condition (2) is equivalent to:

there areS1 ∈ TX , S2 ∈ TY andR1, R2 ∈ LXY such thatT = S1R1 = R2S2. (5.3)

Recall thatTX
∼= Co(X

∗) for example. Then condition (3) is equivalent to:

there areS1 ∈ CX(Z), S2 ∈ CY (Z) andR1, R2 ∈ LXY such thatT = S1R1 = R2S2. (5.4)
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Proof of Theorem 5.3:The setC of all the operators satisfying the conditions of the theorem is clearly a
closed subspace ofLXY . We haveCX,Y (Z) ⊂ C because (5.3), (5.4) are satisfied by anyT ∈ CXY (Z)
as a consequence of Theorem 4.15. Then we get:

CY (Z) = C
∗
XY (Z) · CXY (Z) ⊂ C

∗ · C , CX(Z) = CXY (Z) · C ∗
XY (Z) ⊂ C · C ∗.

We prove that equality holds in both these relations. We show, for example, thatA ≡ TT ∗ belongs to
CX(Z) if T ∈ C and for this we shall use Theorem 5.2 withY replaced byZ. That U∗

z AUz = A
for z ∈ Z is clear. From (5.3) we getA = S1R1R

∗
1S

∗
1 with S1 ∈ TX hence‖(Ux − 1)A‖ → 0 and

‖A(Ux − 1)‖ → 0 asx → 0 in X are obvious and imply‖U∗
xAUx − A‖ → 0. Then (5.4) implies

A = ψ(Q)C with ψ ∈ CX(Z) and boundedC hence (5.2) is satisfied.

ThatC CY (Z) ⊂ C is easily proven becauseT = SA has the properties (5.3) and (5.4) ifS belongs toC
andA to CY (Z), cf. Theorem 5.2. From what we have shown above we getC C ∗C ⊂ C CY (Z) ⊂ C so
C is a HilbertC∗-submodule ofLXY . On the other hand,CXY (Z) is a HilbertC∗-submodule ofLXY

such thatC ∗
XY (Z) · CXY (Z) = C ∗ · C andCXY (Z) · C ∗

XY (Z) = C · C ∗. SinceCXY (Z) ⊂ C we get
C = CXY (Z) from Proposition 3.5.

If Z = X ∩ Y then Theorem 5.3 gives an intrinsic description of the spaceTXY . For example:

Corollary 5.4. If X ⊃ Y thenTXY is the set ofT ∈ LXY satisfyingU∗
y TUy = T if y ∈ Y and such

that: UxT → T if x → 0 in X, V ∗
k TVk → T if k → 0 in X∗ andVkT → T if k → 0 in Y ⊥.

In the rest of this section we describe the structure of the objects introduced in Section 4 when the
subgroups are complemented, e.g. ifS consists of finite dimensional vector spaces.

We say thatZ is complemented inX if X = Z ⊕ E for some closed subgroupE of X. If X,Z
are equipped with Haar measures thenX/Z is equipped with the quotient Haar measure and we have
E ≃ X/Z. If Z is complemented inX andY thenCXY (Z) can be expressed as a tensor product.

Proposition 5.5. If Z is complemented inX andY then

CXY (Z) ≃ TZ ⊗ KX/Z,Y/Z . (5.5)

If Y ⊂ X thenTXY ≃ TY ⊗ L2(X/Y ) tensor product of HilbertC∗-modules.

Proof: Note first that the tensor product in (5.5) is interpreted as the exterior tensor product of the Hilbert
C∗-modulesTZ andKX/Z,Y/Z . LetX = Z⊕E andY = Z⊕F for some closed subgroupsE,F . Then,
as explained in§3.4, we may also view the tensor product as the norm closure inthe space of continuous
operators fromL2(Y ) ≃ L2(Z) ⊗ L2(F ) to L2(X) ≃ L2(Z) ⊗ L2(E) of the linear space generated by
the operators of the formT ⊗ K with T ∈ TZ andK ∈ KEF .

We now show that under the conditions of the propositionX + Y ≃ Z ⊕ E ⊕ F algebraically and
topologically. The natural mapθ : Z ⊕ E ⊕ F → Z + E + F = X + Y is a continuous bijective
morphism, we have to prove that it is open. SinceX,Y are compatible, the map (4.10) is a continuous
open surjection. If we representX ⊕ Y ≃ Z ⊕ Z ⊕ E ⊕ F then this map becomesφ(a, b, c, d) =
(a − b) + c + d. Let ψ = ξ ⊕ idE ⊕ idF whereξ : Z ⊕ Z → Z is given byξ(a, b) = a − b. Thenξ is
continuous surjective and open because ifU is an open neighborhood of zero inZ thenU − U is also an
open neighborhood of zero. Thusψ : (Z ⊕ Z) ⊕ E ⊕ F → Z ⊕ E ⊕ F is a continuous open surjection
andφ = θ ◦ ψ. So if V is open inZ ⊕ E ⊕ F then there is an openU ⊂ Z ⊕ Z ⊕ E ⊕ F such that
V = ψ(U) and thenθ(V ) = θ ◦ ψ(U) = φ(U) is open inZ + E + F .

Thus we may identifyL2(Y ) ≃ L2(Z) ⊗ L2(F ) andL2(X) ≃ L2(Z) ⊗ L2(E) and we must describe
the norm closure of the set of operatorsTXY (ϕ)ψ(Q) with ϕ ∈ Cc(X + Y ) (cf. the remark after (4.11)
and the fact thatX + Y is closed) andψ ∈ Co(Y/Z). SinceX + Y ≃ Z ⊕ E ⊕ F andY = Z ⊕ F it
suffices to describe the clspan of the operatorsTXY (ϕ)ψ(Q) with ϕ = ϕZ ⊗ ϕE ⊗ ϕF andϕZ , ϕE , ϕF
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continuous functions with compact support onZ,E, F respectively andψ = 1⊗η where1 is the function
identically equal to1 onZ andη ∈ Co(F ). Then, ifx = (a, c) ∈ Z ×E andy = (b, d) ∈ Z ×F , we get:

(TXY (ϕ)ψ(Q)u)(a, c) =

∫

Z×F

ϕZ(a − b)ϕE(c)ϕF (d)η(d)u(b, d)dbdd.

But this is justC(ϕZ) ⊗ |ϕE〉〈η̄ϕ̄F | where|ϕE〉〈η̄ϕ̄F | is a rank one operatorL2(F ) → L2(E) and
C(ϕZ) is the operator of convolution byϕZ onL2(Z).

If X ∩Y is complemented inX andY thenCXY can be expressed (non canonically) as a tensor product.

Proposition 5.6. If X ∩ Y is complemented inX andY then

CXY ≃ CX∩Y ⊗ KX/Y,Y/X .

In particular, if X ⊃ Y thenCXY ≃ CY ⊗HX/Y .

Proof: If X = (X ∩ Y ) ⊕ E andY = (X ∩ Y ) ⊕ F then we have to show thatCXY ≃ CX∩Y ⊗ KEF

where the tensor product may be interpreted either as the exterior tensor product of the HilbertC∗-
modulesCX∩Y andKEF or as the norm closure in the space of continuous operators from L2(Y ) ≃
L2(X ∩ Y ) ⊗ L2(F ) to L2(X) ≃ L2(X ∩ Y ) ⊗ L2(E) of the algebraic tensor product ofCX∩Y and
KEF . From Proposition 5.5 withZ = X ∩ Y we getTXY ≃ TX∩Y ⊗ KEF . The relations (4.34) and
the Definition 4.18 implyCXY = TXY · CX∩Y

Y and we clearly have

CX∩Y
Y =

∑c
Z⊂X∩Y CY (Z) ≃

∑c
Z⊂X∩Y CX∩Y (Z) ⊗ Co(F ) ≃ CX∩Y ⊗ Co(F ).

Then we get

CXY ≃ TX∩Y ⊗ KEF · CX∩Y ⊗ Co(F ) =
(
TX∩Y · CX∩Y

)
⊗

(
KEF · Co(F )

)

and this isCX∩Y ⊗ KEF .

If Z is complemented inX andY then Theorem 5.3 can be improved. We shall describe this improvement
only in the Euclidean case which will be useful in our treatment of nonrelativistic Hamiltonians. Thus
below we assume thatX,Y are subspaces of an Euclidean space (see§2.10 for notations). Note thatVk is
the operator of multiplication by the functionx 7→ ei〈x|k〉 where the scalar product〈x|k〉 is well defined
for anyx, k in the ambient spaceX .

Theorem 5.7. CXY (Z) is the set ofT ∈ LXY satisfying:

(1) U∗
z TUz = T for z ∈ Z and‖V ∗

z TVz − T‖ → 0 if z → 0 in Z,
(2) ‖(Ux − 1)T‖ → 0 if x → 0 in X and‖(Vk − 1)T‖ → 0 if k → 0 in X/Z.

Remark 5.8. Condition 2 may be replaced by

(2′) ‖T (Uy − 1)‖ → 0 if y → 0 in Y and‖T (Vk − 1)‖ → 0 if k → 0 in Y/Z.

This will be clear from the next proof.

Proof: Let F ≡ FZ be the Fourier transformation in the spaceZ, this is a unitary operator in the space
L2(Z) which interchanges the position and momentum observablesQZ , PZ . We denote also byF the
operatorsF⊗1HX/Z

andF⊗1HY/Z
which are unitary operators in the spacesHX andHY due to (2.16).

If S = FTF−1 thenS satisfies the following conditions:

(i) V ∗
z SVz = S for z ∈ Z, ‖(Vz − 1)S‖ → 0 if z → 0 in Z, and‖UzSU∗

z −S‖ → 0 if z → 0 in Z;
(ii) ‖(Ux − 1)S‖ → 0 and‖(Vx − 1)S‖ → 0 if x → 0 in X/Z.

For the proof, observe that the first part of condition (2) maybe written as the conjunction of the two
relations‖(Uz − 1)T‖ → 0 if z → 0 in Z and‖(Ux − 1)T‖ → 0 if x → 0 in X/Z. We shall work in the
representations

HX = L2(Z;HX/Z) and HY = L2(Z;HY/Z). (5.6)
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From the relationV ∗
z SVz = S for all z ∈ Z it follows that there is a bounded weakly measurable function

S(·) : Z → LX/Z,Y/Z such that in the representations (5.6)S is the operator of multiplication byS(·).
Then‖UzSU∗

z − S‖ → 0 if z → 0 in Z means that the functionS(·) is uniformly continuous. And
clearly‖(Vz − 1)S‖ → 0 if z → 0 in Z is equivalent to the fact thatS(·) tends to zero at infinity. Thus
we see thatS(·) ∈ Co(Z;LX/Z,Y/Z). The condition (ii) can now be written

sup
z∈Z

(
‖(Ux − 1)S(z)‖ + ‖(Vx − 1)S(z)‖

)
→ 0 if x → 0 in X/Z.

From the Riesz-Kolmogorov theorem it follows that eachS(z) is a compact operator. Thus we have
S(·) ∈ Co(Z;KX/Z,Y/Z) which impliesT ∈ CXY (Z) by Proposition 5.5.

Remark 5.9. SinceS(·) is continuous and tends to zero at infinity, for eachε > 0 there are points
z1, . . . , zn ∈ Z and complex functionsϕ1, . . . , ϕn ∈ Cc(Z) such that

‖S(z) −
∑

kϕk(z)S(zk)‖ ≤ ε ∀z ∈ Z.

The operatorsS(zk) being compact, applying once again the Riesz-Kolmogorov theorem we get

sup
z∈Z

(
‖S(z)(Uy − 1)‖ + ‖S(z)(Vy − 1)‖

)
→ 0 if y → 0 in Y/Z.

This explains why the second parts of conditions (2) and (3) of Theorem 5.3 is not needed.

6. AFFILIATED OPERATORS

In this section we give examples of self-adjoint operators affiliated to the algebraC constructed in Section
4 and then we give a formula for their essential spectrum. We refer to§3.1 for terminology and basic
results related to the notion of affiliation that we use and to[ABG, GI1, DaG3] for details.

We recall that a self-adjoint operatorH on a Hilbert spaceH is strictly affiliated to a C∗-algebra of
operatorsA onH if (H + i)−1 ∈ A (thenϕ(H) ∈ A for all ϕ ∈ Co(R)) and ifA is the clspan of the
elementsϕ(H)A with ϕ ∈ Co(R) andA ∈ A . This class of operators has the advantage that each time
A is non-degenerately represented on a Hilbert spaceH′ with the help of a morphismP : A → L(H′),
the observablePH is represented by a usual (densely defined) self-adjoint operator onH′.

The diagonal algebra
Td ≡ (TS)d = ⊕X∈STX (6.1)

has a simple physical interpretation: this is theC∗-algebra generated by the kinetic energy operators.
SinceCXX = CX ⊃ CX(X) = TX we see thatTd is aC∗-subalgebra ofC . From (4.25), (4.20), (4.21)
and the Cohen-Hewitt theorem we get

C (Z)Td = TdC (Z) = C (Z) ∀Z ∈ S and C Td = TdC = C . (6.2)

In other terms,Td acts non-degenerately† on eachC (Z) and onC . It follows that a self-adjoint operator
strictly affiliated toTd is also strictly affiliated toC .

For eachX ∈ S let hX : X∗ → R be a continuous function such that|hX(k)| → ∞ if k → ∞ in
X∗. Then the self-adjoint operatorKX ≡ hX(P ) on HX is strictly affiliated toTX and the norm of
(KX + i)−1 is equal tosupk(h2

X(k) + 1)−1/2. Let K ≡
⊕

X∈S KX , this is a self-adjoint operatorH.
ClearlyK is affiliated toTd if and only if

lim
X→∞

supk(h2
X(k) + 1)−1/2 = 0 (6.3)

and thenK is strictly affiliated toTd (the setS is equipped with the discrete topology). If the functions
hX are positive this means thatmin hX tends to infinity whenX → ∞. One could avoid such a condition
by considering an algebra larger thenC such as to contain

∏
X∈S TX , but we shall not develop this here.

† Note that ifS has a largest elementX then the algebraC (X ) acts on eachC (Z) but this action is degenerate.



ON THE SPECTRAL ANALYSIS OF MANY-BODY SYSTEMS 37

Now letH = K + I with I ∈ C (or in the multiplier algebra) a symmetric element. Then

(λ − H)−1 = (λ − K)−1
(
1 − I(λ − K)−1

)−1
(6.4)

if λ /∈ Sp(H) ∪ Sp(K) . ThusH is strictly affiliated toC . We interpretH as the Hamiltonian of our
system of particles when the kinetic energy isK and the interactions between particles are described byI.
Even in the simple caseI ∈ C these interactions are of a very general nature being a mixture ofN -body
and quantum field type interactions (which involve creationand annihilation operators so the number of
particles is not preserved).

We shall now use Theorem 3.3 in order to compute the essentialspectrum of an operator likeH. The
case of unbounded interactions will be treated later on. LetC≥E be theC∗-subalgebra ofC determined
by E ∈ S according to the rules of§3.1. More explicitly, we set

C≥E =
∑c

F⊃E C (F ) ∼=
(∑c

F⊃ECXY (F )
)
X∩Y ⊃E

(6.5)

and note thatC≥E lives on the subspaceH≥E =
⊕

X⊃E HX of H. Since in the second sum from (6.5)
the groupF is such thatE ⊂ F ⊂ X ∩Y the algebraC≥E is strictly included in the algebraCT obtained
by takingT = {F ∈ S | F ⊃ E} in (4.43).

Let P≥E be the canonical idempotent morphism ofC ontoC≥E introduced in§3.1. We consider the
self-adjoint operator on the Hilbert spaceH≥E defined as follows:

H≥E = K≥E + I≥E where K≥E = ⊕X≥EKX and I≥E = P≥EI. (6.6)

ThenH≥E is strictly affiliated toC≥E and it follows easily from (6.4) that

P≥Eϕ(H) = ϕ(H≥E) ∀ϕ ∈ Co(R). (6.7)

Now let us assume that the groupO = {0} belongs toS. Then we have

C (O) = K(H). (6.8)

Indeed, from (4.25) we getCXY (O) = TXY · Co(Y ) = KXY which implies the preceding relation. If
we also assume thatS is atomic and we denoteP(S) its set of atoms, then from Theorem 3.2 we get a
canonical embedding

C /K(H) ⊂
∏

E∈P(S) C≥E (6.9)

defined by the morphismP ≡ (P≥E)E∈P(S). Then from (3.7) we obtain:

Spess(H) =
⋃

E∈P(S)Sp(H≥E). (6.10)

Our next purpose is to prove a similar formula for a certain class of unbounded interactionsI.

Let G ≡ GS = D(|K|1/2) be the form domain ofK equipped with the graph topology. ThenG ⊂ H
continuously and densely so after the Riesz identification of H with its adjoint spaceH∗ we get the usual
scaleG ⊂ H ⊂ G∗ with continuous and dense embeddings. Let us denote

〈K〉 = |K + i| =
√

K2 + 1. (6.11)

Then〈K〉1/2 is a self-adjoint operator onH with domainG and〈K〉 induces an isomorphismG → G∗.
The following result is a straightforward consequence of Theorem 2.8 and Lemma 2.9 from [DaG3].

Theorem 6.1. Let I : G → G∗ be a continuous symmetric operator and let us assume that there are real
numbersµ, a with 0 < µ < 1 such that one of the following conditions is satisfied:

(i) ±I ≤ µ|K + ia|,
(ii) K is bounded from below andI ≥ −µ|K + ia|.

LetH = K +I be the form sum ofK andI, soH has as domain the set ofu ∈ G such thatKu+Iu ∈ H
and acts asHu = Ku + Iu. ThenH is a self-adjoint operator onH. If there isα > 1/2 such that
〈K〉−1/2I〈K〉−α ∈ C thenH is strictly affiliated toC . If O ∈ S and the semilatticeS is atomic then

Spess(H) =
⋃

E∈P(S)Sp(H≥E). (6.12)
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The last assertion of the theorem follows immediately from Theorem 3.3 and is a general version of
the HVZ theorem. In order to have a more explicit descriptionof the observablesH≥E ≡ P≥EH we
now prove an analog of Theorem 3.5 from [DaG3]. We cannot use that theorem in our context for three
reasons: first we did not suppose thatS has a maximal element, then even ifS has a maximal elementX
the action of the corresponding algebraC (X ) on the algebrasC (E) is degenerate, and finally our “free”
operatorK is not affiliated toC (X ).

Theorem 6.2. For eachE ∈ S let I(E) ∈ L(G,G∗) be a symmetric operator such that:

(i) 〈K〉−1/2I(E)〈K〉−α ∈ C (E) for someα > 1/2 independent ofE,
(ii) there are real positive numbersµE , a such that either±I(E) ≤ µE |K + ia| for all E or K is

bounded from below andI(E) ≥ −µE |K + ia| for all E,
(iii) we have

∑
E µE ≡ µ < 1 and the series

∑
E I(E) ≡ I is norm summable inL(G,G∗).

Let us setI≥E =
∑

F≥E I(F ). Define the self-adjoint operatorH = K + I onH as in Theorem 6.1 and
define similarly the self-adjoint operatorH≥E = K≥E + I≥E onH≥E . Then the operatorH is strictly
affiliated toC , the operatorH≥E is strictly affiliated toC≥E , and we haveP≥EH = H≥E .

Proof: We shall consider only the case when±I(E) ≤ µE |K + ia| for all E. The more singular
situation whenK is bounded from below but there is no restriction on the positive part of the operators
I(E) (besides summability) is more difficult but the main idea hasbeen explained in [DaG3].

We first make some comments to clarify the definition of the operatorsH andH≥E . Observe that our
assumptions imply±I ≤ µ|K + ia| hence if we set

Λ ≡ |K + ia|−1/2 = (K2 + a2)−1/4 ∈ Td

then we obtain
±〈u|Iu〉 ≤ µ〈u||K + ia|u〉 = µ‖|K + ia|1/2u‖ = µ‖Λ−1u‖

which is equivalent to±ΛIΛ ≤ µ or ‖ΛIΛ‖ ≤ µ. In particular we may use Theorem 6.1 in order to
define the self-adjoint operatorH. Moreover, we have

〈K〉−1/2I〈K〉−α =
∑

E〈K〉−1/2I(E)〈K〉−α ∈ C

because the series is norm summable inL(H). ThusH is strictly affiliated toC .

In order to defineH≥E we first make a remark onI≥E . If we setGX = D(|KX |−1/2) and if we equipG
andGX with the norms

‖u‖G = ‖〈K〉1/2u‖H and ‖u‖GX
= ‖〈KX〉1/2u‖HX

respectively then clearlyG = ⊕XGX andG∗ = ⊕XG∗
X where the sums are Hilbertian direct sums

andG∗ andG∗
X are equipped with the dual norms. Then eachI(F ) may be represented as a matrix

I(F ) = (IXY (F ))X,Y ∈S of continuous operatorsIXY (E) : GY → G∗
X . Clearly

〈K〉−1/2I(F )〈K〉−α =
(
〈KX〉−1/2IXY (F )〈KY 〉−α

)

X,Y ∈S

and since by assumption (i) this belongs toC (F ) we see thatIXY (F ) = 0 if X 6⊃ F or Y 6⊃ F . Now
fix E and letF ⊃ E. Then, when viewed as a sesquilinear form,I(F ) is supported by the subspace
H≥E and has domainG≥E = D(|K≥E |

1/2. It follows that I≥E is a sesquilinear form with domain
G≥E supported by the subspaceH≥E and may be thought as an element ofL(G≥E ,G∗

≥E) such that
±I≥E ≤ µ|K≥E + ia| because

∑
F⊃E µF ≤ µ. To conclude, we may now defineH≥E = K≥E + I≥E

exactly as in the case ofH and get a self-adjoint operator onH≥E strictly affiliated toC≥E . Note that
this argument also gives

〈K〉−1/2I(F )〈K〉−1/2 = 〈K≥E〉
−1/2I(F )〈K≥E〉

−1/2. (6.13)

It remains to be shown thatP≥EH = H≥E . If we setR ≡ (ia−H)−1 andR≥E ≡ (ia−H≥E)−1 then
this is equivalent toP≥ER = R≥E . Let us set

U = |ia − K|(ia − K)−1 = Λ−2(ia − K)−1, J = ΛIΛU.
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ThenU is a unitary operator and‖J‖ < 1, so we get a norm convergent series expansion

R = (ia − K − I)−1 = ΛU(1 − ΛIΛU)−1Λ =
∑

n≥0ΛUJnΛ

which implies
P≥E(R) =

∑
n≥0P≥E

(
ΛUJnΛ

)

the series being norm convergent. Thus it suffices to prove that for eachn ≥ 0

P≥E

(
ΛUJnΛ

)
= Λ≥E(J≥E)nΛ≥E (6.14)

whereJ≥E = Λ≥EI≥EΛ≥EU≥E . HereΛ≥E andU≥E are associated toK≥E in the same wayΛ andK
are associated toK. Forn = 0 this is obvious becauseP≥EK = K≥E . If n = 1 this is easy because

ΛUJΛ = ΛUΛIΛUΛ = (ia − K)−1I(ia − K)−1 (6.15)

= [(ia − K)−1〈K〉1/2] · [〈K〉−1/2I〈K〉−α] · [〈K〉α(ia − K)−1]

and it suffices to note thatP≥E(〈K〉−1/2I(F )〈K〉−α) = 0 if F 6⊃ E and to use (6.13) forF ⊃ E.

To treat the general case we make some preliminary remarks. If J(F ) = ΛI(F )ΛU thenJ =
∑

F J(F )
where the convergence holds in norm onH because of the condition (iii). Then we have a norm convergent
expansion

ΛUJnΛ =
∑

F1,...,Fn∈SΛUJ(F1) . . . J(Fn)Λ.

Assume that we have shownΛUJ(F1) . . . J(Fn)Λ ∈ C (F1 ∩ · · · ∩ Fn). Then we get

P≥E(ΛUJnΛ) =
∑

F1≥E,...,Fn≥EΛUJ(F1) . . . J(Fn)Λ (6.16)

because if oneFk does not containE then the intersectionF1 ∩ · · · ∩Fn does not containE henceP≥E

applied to the corresponding term gives0. Because of (6.13) we haveJ(F ) = Λ≥EI(F )Λ≥EU≥E if
F ⊃ E and we may replace everywhere in the right hand side of (6.16)Λ andU by Λ≥E andU≥E . This
clearly proves (6.14).

Now we prove the stronger factΛUJ(F1) . . . J(Fn) ∈ C (F1 ∩ · · · ∩ Fn). If n = 1 this follows from
a slight modification of (6.15): the last factor on the right hand side of (6.15) is missing but is not
needed. Assume that the assertion holds for somen. SinceK is strictly affiliated toTd andTd acts non-
degenerately on eachC (F ) we may use the Cohen-Hewitt theorem to deduce that there isϕ ∈ Co(R)
such thatΛUJ(F1) . . . J(Fn) = Tϕ(K) for someT ∈ C (F1 ∩ · · · ∩ Fn). Then

ΛUJ(F1) . . . J(Fn)J(Fn+1) = Tϕ(K)J(Fn+1)

hence it suffices to prove thatϕ(K)J(F ) ∈ C (F ) for anyF ∈ S and anyϕ ∈ Co(R). But the set of
ϕ which have this property is a closed subspace ofCo(R) which clearly contains the functionsϕ(λ) =
(λ − z)−1 if z is not real hence is equal toCo(R).

Remark 6.3. Choosingα > 1/2 allows one to consider perturbations ofK which are of the same order
asK, e.g. in theN -body situations one may add to the Laplacian∆ on operator like∇∗M∇ where the
functionM is bounded measurable and has the structure of anN -body type potential, cf. [DaG3, DeIf].

The only assumption of Theorem 6.2 which is really relevant is 〈K〉−1/2I(E)〈K〉−α ∈ C (E). We shall
give below more explicit conditions which imply it. If we change notationE → Z and use the formalism
introduced in the proof of Theorem 6.2 we have

I(Z) = (IXY (Z))X,Y ∈S with IXY (Z) : GY → G∗
X continuous. (6.17)

We are interested in conditions onIXY (Z) which imply

〈KX〉−1/2IXY (Z)〈KX〉−α ∈ CXY (Z). (6.18)

For this we shall use Theorem 5.3 which gives a simple intrinsic characterization ofCXY (Z).

The construction which follows is interesting only ifX is not a discrete group, otherwiseX∗ is compact
and many conditions are trivially satisfied. We shall use weights only in order to avoid imposing on the
functionshX regularity conditions stronger than continuity.
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A positive functionw on X∗ is a weight if limk→∞ w(k) = ∞ andw(k + p) ≤ ω(k)w(p) for some
functionω onX∗ and allk, p. We say thatw is regular if one may chooseω such thatlimk→0 ω(k) = 1.
The example one should have in mind whenX is an Euclidean space isw(k) = 〈k〉s for somes > 0.
Note that we haveω(−k)−1 ≤ w(k + p)w(p)−1 ≤ ω(k) hence ifw is a regular weight then

θ(k) ≡ sup
p∈X∗

|w(k + p) − w(p)|

w(p)
=⇒ lim

k→0
θ(k) = 0. (6.19)

It is clear that ifw is a regular weight andσ ≥ 0 is a real number thenwσ is also a regular weight.

We say that two functionsf, g defined on a neighborhood of infinity ofX∗ areequivalentand we write
f ∼ g if there are numbersa, b such thata|f(k)| ≤ |g(k)| ≤ b|f(k)|. Then|f |σ ∼ |g|σ for all σ > 0.

We denoteGσ
X = D(|KX |σ/2) andG−σ

X ≡ (Gσ
X)∗ with σ ≥ 1. In particularG1

X = GX andG−1
X = G∗

X .

Proposition 6.4. Assume thathX , hY are equivalent to regular weights. LetZ ⊂ X∩Y and letIXY (Z)
be a continuous mapGY → G∗

X such that

(1) UzIXY (Z) = IXY (Z)Uz if z ∈ Z andV ∗
k IXY (Z)Vk → IXY (Z) if k → 0 in (X + Y )∗,

(2) (Ux − 1)IXY (Z) → 0 if x → 0 in X and(Vk − 1)IXY (Z) → 0 if k → 0 in (X/Z)∗,

where the limits hold in norm inL(Gσ
Y ,G−1

X ) for someσ ≥ 1. Then(6.18)holds withα = σ/2.

Proof: We begin with some general comments on weights. Letw be a regular weight and letGX be the
domain of the operatorw(P ) in HX equipped with the norm‖w(P )u‖. ThenGX is a Hilbert space and
if G∗

X is its adjoint space then we get a scale of Hilbert spacesGX ⊂ HX ⊂ G∗
X with continuous and

dense embeddings. SinceUx commutes withw(P ) it is clear that{Ux}x∈X induces strongly continuous
unitary representation ofX onGX andG∗

X . Then

‖Vku‖GX
= ‖w(k + P )u‖ ≤ ω(k)‖u‖GX

from which it follows that{Vk}k∈X∗ induces by restriction and extension strongly continuous represen-
tations ofX∗ in GX andG∗

X . Moreover, as operators onHX we have

|V ∗
k w(P )−1Vk − w(P )−1| = |w(k + P )−1 − w(P )−1| = |w(k + P )−1(w(P ) − w(k + P ))w(P )−1|

≤ ω(−k)|(w(P ) − w(k + P ))w(P )−2| ≤ ω(−k)θ(k)w(P )−1. (6.20)

Now letwX , wY be regular weights equivalent to|hX |1/2, |hY |1/2 and let us setS = IXY (Z). Then

〈KX〉−1/2S〈KY 〉−α = 〈KX〉−1/2wX(P ) · wX(P )SwY (P )−2α · wY (P )2α〈KY 〉−α

and 〈hX〉−1/2wX , 〈hY 〉−αw2α
Y and their inverses are bounded continuous functions onX,Y . Since

CXY (Z) is a non-degenerate leftTX -module and rightTY -module we may use the Cohen-Hewitt theo-
rem to deduce that (6.18) is equivalent to

wX(P )−1IXY (Z)wY (P )−σ ∈ CXY (Z) (6.21)

whereσ = 2α. To simplify notations we setWX = wX(P ),WY = wσ
Y (P ). We also omit the index

X or Y for the operatorsWX ,WY since their value is obvious from the context. In order to show
W−1SW−1 ∈ CXY (Z) we check the conditions of Theorem 5.3 withT = W−1SW−1. The first part
of condition (2) of the theorem is verified by the hypothesis (2) of the present proposition. We may
assumeσ > 1 and then hence the second part of condition (2) of the theoremfollows from

‖T (Uy − 1)‖ ≤ ‖W−1IXY (Z)w−1
Y (P )‖ → 0‖(Uy − 1)w1−σ

Y (P )‖ if y → 0.

To check the second part of condition (1) of the theorem setWk = V ∗
k WVk andSk = V ∗

k SVk and write

V ∗
k TVk − T = W−1

k SkW−1
k − W−1SW−1

= (W−1
k − W−1)SkW−1

k + W−1(Sk − S)W−1
k + W−1S(W−1

k − W−1).
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Now if we use (6.20) and setξ(k) = ω(−k)θ(k) we get

‖V ∗
k TVk − T‖ ≤ ξ(k)‖W−1SkW−1

k ‖ + ‖W−1(Sk − S)W−1‖‖WW−1
k ‖ + ξ(k)‖W−1SW−1‖

which clearly tends to zero ifk → 0. Condition (3) of Theorem 5.3 follows by a similar argument.

Now let H be defined according to the algorithm of§2.8. Then condition (i) of Theorem 6.2 will be
satisfied for allα > 1/2. Indeed, from Proposition 6.4 we get〈K〉−1/2ΠT I(Z)ΠT 〈K〉−α ∈ C (Z) for
any finiteT and this operator converges in norm to〈K〉−1/2I(Z)〈K〉−α. Thus all conditions of Theorem
6.2 are fulfilled by the HamiltonianH = K + I and soH is strictly affiliated toC .

7. THE MOURRE ESTIMATE

7.1. Proof of the Mourre estimate. From now on we work in the framework of the second part of
Section 2, so we assume thatS is a finite semilattice of finite dimensional subspaces of an Euclidean
space. In this subsection we prove the Mourre estimate for nonrelativistic Hamiltonians. The strategy of
the proof is that introduced in [BG2] and further developed in [ABG, DaG2] (gradedC∗-algebras over
infinite semilattices and dispersive Hamiltonians are considered in Section 5 from [DaG2]). We choose
the generatorD of the dilation groupWτ in H as conjugate operator for reasons explained below. For
special types of interactions, similar to those occurring in quantum field models, which are allowed by our
formalism, better choices can be made, but at a technical level there is nothing new in that with respect to
[Geo] (these special interactions correspond to distributive semilatticesS).

The dilations implement a group of automorphisms of theC∗-algebraC which is compatible with the
grading, i.e. it leaves invariant each componentC (Z) of C . In fact, it is clear thatW ∗

τ CXY (Z)Wτ =
CXY (Z) for all X,Y,Z henceW ∗

τ C (Z)Wτ = C (Z). This fact plays a fundamental role in the proof
of the Mourre estimate for operators affiliated toC and explains the choice ofD as conjugate operator.
Moreover, for eachT ∈ C the mapτ 7→ W ∗

τ TWτ is norm continuous. We can compute explicitly the
function ρ̂ H thanks to the relation

W ∗
τ ∆XWτ = eτ∆X or [∆X , iD] = ∆X (7.1)

We say that a self-adjoint operatorH is of classC1(D) or of classC1
u(D) if W ∗

τ RWτ as a function ofτ
is of classC1 strongly or in norm respectively. HereR = (H − z)−1 for somez outside the spectrum of
H. The formal relation

[D,R] = R[H,D]R (7.2)

can be given a rigorous meaning as follows. IfH is of classC1(D) then the intersectionD of the domains
of the operatorsH andD is dense inD(H) and the sesquilinear form with domainD associated to the
formal expressionHD−DH is continuous for the topology ofD(H) so extends uniquely to a continuous
sesquilinear form on the domain ofH which is denoted[H,D]. This defines the right hand side of (7.2).
The left hand side can be defined for example asi d

dτ W ∗
τ RWτ |τ=0.

For Hamiltonians as those considered here it is easy to decide thatH is of classC1(D) in terms of
properties of the commutator[H,D]. Moreover, the following is easy to prove:if H is affiliated toC

thenH is of classC1
u(D) if and only ifH is of classC1(D) and[R,D] ∈ C .

Let H be of classC1(D) andλ ∈ R. Then for eachθ ∈ Cc(R) with θ(λ) 6= 0 one may find a real number
a and a compact operatorK such that

θ(H)∗[H, iD]θ(H) ≥ a|θ(H)|2 + K. (7.3)

Definition 7.1. The upper bound̂ρ H(λ) of the numbersa for which such an estimate holds isthe best
constant in the Mourre estimate forH at λ. Thethreshold setof H (relative toD) is the closed real set

τ(H) = {λ | ρ̂ H(λ) ≤ 0} (7.4)

One says thatD is conjugate toH atλ if ρ̂ H(λ) > 0.
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The setτ(H) is closed because the functionρ̂ H : R →] −∞,∞] is lower semicontinuous.

To each closed real setA we associate the functionNA : R → [−∞,∞[ defined by

NA(λ) = sup{x ∈ A | x ≤ λ}. (7.5)

We make the conventionsup ∅ = −∞. ThusNA may take the value−∞ if and only if A is bounded
from below and thenNA(λ) = −∞ if and only if λ < min A. The functionNA is further discussed
during the proof of Lemma 7.3.

Nonrelativistic many-body Hamiltonians have been introduced in Definition 2.19. Letev(T ) be the set
of eigenvalues of an operatorT .

Theorem 7.2. Let S be finite and letH = HS be a nonrelativistic many-body Hamiltonian of class
C1

u(D). Thenρ̂ H(λ) = λ − Nτ(H)(λ) for all real λ andτ(H) is a closedcountablereal set given by

τ(H) =
⋃

X 6=Oev(HS/X). (7.6)

Proof: We first treat the caseO ∈ S. We need some facts which are discussed in detail in Sections7.2,
8.3 and 8.4 from [ABG] (see pages 51–61 in [BG2] for a shorter presentation).

(i) For each realλ let ρH(λ) be the upper bound of the numbersa for which an estimate like (7.3) but
with K = 0 holds. This defines a lower semicontinuous functionρH : R →] − ∞,∞] hence the set
κ(H) = {λ | ρH(λ) ≤ 0} is a closed real set calledcritical set of H (relative toD). We clearly have
ρH ≤ ρ̂ H and soτ(H) ⊂ κ(H).

(ii) Let µ(H) be the set of eigenvalues ofH such that̂ρ H(λ) > 0. Thenµ(H) is a discrete subset of
ev(H) consisting of eigenvalues of finite multiplicity. This is essentially the virial theorem.

(iii) There is a simple and rather unexpected relation between the functionsρH andρ̂ H : they are “almost”
equal. In fact,ρH(λ) = 0 if λ ∈ µ(H) andρH(λ) = ρ̂ H(λ) otherwise. In particular

κ(H) = τ(H) ∪ ev(H) = τ(H) ⊔ µ(H) (7.7)

where⊔ denotes disjoint union.

(iv) This step is easy but rather abstract and theC∗-algebra setting really comes into play. We assume
thatH is affiliated to our algebraC . The preceding arguments did not require more than theC1(D) class.
Now we requireH to be of classC1

u(D). Then the operatorsH≥X are also of classC1
u(D) and we have

the important relation (Theorem 8.4.3 in [ABG] or Theorem 4.4 in [BG2])

ρ̂ H = min
X∈P(S)

ρH≥X
.

To simplify notations we adopt the abbreviationsρH≥X
= ρ≥X and instead ofX ∈ P(S) we write

X ⋗ O, which should be read “X coversO”. For coherence with later notations we also setρ̂ H = ρ̂ S .
So (7.8) may be written

ρ̂ S = min
X⋗O

ρ≥X . (7.8)

(v) From (7.1) and (2.30) we get

H≥X = ∆X ⊗ 1 + 1 ⊗ HS/X , [H≥X , iD] = ∆X ⊗ 1 + 1 ⊗ [D, iHS/X ].

Recall that we denoteD the generator of the dilation group independently of the space in which it acts.
We note that the formal argument which gives the second relation above can easily be made rigorous but
this does not matter here. Indeed, sinceH≥X is of classC1

u(D) and by using the first relation above, one
can easily show thatHS/X is also of classC1

u(D) (see the proof of Lemma 9.4.3 in [ABG]). Now we
may use Theorem 8.3.6 from [ABG] to get

ρ≥X(λ) = inf
λ1+λ2=λ

(
ρ∆X

(λ1) + ρS/X(λ2)
)
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whereρS/X = ρHS/X
. But clearly ifX 6= O we haveρ∆X

(λ) = ∞ if λ < 0 andρ∆X
(λ) = λ if λ ≥ 0.

Thus we get
ρ≥X(λ) = inf

µ≤λ

(
λ − µ + ρS/X(µ)

)
= λ − sup

µ≤λ

(
µ − ρS/X(µ)

)
. (7.9)

(vi) Now from (7.8) and (7.9) we get

λ − ρ̂ S(λ) = max
X⋗O

sup
µ≤λ

(
µ − ρS/X(µ)

)
. (7.10)

Finally, we are able to prove the formulâρ H(λ) = λ−Nτ(H)(λ) by induction over the semilatticeS. In
other terms, we assume that the formula is correct ifH is replaced byHS/X for all X 6= O and we prove
it for H = HS/O. So we have to show that the right hand side of (7.10) is equal to Nτ(H)(λ).

According to step (iii) above we haveρS/X(µ) = 0 if µ ∈ µ(HS/X) andρS/X(µ) = ρ̂ S/X(µ) other-
wise. Since by the explicit expression ofρ̂ S/X this is a positive function and sinceρH(λ) ≤ 0 is always
true if λ is an eigenvalue, we getµ − ρS/X(µ) = µ if µ ∈ ev(HS/X) and

µ − ρS/X(µ) = µ − ρ̂ S/X(µ) = Nτ(HS/X)(µ)

otherwise. From the first part of Lemma 7.3 below we get

sup
µ≤λ

(
µ − ρS/X(µ)

)
= Nev(HS/X)∪τ(HS/X).

If we use the second part of Lemma 7.3 then we see that

max
X⋗O

sup
µ≤λ

(
µ − ρS/X(µ)

)
= max

X⋗O
Nev(HS/X)∪τ(HS/X)

is theN function of the set
⋃

X⋗O

(
ev(HS/X) ∪ τ(HS/X)

)
=

⋃

X⋗O

(
ev(HS/X)

⋃ ⋃

Y >X

ev(HS/Y )

)
=

⋃

X>O

ev(HS/X)

which finishes the proof of̂ρ H(λ) = λ − Nτ(H)(λ) hence the proof of Theorem 7.2 in the caseO ∈ S.

No assumeO /∈ S and letE = minS. ThenO ∈ S/E so we may use the preceding result forHS/E .
Moreover, we haveH = ∆E ⊗ 1 + 1 ⊗ HS/E . Thusev(H) = ∅, ρ̂ H = ρH , and we may use a relation
similar to (7.9) to get

λ − ρ̂ H(λ) = sup
µ≤λ

(µ − ρS/E(µ)).

By what we have shown before we haveµ − ρS/E(µ) = Nτ(HS/E)(µ) if µ /∈ µ(HS/E) and otherwise
µ − ρS/E(µ) = µ. From Lemma 7.3 we getλ − ρ̂ H(λ) = Nτ(HS/E)∪µ(HS/E). But from (7.7) we get
τ(HS/E) ∪ µ(HS/E) = τ(HS/E) ∪ ev(HS/E). From (7.6) we get

τ(HS/E) =
⋃

Y ∈S/E,Y 6=Oev(H(S/E)/Y ) =
⋃

X∈S,X 6=Eev(HS/X)

because if we writeY = X/E with X ∈ S,X 6= E then(S/E)/(X/E) = S/X. Finally,

τ(HS/E)
⋃

ev(HS/E) =
⋃

X∈Sev(HS/X)

which proves the Theorem in the caseO /∈ S.

It remains to show the following fact which was used above.

Lemma 7.3. If A andA∪B are closed and ifM is the function given byM(µ) = NA(µ) for µ /∈ B and
M(µ) = µ for µ ∈ B thensupµ≤λ M(µ) = NA∪B(λ). If A,B are closed thensup(NA, NB) = NA∪B .

Proof: The last assertion of the lemma is easy to check, we prove the first one. Observe first that the
functionNA has the following properties:

(i) NA is increasing and right-continuous,
(ii) NA(λ) = λ if λ ∈ A,

(iii) NA is locally constant andNA(λ) < λ onAc ≡ R \ A.
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Indeed, the first assertion in (i) and assertion (ii) are obvious. The second part of (i) follows from the
more precise and easy to prove fact

NA(λ + ε) ≤ NA(λ) + ε for all realλ andε > 0. (7.11)

A connected component of the open setAc is necessarily an open interval of one of the forms]−∞, y[ or
]x, y[ or ]x,∞[ with x, y ∈ A. On the first interval (if such an interval appears)NA is equal to−∞ and
on the second or the third one it is clearly constant and equalto NA(x). We also note that the function
NA is characterized by the properties (i)–(iii).

Thus, if we denoteN(λ) = supµ≤λ M(µ), then it will suffices to show that the functionN satisfies the
conditions (i)–(iii) withA replace byA ∪ B. Observe thatM(µ) ≤ µ and the equality holds if and only
if µ ∈ A ∪ B. ThusN is increasing,N(λ) ≤ λ, andN(λ) = λ if λ ∈ A ∪ B.

Now assume thatλ belongs to a bounded connected component]x, y[ of A ∪ B (the unbounded case is
easier to treat). Ifx < µ < y thenµ /∈ B soM(µ) = NA(µ) and]x, y[ is included in a connected com-
ponent ofAc henceM(µ) = NA(x). ThenN(λ) = max(supν≤x M(ν), NA(x)) henceN is constant
on ]x, y[. Here we haveM(ν) ≤ ν ≤ x so if x ∈ A thenNA(x) = x and we getN(λ) = x. If x ∈ B \A
thenM(x) = x sosupν≤x M(ν) = x andNA(x) < x henceN(λ) = x. Sincex ∈ A ∪ B one of these
two cases is certainly realized and the same argument givesN(x) = x. Thus the value ofN on ]x, y[ is
N(x) soN is right continuous on[x, y[. Thus we proved thatN is locally constant and right continuous
on the complement ofA ∪ B and also thatN(λ) < λ there.

It remains to be shown thatN is right continuous at each point ofλ ∈ A ∪ B. We show that (7.11) hold
with NA replaced byN . If µ ≤ λ thenM(µ) ≤ µ ≤ λ = M(λ) hence we have

N(λ + ε) = sup
λ≤µ≤λ+ε

M(µ).

But M(µ) above is eitherNA(µ) eitherµ. In the second caseµ ≤ λ + ε and in the first case

NA(µ) ≤ NA(λ + ε) ≤ NA(λ) + ε ≤ λ + ε.

Thus we certainly haveN(λ + ε) ≤ λ + ε andλ = N(λ) becauseλ ∈ A ∪ B.

7.2. A general class of interactions.The rest of this section is devoted to some technical questions. Our
main purpose is to clarify the structure of the interactionsin the Euclidean case.

The following compactness criterion will be useful. This isa consequence of the Riesz-Kolmogorov
theorem and of the argument page 40 involving the regularityof the weight. LetE,F be arbitrary
Euclidean space ands, t ∈ R.

Proposition 7.4. An operatorT ∈ L(Hs
E ,Ht

F ) is compact if and only if one of the next two equivalent
conditions is satisfied, where‖ · ‖ is the norm inL(Hs

E ,Ht
F ):

(i) ‖(Ux − 1)T‖ + ‖(Vx − 1)T‖ → 0 if x → 0 in F ,
(ii) ‖T (Ux − 1)‖ + ‖T (Vx − 1)‖ → 0 if x → 0 in E.

We denoteL◦(Hs
E ,Ht

F ) the set of small at infinity operators, cf. Definition 2.16. ClearlyL◦(Hs
E ,Ht

F )
is a closed subspace ofL(Hs

E ,Ht
F ).

Corollary 7.5. An operatorT ∈ L(Hs
E ,Ht

F ) is small at infinity if and only iflimk→0 T (Vk − 1) = 0 in
norm inL(Hs+ε

E ,Ht
F ) for someε > 0. Then this holds for allε > 0.

Indeed, the first part of condition (ii) of Proposition 7.4 (s replaced bys + ε) is automatically satisfied.

We now give a Sobolev space version of Proposition 6.4 which uses the weights〈·〉s and is convenient in
applications. By using Theorem 5.7 instead of Theorem 5.3 inthe proof of Proposition 6.4 we get:

Proposition 7.6. Let s, t > 0 andZ ⊂ X ∩ Y . Let IXY (Z) ∈ L(Ht
Y ,H−s

X ) such that the following
relations hold in norm inL(Ht+ε

Y ,H−s
X ) for someε > 0:
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(1) UzIXY (Z) = IXY (Z)Uz if z ∈ Z andV ∗
z IXY (Z)Vz → IXY (Z) if z → 0 in Z,

(2) IXY (Z)(Vy − 1) → 0 if y → 0 in Y/Z.

If hX , hY are continuous real functions onX,Y such thathX(x) ∼ 〈x〉2s andhY (y) ∼ 〈y〉2t and if we
setKX = hX(P ),KY = hY (P ) then〈KX〉−1/2IXY (Z)〈KY 〉−α ∈ CXY (Z) if α > 1/2.

Our next purpose is to discuss in more detail the structure ofthe operatorsIXY (Z) from Proposition 7.6.
For this we make a Fourier transformationFZ in theZ variable as in the proof of Theorem 5.7.

We fix X,Y,Z with Z ⊂ X ∩ Y , use the tensor factorizations (2.16) and make identifications like
HZ ⊗HX/Z = L2(Z;HX/Z). ThusHX = HZ ⊗HX/Z and∆X = ∆Z ⊗ 1+1⊗∆X/Z hence ifs ≥ 0

Hs(X) = H(Z;Hs(X/Z)) ∩Hs(Z;HX/Z) =
(
HZ ⊗Hs(X/Z)

)
∩

(
Hs(Z) ⊗HX/Z

)
(7.12)

where our notations are extended to vector-valued Sobolev spaces. Clearly

FZ〈PX〉sF−1
Z =

∫ ⊕

Z

(1 + |k|2 + |PX/Z |
2)s/2dk. (7.13)

Then from (2.17) andTZ = F−1
Z Co(Z)FZ we get

CXY (Z) = TZ ⊗ KX/Z,Y/Z = F−1
Z Co(Z;KX/Z,Y/Z)FZ .

To each weakly measurable mapIZ
XY : Z → L(Ht

Y/Z ,H−s
X/Z) such that

supk ‖(1 + |k| + |PX/Z |)
−sIZ

XY (k)(1 + |k| + |PY/Z |)
−t‖ < ∞. (7.14)

we associate a continuous operatorIXY (Z) : Ht
Y → H−s

X by the relation

FZIXY (Z)F−1
Z ≡

∫ ⊕

Z

IZ
XY (k)dk. (7.15)

The following fact is known: a continuous operatorT : Ht
Y → H−s

X is of the preceding form if and only
if UaT = TUa for all a ∈ Z. From the preceding results we get (notations are as in Remark 2.15):

Proposition 7.7. Let X,Y,Z ∈ S with Z ⊂ X ∩ Y and assume thatG1
X = Hs

X andG1
Y = Ht

Y . An
operatorIXY (Z) : Ht

Y → H−s
X satisfies the conditions of Remark 2.15 if and only if it is of the form

(7.15)with a norm continuous functionIZ
XY : Z → L◦(Ht

Y/Z ,H−s
X/Z) satisfying(7.14).

7.3. Auxiliary results. In this subsection we collect some useful technical results. Let E ,F ,G,H be
Hilbert spaces. Note that we have a canonical identification(tensor products are discussed in§3.4)

K(E ,F) ⊗ K(G,H) ∼= K(E ⊗ G,F ⊗H), in particular K(E ,F ⊗H) ∼= K(E ,F) ⊗H. (7.16)

Assume that we have continuous injective embeddingsE ⊂ G andF ⊂ G. We equipE ∩ F with the
intersection topology defined by the norm(‖g‖2

E + ‖g‖2
F )1/2, henceE ∩ F becomes a Hilbert space

continuously embedded inG.

Lemma 7.8. The mapK(E ,H) × K(F ,H) → K(E ∩ F ,H) which associates toS ∈ K(E ,H) and
T ∈ K(F ,H) the operatorS|E∩F + T |E∩F ∈ K(E ∩ F ,H) is surjective. Thus, slightly formally,

K(E ∩ F ,H) = K(E ,H) + K(F ,H). (7.17)

Proof: It is clear that the map is well defined. LetR ∈ K(E ∩F ,H), we have to show that there areS, T
as in the statement of the proposition such thatR = S|E∩F + T |E∩F . Observe that the norm onE ∩ F
has been chosen such that the linear mapg 7→ (g, g) ∈ E ⊕ F be an isometry with range a closed linear
subspaceI. ConsiderR as a linear mapI → H and extend it to the orthogonal ofI by zero. The so
defined mapR̃ : I → H is clearly compact. LetS, T be defined bySe = R̃(e, 0) andTf = R̃(0, f).
ClearlyS ∈ K(E ,H) andT ∈ K(F ,H) and ifg ∈ E ∩ F then

Sg + Tg = R̃(g, 0) + R̃(0, g) = R̃(g, g) = Rg
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which proves the lemma.

We give some applications. IfE,F are Euclidean spaces ands > 0 is real then

Hs
E⊕F =

(
Hs

E ⊗HF

)
∩

(
HE ⊗Hs

F

)
(7.18)

hence Lemma 7.8 gives for an arbitrary Hilbert spaceH

K(Hs
E⊕F ,H) = K(Hs

E ⊗HF ,H) + K(HE ⊗Hs
F ,H). (7.19)

If H itself is a tensor productH = H′ ⊗H′′ then we can combine this with (7.16) and get

K(Hs
E⊕F ,H′ ⊗H′′) = K(Hs

E ,H′) ⊗ K(HF ,H′′) + K(HE ,H′) ⊗ K(Hs
F ,H′′). (7.20)

Consider now a tripletX,Y,Z such thatZ ⊂ X ∩ Y and denote

E = (X ∩ Y )/Z and X ⊞ Y = X/Y × Y/X. (7.21)

ThenY/Z = E ⊕ (Y/X) andX/Z = E ⊕ (X/Y ) hence by using (7.20) we get for example

HY/Z = HE ⊗HY/X and HX/Z = HE ⊗HX/Y (7.22)

H2
Y/Z =

(
H2

E ⊗HY/X

)
∩

(
HE ⊗H2

Y/X

)
(7.23)

H−2
X/Z = H−2

E ⊗HX/Y + HE ⊗H−2
X/Y . (7.24)

By using once again (7.20) and the notations introduced in (2.41), we get

K
2

X/Z,Y/Z = K
2

E ⊗ KX/Y,Y/X + KE ⊗ K
2

X/Y,Y/X . (7.25)

We identify a Hilbert-Schmidt operator with its kernel, soL2(X ⊞ Y ) ⊂ KX/Y,Y/X is the subspace of
Hilbert-Schmidt operators. The we have a strict inclusion

L2(X ⊞ Y ;K 2
E ) ⊂ K

2
E ⊗ KX/Y,Y/X (7.26)

7.4. First order regularity conditions. In the next two subsections we consider interactions as in Propo-
sition 2.26 and give explicit conditions on theIZ

XY such thatH be of classC1
u(D). We recall that the

assumptions of Proposition 2.26 can be stated as follows: for all Z ⊂ X ∩ Y

IZ
XY : H2

Y/Z → HX/Z is compact and satisfies(IZ
XY )∗ ⊃ IZ

Y X , (7.27)

[D, IZ
XY ] : H2

Y/Z → H−2
X/Z is compact. (7.28)

If (7.27) is satisfied then by duality and interpolation we get

IZ
XY : Hθ

Y/Z → Hθ−2
X/Z is a compact operator for all0 ≤ θ ≤ 2, (7.29)

in particular the operator[D, IZ
XY ] ≡ DX/ZIZ

XY − IZ
XY DY/Z restricted to the space of functions in

H2
Y/Z with compact support has values in the space of functions locally in H−1

X/Z . We use, for example,
the relationDX/Z = DE ⊗ 1 + 1 ⊗ DX/Y relatively to (7.22) to decompose this operator as follows:

[D, IZ
XY ] = (DE + DX/Y )IZ

XY − IZ
XY (DE + DY/X)

= [DE , IZ
XY ] + DX/Y IZ

XY − IZ
XY DY/X . (7.30)

SinceIZ
XY DY/X ⊂ (DY/XIZ

Y X)∗ if (7.27) is satisfied then condition (7.28) follows from:

[DE , IZ
XY ] andDX/Y IZ

XY are compact operatorsH2
Y/Z → H−2

X/Z for all X,Y,Z. (7.31)

According to (7.25) the first part of condition (7.27) is equivalent to

IZ
XY = J + J ′ for someJ ∈ K

2
E ⊗ KX/Y,Y/X andJ ′ ∈ KE ⊗ K

2
X/Y,Y/X . (7.32)

As a particular case, from (7.26) we obtain the example discussed in§2.11. The compactness conditions
(7.31) are conditions on the kernels[DE , IZ

XY (x′, y′)] andx′ ·∇x′IZ
XY (x′, y′) of the operators[DE , IZ

XY ]
andDX/Y IZ

XY . Note that a condition onIZ
XY DY/X is a requirement on the kernely′ · ∇y′IZ

XY (x′, y′).
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7.5. Creation-annihilation type interactions. To see the relation with the creation-annihilation type
interactions characteristic to quantum field models we consider now the case whenY ⊂ X strictly. Then

CXY = CY ⊗HX/Y , CXY (Z) = CY (Z) ⊗HX/Y , HX = HY ⊗HX/Y (7.33)

where the first two tensor product have to be interpreted as explained in§3.4. In particular we have

L2(X/Y ;CY ) ⊂ CXY and L2(X/Y ;CY (Z)) ⊂ CXY (Z) strictly. (7.34)

If Z ⊂ Y thenX = Z ⊕ (Y/Z)⊕ (X/Y ) andX/Z = (Y/Z)⊕ (X/Y ) henceHX/Z = HY/Z ⊗HX/Y

and thus the operatorIZ
XY is just a compact operator

IZ
XY : H2

Y/Z → HY/Z ⊗HX/Y . (7.35)

If E ,F ,G are Hilbert spaces thenK(E ,F ⊗ G) ∼= K(E ,F) ⊗ G. Hence (7.35) means

IZ
XY ∈ K

2
Y/Z ⊗HX/Y . (7.36)

Let IXY =
∑

Z⊂X∩Y 1Z ⊗ K 2
X/Z,Y/Z , where the sum is direct and closed inK 2

XY . A usual nonrela-
tivistic N -body Hamiltonian associated to the semilatticeSX of subspaces ofX is of the form∆X + IX

with IX ∈ IX ≡ IXX . Thus the interaction which couples theX andY systems is of the form

IXY =
∑

Z∈SY
1Z ⊗ IZ

XY ∈ IY ⊗HX/Y . (7.37)

In particular we may takeIXY ∈ L2(X/Y ;IY ), but we stress that the spaceIY ⊗HX/Y is much larger
(see§3.4). More explicitly, a square integrable functionIXY : X/Y → IY determines an operator
IXY : H2

Y → HX by the following rule: it associates tou ∈ H2(Y ) the functiony′ 7→ IXY (y′)u which
belongs toL2(X/Y ;HX/Y ) = HX . We may also write

(IXY u)(x) = (IXY (y′)u)(y) wherex ∈ X = Y ⊕ X/Y is written asx = (y, y′). (7.38)

We say that the operator valued functionIXY is the kernel of the operatorIXY . The adjointIY X = I∗XY

is an integral operator in they′ variable (like an annihilation operator). Indeed, ifv ∈ HX is thought as a
mapy′ 7→ v(y′) ∈ HY then we haveIY Xv =

∫
X/Y

I∗XY (y′)v(y′)dy′ at least formally.

The particular case when the functionIXY is factorizable clarifies the connection with the quantum field
type interactions: letIXY be a finite sumIXY =

∑
i V i

Y ⊗ φi whereV i
Y ∈ IY andφi ∈ HX/Y , then

IXY u =
∑

i(V
i
Y u) ⊗ φi as an operatorIXY : H2

Y → HX = HY ⊗HX/Y . (7.39)

This is a sum ofN -body type interactionsV i
Y tensorized with operators which create particles in statesφi.

The conditions on the “commutator”[D, IXY ] may be written in terms of the kernel ofIXY . The relation
(7.30) becomes[D, IXY ] = [DY , IXY ] + DX/Y IXY . The operatorDY acts only on the variabley and
DX/Y acts only on the variabley′. Thus [DY , IXY ] andDX/Y IXY are operators of the same nature
as IXY but more singular: the kernel of[DY , IXY ] is the functiony′ 7→ [DY , IXY (y′)] and that of
2iDX/Y IXY is the functiony′ 7→ (y′ · ∇y′ + n/2)IXY (y′). Thus, to get (7.28) it suffices to require two
conditions on the kernelIXY , one on[DY , IXY (y′)] and a second one ony′ · ∇y′IXY (y′).

If we decomposeIXY as in (7.37) withIZ
XY : H2

Y/Z → HY/Z ⊗ HX/Y compact then the (formal)

kernel ofIZ
XY is aK 2

Y/Z valued map onX/Y . We require that[DY/Z , IZ
XY ] andDX/Y IZ

XY be compact

operatorsH2
Y/Z → H−2

X/Z . From (7.12) andX/Z = (Y/Z) ⊕ (X/Y ) we get

H2
X/Z =

(
HY/Z ⊗H2

X/Y

)
∩

(
H2

Y/Z ⊗HX/Y

)
, H−2

X/Z = HY/Z ⊗H−2
X/Y + H−2

Y/Z ⊗HX/Y

which are helpful in checking these compactness requirements.
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7.6. Besov regularity classes.We recall some facts concerning the Besov type regularity classC1,1(D);
we refer to [ABG] for details on these matters. Since the conjugate operatorD is fixed we shall not
indicate it in the notation from now on. An operatorT ∈ L(H) is of classC1,1 if

∫ 1

0

‖W ∗
2εTW2ε − 2W ∗

ε TWε + T‖
dε

ε2
≡

∫ 1

0

‖(Wε − 1)2T‖
dε

ε2
< ∞ (7.40)

whereWε is the automorphism ofL(H) defined byWεT = W ∗
ε TWε. The condition (7.40) implies that

T is of classC1
u and is just slightly more than this. Indeed,T is of classC1 or C1

u if and only if the limit

lim
τ→0

∫ 1

τ

(Wε − 1)2T
dε

ε2

exists strongly or in norm respectively. The following subclass ofC1,1 is useful in applications:T is
called of classC1+ if T is of classC1, so the commutator[D,T ] is a bounded operator, and

∫ 1

0

‖W ∗
ε [D,T ]Wε − [D,T ]‖

dε

ε
< ∞. (7.41)

ThenC1+ ⊂ C1,1. The class most frequently used in the context of the Mourre theorem isC2: this is the
set ofT ∈ C1 such that[D,T ] ∈ C1. But [D,T ] ∈ C1 if and only if

‖W ∗
ε [D,T ]Wε − [D,T ]‖ ≤ C|ε| for some constantC and all realε

hence this condition is much stronger then the Dini type condition (7.41). A self-adjoint operatorH is of
classC1,1, C1+ or C2 if its resolvent is of classC1,1, C1+ or C2 respectively.

We now consider a Hamiltonian as in Proposition 2.26 and discuss conditions which ensure thatH is of
classC1,1. An important point is that the domainH2 of H is stable under the dilation groupWτ . Then
Theorem 6.3.4 from [ABG] implies thatH is of classC1,1 if and only if

∫ 1

0

‖(Wε − 1)2H‖H2→H−2

dε

ε2
< ∞. (7.42)

As aboveWεH = W ∗
ε HWε hence(Wε − 1)2H = W ∗

2εHW2ε − 2W ∗
ε HWε + H. We haveH = ∆ + I

and due to (7.1) the relation (7.42) is trivially verified by the kinetic part∆ of H hence we are only
interested in conditions onI which ensure that (7.42) is satisfied withH replaced byI. If this is the case,
by a slight abuse of language we say thatI is of classC1,1. In terms of the coefficientsIXY , this means

∫ 1

0

‖(Wε − 1)2IZ
XY ‖H2

Y/Z
→H−2

X/Z

dε

ε2
< ∞ for all X,Y,Z. (7.43)

We recall one fact (see [ABG, Ch. 5]). LetI : H2 → H−2 be an arbitrary linear continuous operator.
Then[D, I] : H2

c → H−3
loc is well defined andI is of classC1 (in an obvious sense) if and only if this

operator is the restriction of a continuous mapH2 → H−2, which will be denoted also[D, I]. We say
thatI is of classC1+ if this condition is satisfied and

∫ 1

0

‖W ∗
ε [D, I]Wε − [D, I]‖H2→H−2

dε

ε
< ∞. (7.44)

As before, ifI is of classC1+ then it is of classC1,1. In terms of the coefficientsIZ
XY this means

∫ 1

0

‖W ∗
ε [D, IZ

XY ]Wε − [D, IZ
XY ]‖H2

Y/Z
→H−2

X/Z

dε

ε
< ∞. (7.45)

Such a condition should be imposed on each of the three terms in the decomposition (7.30) separately.

The techniques developed in§7.5.3 and on pages 425–429 from [ABG] can be used to get more concrete
conditions. The only new fact with respect to theN -body situation as treated there is thatWτ when
considered as an operator onLX/Z,Y,Z factorizes in a product of three commuting operators. Indeed, if

we writeHY/Z = HE ⊗HY/X andHX/Z = HE ⊗HX/Y then we getWτ (T ) = W
X/Y
−τ WE

τ (T )W
Y/X
τ

where this time we indicated by an upper index the space to which the operator is related and, for example,
we identifiedWY/X

τ = 1E ⊗ W
Y/X
τ . To check theC1,1 property in this context one may use:
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Proposition 7.9. If T ∈ L := L(H2
Y/Z ,H−2

X/Z) then
∫ 1

0
‖(Wε − 1)2T‖L dε/ε2 < ∞ follows from

∫ 1

0

(
‖(WX/Y

ε − 1)2T‖L + ‖(WE
ε − 1)2T‖L + ‖T (WY/X

ε − 1)2‖L

) dε

ε2
< ∞. (7.46)

Proof: We shall interpret
∫ 1

0
‖(Wε − 1)2T‖L dε/ε2 < ∞ in terms of real interpolation theory. LetLτ

be the operator of left multiplication byWX/Y
−τ andNτ the operator of right multiplication byWY/X

τ on
LX/Z,Y/Z . If we also setMτ = WE

τ then we get three commuting operatorsLτ ,Mτ , Nτ onLX/Z,Y/Z

such thatWτ = LτMτNτ . Then it is easy to check a Dini type condition like (7.45) by using

Wτ − 1 = (Lτ − 1)MτNτ + (Mτ − 1)Nτ + (Nτ − 1). (7.47)

On the other hand, observe thatWτ , Lτ ,Mτ , Nτ are one parameter groups of operators on the Banach
spaceL . These groups are not continuous in the ordinary sense but this does not really matter, in fact
we are in the setting of [ABG, Ch. 5]. The main point is that theintegral

∫ 1

0
‖(Wε − 1)2T‖L dε/ε2 is

finite if and only if
∫ 1

0
‖(Wε − 1)6T‖L dε/ε2 is finite (see Theorem 3.4.6 in [ABG]; this is where real

interpolation comes into play). Now by taking the sixth power of (7.47) and developing the right hand
side we easily get the result, cf. the formula on top of page 132 of [ABG].

The proof of Theorem 2.31 is based on an extension of Propositions 9.4.11 and 9.4.12 from [ABG] to the
present context. Since the argument is very similar, we do not enter into details. We mention only that
the operatorD can be written as4D = P · Q + Q · P whereP = ⊕XPX andQ = ⊕XQX are suitably
interpreted. The proofs in [ABG] depend only on this structure.

8. APPENDIX: HAMILTONIAN ALGEBRAS

We prove here some results onC∗-algebras generated by certain classes of “elementary” Hamiltonians.

8.1. Let X be a locally compact abelian group and let{Ux}x∈X be a strongly continuous unitary rep-
resentation ofX on a Hilbert spaceH. Then one can associate to it a Borel regular spectral measure
E on X∗ with values projectors onH such thatUx =

∫
X∗ k(x)E(dk) and this allows us to define for

each Borel functionψ : X∗ → C a normal operator onH by the formulaψ(P ) =
∫

X∗ ψ(k)E(dk).
The setTX(H) of all the operatorsψ(P ) with ψ ∈ Co(X

∗) is clearly a non-degenerateC∗-algebra of
operators onH. The following result, which will be useful in several contexts, is an easy consequence of
the Cohen-Hewitt factorization theorem, see Lemma 3.8 from[GI3]. Consider an operatorA ∈ L(H).

Lemma 8.1. lim
x→0

‖(Ux − 1)A‖ = 0 if and only ifA = ψ(P )B for someψ ∈ Co(X
∗) andB ∈ L(H).

We say that an operatorS ∈ L(H) is of classC0(P ) if the mapx 7→ UxSU∗
x is norm continuous.

Lemma 8.2. LetS ∈ L(H) be of classC0(P ) and letT ∈ TX(H). Then for eachε > 0 there isY ⊂ X
finite and there are operatorsTy ∈ TX(H) such that‖ST −

∑
y∈Y TyUySU∗

y ‖ < ε.

Proof: It suffices to assume thatT = ψ(P ) whereψ has a Fourier transform integrable onX, so that
T =

∫
X

Uxψ̂ (x)dx, and then to use a partition of unity onX and the uniform continuity of the map
x 7→ UxSU∗

x (see the proof of Lemma 2.1 in [DaG1]).

We say that a subsetB of L(H) is X-stable ifUxSU∗
x ∈ B wheneverS ∈ B andx ∈ X. From Lemma

8.2 we see that ifB is anX-stable real linear space of operators of classC0(P ) then

B · TX(H) = TX(H) · B.

Since theC∗-algebraA generated byB is alsoX-stable and consists of operators of classC0(P )

A ≡ A · TX(H) = TX(H) · A (8.48)
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is aC∗-algebra. The operatorsUx implement a norm continuous action ofX by automorphisms of the
algebraA so theC∗-algebra crossed productA ⋊ X is well defined and the algebraA is a quotient of
this crossed product.

A functionh onX∗ is calledp-periodicfor some non-zerop ∈ X∗ if h(k + p) = h(k) for all k ∈ X∗.

Proposition 8.3. LetV be anX-stable set of symmetric bounded operators of classC0(P ) and such that
λV ⊂ V if λ ∈ R. DenoteA theC∗-algebra generated byV and defineA by (8.48). Leth : X∗ → R

be continuous, notp-periodic ifp 6= 0, and such that|h(k)| → ∞ ask → ∞. ThenA is theC∗-algebra
generated by the self-adjoint operators of the formh(P + k) + V with k ∈ X∗ andV ∈ V.

Proof: DenoteK = h(P + k) and letRλ = (z − K − λV )−1 with z not real andλ real. LetC be the
C∗-algebra generated by such operators (with varyingk andV ). By takingV = 0 we see thatC will
contain theC∗-algebra generated by the operatorsR0. By the Stone-Weierstrass theorem this algebra is
TX(H) because the set of functionsp → (z − h(p + k))−1 wherek runs overX∗ separates the points
of X∗. The derivative with respect toλ at λ = 0 of Rλ exists in norm and is equal toR0V R0, so
R0V R0 ∈ C . SinceTX ⊂ C we getφ(P )V ψ(P ) ∈ C for all φ, ψ ∈ Co(X

∗) and allV ∈ V. Since
V is of classC0(P ) we have(Ux − 1)V ψ(P ) ∼ V (Ux − 1)ψ(P ) → 0 in norm asx → 0 from which
we getφ(P )V ψ(P ) → Sψ(P ) in norm asφ → 1 conveniently. ThusV ψ(P ) ∈ C for V, ψ as above.
This impliesV1 · · ·Vnψ(P ) ∈ C for all V1, . . . , Vn ∈ V. Indeed, assumingn = 2 for simplicity, we
write ψ = ψ1ψ2 with ψi ∈ Co(X

∗) and then Lemma 8.2 allows us to approximateV2ψ1(P ) in norm
with linear combinations of operators of the formφ(P )V x

2 where theV x
2 are translates ofV2. SinceC

is an algebra we getV1φ(P )V x
2 ψ2(P ) ∈ C hence passing to the limit we getV1V2ψ(P ) ∈ C . Thus we

provedA ⊂ C . The converse inclusion follows from a series expansion ofRλ in powers ofV .

The next two corollaries follow easily from Proposition 8.3. We takeH = L2(X) which is equipped with
the usual representationsUx, Vk of X andX∗ respectively. LetWξ = UxVk with ξ = (x, k) be the phase
space translation operator, so that{Wξ} is a projective representation of the phase spaceΞ = X ⊕ X∗.
Fix some classical kinetic energy functionh as in the statement of Proposition 8.3 and let the classical
potentialv : X → R be a bounded uniformly continuous function. Then the quantum Hamiltonian will
beH = h(P )+ v(Q) ≡ K +V . Since the origins in the configuration and momentum spacesX andX∗

have no special physical meaning one may argue [Be1, Be2] that WξHW ∗
ξ = h(P − k) + v(Q + x) is a

Hamiltonian as good asH for the description of the evolution of the system. It is not clear to us whether
the algebra generated by such Hamiltonians (withh andv fixed) is in a natural way a crossed product.
On the other hand, it is natural to say that the coupling constant in front of the potential is also a variable
of the system and so the HamiltoniansHλ = K +λV with any realλ are as relevant asH. Then we may
apply Proposition 8.3 withV equal to the set of operators of the formλv(Q + x). Thus:

Corollary 8.4. Letv ∈ Cu
b(X) real and letA be theC∗-subalgebra ofCu

b(X) generated by the translates
of v. Let h : X∗ → R be continuous, notp-periodic if p 6= 0, and such that|h(k)| → ∞ ask → ∞.
Then theC∗-algebra generated by the self-adjoint operators of the form WξHλW ∗

ξ with ξ ∈ Ξ and real
λ is the crossed productA ⋊ X.

Now letT be a set of closed subgroups ofX such that the semilatticeS generated by it (i.e. the set of finite
intersections of elements ofT ) consists of pairwise compatible subgroups. SetCX(S) =

∑c
Y ∈S CX(Y ).

From (4.8) it follows that this is theC∗-algebra generated by
∑

Y ∈T CX(Y ).

Corollary 8.5. Leth be as in Corollary 8.4. Then theC∗-algebra generated by the self-adjoint operators
of the formh(P + k) + v(Q) with k ∈ X∗ andv ∈

∑
Y ∈T CX(Y ) is the crossed productCX(S) ⋊ X.

Remark 8.6. Proposition 8.3 and Corollaries 8.4 and 8.5 remain true and are easier to prove if we
consider theC∗-algebra generated by the operatorsh(P ) + V with all h : X∗ → R continuous and
such that|h(k)| → ∞ as k → ∞. If in Proposition 8.3 we takeH = L2(X;E) with E a finite
dimensional Hilbert space (describing the spin degrees of freedom) then the operatorsH0 = h(P ) with
h : X → L(E) a continuous symmetric operator valued function such that‖(h(k) + i)−1‖ → 0 as
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k → ∞ are affiliated toA hence also their perturbationsH0 + V whereV satisfies the criteria from
[DaG3], for example.

8.2. We consider the framework of§2.3 and use Corollary 8.5 to prove that the Hamiltonian algebra of a
nonrelativisticN -body system is generated in a natural way by the operators ofthe form (2.12). To state
a precise result it suffices to consider the reduced Hamiltonians (for which we keep the notationH).

Let S2 be the set of cluster decompositions which contain only one nontrivial cluster which consists of
exactly two elements. This cluster is of the form{j, k} for a unique pair of numbers1 ≤ j < k ≤ N and
we denote by(jk) the corresponding cluster decomposition. The mapx 7→ xj −xk sendsX ontoRd and
hasX(jk) as kernel henceVjk(xj − xk) = V(jk) ◦ π(jk)(x) whereV(jk) : X/X(jk) → R is continuous
with compact support andπ(jk) : X → X/X(jk) is the canonical surjection.

Thus the reduced Hamiltonians corresponding to (2.12) are the operators onHX of the form

∆X +
∑

σ∈S2
Vσ ◦ πσ with Vσ : X/Xσ → R continuous with compact support. (8.49)

These operators must be affiliated to the Hamiltonian algebra of theN -body system. On the other hand, if
a Hamiltonianh(P )+V is considered as physically admissible thenh(P + k)+V should be admissible
too because the zero momentumk = 0 should not play a special role. In other terms, translations
in momentum space should leave invariant the set of admissible Hamiltonians. Hence it is natural to
considerthe smallestC∗-algebraCX(S) such that the operators(8.49)are affiliated to it and which is
stable under translations in momentum space. But this algebra is exactly the crossed product

CX = CX ⋊ X = CX · TX with CX =
∑

σCX(Xσ).

Indeed, it is clear that the semilattice generated byS2 is S so we may apply Corollary 8.5.

8.3. Here we prove Theorem 2.18.

Let C ′ be theC∗-algebra generated by the operators of the form(z − K − φ)−1 wherez is a not real
number,K is a standard kinetic energy operator, andφ is a symmetric field operator. With the notation
(6.1) we easily getTd ⊂ C ′. If λ ∈ R thenλφ is also a field operator so(z − K − λφ)−1 ∈ C ′. By
taking the derivative with respect toλ at λ = 0 of this operator we get(z − K)−1φ(z − K)−1 ∈ C .
Since(z −K)−1 = ⊕X(z − hX(P ))−1 (recall thatP is the momentum observable independently of the
groupX) and sinceTd ⊂ C ′ we getSφ(θ)T ∈ C ′ for all S, T ∈ Td andθ = (θXY )X⊃Y .

Let C ′
XY = ΠXC ′ΠY ⊂ LXY be the components of the algebraC ′ and let us fixX ⊃ Y . Then we

get ϕ(P )a∗(u)ψ(P ) ∈ C ′
XY for all ϕ ∈ Co(X

∗), ψ ∈ Co(Y
∗), andu ∈ HX/Y . The clspan of the

operatorsa∗(u)ψ(P ) is TXY , see Proposition 5.5 and the comments after (3.16), and from(4.14) we
haveTX ·TXY = TXY . Thus the clspan of the operatorsϕ(P )a∗(u)ψ(P ) is TXY for eachX ⊃ Y and
then we getTXY ⊂ C ′

XY . By taking adjoints we getTXY ⊂ C ′
XY if X ∼ Y .

Now recall that the subspaceT ◦ ⊂ L(H) defined byT ◦
XY = TXY if X ∼ Y andT ◦ = {0} if X 6∼ Y

is a closed self-adjoint linear subspace ofT and thatT ◦ · T ◦ = C , cf. Theorem 4.25. By what we
proved before we haveT ◦ ⊂ C ′ henceC ⊂ C ′. The converse inclusions is easy to prove. This finishes
the proof of Theorem 2.18.
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