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ON THE SPECTRAL ANALYSIS OF MANY-BODY SYSTEMS

MONDHER DAMAK AND VLADIMIR GEORGESCU

ABSTRACT. We describe the essential spectrum and prove the Mouineastfor guantum particle systems
interacting througlk-body forces and creation-annihilation processes whichatgreserve the number of
particles. For this we compute the “Hamiltonian algebra” &f slystem, i.e. thé€'*-algebra#” generated by

the Hamiltonians we want to study, and show that, as in\tHeody case, it is graded by a semilattice. Hilbert
C*-modules graded by semilattices are involved in the construof 4. For example, if we start with an
N-body system whose Hamiltonian algebr&ig and then we add field type couplings between subsystems,
then the many-body Hamiltonian algelsfais the imprimitivity algebra of a graded Hilbegty -module.
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1. INTRODUCTION

1.1. The quantum systems studied in this paper are obtained lplingla certain number (finite or infi-
nite) of N-body systems. A (standardj-body system consists of a fixed numbérof particles which
interact throughk-body forces which preserw® (arbitraryl < k£ < N). The many-body type interac-
tions include forces which allow the system to make tramsgtibetween states with different numbers of
particles. These transitions are realized by creationk#élation processes as in quantum field theory.

The Hamiltonians we want to analyze are rather complex ¢bpand standard Hilbert space techniques
seem to us inefficient in this situation. Our approach is thasethe observation that th@é*-algebra

¢ generated by a class of physically interesting Hamiltosieften has a quite simple structure which

allows one to describe its quotient with respect to the idéabmpact operators in rather explicit terms

[GI1, GI2]. From this one can deduce certain important spéptoperties of the Hamiltonians. We refer

to ¢ as theHamiltonian algebralor C*-algebra of Hamiltonians) of the system.

The main difficulty in this algebraic approach is to isolate torrectC*-algebra. This is especially
problematic in the present situations since it is not a pd@ar how to define the couplings between
the variousN-body systems but in very special situations. It is rathemakkable that th&'*-algebra
generated by a small class of elementary and natural Harmahe will finally prove to be a fruitful
choice. These elementary Hamiltonians are analogs of thieParz Hamiltonians.
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2 MONDHER DAMAK AND VLADIMIR GEORGESCU

The purpose of the preliminary Section 2 is to present thi@gch in the simplest but physically im-
portant case when the configuration spaces of¥hkeody systems are Euclidean spaces. We start with
a fundamental example, the stand&febody case. Then we describe the many-body formalism in the
Euclidean case and we state our main results on the spectigsas of the corresponding Hamiltonians.

There is one substantial simplification in the Euclidearecasch subspace has a canonical supplement,
the subspace orthogonal to it. This plays a role in the way mesgnt the framework in Section 2.
However, the main constructions and results do not depenthemxistence of a supplement but to
see this requires more sophisticated tools from the thebryassed produc*-algebras and Hilbert
C*-modules which are not apparent in this introductory parthk rest of the paper we consider many-
body type couplings of systems whose configuration spaae astatrary abelian locally compact group.
One of the simplest nontrivial physically interesting casevered by this framework is that when the
configuration spaces of th€-body systems are discrete groups, e.g. discretizafidhef R”.

1.2. We summarize now the content of the paper. Section 2 stattisavghort presentation of the standard
N-body formalism, the rest of the section being devoted tdteeraletailed description of our framework
and main results in the case when the configuration spacdsedftbody subsystems are Euclidean
spaces. These results are proven in a more general andlrsatitireg in the rest of the paper. In Section
3 we recall some facts concernitdg*-algebras graded by a semilattiSe(we take here into account
the results of Athina Mageira’s thesis [Mal]) and then wesprgé some results oS-graded Hilbert
C*-modules. This notion, due to Georges Skandalis [Ska],qutde be very natural and useful in our
context: thanks to it many results can be expressed in a sienpl systematic way thus giving a new
and interesting perspective to the subject (this is dismigs more detail in [DaG4]). The heart of the
paper is Section 4, where we define the many-body Hamiltcalgabras’ in a general setting and prove
that it is naturally graded by a certain semilatti€eln Section 5 we give alternative descriptions of the
components of” which are important for the affiliation criteria presentadSection 6, where we point
out a large class of self-adjoint operators affiliated torttey-body algebra. Th&-graded structure of
% gives then an HVZ type description of the essential specfarmall these operators. The main result
of Section 7 is the proof of the Mourre estimate for nonreistic many-body Hamiltonians. Finally,
an Appendix is devoted to the question of generation of sdiamses oiC*-algebras by "elementary”
Hamiltonians.

1.3. Notations. We recall some notations and terminology£IlfF are normed spaces thér{&, F) is

the space of bounded operatérs—» F and K (&, F) the subspace consisting of compact operatorg. If
is a third normed space afid, f) — ef is a bilinear magg x F — G thenEF is the linear subspace ¢f
generated by the elementg with e € £, f € F and€ - Fis its closure. 1€ = F thenwe sef? = £ - €.
Two unusual abbreviations are convenientigpanandclspanwe mean “linear span” and “closed linear
span” respectively. If4; are subspaces of a normed space thénA; is the clspan of); 4;. If X is a
locally compact topological space thén(X) is the space of continuous complex functions which tend
to zero at infinity and’. (X ) the subspace of functions with compact support.

By idealin aC*-algebra we mean a closed self-adjoint ideak-Aomomorphism between twg*-algebras
will be calledmorphism We write o7 ~ £ if the C*-algebrase/, 8 are isomorphic and?y = 4 if they
are canonically isomorphic (the isomorphism should berdtean the context).

A self-adjoint operatotd on a Hilbert spacé is affiliated to a C*-algebrags of operators or{ if

(H +1i)"! € o; thenp(H) € o forall ¢ € Co(R). If o is the closed linear span of the elements
w(H)A with ¢ € C,(R) andA € 7, we say thafd is strictly affiliated to«”. TheC*-algebra generated
by a set®’ of self-adjoint operators is the small€st-algebra such that eadth € & is affiliated to it.

We now recall the definition af-gradedC*-algebras following [Ma2]. Heré is asemilatticei.e. a set
equipped with an order relation such that the lower boung A = of each couple of elements T exists.
We say that a subs@t of S is asub-semilatticef S if o,7 € 7 = o A7 € 7. The set of all closed
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subgroups of a locally compact abelian group is a semitafticthe order relation given by set inclusion.
The semilattices which are of main interest for us are (itidedimits of) sub-semilattices of”.

A C*-algebra«/ is calledS-gradedif a linearly independent family.«7 (¢)},cs of C*-subalgebras of
</ has been given such thaf® _¢ «/(0) = o/ and.«/(0)/ (1) C </ (0 A7) for all o, 7. The algebras
/(o) are thecomponents of7. It is useful to note that some of the algebr#$o) could be zero. 17
is a sub-semilattice of and.«Z (o) = {0} for 0 ¢ 7 we say thate is supportedby 7; then.e is in fact
T -graded. Reciprocally, ary-gradedC*-algebra becomeS-graded if we set# (o) = {0} foro ¢ 7.

1.4. Note. The preprint [DaG4] is a preliminary version of this papere @écided to change the title
because the differences between the two versions are iathertant: the preliminaries concerning the
theory of HilbertC*-modules and the role of the imprimitivity algebra of a Hitbé™*-module in the
spectral analysis of many-body systems are now reduced toienom; on the other hand, the Euclidean
case and the spectral theory of the corresponding Hanaltsrare treated in more detail.

Acknowledgement. The authors thank Georges Skandalis for very helpful suggesand remarks.

2. EUCLIDEAN FRAMEWORK: MAIN RESULTS

2.1. The Hamiltonian algebra of a standardN-body system. Consider a system df particles mov-
ing in the physical spadg®. In the nonrelativistic case the Hamiltonian is of the form

H =310 P2/2m; + Y0, Vilwy) + 3o Vinlw; — o) (2.1)

wheremy, ..., my are the masses of the particles, ..., zx € R? their positions, and®; = =iV,
their momenta. In the simplest situation the potentigld/;;, are real continuous functions with compact
support orR?. The state space of the system is the Hilbert sga¢e( ) with X = (R4,

Let P = (Py,..., Py), thisis a set of commuting self-adjoint operatorsigii X ) and soh(P) is a well
defined self-adjoint operator for any real Borel functionn X. In what follows we replace the kinetic
energy pargj Pj2/2mj in (2.1) by an operatat(P) with i continuous and divergent at infinity. Denote
x = (x1,...,2y) the points ofX and let us consider the linear subspacesXoflefined as follows:
Xj={reX|z;=0}ifl<j< NandXj, = {z € X | z; =z} for j < k. Letr; andnj; be
the natural maps ok onto the quotient spaces/X; and.X/X ; respectively (the Euclidean structure
of X allows us to identify these abstract spaces with the sulespaicX orthogonal taX; and X, but
this is irrelevant here). TheH may be written in the form

H:}L(P)+Zj?)jOﬂj($)+2j<kvjk07fjk(l‘) (22)

for some real functions; € C.(X/X;) andv;, € Co(X/X,). Thus Hamiltonians of the form (2.2) are
natural objects in théV-body problem. Note that there should be no privileged arigithe momentum
space, so if we accept(P) as an admissible kinetic energy operator tih€i® + p) should also be
admissible for any = (p1,...,pn) € (RN,

Let ¥ = #(X) be the set of linear subspaces Xf equipped with the order relatioi < Z <
Y C Z. Then” is a semilattice withtt A Z =Y N Z. If Y € . then we realize,(X/Y) as a
C*-algebra of operators oh?(X) by associating t@ the operator of multiplication by o 7y, where
7wy : X — X/Y is the canonical surjection. The following fact is easy tover. if S C .7 is finite
thenC(S) := >y s Co(X/Y) is a direct topological sum and is an algebra if and onlysifs a sub-
semilattice of”; in this case((S) is anS-gradedC*-algebra

In the next propositiois is the semilattice of subspaces.Bfgenerated by the; and X, i.e. the set
of subspaces ok obtained by taking arbitrary intersections of subspacah@form.X; and.X;;. We
denote7x the C*-algebra of operators oh?(X) of the fromy(P) with € Co(X).
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Proposition 2.1. Leth : X — R be continuous with(z) — oo if + — oo and letH, be the self-adjoint
operator (2.2) with h(P) replaced byh(P + p). Then theC*-algebra generated by the operatafs,
whenp runs over(R%)™ andv; andv;;, run over the set of real functions & (X/X;) andC.(X/X )
respectively i&" = C(S)- Tx = D _ycsCo(X/Y)- Tx. Moreovers is S-graded by this decomposition.

This has been proved in [DaG1]. More general results of thisne are presented in Appendix 8. Observe
that we decided to fix the functiola which represents the kinetic energy but not the potentials;y,.
However, as a consequence of Proposition 2.1, if we alldavvary we get the same algebra.

Proposition 2.1 provides a basic example of “Hamiltoniagebla”. We mention that is the crossed
product of theC*-algebraC(S) by the natural action of the additive groufy so it is a natural mathemat-
ical object. We shall see in a more general context that thefself-adjoint operators affiliated to it is
much larger than expected (cf. Theorem 2.13 for example).

If we are in the nonrelativistic case a®fl = 0 for all j then the center of mass of the system moves
freely and it is more convenient to eliminate it and to takewgin of the reference system the center of
mass of theV particles. Then the configuration spakeis the set of points: = (x1,...,zx) € (RH)Y
such thay >, myx), = 0. Proposition 2.1 remains valid & is conveniently defined, s¢@.3.

The following “generalized” class aV-body systems is suggested by results from [Mal, Ma3].

Definition 2.2. An N-body structure on a locally compact abelian grofpis a setSx of closed sub-
groups such thak € Sy and such that for alt, Z € Sx the following three conditions are satisfied:
() Y nZ e S; (i) the subgroupd’, Z of X are compatible; (iii) ifY” 2 Z thenY/Z is not compact.

X must be thought as configuration space of the system. Themoticompatible subgroups is defined
in Subsection 4.3 (ifX is aco-compact topological space this means tHat 7 is a closed subgroup).
We shall see that the Hamiltonian algebra associated toaudhbody system is an interesting object:

%X(SX) = C(Sx) . «7)( = C(Sx) x X where C(Sx) = ECYESXCO(X/Y)' (23)

Here 7x =~ C,(X™) is the groupC*-algebra ofX and x means crossed product.

Example 2.3. This framework covers an interesting extension of the stethy -body setting. Assume
that X is a finite dimensional real vector space. In the standamidveork the semilattic& consists

of linear subspaces of but here we allow them to be closed additive subgroups. Tdeedl additive

subgroups ofX are of the formY” = F + L whereE is a vector subspace & andL is a lattice in a

vector subspacé’ of X such that N F' = {0}. More preciselyL = ", Zf; where{f,} is a basis in

F. ThusF/L is a torus and i{7 is a third vector subspace such that= E @ F @ G then the space
X/Y ~ (F/L) @ G is a cylinder with¥'/ L as basis.

2.2. The Euclidean many-body algebra.We introduce here an abstract framework which allows us to
study couplings between severdtbody systems of the type considered above. A concrete arsiqaltly
interesting example may be found§a.3.

Let X be a real prehilbert space. L&f(X) be the set of finite dimensional subspacestoéquipped
with the order relation given by set inclusion. This is ait&with X AY = XNY andXVY = X +Y,
but only the semilattice structure is relevant for whatdaié.

Each finite dimensional subspag&e C X is equipped with the Euclidean structure induced¥bhence
the Hilbert space{y = L?(X) and theC*-algebras¥y = L(Hx) and #x = K(Hx) are well
defined. The group algebréy is defined as the closure iffy of the set of operators of convolution with
functions of clas€.(X). If O = {0} thenHo = C and.%p = %o = Jo = C by convention.

We denotéi(P) the operator ofH x given by]-‘;(th}'X, whereFx is the Fourier transformation and
M, is the operator of multiplication by the functidn: X — C. ThenZx = {¢(P) | ¥ € Co(X)}. We
use the notatio® = Py if the spaceX has to be specified.
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If X,Y are finite dimensional subspacestfwe set¥xy = L(Hy,Hx) and.Zxy = K(Hy,Hx).
We define a closed subspatgy C Lxy as follows. Ifp € C.(X +Y') then one may easily check that
(Txy (@) f)(z) = [y ¢(x —y) f(y)dy defines a continuous operatts — Hx. Let

Ixy = norm closure of the set of operatoByy (¢) with ¢ € C.(X +Y). (2.4)

Clearly 7x x = Ix. The spaceZxy is a “concrete” realization of the Hilbeff*-module introduced by
Philip Green to show the Morita equivalence of the crossedyxtsC,(Z/Y) x X andC,(Z/X) x Y
whereZ = X + Y (this has been noticed by Georges Skandalis, see Remartrdrdfe details).

Now we fix a sub-semilattic§ C .7, i.e. we assumetha&f NY € Sif X,Y € S. This set completely
determines the many-body system and the class of Hamiitsitieat we intend to study. For ea&he S
the Hilbert spacé{x is thought as the state space of/sirbody system withX as configuration space.
We define the state space of the many-body system as the tiilbdirect sum

H=Hs = ®xesHx. (2.5)
We have a natural embedditfxy C L(H) forall X,Y € S. Let.¥ = .%s be the closed linear span
of the subspace&’xy . Clearly.# is aC*-subalgebra of () which is equal ta.(H) if and only if S
is finite. We will be interested in subspac&sof . constructed as follows: for each coupte Y we
are given a closed subspadty C ZLxy andZ = (Zxv)x,yes = Z},yEs%XY where>_“ means
closure of the sum. Note the#” = 75 = (Zxv)x,ves = K(H).

Theorem 2.4. Let 7 = Js = (Ixy)x,ves- ThenZ is a closed self-adjoint subspace .&f and
¢ = s = .72 is a non-degenerat€*-algebra of operators oft.

We say thatz” is the Hamiltonian algebra of the many-body syst&nThis terminology will be justified
later on: we shall see that physically interesting manyybidemiltonians are self-adjoint operators af-
filiated to¢. Moreover, in a quite precise way, is the smallesC*-algebra with this property. For the
purposes of this papeve define a many-body Hamiltonian as a self-adjoint operaffiliated to% .

We now equipé with an S-gradedC*-algebras structure. This structure will play a centrag riol the
spectral analysis of self-adjoint operators affiliate@&toWe often say “graded” instead Sfgraded.

To define the grading we need new objectsY'If7 X we setCx (Y') = {0}. If Y C X then we define
Cx(Y) as the set of continuous functions &nhwhich are invariant under translations in fHedirections
and tend to zero in th& -+ directions. This is &'*-algebra of bounded uniformly continuous functions
on X canonically isomorphic witl, (X /Y") whereX/Y is the orthogonal o¥" in X. Thus

Cx(Y)=Co(X/Y)if Y € X and Cx(Y)={0}ifY ¢ X. (2.6)

LetCx = Cx(S) := > yesCx(Y), thisis aC*-algebra of bounded uniformly continuous functions on
X. We embed it inZx by identifying a functionpy with the operator oft{ x of multiplication byy. Then

C=Cs=®xesCx (2.7)
is aC*-algebra of operators oH included in.#Z. For eachZ € S we define aC*-subalgebra of by
C(Z)=Cs(Z) = oxCx(Z) = ®x>2Cx(Z). (2.8)

It is easy to see that the famiff (7) } z<s defines a grade@™*-algebra structure of.
Theorem 2.5.We haves’ = 7 - C =C- . ForeachZ € Sthe spac&’'(Z) = 7 -C(Z)=C(Z)- T
is aC*-subalgebra ofg and the family{ ¢ (Z)} zcs defines a graded'*-algebra structure or¥’.

In particular we ge¥’” = (¥xy)x,ves With (the second and fourth equalities are not obvious):
ngy = yXY 'Cy = ZCZCxﬂYyXY 'Cy(Z) (2.9)
=Cx - Ixy = YyexnyCx(Z) - Ixy. (2.10)

TheC*-algebrag (Z) and%¢'(Z) “live” in the closed subspacK >z = ©x-zHx of H. More precisely,
they leave invariant{> z and their restriction to its orthogonal subspace is zeroreldeer, if we denote
Lz =(Lxy)x,y>z C L(H>z) then clearlyC(Z) and%(Z) are subalgebras d¥- ;.
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Remark 2.6. The diagonal elemerfx x = €x of the “matrix” ¢ is given by
CKX:CX'QX:ZCZCxCO(X/Z)'chgx. (2.11)

This C*-algebra ighe Hamiltonian algebra of the (generalizeN}body systenmassociated to the semi-
lattice Sx = {Z € S | Z C X} of subspaces oK, cf. (2.3). The non-diagonal elemer#%y are
Hilbert C*-bimodules which define the coupling between Miéody type system&X andY'.

Remark 2.7. Note that if we takeS equal to the set of all finite dimensional subspace®’ tfien we get
a graded”*-algebra# canonically associated to the prehilbert spateAccording to a remark i§1.3,
any other choice of would give us a grade@*-subalgebra of this one.

Remark 2.8. The algebra# is not adapted to symmetry considerations, in particulaagplications
to physical systems consisting of particles one has to asgshem distinguishable. The Hamiltonian
algebra for systems of identical particles interactingtigh field type forces (both bosonic and fermionic
case) is constructed in [Geo]. We mention that a quantum fireldel without symmetry considerations
corresponds to the case wh&iis a distributive relatively ortho-complemented lattice.

2.3. Particle systems with conserved total massaVe give now a physically interesting example of the
preceding abstract construction. We shall describe theyshady system associated 16 “elementary
particles” of masses:, . .., mx moving in the physical spade? without external fields. We shall get
a system in which the the total mass is conserved but not tineuof particles.

We go back the framework @R.1 but assume that the particles interact only through®/farces. Then

H =Y, P2/2m; + 3, Vik(xj — ). (2.12)
and the center of mass of the system moves freely so it is o@veto eliminate it. This is a standard
procedure that we sketch now, cf. [ABG, DeG1] for a detailetalssion of the formalism. We take as
origin of the reference system the center of mass of¥hgarticles so the configuration spag&eis the
set of pointsz = (21,...,zy) € (RY)Y such thafy_, myz), = 0. We equipX with the scalar product
(z|ly) = Z;V:l 2myyk. The advantage is that the reduced Hamiltonian, the opesatmg in L2 (X)
naturally associated to the expression (2.12)\ s + Zj<k Vik(z; — x1) whereAx is the Laplacian
associated to this scalar product. We denote by the sameosyithis reduced operator.

The first step is to describe th&*-algebra generated by these Hamiltonians, i.e. to get thmqrof
Proposition 2.1 in the present context. Thus we have to iestne semilattice of subspaces &f
generated by th&( ;) := X, N X. We give the result below and refer to the AppengBx2 for proofs.

A partition o of the set{1,..., N} is also called cluster decomposition. Then the sets of thitipa

are called clusters. A clusterc o is thought as a “composite particle” of masg = ), ., my. Let

|o| be the number of clusters ef We interprets as a system obr| particles with masses., hence its
configuration space should be the setof (z4)qco € (R?)!?! such that - mqz, = 0 equipped with
a scalar product similar to that defined above.

Let X, be the set ofc € X such thatx; = «; if 4, j belong to the same cluster and let us eq¥ip
with the scalar product induced by. Then there is an obvious isometric identification’f with the
configuration space of the systermas defined above. The advantage now is that all the spégese
isometrically embedded in the same We equip the se® of partitions with the order relationt < 7

if and only if “7 is finer thans” (this is opposite to the usual convention). Then< 7 is equivalent
to X, € X, and X, N X, = X,A,. Thus we see thab is isomorphic as semilattice with the set
S = {X, | o € &} of subspaces ok with inclusion as order relation. Now it is easy to check tHat
coincides with the semilattice of subspaces(ofenerated by thel ;.

We abbreviatet, = Hyx, = L?(X,). According to the identifications made above, this is théesta
space of a system ¢F| particles with massesn,)aco-

Now we may apply our construction 8. We get a system whose state spacélis= ©,H,. If the
system is in a state € H,, then it consists ofc| particles of masses,. Note thatmin & is the partition
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consisting of only one clustdf, ..., N} with massM = m; + - -- + my. Since there are no external
fields and we decided to eliminate the motion of the centeragsnthis system must be the vacuum. And
its state space is indeéd,,;, s = C. The algebr&’ in this case predicts usual inter-cluster interactions
associated, for examples, to potentials defined6h= X/X,, but also interactions which force the
system to make a transition from a “phasgeto a “phase”r. In other terms, the system @f| particles
with masses$m,, ).c. is transformed into a system pf| particles with mass€sny; )yc-. Thus the number

of particles varies from to NV but the total mass is constant and equalfo

2.4. Natural morphisms and essential spectrumWe return to the general case. Sub-semilattiCesf
S define many-body type subsystems (this is discussed in nedadl ths2.5). The spectral properties of
the total many-body Hamiltonian are described in terms gdexigl class of such subsystems.

EachX € S determines a new many-body systémy = {Y € S | Y D X} whose state spacetss x.

Let 6> x be the corresponding Hamiltonian algel#fa , . Itis easy to see thaf> x = Y yox ).

Thus%> x is aC*-subalgebra o%” which lives and is non-degenerate on the subspacg of H. We
mention one fact: ifll> x is the orthogonal projectiot — H> x, thenIl> x€1Il> x is anS-graded
C*-subalgebra o¥s and we have&s> x C 1l x €11 x strictly in general.

Then the general theory of gradéd-algebras implies thdhere is a unique linear continuous projection
P>x 1€ — C>x suchthat?s x (T) =0if T € €(Y) withY 2 X and this projection is a morphism
These are thaatural morphismf the graded algebr#.

This extends to unbounded operators as follows ifs a self-adjoint operator of strictly affiliated
to ¢ then there is a unique self-adjoint operaids x = &> x(H) on'H>x such that?s x (p(H)) =
p(H>x) forall ¢ € Co(R). If H is only affiliated to¢ then H> x could be not densely defined.

Assume that the semilattic® has a smallest elementinS. ThenX € S is calledatomif the only
element ofS strictly included inX ismin S. Let P(S) be the set of atoms &. We say thatS is atomic

if each of its elements distinct fromnin S contains an atom. The following HVZ type theorem is an
immediate consequence Theorem 3.2. The symobukans “closure of union”.

Theorem 2.9. If H is a self-adjoint operator ofi{ strictly affiliated to%” then for eachX € S there is
a unique self-adjoint operatal > x = &> x(H) on'H>x such that?s x (p(H)) = ¢(H>x) for all
¢ € Co(R). The operatotH > x is strictly affiliated to%> x. If O € S andS is atomic then

SPess(H) = Uxep(s)SP(HzX)~ (2.13)

The theorem remains valid for operators which are only aféil to%” but then we must allow them to
be non-densely defined.

2.5. Subsystems and subhamiltoniandf 7 is an arbitrary subset & then the Hilbert spacél; =
@ xe7Hx is well defined and naturally embedded as a closed subspéte.dfet 1+ be the orthogonal
projection of H ontoH . Note that the definition os makes sense for any sgtof finite dimensional
subspaces , in particular we may replacby 7. Then we have:

TIr =N Tslly, C% :=17Cslly = ©xerCx(S), (2.14)
€¢I =M1 Csly =17 Ts - Cslly = T - CE (2.15)

From this we easily get thaf? = Z}}YGT%XY is anS-gradedC*-subalgebra o% supported by the
ideal generated by in S (an ideal is a subsef of S suchthatX C Y € J = X € J). The operators
affiliated to¢’ are affiliated to6’s, so are many-body Hamiltonians in our sense.

The case whefl is a sub-semilattice of is interesting. Indeed, theh defines a many-body system
whose Hamiltonian algebréy is a 7-gradedC*-algebra of operators on the Hilbert spdde. We
emphasize thahis algebra does not coincide wit#lZ . We always havér C %2 butthe inclusion is
strict unless7 is an ideal ofS. This is clear becausgr C CZ strictly in general.
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The simplest sub-semilattices are the chains (totallyredisubsets). TheH has a structure analogous
to a Fock space. Nonrelativistic Hamiltonians affiliategtichC*-algebrass’? have been studied before
in [SSZ]. If we takeZ = {X} for an arbitraryX € S then the associated subsystem k&g as state
space and its Hamiltonian algebra is j#&t = Cx(S) - Ix, the Hamiltonian algebra of the (generalized)
N-body system determined by the semi-lattfg. We refer to§4.6 and to the Example 2.12 for other
simple but instructive examples of subsystems.

2.6. Intrinsic descriptions. We give two explicit descriptions ¢&(Z) as an algebra of operators on
H>z. Since% is the closure of the sum of the algebrfé$Z), these descriptions allow one to check
rather easily whether a self-adjoint operator is affiligie@ or not. Both theorems are consequences of
more general results in Section 5.

For any vectorn € X and any finite dimensional subspa&eof X we define two unitary operators in
Hx by (Uaf)(z) = f(x + ax) and(V,f)(x) = @) f(x) whereax is the orthogonal projection of
xz onX. Then{U,}.cx and{V, },cx are strongly continuous representations of (the additiveng) X
onHx suchthat/, =1< V, =1« a L X. The direct sum oveK € S of these representations give
representations ot on’H for which we use the same notations.

Theorem 2.10. ¢(Z) is the set ofl” € .Z~ » such that
() U:TU, =Tforalla € Zand|T(V, —1)|| - 0ifa— 0in Z+,
(i) |T(U, —1)| = 0and ||V TV, —T|| — 0ifa— 0in X.

Let S/Z be the set of subspaces&f/Z = Z+ of the formX/Z with X € S, X D Z. ClearlyS/Z is
a semilattice of finite dimensional subspacest9fZ so the Hilbert spacé(s,, and the corresponding
algebra of compact operatorgs,, are well defined. I1fX O Z thenX = Z ¢ X/Z so we have a
canonical factorizatiof x = Hz ® Hx,z. ThusH>7z = Hz ® Hs/z.

Theorem 2.11.¢(Z) = 97 ® K5, relatively to the factorizatiotl>z = Hz ® Hs/z.

2.7. Factorization properties. ForZ C X N Y we haveX = Z @ (X/Z) andY =Y @ (Y/Z) hence
we have canonical factorizations

Hx ZHz®Hx/Z and Hy ZHz®Hy/Z. (2.16)
Relatively to these factorizations, we get from Theoreni2.1
Cxy(Z) =Tz Hxizv12 = Co(Z" Hx)2,v)7)- (2.17)

The tensor product (and those below) is in the category didiilmodules, cf§3.4. We have written
Z* above in spite of the canonical Euclidean isomorphism= 7 in order to stress that we consider
functions of momentum not of position. For afy Y we set

X/Y=X/(XNY)=Xo(XNY) (2.18)
and so we have
X/Z=X/(XnY)®e(XNnY)/Z=X/Y®(XNnY)/Z (2.19)
and similarly forY/Z. Then from (2.17) and (7.16) we get the finer factorization:
Cxy(Z) = Tz @ Hixnv))z @ Hx)vy/x- (2.20)
In particular, we get
Cxy = Cxny @ Hx/v,y/x (2.21)
relatively to the tensor factorizations
Hx =Hxry ® Hx/)y and Hy =Hxny ® Hy/x- (2.22)

Since#xy,0 = Hx/y inthe special casg C Y C X we have
Exy Z(fy®Hx/y and (gxy(Z) = yz@%y/z@?‘(x/y. (2.23)
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Example 2.12. These factorizations give us the possibility of expressjaige explicitly the Hamilton-

ian algebra of some subsystems. We refeg§4d for more general situations and consider here sub-
semilattices of the forri” = {X, Y} with X D Y. This is a toy model, atW-body system coupled to
one of its subsystems, and can be nicely formulated in ayaf®tract setting, cf. Proposition 3.10. We
haveHr = Hx ® Hy with Hx = Hy ® Hx,/y. From (2.23) we have

o7 _ Cx Gy @ Hx)y
s \wony,, & )

whereH}/Y has a natural meaning (s§2.9). The grading is defined fdf € Sx by
(1) f Z C Y then

Cx(Z) G (Z)oH
%3 (Z) = (cgy(z)X®H}/Y Y %Y(Z)X/Y>'

(2) If Z ¢ Y then

@@= 7).

If 7 = {X, O} we get a version of the Friedrichs model: &rbody system coupled to the vacuum. The
case wher¥ is an arbitrary chain (a totally ordered subsetSyfis very similar. The cas& = {X,Y}
with not comparableX, Y is more complicated and is treateds#h6 in a more general setting.

2.8. Examples of many-body Hamiltonians.Here we use Theorems 2.11 and 2.10 to construct self-
adjoint operators strictly affiliated t&’. For simplicity, in this and the next subsectiossis assumed
finite. If S is infinite then an assumption of the same nature as the nonRzass condition in quantum
field theory models is needed to ensure that the kinetic grappgratorK is affiliated to%’.

The Hamiltonians will be of the fornil = K + I where the self-adjoint operatéf is the kinetic energy
and/ is an interaction term bounded in form sensefbyMore precisely/ is a symmetric sesquilinear
form on the domain ofK'|'/? which is continuous, i.e. satisfies

+1 < p|K + ia| for some real numbers, a. (2.24)

H andK are matrices of operators, e .= (Hxy)x,yes WhereH xy is defined on a subspace®f
and has values i x and the relatior{ % ,- = Hy x holds at least formally. By constructidi is given
by a diagonal matrix, s& xy = 0if X # Y, and we sel{x = Kxx. The interaction will be a matrix
of sesquilinear forms. TheHyx x = Kx + Ixx will be an N-body type Hamiltonian, i.e. a self-adjoint
operator affiliated t&’x, cf. Remark 2.6. The non-diagonal elemehtgy = Ixy define the interaction
between the systen’s andY. We give now a rigorous construction of such Hamiltonians.

(a) For eachX we choose a kinetic energy operafokx = hx (P) for the system having as configura-
tion space. The functiohx : X — R is continuous and such thiak (x) — oo if z — co. We stress that
there are no relations between the kinetic energies of thess corresponding to differeit. Denote
G% the domain ofK y equipped with the graph norm and &} (s € R) be the scale of Hilbert spaces
associated to it, .7} = Hx, Gy = D(K}(ﬂ) is the form domain ofx, andg)}1 its adjoint space.
(b) The total kinetic energy of the system is by definitifh= & x Kx. We call this astandard kinetic
energy operatar Then the space$® of the scale determined by the domalh of K can be identified
with direct sumsG® ~ @xG%. In particular this holds for the form doma@t = D(K'/2) and for its
adjoint spacg/—'. Note that we may also introduce the operatitsy = $y - x Ky and the associated
spaces/s . If s > 0 we haveGs v = G° N H>x.

(c) The simplest type of interactions that we may consider arengby symmetric elements of the
multiplier algebra of¢’. ThenH = K + I is strictly affiliated to% and > x(H) = K>x + P>x(I)
where 2 x is extended to the multiplier algebras as explained in [pad,8].
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(d) In order to cover singular interactions (form bounded butnexessarily operator bounded &Y we
assume that the functios; are equivalent to regular weights. This is a quite weak aptiom cf. page
40. For example, it suffices thatjz|* < hx(xz) < ¢’|z|* for largex wherec’, ¢, « > 0 are numbers
depending onX. ThenU,, V, induce continuous operators in each of the spgges7°, G< .

(e) The interaction will be of the forni = ", _I(Z) where theI(Z) are continuous symmetric
sesquilinear forms o@! such that/(Z) > —uzK — v for some positive numberg; and v with
>, iz < 1. Then the form sunk’ + I defines a self-adjoint operatéf on .

(f) We identify I(Z) with a symmetric operatog! — G~! and we assume thdtZ) is supported
by the subspac@{- . In other terms,/(Z) is the sesquilinear form og' associated to an operator
1(Z):GL, — gg}. Moreover, we assume that this last operator satisfies

UJ(Z)=1(Z2)U,itac Z, [(Z)(V,—1) = 0if a — 0in Z+, VI(Z)V, — I(Z) if a — 0 (2.25)
where the limits hold in norm i, (G2 ,, gg}).

Note that the first part of conditioff), saying that (Z) is supported by~ ~, is equivalent to an estimate
of the form+1(Z) < uK>z + vII> for some positive numbeys, v. See also Remark 2.15.

Theorem 2.13. The HamiltonianH is a self-adjoint operator strictly affiliated t&”, we haveH > x =
K>x + 3 75 x 1(Z), andSpess(H) = Uy ep(s)SP(H>x)-

Remark 2.14. We required thé: x to be bounded from below only for the simplicity of the statats.
Moreover, a simple extension of the formalism allows oneédattparticles with arbitrary spin. Indeed,
if £ is a complex Hilbert then Theorem 2.5 remains tru@'ifs replaced by¢” = ¢ ® K(FE) and the
€(Z)by ¥ (Z) @ K(E). If E is the spin space then it is finite dimensional and one obtéihexactly

as above by replacing tié(X) by H(X) ® E = L*(X; E). Then one may consider instead of scalar
kinetic energy functions self-adjoint operator valued functions: X* — L(E). For example, we may
take as one particle kinetic energy operators the Pauli @dMamiltonians.

Remark 2.15. We give here a second, more explicit version of condif®nSincel(Z) is a continuous
symmetric operato! — G~! we may represent it as a matidxZ) = (Ixy(Z))x yes of continuous
Operatorgxy(Z) : g)l/ — Q;(l with IXy(Z>* = IYX(Z) We takEIxy(Z) =0if Z §Z XNnY andif
ZCcXNYweassum& Ixy(Z)V, — Ixy(Z)ifa—0in X +Y and

Uafxy(Z):Ixy(Z)Ua ifCLGZ, Ixy(Z)(Va—l)—?OifaHOin Y/Z (226)

The limits should hold in norm i&.(GZ,G5").

The operatorg xy (Z)satisfying (2.26) are described in more detail in Proposi#i.7. In the next exam-
ple we consider the simplest situation which is useful inrtberelativistic case.

If E is an Euclidean space ands a real number lek{3, be the Sobolev space defined by the norm
lullzes = 111+ Ap)*/?ul

whereApg is the (positive) Laplacian associated to the Euclideagespa The spacéts; is equipped
with two continuous representations Bf a unitary one induced byU, }.cr and a non-unitary one
induced by{ V.. },cr. If E = O := {0} we defineH3, = C.

Definition 2.16. If E, F are Euclidean spaces afit 13, — H. is a linear map, we say thatis small
at infinity if there ise > 0 such that when viewed as a ma{j," — H!. the operatofl” is compact.

By the closed graph theoreis continuous and the compactness property holds faralD. If £ = O
or F = O then we consider that all the operatdrs H3, — H' are small at infinity.

Example 2.17. Due to assumptio(d) the form domains of x andKy are Sobolev spaces, for example
Gy = H5% andGl = HL. LetI%, : Hﬁ,/z — H;(‘jz be a linear small at infinity map. Then we may
takelxy (Z) =1z ® I)Z(Y relatively to the tensor factorizations (2.16).
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We make now some comments to clarify the conditi@)s (f). Assume, more generally, thatis aC*-
algebra of operators on a Hilbert spadeand thatK is a self-adjoint operator oK affiliated to%’. Let
I be a continuous symmetric sesquilinear form on the domajiof/2. Then for small real the form
sumK +v1 is a self-adjoint operatadfd, . If H, is affiliated to% for smallv, and since the derivative with
respect tos at zero of( H,, + i) ! exists in norm, we getk +i) ' I(K +1i)~! € ¢. This clearly implies
(K)72I{K)~? € €. Since(K)~'/2I{K)~'/? is a bounded operator, the map— (K) *I{K)"* is
holomorphic oriRz > 1/2 hence we get

(K)"“I(K)™® € €if a>1/2. (2.27)

Reciprocally, if K is strictly affiliated to%” (and K as defined at (b) has this property) then Theorem 2.8
from [DaG3] says thatK)~'/2I(K)~* € ¥ suffices to ensure th&l = K + I is strictly affiliated to#’
under a quite general condition needed to make this openatibdefined (this is the role of assumption
(e) above). Condition (f) is formulated such as to imply) ~'/21(K)~! € &. To simplify the statement
we added condition (d) which implies that the spagésre stable under the groldf. Formally

(E) ' PHE) ) xy = (Kx) P Ixy (Ky) ™

So this should belong t6xy = >, - x~y €xv(Z). ThusIxy must be a sum of termbyy (Z) with

(Kx)" 2 Ixy (2)(Ky) ™' € Exyv (2).

Conditions (d) and (f) are formulated such as this to holdRefmark 2.15 and Theorem 2.10.

2.9. Pauli-Fierz Hamiltonians. The next result is an a priori argument which supports o@rpretation
of ¢ as Hamiltonian algebra of a many-body system: we show4#hitthe C*-algebra generated by a
simple class of Hamiltonians which have a natural quantuld fieoretic interpretation. For simplicity
we state this only for finite.

For each couplé(, Y € S suchthatY D Y we haveH x = Hy @ Hx/y. Then we defin@xy C Zxy

as the closed linear subspace consisting of “creation tpsifaassociated to states frohty /v, i.e.

operators:* () : Hy — Hx with 6 € Hx/y which actasu — u ® 6. We setdy x = ®%y C Zyx,

this is the space of “annihilation operatorg(t)) = a*(6)* defined byH x/y. This definesb xy when

X,Y are comparable, i.eX D Y or X C Y, which we abbreviate b ~ Y. If X « Y then we take
dxy = 0. Note thatd x x = Clx, wherel x is the identity operator ofi x. We have

Ty - Byy =bxy - Ky = Txy if X ~Y. (2.28)

Now let® = (®xyv)x,yves C -Z. This is a closed self-adjoint linear space of bounded dpes@n7{.
A symmetric elemenp € & will be calledfield operator Giving such ap is equivalent to giving a family
0 = (Oxy)x-y of elementd)xy € Hx,y, the components of the operator= ¢(¢) being given by:
oxy =a*(Oxy)If X DY, dxy =a(fyx)if X CY,andpxy =0if X £ Y.

The operators of the fornk + ¢, where K is a standard kinetic energy operator ahé @ is a field
operator, will be calledPauli-Fierz Hamiltonians

Theorem 2.18. If S is finite then® is theC*-algebra generated by the Pauli-Fierz Hamiltonians.

Thus¥ is generated by a class of Hamiltonians involving only eletagy field type interactions. On the
other hand, we have seen before that the class of Hamiltemiffiiated to% is very large and covers
N-body systems interacting between themselves with fielé fpperactions. We emphasize that the
k-body type interactionmsideeach of theV-body subsystems are generated by pure field interactions.
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2.10. Nonrelativistic Hamiltonians and Mourre estimate. We prove the Mourre estimate only for non-
relativistic many-body systems. There are serious difiiesiwhen the kinetic energy is not a quadratic
form even in the much simpler case 8tbody Hamiltonians, but see [Derl, Gerl, DaG2] for some par-
tial results which could be extended to our setting. Noté tiia quantum field case is much easier from
this point of view because of the special nature of the intewas [DeG2, Ger2, Geo].

Let S be afinite semilattice of subspacesiof Recall that forX € S we denoteS/ X the set of subspaces
Y/X =YNX*twithY ¢ S>x. This is afinite semilattice of subspacesWivhich containg). Hence
the Hilbert spacé{s, x and theC*-algebraé’s, x are well defined by our general rules and §&.7):

H>x =Hx ®Hs/x and €>x = Ix @ Cs)x. (2.29)

DenoteA x the (positive) Laplacian associated to the Euclidean spaeéth the conventiod, = 0.
We haveA x = hx (P) with hx (z) = ||z]|?. We setA = As = & xAx and defineAs x similarly. If
Y D XthenAy = Ax ® 1 +1® Ay/x henceA>x = Ax ® 1 +1® As,x. The domain and form
domain of the operatah s are given byH% andH} whereHs = H* = & xH*(X) for any reals.

We define nonrelativistic many-body Hamiltonian by extewydio the present setting [ABG, Def. 9.1].
We consider only strictly affiliated operators to avoid wiatgkwith not densely defined operators. Note
that the general case of affiliated operators covers irttegeghysical situations (hard-core interactions).

Definition 2.19. A nonrelativistic many-body Hamiltonian of tySas a bounded from below self-adjoint
operatorH = Hg on’H = Hgs which is strictly affiliated to6” = ¢’s and has the following property: for
eachX € S there is a bounded from below self-adjoint operaigy, x on > x such that

yzx(H)EHZX:AX(@lJrl@HS/X (2.30)
relatively to the tensor factorizatidi> x = Hx ® Hs/x-
TheneachHg/, x is a nonrelativistic many-body Hamiltonian of tyj5¢ X. Indeed, the argument from
[ABG, p. 415] extends in a straightforward way to the presé#uiation.

Remark 2.20. If X is a maximal element i thenS/X = {O} henceHs,x = Ho = C andHo will
necessarily be a real number. Then welgty = Hx, 6>x = Ix, andH>x = Ax + Ho on'H x.

Remark 2.21. SinceS is a finite semilattice, it has a least elemetih S. If S, = §/min S, we get
Hs = Hmins ® Hs,, €s=Tx @%s,, Hs=Anns®1+1® Hs,. (2.31)
Now we give an HVZ type description of the essential spectafim nonrelativistic many-body Hamil-
tonian. For a more detailed statement, see the proof.
Theorem 2.22. Denoterx = inf Hgs,x the bottom of the spectrum &fs, x. Then
SPess(H) = [1,00[ with 7 = min{rx | X is minimal inS \ {O}}. (2.32)

Proof: From (2.30) we get

Sp(H>x) = [0,00[ +Sp(Hs/x) = [tx,00[ if X #O. (2.33)
In particular, ifO ¢ S then by takingX = min S in (2.31) we get
Sp(H) = Spess(H) = [inf Hg,, 00]. (2.34)
If O € Sthen Theorem 2.9 implies
SPess(H) = [1,00[ with 7= Xren7i1(1$) TX. (2.35)
The relation (2.32) expresses (2.34) and (2.35) in a unifiegd w O

For X € S we consider the dilation grouiy’, = '™ defined orf{y by (setn = dim X):
(Wru)(z) = e/ *u(e™?z), 2D =x-Vy+n/2=V, -z—n/2. (2.36)
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Let Do = 0. We keep the same notation for the unitary operat@i¥’. on the direct sunt{ = & xHx
and we do not indicate explicitly the dependenceXmr S of W, and D unless this is really needed.
Note thatD has factorization properties similar to that of the Lapacie.g.D> x = Dx ®1+1® Dg/ x .

We refer to Subsection 7.1 for terminology related to the Mewstimate. We také® as conjugate
operator and we denote iy, () the best constant (which could be infinite) in the Mourrereate at
point . Thethreshold set (H) of H with respect tadD is the set wherg ;(\) < 0. If Aisareal setthen
we defineN4 : R — [—o00,00[ by N4(\) = sup{z € A | z < A} with the conventiorsup ) = —cc.
Denoteev(T') the set of eigenvalues of an operatar

Theorem 2.23.Let H = Hs be a nonrelativistic many-body Hamiltonian of ty§end of clasCl (D).
Thenr(H) is a closedcountableeal set given by

T(H) = Uxzoev(Hs/x). (2.37)

The eigenvalues dff which do not belong te(H) are of finite multiplicity and may accumulate only to
points fromr(H). We havey ;;(A) = A — N, x)(A) for all real A.

We emphasize that i ¢ S the threshold set

T(H) = Uxesev(Hs/x) (2.38)
is very rich although the spectrum &f = A,;,s ® 1 + 1 ® Hg, is purely absolutely continuous.

Remark 2.24. We thus see that there is no difference between nonrel&tivisbody and many-body
Hamiltonians from the point of view of their channel struetu The formulas which give the essential
spectrum and the threshold set relevant in the Mourre ettiara identical, cf. (2.35) and (2.37). This is
due to the fact that both Hamiltonian algebras are gradetidbgame semilattic§.

2.11. Examples of nonrelativistic many-body Hamiltonians Let H = K + I with kinetic energy
K = A. HenceG! = H! = @xH andG~' = H~! = @xH ' with the notations 0§2.8. The
interaction term is an operatdr: H' — H~' given by a suml = " ,_¢ I(Z) where each (Z) is
defined with the help of the tensor factorizatith. = Hz ® Hs/z.

Proposition 2.25. LetIZ : H}S/Z — H;}Z be symmetric and small at infinity and IB7) := 17 @ I?
which is naturally defined as a symmetric operatot — H~!. Assume thal(Z) > —uzA — v for
some numberg,v > 0with Y uy < 1. ThenH = A + I defined in the quadratic form sense is a
nonrelativistic many-body Hamiltonian of tygeand we havéd>x = A>x + >, I(Z).

The first condition on/# can be stated in terms of its coefficients as followsZifc X N Y then the
operator/{y : My, — My, is small at infinity and such tha{,)* = I{x. On the other hand,

note that if the operators? : Hé/z — H;}Z are compact then they are small at infinity and for any
w > 0there is a number such thattI(Z) < uAs + v for all Z. The more general smallness at infinity

condition covers second order perturbationg\gf

In the next proposition we give examples of nonrelativisgerators of clas€’} (D). The operatoir

is constructed as in Proposition 2.25 but we consider oriractions which are relatively bounded in
operator sense with respect to the kinetic energy such as to forcedhmaith of H to be equal to the
domain ofA, hence tdH2 = @XHg(. Since this space is stable under the action of the operéfprsve
shall get a simple condition fdf to be of clas<"} (D).

Proposition 2.26. For eachZ ¢ S assume thaf? : H?S/Z — Hs/z is compact and symmetric as

operator onH s, and that[D, 4] : Hi’/z — Hg?z is compact. Then the conditions of Proposition

2.25 are fulfilled and each operatar(Z) : ‘H?> — H is A-bounded with relative bound zero. The
operatorH is self-adjoint or4? and of clasC} (D).
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So for the coefficient$4, we aski{, = 0if Z ¢ X nY andifZ c X NY then(I%,)* > I¢ and
I3y MYy — Hxyz and[D, I3y] : MY, — M7, are compact operators. (2.39)

The expressionD, 1%, | = Dx,z1%, — I%, Dy, is not really a commutator. Indeed, if we denote
E=(XnNY)/Z,s0Y/Z = E® (Y/X)andX/Z = E® (X/Y), thenHx,; = Hg ® Hx/y and
Hy,z = He ® Hy, x. Hence the relatio x,; = D ® 1+1® Dx/y and a similar one fo¥’/Z give

[D,I%y] = [Dg, I%y] + Dx/yI%y — Iy Dy/x.

The first term above is a commutator and so is of a differentreahan the next two. Sinde?, Dy x
is a restriction of Dy x IZ i )* itis clear that the second part of condition (2.39) followenti:

[Dp, I%y] andDx,y 1%y are compact operatotsy,, — H;jz forall X,Y, Z. (2.40)

We consider some simple examples of operaldrs to clarify the difference with respect to tié-body
situation (se€7.4 for details and generalizations).Af F' are Euclidean spaces we denote

Hig =KMy, Hr) and 25 = HE 5 = K(HE, He). (2.41)

DenoteX BY = X/Y & Y/X and embed.?(X HY') C #x,v,y,x by identifying a Hilbert-Schmidt
operator with its kernel. Then

L (XBY; XE) C Hg @ Hx)yyx C %)?/Z,Y/Z'

ThuslZ, € L*(XBY;.#}2) is a simple example of operator satisfying the first part efctition (2.39).
Such anl{,, acts as follows: itu € 13, C L*(Y/X; HE) then

IZyu € Hyyz = L2(X/Y:Hp) isgivenby (IZyu)(a) = [y, I%y (@9 )uly)dy'.
Now we consider (2.40). Sinde’,y’) — [Dg, IZ, (', y')] is the kernel of the operat¢Dp, IZ, ], if
(D, 1%y € IH(XBY; K(H%, Hy?)

then[Dg, IZ,] is a compact operatdttf,/z — H2

x/z- Forthe termD x 1%, it suffices to require the
compactness of the operator

Dx/yI%y =15 ® Dx/y - 1%y : H%’/Z —Hp ®H;(3Y‘

From (2.36) we see that this is a condition on the kemeN .. IZ,. (', y'). For example, it suffices that
the operato(QX/yﬂ)Z(Y : H?,/Z — Hx/z be compact, which is a short range assumption. In summary:

Example 2.27.ForeachZ C XNY letI%, € L*(XBY;.#72) such that the adjoint a4, (2, y') isan
extension off ¢ (y/, z'). Assume that kerébD g, 1%, (2, y')] belongs tal?(X BY'; K (H3, H5>) and

that the kernek’ - V. I%,.(2',y') defines a compact operathf;., — H;iz. Then (2.39) is fulfilled.

Example 2.28. Here we consider the particular case_ X to see the structure of a generalized creation
operator which appears in this context. For eaclr Y let IZ, € Jiff/z ® Hx,y, where the tensor

product is a kind of weak version CEQ(X/Y;JK/)?/Z) discussed ir3.4. Furthermore, assume that
[Dyyz,I%y] € K(H*(Y/Z), Hy},) © Hx)y andDx,y Iy € K7, @ Hy), . Then (2.39) holds.

2.12. Boundary values of the resolventTheorem 2.23 has important consequences in the spectral the
ory of the operatori: we shall use it together with [ABG, Theorem 7.4.1] to showttif has no
singular continuous spectrum and to prove the existenckeobbundary values of its resolvent in the
class of weighted.? spaces that we define now. L&t , = @&xL? ,(X) where theL2 (X) are the
Besov spaces associated to the position observahlé (hese are obtained from the usual Besov spaces
associated td.*>(X) by a Fourier transformation). Note that, = H; - is the Fourier transform of the
Sobolev spacét®. Let C. be the open upper half plane a6d’ = C, U (R \ 7(H)). If we replace
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the upper half plane by the lower one we similarly get the 8etsaandC. We define two holomorphic
mapsRy : C. — L(H) by R+ (z) = (H — z)~! and note that we have continuous embeddings

L(H) C L(Hl/Q,l,Hfl/g’oo) - L(Hs,Hfs) if s > 1/2
so we may consideR.. as maps with values ib(H1 /2,1, H_1/2,00)-

Theorem 2.29. If H is of classC1(D) then its singular continuous spectrum is empty and the holo-
morphic mapsi. : Co — L(H; /21, H_1/2,0) €xtend to weakcontinuous functiong,. on CH. The
mapsR. : CII — L(H,,H_,) are norm continuous i > 1/2.

This result is optimal both with regard to the regularity bé tHamiltonian relatively to the conjugate
operatorD and to the Besov spaces in which we establish the existenttee dfoundary values of the
resolvent. The clas§'>!(D) will be discussed and its optimality will be made precise7n6 but we
give some examples below.

We state first the simplest sufficient conditioassume thatd is as in Proposition 2.25 and that its
domain is equal t&42;if [D,[D,I?]] € L(H?S/Z,HE/QZ) for all Z then H is of classC''!(D). This
follows from Theorem 6.3.4 in [ABG]. The condition oD, [D, I?]] can easily be written in terms of
the coefficientdZ,. by arguments similar to those §2.11. Refinements allow the addition of long range
and short range interactions as in [AB5,4.2].

Let¢ : R — Rbe of clasg”> and such thag(\) = 0if A < 1and¢(\) = 1if A > 2. For each Euclidean
spaceX and realr > 1 we denot&’; the operator of multiplication by the functian— £(|z|/r) on any
Sobolev space oveX. Then we defings = ©xesf’ considered as operator @t for any reals.

Definition 2.30. LetT : H% — Hs be a symmetric operator. We say tHats along range interaction
if [D,T] € L(H%,Hg") and [;* ||§g[D7TH|H§_,H§1dr/r < oo. We say thatl" is a short range
interactionif [ [[€5[D, T]||3z O < oc.

Theorem 2.31. Assume thatl = As + Y ;.5 12 ® I” where each* : H?S/Z — Hs/z is symmetric,
compact, and is the sum of a long range and a short range iotera ThenH is a nonrelativistic
many-body Hamiltonian of clags!}(D), hence the conclusions of Theorem 2.29 are true.

Scattering channels may be defined in a natural way in theexbof the theorem. If the long range
interactions are absent we expect that asymptotic conmasseholds.

3. GRADED HILBERT C*-MODULES

3.1. Graded C*-algebras. The natural framework for the systems considered in thispéapthat of
C*-algebras graded by semilattices. We refer to [Ma2, Ma3hfdetailed study of this class of algebras.

Let S be a semilattice and’ a graded”'*-algebra. Following [Ma2] we say tha# C ./ is agraded
C*-subalgebraif % is a C*-subalgebra of7 equal to) 0 % N </ (o). ThenZ has a natural graded
C*-algebra structure(c) = BN o/ (0). If B is also an ideal ofs then4 is agraded ideal

A subsetZ of a semilatticeS is asub-semilattice af if o, 7 € 7 = o AT € 7. We say thaf is anideal
of Sifo <7e€7T =0eT.If «isanS-gradedC*-algebraand C Slet«(T) = >, /(o)
(if 7 is finite the sum is already closed). Tf is a sub-semilattice or an ideal then cleas#§(7) is a
C*-subalgebra or an ideal @ respectively.

We say thate/ is supported by a sub-semilatti@eif «# = </ (7),i.e. o/ (o) = {0} foro ¢ T. Thena
is also7 -graded. The smallest sub-semilattice with this propeiityhe calledsupport ofe/. If 7 is a
sub-semilattice of and.</ is a7 -graded algebra the# is S-graded: set# (o) = {0} forc € S\ 7.

The next result is obvious & is finite. For the general case, see the proof of Propositi®im3yDaG3].
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Proposition 3.1. Let 7 be a sub-semilattice & such that7’ = S\ 7 is an ideal. Then/(7) is a
C*-subalgebra ofe, o7 (7") is an ideal ofe/, andf = &7 (T) + o/ (T') with &/ (T) N o/ (T") = {0}.
In particular, the natural linear projectio??(7) : o — /(7)) is a morphism.

If 7 is a sub-semilattice theh’ is an ideal if and only if7 is afilter (i.e.c > 7€ 7 = o € 7). Thus
if S is finite then the only sub-semilattices which have this propare theS-, introduced below.

The simplest sub-semilattices are the chains (totallyredisubsets). I € S and
Sso={r€S|1720}, Sp,=8,={r€S|7#0}, Sco={rcS|7<0} (3.1)
thenS>,, is a sub-semilattice anl:, andS<,, areideals. Sezs>, = 7/ (S>.) is agraded*-subalgebra
of &7 supported byS>, and.<Z(Sx,) is a graded ideal supported By, such that
o =050+ A (Sp,) With o5, NI (Sy,) = {0} (3.2)
The projection morphism?s, : &/ — <, defined by (3.2) is the unique linear continuous map
P> 9 — o suchthat?s,A = Aif A € o/(1) for somer > ¢ and ¥, A = 0 otherwise.

S is calledatomicif it has a smallest element= min S and if eachr # o is minorated by an atom. We
denote byP(S) the set of atoms of. If 7 is an ideal ofS andS is atomic ther is atomic, we have
min7 = minS, andP(7) = P(S) N 7. This next result is also easy to prove [DaG3].

Theorem 3.2.If S is atomic then? A = (%> A)aep(s) definesamorphis? : &7 — [, cp(s) %>a
with <7 (o) as kernel. This gives us a canonical embedding

[ 4(0) C [aep(s) Poo- (3.3)

We call this “theorem” because it has important consequseindie spectral theory of many-body Hamil-
tonians: it allows us to compute their essential spectruditamprove the Mourre estimate.

We assume that is atomic so thaty comes equipped with a remarkable ideé(o). Then forA € &
we define iteessential spectrurfrelatively to.<7 (o)) by the formula

SPess(A) = Sp(FA). (3.4)

In our concrete exampleg’ is represented on a Hilbert spakieand.«” (o) = K (H), so we get the usual
Hilbertian notion of essential spectrum.

In order to extend this to unbounded operators it is conven@edefine arobservable affiliated tey as
a morphismH : C,(R) — <. We setp(H) = H(y). If o is realized oriH then a self-adjoint operator
onH such that H + i)~! € < is said to be affiliated te7; then H () = ¢(H) defines an observable
affiliated to.r' (see Appendix A in [DaG3] for a precise description of thatieh between observables
and self-adjoint operators affiliated tg). The spectrum of an observable is by definition the supdort o
the morphism#:

Sp(H) ={A e R| ¢ € Co(R), 0(A) # 0 = o(H) # 0}. (3.5)
Now note that”ZH = &2 o H is an observable affiliated to the quotient algebfd.«” (o) so we may
define the essential spectrumi@fas the spectrum of? H. Explicitly, we get:

Spess(H) = {A €R [ p € Co(R), p(A) # 0 = @(H) ¢ o/ (0)}. (3.6)
Now the first assertion of the next theorem follows immedyafeom Theorem 3.2. For the second
assertion, see the proof of Theorem 2.10 in [DaG2]/Bye denote the closure of the union.

Theorem 3.3. Let § be atomic. IfH is an observable affiliated te7 then H>, = %>, H is an
observable affiliated te~, and we have:

SPess(H) = UaeP(s)Sp(Hza)~ (3.7)
If for each A € < the set 0f%?> , A with o € P(S) is compact ine/ then the union if{3.7)is closed.



ON THE SPECTRAL ANALYSIS OF MANY-BODY SYSTEMS 17

3.2. Hilbert C*-modules. Some basic knowledge of the theory of Hilb€éft-modules is useful but
not indispensable for understanding our constructionstriveslate here the necessary facts in a purely
Hilbert space language. Our main reference for the gertezaly of HilbertC*-modules is [Lac] but see
also [Bla, RW]. The examples of interest in this paper are tomtrete” HilbertC*-modules described
below as HilberC*-submodules oL(€, F). We recall, however, the general definition.

If o7 is aC*-algebra then Banache/-moduleis a Banach space? equipped with a continuous bilinear
mape/ x A > (A, M) — MA € .# such tha{ M A)B = M(AB). We denote# - </ the clspan of
the elementd/ A with A € o7 andM € .# . By the Cohen-Hewitt theorem [FeD] for eadhe .# - o/
there ared € & andM € .# such thatN = M A, in particular.# - o = .# </ . Note that by module
we mean “right module” but the Cohen-Hewitt theorem is alalidvfor left Banach modules.

Let o be aC*-algebra. A (right)Hilbert o-moduleis a Banache/-module.# equipped with an
o/-valued sesquilinear map|-) = (|}, which is positive (i.e. (M|M) > 0) «/-sesquilinear (i.e.
(M|NA) = (M|N)A) and such thatlM|| = |[(M|M)|'/?. Then.# = .#</. The clspan of the
elements(M|M) is an ideal ofeZ denoted(.#|.#). One says that7 is full if (#Z|.#) = «/. If &
is an ideal of aC*-algebra#” then.# is equipped with an obvious structure of Hilb&tmodule. Left
Hilbert 7-modules are defined similarly.

If .4,/ are Hilbertes-modules andM, N) € .# x A thenM' — N(M|M’) is a linear continuous
map.# — .# denoted N)(M| or NM*. The closed linear subspacebf.#, .4") generated by these
elements is denoted(.#,.4"). There is a unique antilinear isometric niip— 7* of K(.#,.#") onto
K(A, ) which send$N)(M| into |M)(N|. The spacel(.#) = K(#,.#) is aC*-algebra called
imprimitivity algebraof the Hilbert.e7-module.Z .

Assume that/ is a closed subspace of a Hilbert-module.# and let{./"|.#") be the clspan of the
elements(N|N) in «/. If .4 is an</-submodule of# then it inherits an obvious Hilbert/-module
structure from#. If .4 is not an</-submodule of# it may happen that there is@*-subalgebra
% C o such thaty' # C A and(A|.4) C . Then clearly we get a Hilbert¥-module structure
on.#". On the other hand, it is clear that sucl¥aexists if and only if 4/ (A|.4") C 4 and then
(A4} is aC*-subalgebra of7. Under these conditions we say that is a Hilbert C*-submodule
of the Hilberte/-module.#. Then.#" inherits a Hilbert{.#"|.#")-module structure and this defines the
C*-algebrakC(.#"). Moreover, if# is as above theft(.A4) = Kgz(4).

If .4 is a closed subspace of a Hilbert-module.# then let!C(.4"|.# ) be the closed subspacefof.# )
generated by the elemem&V* with N € 4. Itis easy to prove that ./ is a Hilbert C*-submodule of
A thenC(A|.#) is aC*-subalgebra ofC(.#) and the maf’ — T'|_» sendslC(A/|.#) ontokC(.A")
and is an isomorphism @f*-algebras Then we identifylC(.4"|.#) with IC(.A").

If £, F are Hilbert spaces then we equig€, F) with the Hilbert L(£)-module structure defined as
follows: the C*-algebraL (&) acts to the right by composition and we tal¢e/|N) = M*N as inner
product, wherel/* is the usual adjoint of the operatdf. Note thatL(&, F) is also equipped with a
natural left HilbertZ(F)-module structure: this time the inner producfigV*.

If . # C L(E,F) is a linear subspace thew™ C L(F,E) is the set of adjoint operators/* with
M e . Clearly.#\ C Mo = A C 5. 1f Gis athird Hilbert spaces and” C L(F,G) is alinear
subspace theV” - .#)* = .#* - A*. In particular, if€ = F =G, # = .#*,and.4/ = A4* then
M- N C N Misequivalentto - N =N - M.

Now let.# C L(€,F) be a closed linear subspace. Thehis a Hilbert C*-submodule of.(&, F) if
andonly if.Z #* # C .

These are the “concrete” Hilbeft*-modules we are interested in. It is clear that* will be a Hilbert
C*-submodule of (F, £). We mention that# * is canonically identified with the left Hilbex-module
K(A, <) dual to. .
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Proposition 3.4. Let £, F be Hilbert spaces and le# be a HilbertC*-submodule oL (€, ). Then
A =M - M and B = 4 - #* are C*-algebras of operators 08 and F respectively and# is
equipped with a canonical structure 8, <) imprimitivity bimodule.

For the needs of this paper the last assertion of the praposibuld be interpreted as a definition.

Proposition 3.5. Let.#” be aC*-submodule of.(¢, F) such thaty” C .# and N> - N = A" - M,
N N =M M*. ThentV = A.

Proof: If M € .# andN € 4 thenMN* € =4 - A4 and AV N * AN C A henceMN*N €
N SinceS ™ - AN = of we getMA € A forall A € o/, Let A; be an approximate identity for
the C*-algebraZ. Since one can factoriz& = M’'A’ with M’ € .# and A’ € «/ the sequence
MA; = M'A’A; converges ta/’ A’ = M in norm. ThusM € 4. ]

Proposition 3.6. Let &, F, H be Hilbert spaces and lew” C L(H,€&) and 4 C L(H,F) be Hilbert
C*-submodules. Let/ be aC*-algebra of operators oft{ such that#™* - .# and 4+ - .4 are ideals
of &/ and let us view# and .4 as Hilbert «7-modules. TheilC(.#Z, /") = 4 - .#* the isometric
isomorphism being determined by the conditidf} (M| = NM*.

3.3. Graded Hilbert C*-modules. This is due to Georges Skandalis [Ska] (see also Remark.4.28)

Definition 3.7. Let S be a semilattice and’ an S-gradedC*-algebra. A Hilbertey-module.# is an
S-graded Hilberte7-moduleif a linearly independent family.# (o)} ,cs of closed subspaces o is
given such thap_ .# (o) is dense in# and:

M) (1) C Mo NT) and (A (o)|.# (7)) C (o AT) forallo, 7 € S. (3.8)

Note thates equipped with its canonical Hilber¥-module structure is af-graded Hilberte7-module.
(3.8) implies that each (o) is a Hilbert< (o)-module and itr < 7 then.# (¢) is an.</ (7)-module.

From (3.8) we also see thdte imprimitivity algebralC(.# (¢)) of the Hilbert.e7 (o)-module.Z (o) is
naturally identified with the clspan iK(.#) of the element3/M* with M € .# (o). ThusK(.# (o))
is identified with aC*-subalgebra ok (.#). We use this identification below.

Theorem 3.8. If .# is a graded HilberteZ-module then'C(.#) becomes a graded*-algebra if we
definelC(# ) (o) = K(.#(5)). I M € .#(c) and N € .# (1) then there are elemenfg’ and N’ in
A (o A7) such thatM N* = M’'N'*; in particular MN* € K(.4)(o A T).

Proof: As explained beforelC(.#)(c) are C*-subalgebras ok (.#). To show that they are linearly
independent, lef’(c) € K(.#)(o) such thatT'(c) = 0 but for a finite number ob and assume
> . T(c) = 0. Then for eachM/ € .# we have)  T(c)M = 0. Note that the range df'(o) is
included in.# (o). Since the linear space# (o) are linearly independent we ¢g€{o)M = 0 for all o
andM hencel' (o) = 0forall o.

We now prove the second assertion of the proposition. Sii@e) is a Hilbert</ (o)-module there are
M, € # (o) andS € &(c) such thatM = M, S, cf. the Cohen-Hewitt theorem or Lemma 4.4 in
[Lac]. Similarly, N = N1T with Ny € .#(7) andT € &/ (7). ThenM N* = M, (ST*)N; andST* €

o (o AT) sowe may factorize itaST* = UV*with U,V € &/ (o A7), henceM N* = (M U)(N,V)*.
By using (3.8) we see that/’ = MU and N’ = N;V belong to.# (o A 7). In particular, we have
MN* e K(AH)(oNT)If M € #(c)andN € .4 (7).

Observe that the assertion we just proved implies JhatkC(.#)(o) is dense inC(.#). It remains to
see thatC(.#) (o) K( 4 )(T) C K(A) (o AT). For this it suffices thad/ (M |N)N* be in)C(.4)(o A T)
if M € #(c)andN € #(r). Since(M|N) € «/(c A7) we may write(M|N) = ST* with
S, T e (o ANT)SOM(M|N)N* = (MS)(NT)* € K(#)(c A T) by (3.8). O
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We recall that the direct sum of a fami{y#; } of Hilbert «7-modules is defined as followss;.#; is the
space of element§\/;); € [], .#; such that the seri€s_, (M;|M;) converges iny equipped with the
naturale/-module structure and with the’-valued inner product defined by

((M;)il (N3)i) = 32 (M;|N;). (3.9)
The algebraic direct sum of the’-modules.#; is dense inb;.#;.

It is easy to check that if eacl#; is graded and if we se# (o) = @,.#;(0) then.# becomes a graded
Hilbert o7-module. For example, if#” is a graded Hilbert7-module then4” & 7 is a graded Hilbert
</-module and so thiénking algebraC(.4" & &) is equipped with a graded algebra structuk&’e recalll
[RW, p. 50-52] that we have a natural identification

KNV @©d)= (’Cﬁﬂ) ’2?) (3.10)
and by Theorem 3.8 this is a graded algebra whesemponent is equal to
Koo = (LD ). 3.1

If 4" isaC*-submodule of.(&, F) and if we setV/ ™ - A = o/, N - N* = H then the linking algebra
< B M

n %) of .# is aC*-algebra of operators aff & £.

Some of the graded Hilbe€t*-modules which we shall use later on will be constructed Hevis.

Proposition 3.9. Let&, F be Hilbert spaces and lew” C L(&, F) be a HilbertC*-submodule, so that
o =M% M C L(E)is aC*-algebra and.# is a full Hilbert «7-module. LeC be aC*-algebra of
operators or¢ graded by the family af*-subalgebraqC(c)},cs. Assume that we have

o -Clo)=Clo) o =€(o) forall o € S (3.12)

and that the famil{ ¢’ (o) } of subspaces di(F) is linearly independent. Then tf& o) are C*-algebras
of operators orf and%” = ). ¢(c) isaC*-algebra graded by the famils’ (o) }. If 4 (c) = #-C(0)
then.#” = >"¢ .# (o) is a full Hilbert #-module graded by.4" (c)}.

Proof: We have

C0) C(r)=o -Clo)- o -C(r)= - o -Clo)-C(t) C i -Cloc NT) =C (0 AT).
This proves that th& (o) areC*-algebras and th& is S-graded. Then:
N(0)-C(T)=M-Cl0)-C(1)-o C M-C(cNT)- o =M -A-C(cNAT)=M-C(c\T) =N (cAT)
and
N (o) N (1)=C(o)- M- M -C(T)=C(0)-A-C(1)=-C(0)-C(T) C-ClcAT) =C(aA\T).
Observe that this computation also gives(c)* - 4 (c) = € (o). Then

(S0 A (0)) (M (@) = Xg M (@) N (1) € 3, 0 AT) € 3, %(0)

and by the preceding remark we gét*- .4~ = ¥ so.#" is a full Hilbert -module. To show the grading
property it suffices to prove that the family of subspac&go) is linearly independent. Assume that
> N(o) = 0with N(o) € A4 (0) andN (o) = 0 for all but a finite number of. Assuming that there
are non-zero elements in this sum,fdbe a maximal element of the set@fuch thatV(c) # 0. From

Y o1.00 N(01)"N(02) = 0andsinceV (o1)*N(02) € € (o1A02) wegety, .., N(o1)*N(o2) =0
for eacho. Take herer = 7 and observe that i, Aoy = 7 ando; > 7 0roy > 7thenN(o1)*N(o2) =

0. ThusN(7)*N(7) = 0 soN(r) = 0. But this contradicts the choice of soN(c) = 0forallo. []
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3.4. Tensor products. In this subsection we collect some facts concerning tensmtyets which are
useful in what follows. We recall the definition of the tenpopduct of a Hilbert spacg€ and aC*-algebra
< in the category of Hilber€*-modules, cf. [Lac]. We equip the algebraic tensor product o7 with
the obvious rightez-module structure and with the’-valued sesquilinear map given by

(D ucet ® Auld cev @ By) = Zu,vm‘i’)AZBv (3.13)

where A, = B, = 0 outside a finite set. Then the completion &f> 7 for the norm|| M| :=
[(M|M)||*/? is a full Hilbert.<7-module denoted ® <. Clearly its imprimitivity algebra is

KE@d)=K(E)o . (3.14)
If o7 is S-graded thelf ® <7 is equipped with an obvious structure®fgraded Hilberter-module.

If < is realized on a Hilbert spacE then one has a natural isometric embeddi®y.e” C L(F,EQ F).
Indeed, there is a unique linear mém <« — L(F,€ ® F) which associates ta @ A the function
f—u® (Af) and due to (3.13) this map is an isometry. Thus the Hileénnodule ® <7 is realized

as a HilbertC*-submodule ofL.(F, £ ® F), the dual module is realized as the set of adjoint operators
(€@ ) C L(E®F,E), and one clearly has

Ed) (Eod)=od, Ed) Ed) =KE)od. (3.15)

If X is a locally compact space equipped with a Radon measurelthex) © 7 is the completion of
Co(X; o) for the norm|| [ F(z)*F(x)dz||*/2. Note thatL?(X; o) C L*(X) ® < strictly in general,
cf. the example below. 17 C L(F) then the norm oi?(X) ® < is

||fXF(x)*F($)dx||2 = supfe}-7||fH:1fXHF(x)fHQda:. (3.16)

If Y is a locally compact space thén C,(Y) = C,(Y;€). HenceL?(X) ® Co(Y) is the completion
of Cc(X x Y) for the normsup, ¢y ([ [F(z,y)[?dz)'/?. Assume that{ = Y is a locally compact
abelian group and lef € L°°(X) with compact support ang € L?(X). It is easy to check that
F(z,y) = f(z)g(z +y) is an element of,, (X; L?(X)) = L?(X) ® Co(X) butif F(z,-) = f(z)U,gis
not zero then it does not belongdg(X') and is not even a bounded functioryiis not. Thus the elements
of L?(X) ® & can not be realized as bounded operator valued (equivattmeses of) functions oX .

More generally, i, 7" are Hilbert spaces and/ C L(F',F") is a closed subspace then we define
L?(X) @ .# as the completion of the spafge(X;.#) for a norm similar to (3.16). We clearly have
LA(X)®# C L(F',L*(X) ® F") isometrically and.?(X; .#) C L?(X) ® .# continuously.

If £, F,G, H are Hilbert spaces and/ C L(£,F) and.4# C L(G,H) are closed linear subspaces then
we denote# ® .4 the closure inL(€ ® G, F ® H) of the algebraic tensor product o and./".
Now suppose thatZ is aC*-submodule ofZL (£, F) and that 4 is aC*-submodule ofL(G,H) and let

o = M* - M andB = N/* - 4. Then# is a HilbertoZ-module and/” is a Hilbert #-module
hence the exterior tensor product, denoted tempora#lyey -4, is well defined in the category of
Hilbert C*-modules [Lac] and is a Hilbety ® #-module. On the other hand, it is easy to check that
(M @ N) = 4" ® 4" and then that# @ .4 is a HilbertC*-submodule of (£ ® G, F ® H) such
that(# @ N )* - (M @ N) = o ® B. Finally, itis clear thal.(£ ® G, F ® H) and.# ®ex-#" induce

the sames’ ® %-valued inner product on the algebraic tensor producoaind./". Thus we we get a
canonical isometric isomorphistW Qext N = M Q N .

As an application we give now an abstract version of the "tmdels” described in Example 2.12. Let
&, F be Hilbert spaces and let us defiHe= (£ ® F) & F. Letr and% be C*-algebras of operators on

F and€ ® F respectively. We embefi® 7 C L(F,E ® F) as above. We simplify notation and denote
E* @ = (E® ) C L(E®F,F)the dual module.

Proposition 3.10. LetS be a semilattice an@” an ideal ofS. Assume that thé’*-algebrase’ and #
are S-graded and that we have’ (o) = {0} if 0 ¢ T and #(7) = K(£) ® &/ (r) for 7 € T. Then

(B ERd
%_<5*®M - ) (3.17)
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is anS-gradedC*-algebra if we define its components as follows:

%(0) = (g*g(;)(a) 5@%5‘”) forall o€ s. (3.18)
Proof: Observe that if we sef’ = S\ 7 then
(K@) od x4 B(T') 0\ _ BT 0
o= ("7 F) (T ) ke (P00 0) a9

where/" = £ ® &/ is anS-graded Hilbertey-module, cf. (3.10) and (3.14). It is easy to see that the
family {#¢ (o)} is linearly independent and thitis the closure of its sum. By taking into account (3.11)
we see that it suffices to show thé(c )% (1) C € (o A7) if 0 € T andT € T. After computing the
coefficients of the matrices we see that it suffices to cheak#{o) - € ® &7 (1) C € ® /(0 A T). But:

Bo) EQH(T)=B(o) KE)RA(T) - EQRA(T)=B(0) B(T) - ERQA(T)
CHBOoNAT) EQA(T)=K(E)RA(oAT) EQH(T) CERA (0 NT)
which finishes the proof. [

The extension to an increasing family of idedlsC 7 - - - C S is straightforward.

4. THE MANY-BODY C*-ALGEBRA

In this section we introduce the many-body-algebra and describe its main properties (in particular, w
prove the theorems 2.4 and 2.5). Subsection 4.4 contains pogparatory material on concrete realiza-
tions of HilbertC*-modules which implement the Morita equivalence betweenesorossed products.

4.1. Notations. Let X be a locally compact abelian group with operation denotetitiadly equipped
with a Haar measurescd We abbreviate this by saying thatis an Ica group We set?x = L(L?*(X))
and.#x = K(L?(X)) and note that these a& -algebras independent of the choice of the measure on
X. If Yis a second Ica group we shall use the abbreviations

PLxy = L(L*(Y),L*(X)) and Jxy = K(L*(Y), L*(X)). (4.1)

We denote byy(Q) the operator in.?(X) of multiplication by a functiony and if X has to be explicitly
specified we sef) = @ x. The bounded uniformly continuous functions &rform aC*-algebraC} (X)
which contains the algebr&s(X) andC,(X). The mapy — ¢(Q) is an embedding} (X) C Zx.

The groupC*-algebraZx of X is the closed linear subspace@f generated by the convolution opera-
tors of the form(¢ * f)(x) = [y ¢(z — y)f(y)dy with ¢ € C.(X). Observe thaf — ¢ « f is equal to
[x ©(—a)U, da whereU, is the unitary translation operator @3 (X ) defined by(U, f)(z) = f(z +a).

Let X* be the group dual toX with operation denoted additivély If ¥ € X* we define a unitary
operatorV, on L?(X) by (Viu)(z) = k(x)u(z). The Fourier transform of an integrable measure
on X is defined by(Fu)(k) = [k(x)u(dz). ThenF induces a bijective mag?(X) — L2*(X*)
hence a canonical isomorphisth — F~'SF of Zx- onto Zx. If ¢ is a function onX* we set
Y(P) = ¢(Px) = F~'MyF, whereM,, = ¢(Qx~) is the operator of multiplication by on L?(X™*).
The mapy — (P) gives an isomorphisrf, (X*) = Jx.

If Y C X is aclosed subgroup thery : X — X/Y is the canonical surjection. We emb@#( X/Y") C
C(X) with the help of the injective morphisg — ¢ o my. SoC!(X/Y) is identified with the set of
functionsy € Cp(X) such thatp(z + y) = ¢(z) forallz € X andy € Y.

In particular,C,(X/Y) is identified with the set of continuous functiopson X such thatp(z + y) =
o(x) forallz € X andy € Y and such that for each > 0 there is a compack’ C X such that

T Then(k + p)(x) = k(z)p(z), 0(x) = 1, and the element k of X * represents the functidna In order to avoid such strange
looking expressions one might use the notafi¢n) = [z, k].
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lp(z)| <eifz ¢ K+Y.Byz/Y — oo we meanry () — oo, SO the last condition is equivalent to
w(x) — 0if /Y — oo. For coherence with later notations we set

Cx(Y) =Co(X/Y) (4.2)
Observe that to an elemepte Y we may associate a translation operdtgrin L?(X) and another
translation operator if?(Y'). However, in order not to overcharge the writing we shallaterthe second
operator also by/,. The restriction mag — k|y is a continuous surjective group morphisat — Y*
with kernel equal ta¥+ = {k € X* | k(y) = 1 ¥y € Y} which defines the canonical identification

Y* = X*/Y+. We denote by the same symBal the operator of multiplication by the charactee X *
in L?(X) and by the charactéry € Y*in L2(Y).

We shall writeX = Y @ Z if X is the direct sum of the two closed subgrougs”Z equipped with
compatible Haar measures, in the sense thatdly ® dz. ThenL?(X) = L*(Y) ® L?(Z) as Hilbert
spaces and¢x = ¥y ® ¥z andCx(Y) =1 ® Co(Z) asC*-algebras.

Let O = {0} be the trivial group equipped with the Haar measure of todsh. ThenL?(0) = C.

4.2. Crossed products.Let X be a locally compact abelian group.(X'-subalgebrad c C}(X) stable
under translations will be called -algebra Thecrossed product afl by the action ofX is an abstractly
definedC*-algebrad x X canonically identified with th€'*-algebra of operators ob?(X) given by

AxX=A-Ix =Tx - A (43)

Crossed products of the for@x (Y') x X whereY is a closed subgroup of play an important role in
the many-body problem. To simplify notations we set

%X(Y):Cx(Y)NX:CX(Y)-QX:yx~Cx(Y). (44)
If X =Y @ Z and if we identifyL?(X) = L*(Y) ® L*(Z) thenFx = Z ® Tz hence
CKX(Y) =N QK. (4.5)

A useful “symmetric” description o (Y') is contained in the next lemma. L& be the closed
subgroup ofX? = X @ X consisting of elements of the for(y, y) with y € Y.

Lemma 4.1. ©x (Y) is the closure of the set of integral operators with kerrets C.(X?/Y (?)).

Proof: Let ¢ be the norm closure of the set of integral operators withdlerth € C'(X?) having the
properties: (1P(x + y, 2’ +y) = 0(x,2’) forall z, 2’ € X andy € Y; (2) sup@ C Ky + Y for some
compactky C X2. We shows = €x(Y). Observe that the map i defined by(z, z’) — (z—2', 2')
is a topological group isomorphism with inverge , z5) — (1 + z2, z2) and sends the subgrodf?
onto the subgroug0} @ Y. This map induces an |somorph|sm2/Y(2) ~ X @ (X/Y). Thus any
0 € Co(X2/Y @) is of the formd(z,2’) = O(x — 2/, 2') for some@ € C. (X & (X/Y)). Thus% is the

closure inZx of the set of operators of the for(ﬂ“u fX x — o', 2" )u(z")dz’. Since we may
approximate) with linear combinations of functions of the fonm@ bwitha € Co(X ) belC(X/Y)we
see thats’ is the clspan of the set of operators of the foffu)(z) = [, a(z — 2/)b(z")u(z’)dz’. But

this clspan is7x - Cx (Y) = €x (Y).

4.3. Compatible subgroups.If X,Y is an arbitrary pair of Ica groups theXi ® Y is the setX x Y
equipped with the product topology and group structureX |t are closed subgroups of an Ica group
G and if the magy” @ Z — Y + Z defined by(y, z) — y + z is open, we say that they acempatible
subgroups of~. In this cas&” + Z is a closed subgroup of.

Remark 4.2. If G is o-compact thenX,Y are compatible if and only i + Y is closed. Indeed, a
continuous surjective morphism between two locally comhpacompact groups is open and a subgroup
H of a locally compact groug is closed if and only ifH is locally compact for the induced topology,
see Theorems 5.11 and 5.29 in [HRe]. We thankcLiDubois and Benoit Pausader for enlightening
discussions on this matter.
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The importance of the compatibility condition in the cortekgradedC*-algebras has been pointed out
in [Mal, Lemma 6.1.1] and one may find there several desoriptdf this condition (see also Lemma 3.1
from [Ma3]). We quote two of them. LeX /Y be the image o in G/Y considered as a subgroup of
G/Y equipped with the induced topology. The gralip(X NY) is equipped with the locally compact
quotient topology and we have a natural map(X NY) — X/Y which is a bijective continuous group
morphism. ThenX,Y are compatible if and only if the following equivalent cotidins are satisfied:

the natural mapX/(X NY) — X/Y is a homeomorphism (4.6)
the natural majg7/(X NY) — G/X x G/Y is closed 4.7)

If Ais aG-algebra let4|x be the set of restrictions t& of the functions fromA. This is anX-algebra.
Lemma 4.3. If X, Y are compatible subgroups 6f then
Ca(X) -Cq(Y)=Cq(XNY) (4.8)
Ca(Y)|x =Cx(XNY). (4.9)
The second relation remains valid for the subalgelifas

Proof: The fact that the inclusiort in (4.8) is equivalent to the compatibility of andY” is shown in
Lemma 6.1.1 from [Mal], so we only have to prove that the gtuhblds. LetFE = (G/X) x (G/Y).

If ¢ € Co(G/X) andy € C,(G/Y) thenp ® ¢ denotes the functiofs, t) — ¢(s)1(t), which belongs

to Co(E). The subspace generated by the functions of the form is dense irC,(E) by the Stone-
Weierstrass theorem. K is a closed subset df then, by the Tietze extension theorem, each function in
C.(F) extends to a function i6.(E), so the restriction$y ® )| generate a dense linear subspace of
Co(F). Let us denote by the mapr — (7x(x), 7y (x)), sox is a group morphism frond* to E with
kernelV = X NY. Then by (4.7) the rang® of = is closed and the quotient map: G/V — Fis a
continuous and closed bijection, hence is a homeomorpls&rf.— 6 o 7 is an isometric isomorphism
of Co(F) ontoC,(G/V). Hence fory € C,(G/X) andy € C,(G/Y) the functiond = (p ® ¥) o 7
belongs ta’,(G/V), it has the propert§ o my = @ omx -1 oy, and the functions of this form generate
a dense linear subspace®fG/V).

Now we prove (4.9). Recall that we identify; (Y") with a subset o€ (G) by usingy +— ¢ o my S0 in
terms ofy the restriction map which defings; (Y)|x is justy — ¢|x,y. Thus we have a canonical
embeddingCq(Y)|x C Cp(X/Y) for an arbitrary pairX,Y . Then the continuous bijective group
morphismé : X/(X NY) — X/Y allows us to embed;(Y)|x C Ci(X/(X NY)). That the range of
this map is noCx (X NY) in general is clear from the example= R, X = 7Z,Y = Z. Butif X,V
are compatible theX' /Y is closed inG/Y, soCq(Y)|x = Co(X/Y) by the Tietze extension theorem,
andd is a homeomorphism, hence we get (4.9). [l

Lemma 4.4. If X, Y are compatible subgroups 6fthenX? = X @ X andY® = {(y,y) |y € Y} is
a compatible pair of closed subgroups@t = G @ G.

Proof: Let D = X?2NY® = {(x,2) | = € X NY}. Due to to (4.6) it suffices to show that the
natural mag”®) /D — Y () /X? is a homeomorphism. Hed&(?) / X2 is the image ot (?) in G? /X2 =
(G/X)®(G/X), more precisely it is the subset of pafrs a) with a = 7x (z) andz € Y, equipped with
the topology induced b§yG'/ X )@ (G/X). Thus the natural mag/X — Y (2 /X? is a homeomorphism.
On the other hand, the natural m&p(X NY) — Y /D is clearly a homeomorphism. To finish the
proof note that’/(X NY) — Y/X is a homeomorphism becauseY is a regular pair. [l

Lemma 4.5. Let X, Y be compatible subgroups of an Ica groGpand letX*, Y be their orthogonals
in G*. Then(X NY)+ = X+ + Y and the closed subgroupé*, Y+ of G* are compatible.

Proof: X +Y is closed and, sincer, y) — (z, —y) is a homeomorphism, the m&p: XY — X +Y
defined byS(z,y) = = + y is an open surjective morphism. Then from the Theorem 9.&ap@ 2
of [Gur] it follows that the adjoint maps™ is a homeomorphism betwedX + Y)* and its range. In



24 MONDHER DAMAK AND VLADIMIR GEORGESCU

particular its range is a locally compact subgroup for thmtogy induced byX* @ Y* hence is a closed
subgroup ofX* @ Y*, see Remark 4.2. We hay& +Y)+ = X+ NY+, cf. 23.29 in [HRe]. Thus from
X* =~ @G*/X* and similar representations f& and(X + Y)* we see that

S* G/ (XtnYyh) - G/ Xt et /yt
is a closed map. Bu$* is clearly the natural map involved in (4.7), hence the pair, Y is regular.

Finally, note that X N'Y)+ is always equal to the closure of the subgrdtp + Y+, cf. 23.29 and 24.10
in [HRe], and in our cas& - + Y is closed. O

4.4. Green Hilbert C*-modules. Let X, Y be a compatible pair of closed subgroups of a locally com-
pact abelian groug:. Then the subgrouy’ + Y of G generated by U Y is also closed. If we identify

X NY with the closed subgroup of X &Y consisting of the elements of the foifm, z) with z € XNY
then the quotientgroud WY = (X @ Y)/(X NY) is locally compact and the map

p: XY - X+Y definedbyg¢(x,y) =2 —y (4.10)
is an open continuous surjective group morphi&n® Y — X + Y with X NnY as kernel. Hence the
group morphisny° : X Y — X + Y induced byg is a homeomorphism.

SinceC.(X WY) C CH(X @Y) the element$ € C.(X wY) are function® : X x Y — C and we may
think of them as kernels of integral operators.

Lemma 4.6. If 0 € C.(X WY) then(Tyu)(x fY y)dy defines an operator it¥xy with
norm||Ty|| < C'sup |§| whereC depends onIy ona compact WhICh contains the suppdatt of

Proof: By the Schur test

1To]? Ssupggex/y|9(ﬂc7y)0|y-supyey/x|9(ﬂc7y)0|3j

Let K ¢ X andL C Y be compact sets such th@ x L) + D contains the support @. Thus if
0(z,y) # 0thenz € z + K andy € z + L for somez € X NY hence/,. |0(x,y)dy < sup |0y (L).
Similarly [ |6(z,y)dz < sup [§|\x (K). O

Definition 4.7. Jxv is the norm closure ifxy of the set of operatorg, as in Lemma 4.6.

Remark 4.8. If X D Y thenZxy is a “concrete” realization of the Hilbe&*-module introduced by
Rieffel in [Rie] which implements the Morita equivalenceween the groug'*-algebraC*(Y') and the
crossed produat,(X/Y) x X. More precisely,7xy is a HilbertC*(Y)-module and its imprimitivity
algebra is canonically isomorphic with (X/Y) x X. If X,Y is an arbitrary couple of compatible sub-
groups ofG then we defined’xy such that7xy = Ix¢ - Jgy. On the other hand, from (4.24) we get
Ixy = Ixg - Iy With E = X NY, henceZxy is naturally a Hilber{C,(X/E) x X,Co(Y/E)xY)
imprimitivity bimodule. It has been noticed by Georges Skalis that7xy is in fact a “concrete” real-
ization of a HilbertC*-module introduced by Green to show the Morita equivalerfdeeC*-algebras
Co(Z/Y) x X andC,(Z/X) x Y where we takeZ = X + Y, cf. [Wil, Example 4.13].

We give now an alternative definition ofxy . If ¢ € C.(G) we defineTxy (¢) : C.(Y) — C.(X) by

Txr (Pu)la) = [ (o= uly)ds @.11)
Y
This operator depends only the restrictipix v hence, by the Tietze extension theorem, we could take
v € C.(Z) instead ofp € C.(G), whereZ is any closed subgroup ¢f containingX UY'.

Proposition 4.9. Txy (¢) extends to a bounded operatb? (Y) — L?(X), also denoted’xy (), and
for each compack C G there is a constant’ such that ifsuppp C K
ITxy ()] < Csupge ()] (4.12)

The adjoint operator is given ifxy (p)* = Ty x (¢*) wherep*(z) = ¢(—x). The spaceZxy coin-
cides with the closure it¥’xy of the set of operators of the frofky ().
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Proof: The setX + Y is closed inG hence the restriction mafy(G) — C.(X +Y) is surjective. On
the other hand, the maff : X WY — X + Y, defined after (4.10), is a homeomorphism so it induces
an isomorphismp — @ o ¢° of C.(X +Y') ontoC.(X WY'). ClearlyTxy (¢) = Ty if 0 = ¢ o ¢, so the
proposition follows from Lemma 4.6. ]

We discuss now some properties of the spaggs-. We set7y, = (Ixy)* C Lyrx.
Proposition 4.10. We have7y x = Jx and:

Ty = Hx (4.13)
Ixy = Ixy - FH = Ix - Ixy (414)
Alx - Ixy = Ixy - Aly (4.15)

whereA is an arbitrary G-algebra.

Proof: The relations7xx = Jx and (4.13) are obvious. Now we prove the first equality in43.1
(then the second one follows by taking adjoints)Cifn) is the operator of convolution ih?(Y') with
n € C.(Y') then a short computation gives

Txy(p)C(n) = Txy (Tay (v)n) (4.16)

for ¢ € C.(G). SinceTay (p)n € C.(G) we getTxy (p)C(n) € Tox, S0 Txy + Py C Txy. The
converse follows by a standard approximation argument.

Let o € C.(G) andd € A. We shall denote by(Q x) the operator of multiplication b§|yx in L?(X)
and byf(Qy) that of multiplication byd|y in L?(Y). Choose some > 0 and letV be a compact
neighborhood of the origin i7 such that|f(z) — 6(z')| < e if z — 2/ € V. There are functions
a € Co.(G) with 0 < o, < 1suchthafy’, a;, = 1 on the support of and suppy, C 2, + V for some
pointsz;. Below we shall prove:

[Txy (9)0(Qy) = 220(Qx — z1) Txy (o) | < el| Txy (@]l (4.17)

This impliesZxy - Aly C Alx - Ixv. If we take adjoints, use (4.13) and interchadgeandY” in the
final relation, we obtaimd|x - Ixy = Jxv - Aly hence the proposition is proved. Fore C.(X) we
have:

(Ty (2)0(Qy u) () = /Y CRULIULEDS /Y o( — y)an(z — 1)B(y)uly)dy
- / (@ — y)ar(z — )@ — z)uly)dy + (Ru)(z)

= Z (Q@x — 21) Txy (pag)u) () + (Ru)(z).
We can estimate the remalnder as follows

%}A¢<x—y>ak<w—y>[e<y> 0z — z)u dy<e/|w— y)\dy.

because: — 2, — y € V. This proves (4.17). ]

|(Ru)(2)| =

Proposition 4.11. 9xy is a Hilbert C*-submodule of/xy and

Iy - Ixy =6y (X NY), Ixy Ty =Cx(XNY). (4.18)
ThusJxy isa(€x (X NY), 6y (X NY)) imprimitivity bimodule.
Proof: Due to (4.13), to prove the first relation in (4.18) we havedmpute the clspa# of the operators

Txy (p)Ty x (1) with ¢, 4 in C.(G). We recall the notatio:> = G @ G, this is a locally compact
abelian group an&? = X @ X is a closed subgroup. Let us choose functippsi;, € C.(G) and let



26 MONDHER DAMAK AND VLADIMIR GEORGESCU

=3 or @Y € C(G?). If Yl () = ¢r(—2x), thenY, Txy (or)Ty x (¥]) is an integral operator
on L?(X) with kernelfx = 0| x> wheref : G — C is given by

O(z, ") =/ Pz +y, 2" + y)dy.
Y

Since the set of decomposable functions is densé. {:?) in the inductive limit topology, an easy
approximation argument shows tiétcontains all integral operators with kernels of the sammfasd x
but with arbitrary® € C.(G?). Let Y(?) be the closed subgroup 6 consisting of the elementy, y)
withy € Y. ThenK = supp® C G? is a compactf is zero outsidds +Y 2, andd(a+b) = 6(a) for all
a€G%becY®. Thush € C.(G?/Y @), with the usual identificatiod. (G?/Y ?)) c C(G?). From
Proposition 2.48 in [Foll] it follows that reciprocally, grfiunction in C.(G2/Y (?)) can be represented
in terms of someb in C.(G?) as above. Thu¥ is the closure of the set of integral operators/cii X )
with kernels of the formdx with 6 € C.(G?/Y (). According to Lemma 4.4, the pair of subgroups
X2 Y is regular, so we may apply Lemma 4.3 to §etG?/Y?)|x> = C.(X?/D) whereD =
X?2nY® = {(z,z) | € X NY}. But by Lemma 4.1 the norm closure ifx of the set of integral
operators with kernel i6.(X?/D) is ¢x /(X NY). This proves (4.18).

It remains to prove tha?yy is a HilbertC*-submodule of?xy, i.e. that we have
Ixy - Ixy - Ixy = Ixvy. (4.19)
The first identity in (4.18) and (4.14) imply
Ixy - Ixy - Ixy = Ixy - v -Cy(XNY) = Txy -Cy(X NY).

From Lemma 4.3 we get

Cy(XNY)=Ca(XNY)ly =Ca(X)|y - Ca(Y)|y =Ca(X)ly
becaus€:(Y)|y = C. Then by using Proposition 4.10 we obtain

Ixy - Cy(XNY) = Ixy - Ca(X)ly =Cc(X)|x - Ixy = Ixv
becaus€s(X)|x = C. ]
Corollary 4.12. We have

yXY = yxyfy = yxyCy(X n Y) (420)
nggxy=CX(XﬁY)yxy. (4.21)

Proof: If .# is a Hilberte/-module then# = .# o/ henceJxy = Ixy %y (X NY') by Proposition
4.11. The spac&y (X NY) is aFy-bimodule andsy (X NY) = 6y (X NY) - % by (4.4) hence we
getsy (X NY) = € (X NY)% by the Cohen-Hewitt theorem. This proves the first equatit{di20)
and the other ones are proved similarly. O

If G is a set of closed subgroups@fthen thesemilattice generated ky is the set of finite intersections
of elements ofj.

Proposition 4.13. Let X, Y, Z be closed subgroups 6f such that any two subgroups from the semilattice
generated by the famil{X, Y, Z} are compatible. Then:

Ixz - Tzy = Ixy - Cy(YNZ)=Cx(XNZ)- Ixy (4.22)
:yXY'CY(XmYﬁZ):Cx(XﬂYmZ)'yxy. (4.23)

In particular, if Z > X NY then
Ixz+ Tzy = Ixy- (4.24)
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Proof: We first prove (4.24) in the particular ca8e= G. As in the proof of Proposition 4.11 we see that
Ixa - ey is the the closure ity of the set of integral operators with kernélgy = 6| x xy where
6 : G* — Cis given by

O(x,y) = /Z(pk x—2)p(z —y dz-/ngk (x—y—2)Yp(2)dz=&(z —y)

wherepy, ¥y, € C.(G) andé = >, ¢ * 1, convolution product oriz. SinceC.(G) * C.(G) is dense
in C.(G) in the inductive limit topology, the spac&x¢ - Juy is the the closure of the set of integral
operators with kernelg(z, y) = £(x — y) with £ € C.(G). By Proposition 4.9 this is7xy .

Now we prove (4.22). From (4.24) with = G and (4.18) we get:
Ixz - Tzy = Ixa - Taz - Tza - Jay = Ixc -Ca(Z) - Ta - Tay .
Then from Proposition (4.10) and Lemma 4.3 we get:
Ca(2) - Ta- Tay =Ca(Z)- Tay = Tay -Ca(2)|ly = Tay -Cy (Y N Z).

We obtain (4.22) by using once again (4.24) with= G and taking adjoints. On the other hand, the
relation Z7xy = Jxy - Cy (X NY) holds because of (4.20), so we have

gXY'Cy(YﬂZ) = yxy*Cy(XﬁY)~Cy(YﬂZ) ZyXY'Cy(XﬂYﬂZ)

where we also used (4.8) and the fact thath Y, Z N Y are compatible. Finally, to get (4.24) for
Z O X N'Y we use once again (4.18). |

The object of main interest for us is introduced in the nefind&n.

Definition 4.14. If X, Y are compatible subgroups a&ds a closed subgroup of N'Y then we set
Cxy(Z) = Ixy -Cy(Z2) =Cx(Z) - TIxy. (4.25)
The equality above follows from (4.15) with = C(Z). We clearly haveg’xy (X NY) = Jxy and
Cxx(Y)=%¢x(Y)if X DY. Moreover
Cxy(Z) = Cxy(Z)" =Cyx(Z) (4.26)
because of (4.13).
Theorem 4.15. €xy (Z) is a Hilbert C*-submodule of#’xy such that
Cxy(Z) - Cxy(Z) =¢y(Z) and Cxy(Z) - Cxy(Z) = Cx(Z). (4.27)
In particular, €xy (Z) is a(¢x(Z), ¢y (Z)) imprimitivity bimodule.

Proof: By using (4.26), the definition (4.25), and (4.8) we get
Cxy(Z) - 6vx(Z)=Cx(Z) - Ixy - Fx - Cx(2)
=Cx(Z)-Cx(XNY) - Ix-Cx(2)
=Cx(2) - Ix -Cx(Z)=Cx(Z) - Ix
which proves the second equality in (4.27). The first onefadl by interchangingl andY. O

4.5. Many-body systems.Here we give a formal definition of the notion of “many-bodysm” then
define and discuss the Hamiltonian algebra associated to it.

Let .7 be a set of locally compact abelian groups with the followgmgperty: for anyX,Y € .& there
is Z € . such thatX andY are compatible subgroups 4f. Note that this implies the following: if
Y C X then the topology and the group structur&otoincide with those induced hy.

If . is a set obr-compact locally compact abelian groups then the compigfibssumption is equivalent
to the following more explicit condition: foran¥,Y € .# there isZ € .¥ such thatX andY are closed
subgroups o andX + Y is closed inZ.
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Definition 4.16. A many-body systei a coupleg(S, A) where:

(i) S c.isasubsetsuchthaf,Y e S= XNY e SandifX 2 Y thenX/Y is not compact,
(i) AisamapX — Ax which associates a Haar measukgson X to eachX € S.

We identifyS = (S, A) so the choice of Haar measures is implicit. Note that thedilbpaceH s and
the C*-algebra%’s that we introduce below depend arbut different choices give isomorphic objects.
EachX € S is equipped with a Haar measure so the Hilbert spates= L?(X) are well defined. If
Y C X areinS thenX/Y is equipped with the quotient measuref$g ,, = L*(X/Y') is well defined.

Example: Let . the set of all finite dimensional vector subspaces of a vespiace over an infinite
locally compact field and lef be any subset of” such that{,Y ¢ S = X NY € S.

For eachX € S let Sx be the set o € S such that” C X. This is anN-body system withX as
configuration space in the sense of Definition 2.2. Then byrham.3 the space

Cx := Z‘;eSXCX(Y) (4.28)
is an X -algebra so the crossed proddgt x X is well defined and we clearly have
ch = CX NXECX'yX:ECYGSX%X(Y)- (429)

The C*-algebraé’x is realized on the Hilbert spaééx and we think of it as the Hamiltonian algebra of
the N-body system determined I8 .

Theorem 4.17. TheC*-algebrasCx and%x are Sx-graded by the decompositio(.28)and (4.29)

The theorem is a particular case of results due to A. MageiraPropositions 6.1.2, 6.1.3 and 4.2.1 in

[Mal] (or see [Ma3]). We mention that the results in [Mal, MaB much deeper since the groups are
allowed to be noncommutative and the treatment is so thadbend part of condition (i) is not needed.

The case whe8 consists of linear subspaces of a finite dimensional reabvepace has been considered
in [BG1, DaG1] and the corresponding version of Theorem & Proved there by elementary means.

Definition 4.18. If X,YesS then€xy := Ixy - Cy =Cx - Ixvy.
In particularé’x x = €x is aC*-algebra of operators o x. For X # Y the spac&’xy is a closed
linear space of operatotgy — H x canonically associated to the semilattice of groSgs,y, cf. (4.34).

We call these space®upling modulebecause they are Hilbeft*-modules and determine the way the
systems corresponding 6 andY” are allowed to interact.

For each paitX, Y € S with X D Y we set

Cx == %¢s,Cx(Z). (4.30)
This is also anX -algebra so we may defir€y = C¥% x X and we have
Cx =Cx x X =355 €x(2). (4.31)

If X =Y @ ZthenC¥ ~Cy ® 1 and%y ~ 6y ® .
Lemma4.19. Let X € SandY € Sx. Then

CY =Cx(Y) -Cx and €y =Cx(Y) -€x = €x -Cx(Y). (4.32)
Moreover, for allY, Z € Sx we have
Cx-C% =CX"? and €y - €% =6x"7. (4.33)

Proof: The abelian case follows from (4.8) and a straightforwanthgotation. For the crossed product
algebras we uséx (V) - €x = Cx (Y) - Cx - Ix and the first relation in (4.32) for example. O

Lemma 4.20. For arbitrary X, Y € S we have
Cx - Ixy = Ixy Cy = Ixy -C3 ¥ =Cx" - Ixy. (4.34)
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Proof: If G € . containsX U Y then clearly
Cx - Ixy = 2 2e5,Cx(Z2) - Ixy =3 55, Ca(Z)x - Txv
From (4.15) and (4.9) we get
Ce(D)|x - Ixy = Ixy - Cy(Y N2Z).

SinceY N Z runs overSxny WhenZ runs overSy we obtainCx - Ixy = Jxy - C3"Y. Similarly
TIxy - Cy = CXMY . Txy. On the other hand$™Y = CX™Y|x and similarly withX, Y interchanged,

henceCx™Y - Ixy = Txy - C5x"Y because of (4.15). O
Proposition 4.21. Let X,Y, Z € S. Then%%y = 6y x and
%XZ . (fzy = %Xy 'CéﬂYﬂZ = C})gﬂYﬂZ . %Xy C Cng. (435)

Inparticular€xz - 67y =6xy if ZD>XNY.

Proof: The first assertion follows from (4.13). From the Definitiad@and Proposition 4.13 we then get
Cxz - Czy =Cx-Ixz - Tzy -Cy =Cx - Ixy -Cy(XNYNZ)-Cy
= 9%y -Cy -Cy(XﬂYﬂZ) Cy = Ixy 'Cy(XﬂYﬂZ) -Cy.

ButCy (XNY NZ)-Cy = C™M"Z by Lemma 4.19. For the last inclusion in (4.35) we use theaimi
relationC¥"Y"Z . Cy C Cy. The last assertion of the proposition follows from (4.34). O

The following theorem is a consequence of the results obtso far.
Theorem 4.22. ¢xy is a Hilbert C*-submodule of#xy such that
cg)*(y - Exy = %;(OY and%xy . cg}*(y = %))((ﬂy. (436)

In particular, €xy is a (g™, ¢ "Y) imprimitivity bimodule.

We recall the conventions
X, YeSandY ¢ X = Cx(Y) =%x(Y) = {0}, (4.37)
XY, ZeSandZ ¢ XNY = €xy(Z) ={0}. (4.38)
From now on by “graded” we meafi-graded. Theréx = >} . %x(Y) is a graded”*-algebras

supported by the idedx of S, in particular it is a graded ideal &y . With the notations of Subsection
3.1the algebr&’y = €x(Sy) is a graded ideal o’y supported bySy-. Similarly for Cx andC¥.

Since@x MY and€X™Y are ideals ir¢’x and%y respectively, Theorem 4.22 allows us to eqéipy
with (right) Hilbert ¢y -module and left Hilber’x-module structures (which are not full in general).

Theorem 4.23. The Hilbert¢y--module€’xy is graded by the family af*-submodule$¢xy (Z)} zes.

Proof: We use Proposition 3.9 withZ = Jxy andCy (Z) as algebrag(os). Thene/ = 6y (X NY)
by (4.18) hences - Cy (Z) = ¢y (Z) and the conditions of the proposition are satisfied. [l

Remark 4.24. The following more precise statement is a consequence difteerem 4.23: the Hilbert
€X"Y -module®’xy is Sxny-graded by the family o*-submoduleg€’xy (Z)} zesxny -

Finally, we may construct thé*-algebras” which is of main interest for us, the many-body Hamiltonian
algebra. We shall describe it as an algebra of operatorseoHithert space

H=Hs =PxesHx (4.39)

which is a kind of Boltzmann-Fock space (without symmeti@aor anti-symmetrization) determined
by the semilatticeS. Note that if the zero grou@ = {0} belongs taS then containsHo = C as a
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subspace, this is the vacuum sector. Ligt be the orthogonal projection @f ontoH x and let us think
of its adjointlIl’ as the natural embeddirigx C H. Then for any paitX, Y € S we identify

Cxy = H}(gxyny C L(H) (440)

Thus we realiz%xy } x yes as a linearly independent family of closed subspaces(@t) such that
Cry = Gyx and€xz6zy C 6xy forall X,Y, Z, Z' € S. Then by what we proved before, especially
Proposition 4.21, the space y y.s €xv is ax-subalgebra of () hence its closure

(5 = (53 = Z},YGS%XY' (441)
is aC*-algebra of operators oH. Note that one may view’ as a matriX€xy ) x,ves-

In a similar way one may associate to the spaggs- a closed self-adjoint subspacé C L(H). ltis
also useful to define a new subspaZé C L(H) by 79y = Ixy if X ~Y and.7° = {0} if X £ Y.
HereX ~ Y meansX Cc YorY C X . Clearly.7° is a closed self-adjoint linear subspace.%f
Finally, letC be the diagonal’*-algebraC = & xCx of operators orH.

Theorem4.25.Wehave6 =7 -C=C- I =95 -T =9°-T°.

Proof: The first two equalities are an immediate consequence of #imiflon 4.18. To prove the third
equality we use Proposition 4.13, more precisely the w@tati

Ixz Ty = Ixy - Cy(XNYNZ)=Cxy(XNYNZ)
which holds for anyX, Y, Z. Then
>0 Txz Tay =2 7Cxv(XNYNZ)=>5Cxv(Z) = Cxy
which is equivalent ta7 - 7 = ¥. Now we prove the last equality in the proposition. We have
3% T%y - Tgy = closure of the surrz%:{;ﬁxz - Tzy.
In the last sum we have four possibilities:> X UY, X > Z2Y, YO Z D> X,andZ C XNY.In

the first three cases we ha#ZeD> X NY henceZx; - 77y = Ixy by (4.24). In the last case we have
Ixz - Tzy = Ixy - Cy(Z) by (4.22). This proves7° - 7° = €. 0

Finally, we are able to equig’ with anS-gradedC*-algebra structure.

Theorem 4.26. For eachZ ¢ S the spaces’(Z) := 3 ycs €xv(Z) is aC*-subalgebra of¢. The
family {€(Z)} zes defines a graded'*-algebra structure or¥’.

Proof: We first prove the following relation:
Cxz(E)-Czv(F)=%xy(ENF) ifX)Y,ZeSandEC XNZ,FCYNZ. (4.42)
From Definition 4.14, Proposition 4.13, relations (4.8) &d5), andF’ C Y N Z, we get
Cxz(E) - Czyv(F)=Cx(E) - Ixz - Tzy - Cy(F)
=Cx(E) - Ixy -Cy(YNZ) -Cy(F)
=Cx(E) - Ixvy - Cy(F)
=Ixy -Cy(YNE) Cy(F)
=Ixy -Cy(YNENF).

At the next to last step we us€d; (E) = C¢(E)|x for someG € . containing bothX andY” and then
(4.15), (4.9). Finally, we uséy (Y N EN F) = Cy (E N F) and the Definition 4.14. This proves (4.42).
Due to the conventions (4.37), (4.38) we now get from (4.42H, F € S

Y osesCxz(E)-Czy(F)=Cxy(ENF).

Thus@ (E)€ (F) C €(ENF), in particularg (E) is aC*-algebra. It remains to be shown that the family
of C*-algebras{% (E)} ges is linearly independent. Letl(E) € ¥ (E) such thatd(E) = 0 but for a
finite number ofF and assume that’ , A(E) = 0. ThenforallX,Y € S we have) , [Ix A(E)II} =
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0. ClearlyIlx A(E)II}. € ¥xy(E) hence from Theorem 4.23 we déty A(E)II;, = 0 for all X,Y so
A(E) =0forall E. UJ

4.6. SubsystemsWe now point out some interesting subalgebrag’off 7 C S is any subset let
s =Y xyerxy and Hr=®xcrHx. (4.43)

Note that the sum definirg? is already closed if” is finite and that’J is aC*-algebra which lives on
the subspace(s of H. In fact, if L7 is the orthogonal projection ¢f ontoH+ then

%3 =Ir%slr (4.44)

and this is aC*-algebra becausé€Il+% C ¢ by Proposition 4.21. Itis easy to check th&f is a graded
C*-subalgebra o supported by the idedll . -Sx generated by in S. Indeed, we have

€I NEE) = (Tsver®or ) N (Syes@xv (B)) = xyer €y (B).
Itis clear that is the inductive limit of the increasing family &f*-algebrass’Z with finite 7.
If 7 = {X} then%? isjustéx. If T = {X,Y} with distinct X,Y we get a simple but nontrivial
situation. Indeed, we shall hatér = Hx © Hy and%g may be thought as a matrix

T — Cx Cxy
S Cyx Gy )

The grading is now explicitly defined as follows:

(1) If EcC XNY then
_ ([ “x(E) ©xv(E)
d0=(4vm BE)
(2) If Ec X andE ¢ Y then

m - ().

() If E¢ X andE C Y then

@B =3 4 in):

The case wheff is of the formSx for someX € S is especially interesting. We dencﬁ@f = Csy
and we say that th&x -gradedC*-algebra is theinfoldingof the algebra’x. More explicitly

¢t = S zes vz (4.45)

The self-adjoint operators affiliated ¥y live on the Hilbert spacé{x and are (an abstract version of)
Hamiltonians of anV-particle system¥” with a fixed N (the configuration space i& and N is the
number of levels of the semilatticgy). The unfolding%jﬁé lives on the “Boltzmann-Fock spacéts,
and is obtained by adding interactions which couple theygibms ofS which have the groups € Sx

as configuration spaces a#t} as Hamiltonian algebras.

Clearlys? < ¢} if X c Y and¢ is the inductive limit of the algebrag?. Below we give an
interesting alternative description @f? .

Theorem 4.27. Let #x = @yes, Gy x be the direct sum of the Hilbe#'x-moduleséy x equipped
with the direct sum graded structure. ThEf. /%) = ‘5}? the isomorphism being such that the graded
structure onkC(.#x ) defined in Theorem 3.8 is transported into thatgf. In other terms &} is the
imprimitivity algebra of the full Hilberts’x -module./x and%x and %j? are Morita equivalent.



32 MONDHER DAMAK AND VLADIMIR GEORGESCU

Proof: If Y C X then%yy - ¢yx = ¢y and%yx is a full Hilbert € -module. Since th&’y are
ideals in€’y and their sum oveY € Sx is equal td¢’y we see that4x becomes a full Hilbert graded
¢x-module supported bgx, cf. Section 3. By Theorem 3.8 the imprimitivity*-algebrafC(_4% ) is
equipped with a canonicdx-graded structure.

We shall make a comment dé(.# ) in the more general the case whefi = @©,.#; is a direct sum of
Hilbert «7-modules#;, cf. §3.3. First, it is clear that we have
K(A) = 375K (MG, M) = (K(Mj, M) ij -

Now assume thaf, &; are Hilbert spaces such that is a C*-algebra of operators ofi and.#; is a
Hilbert C*-submodule ofL (&, &;) such thate; = .#; - .#; is an ideal ofe7. Then by Proposition 3.6
we havekC(.#;, #;) = M - M C L(E;,E;).
In our case we take

iZYESX, ,/fiz(gyx, lez(gx, SZH)(, &ZH}/, &71:(5}(/
Then we get

K(AM;, M) = K(Czx,Cyx) =2 Cyx -Cyx = Cyx Cxz =Cvz

by Proposition 4.21. [l
Remark 4.28. We understood the role in our work of the imprimitivity algetof a HilbertC*-module
thanks to a discussion with Georges Skandalis: he recagjf@zparticular case of) the mairi-algebra
¢ we have constructed as the imprimitivity algebra of a certdiilbert C*-module. Theorem 4.27 is
a reformulation of his observation and of his abstract goeion of graded HilberC*-modules in the
present framework (at the time of the discussion our dedimitf ¥ was rather different because we
were working in a tensor product formalism). More generafly# is a full Hilbert .o7-module then
the imprimitivity C*-algebrakC(.#) could also be interpreted as Hamiltonian algebra of a systéated
in some natural way to the initial one. For example, this isatural method of “second quantizing”

N-body systems, i.e. introducing interactions which cosplesystems corresponding to different cluster
decompositions of thé&/-body systems. This is clear in the physié&lbody situation discussed §2.3

5. AN INTRINSIC DESCRIPTION

We begin with some preliminary facts on crossed product$. X &e a locally compact abelian group.
The next result, due to Landstad [Lad], gives an “intrinsitiaracterization of crossed products of
X-algebras by the action of. We follow the presentation from [GI3, Theorem 3.7] whickes ad-
vantage of the fact that is abelian.

Theorem 5.1. A C*-algebra/ C Zx is a crossed product if and only for eache </ we have:

o if k€ X*thenV,* AV}, € & andlimy_ ||V AV, — Al =0,
o if z € X thenU, A € & andlim,_, ||(U, — 1)A|| = 0.

In this case one hag’ = A x X for a uniqueX-algebra.A C C}}(X) and this algebra is given by
A={peCi(X) | ¢(Q)S € & andp(Q)S € o forall S € Ix}. (5.1)

Note that the second condition above is equivalenfto- «7 = <7, cf. Lemma 8.1.
The following consequence of Landstad’s theorem is amisittidescription of’x (Y).

Theorem 5.2. €x (Y) is the set ofA € Zx such thatU;AUy = Aforall y € Y and:

1) |UrAU, — A| — 0if 2 — 0in X and ||V AV, — A|| — 0if k — 0in X*,
@) (U — DA|| — 0if 2 — 0in X and||(Vi, — 1)A|| — 0if k — 0in Y+,
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By “k — 0in Y 1" we mean:k € Y+ andk — 0. Note that the second condition above is equivalent to:
there are) € Ix, ¥ € Cx(Y) andB, C € ¥x such thatd = (P)B = 4(Q)C. (5.2)

For the proof, us&+ = (X/Y)* and apply Lemma 8.1. In particular, the last factorizatibaves that
for eaches > there is a compact séff C X such thal|Xy (Q)A| < ¢, whereV = X \ (M +Y).

Proof of Theorem 5.2: Let &/ C .Zx be the set of operatord satisfying the conditions from the
statement of the theorem. We first prove théatatisfies the two conditions of Theorem 5.1. let o
We have to show that, = VAV, € & and|V, AV, — A|| — 0 asp — 0. From the commutation
relationsU, V,, = p(x)V,U, we get||(U; —1)A4,|| = ||(Uz — p(x))A| — 0if 2 — 0 and the second part
of condition 1 of the theorem is obviously satisfiedAy. Then fory € Y’

U, AUy = U, VAV U, = VU AUV, = VAV, = A,
Condition 2 is clear so we hawé, € </ and the fact thaffV,y AV, — A|| — 0 asp — 0 is obvious.

That A satisfies the second Landstad condition, namely that fdn eae X we haveU,A € .« and
(U, — 1)A|| — 0 asa — 0, is also clear becauséU,, Vi]|| — 0 ask — 0.

Now we have to find the algebrd defined by (5.1). Assume thate Cp(X) satisfiesp(Q)S € « for
all S € Ix. SinceU; p(Q)U, = »(Q —y) we get(p(Q) — ¢(Q — y))S = 0 for all suchS and all
y €Y, hencep(Q) — ¢(Q — y) = 0 which meansp € C}(X/Y). We shall prove thap € Cx(Y') by
reductio ad absurdum.

If ¢ ¢ Cx(Y) then there is» > 0 and there is a sequence of points € X such thatz,, /Y — oo
and|p(zy,)| > 2u. From the uniform continuity o we see that there is a compact neighborhébd
of zero in X such thaty| > ponlJ,(z, + K). Let K’ be a compact neighborhood of zero such that
K’ + K’ C K and let us choose two positive not zero functigng € C.(K’). We defineS € Jx by

Su = 1+ u and recall that supfu C supp) + suppu. Thus suppU; f C K' +x, + K' C z, + K.
Now letV be as in the remarks after (5.2). Since(z,,) — oo we haver,, + K C V for n large enough,
hence

IXv(Q)p(Q)SUL, fIl = pllSUZ, fll = ullSfIl > 0.
On the other hand, for eaeh> 0 one can choos¥ such thatl| Xy (Q)¢(Q)S]| < e. Then we shall have
IXv (Q)p(Q)SU; fll < ellfll sou|lSf]l < el f]| forall e > 0 which is absurd. O

We now give a similar characterization %y (Z) whereX,Y is a compatible pair of closed subgroups
of an Ica group’.

Theorem 5.3. ¥xy (Z) is the set ofl" € Zxy satisfying the following conditions:
(1) UsTU. = Tif z € Zand||[Vi TV, — T|| — 0if k — 0in (X +Y)*
2) (U =1)T|| —0ifx — 0in X and||T'(U, — 1)|| = 0ify — 0inY,
@) (Ve —1)T|| = 0if k—0in(X/Z)*and||T(Vx — 1)|| = 0if k — 0in (Y/Z)*.

Before the proof we make some preliminary comments. We tbink + Y as a closed subgroup of
G € . which containsX andY as closed subgroups. Each charadtee (X + Y)* defines by
restriction a characte|x € X* and the mag: — k|x is a continuous open surjection. And similarly
if X is replaced byy". In (1) the operato¥;, acts inL?(X) as multiplication byk|x and inL?(Y) as
multiplication byk|y . In the first part of (3) we také € X* and identify(X/Z)* with the orthogonal of
Z in X* and similarly for the second patrt.

Assumptions (2) and (3) of Theorem 5.3 are decay conditioreeitain directions inP? and (@ space.
Indeed, by Lemma 8.1 condition (2) is equivalent to:

there areS; € Ix, 5, € 9y andR;, Ry € Yxy suchthafl’ = SR, = R>Ss. (5.3)
Recall that7x = C,(X*) for example. Then condition (3) is equivalent to:
there areS; € CX(Z)7 Sy € Cy(Z) ande,Rg € Pxy suchthatl’ = S1R; = Ry Ss. (54)
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Proof of Theorem 5.3: The set# of all the operators satisfying the conditions of the theoieclearly a
closed subspace dfyy . We haveé’x y (Z) C € because (5.3), (5.4) are satisfied by &hy Gxy (Z)
as a consequence of Theorem 4.15. Then we get:

%y(Z) = %;;'Y(Z) -%Xy(Z) CE*-F, %X(Z) = %Xy(Z) %)?Y(Z) CE€- 6.

We prove that equality holds in both these relations. We sliomexample, thatd = TT™* belongs to
¢x(Z) if T € € and for this we shall use Theorem 5.2 withreplaced byZ. ThatUAU, = A

for = € Z is clear. From (5.3) we get = S} R; R} S} with S; € Jx hence||(U, — 1)A|| — 0 and
|A(U, — 1)|| — 0 asz — 0in X are obvious and implyU* AU, — A|| — 0. Then (5.4) implies
A =¢(Q)C with ¢ € Cx(Z) and bounded” hence (5.2) is satisfied.

That# %y (Z) C ¥ is easily proven becau§e= S A has the properties (5.3) and (5.4pibelongs tcg
andA to 6y (Z), cf. Theorem 5.2. From what we have shown above w&Ggté C €6y (Z) C € so
% is a HilbertC*-submodule of?xy . On the other hand’xy (Z) is a HilbertC*-submodule ofZxy
suchthaté’s, (Z) - €xy(Z) = €¢* - € and6xy(Z) - €%y (Z) = € - €*. Sincebxy(Z) C € we get
€ = €xy(Z) from Proposition 3.5. O

If Z =X NY then Theorem 5.3 gives an intrinsic description of the spdg¢e. For example:

Corollary 5.4. If X D Y thenJxy is the set ofl’ € Zxyv satisfyingU;TUy =T if y € Y and such
that: U,T - Tifx - 0in X, VTV, - Tifk—0in X" andV, T — Tifk—0inYL.

In the rest of this section we describe the structure of theatd introduced in Section 4 when the
subgroups are complemented, e.gS ifonsists of finite dimensional vector spaces.

We say thatZ is complemented iX if X = Z ¢ E for some closed subgroup of X. If X,Z
are equipped with Haar measures th€y is equipped with the quotient Haar measure and we have
E ~ X/Z.If Zis complemented iX andY then@xy (Z) can be expressed as a tensor product.

Proposition 5.5. If Z is complemented iX andY then
Cxy(Z)~ Tz @ KHx)zy)2- (5.5)
If Y C X thenZxy ~ % ® L?(X/Y) tensor product of HilberC*-modules.

Proof: Note first that the tensor product in (5.5) is interpretechasixterior tensor product of the Hilbert
C*-modules7z and.#% 7 y,z. LetX = Zo EandY = Z@ F for some closed subgrougs F. Then,
as explained 3.4, we may also view the tensor product as the norm closuteiapace of continuous
operators froml?(Y) ~ L?(Z) @ L*(F) to L*(X) ~ L*(Z) @ L*(E) of the linear space generated by
the operators of the forlh @ K with T' € 7, andK € Zgp.

We now show that under the conditions of the propositon Y ~ Z @ F @ F algebraically and
topologically. The naturalmap : Z@ E® F — Z+ E+ F = X + Y is a continuous bijective
morphism, we have to prove that it is open. Sid€gY” are compatible, the map (4.10) is a continuous
open surjection. If we represell @ Y ~ Z @& Z @ E @ F then this map become&(a,b,c,d) =
(a—b)+c+d. Letyy = didg @ idp Whereg : Z & Z — Z is given byé(a,b) = a — b. Then¢ is
continuous surjective and open becaudg i§ an open neighborhood of zeroihthenU — U is also an
open neighborhood of zero. Thys: (Z® Z)® E® F — Z ® E @ F is a continuous open surjection
and¢ = o). SoifVisopeninZ & E & F then thereisanopeli C Z & Z & E & F such that
V=9¢U)andther)(V) =0 oy(U) =¢(U)isopeninZ + E + F.

Thus we may identify.?(Y) ~ L*(Z) ® L*(F) andL?(X) ~ L?(Z) @ L?(E) and we must describe
the norm closure of the set of operatdigy (©)y(Q) with ¢ € C.(X 4+ Y) (cf. the remark after (4.11)
and the fact tha + Y is closed) and) € C,(Y/Z). SinceX +Y ~Z®o E® FandY = Z @ F it
suffices to describe the clspan of the operafofs ()9 (Q) with ¢ = 9z ® g ® wr andyz, vr, F
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continuous functions with compact support@nt, I’ respectively and = 1®n wherel is the function
identically equal td on Z andn € C,(F). Then, ifx = (a,c) € Z x Eandy = (b,d) € Z x F, we get:

(Txy (0)¥(Q)u)(a,c) = /Z . pz(a —b)pp(c)or(d)n(d)u(b, d)dbdd.
But this is justC(yz) @ |¢r)(7pr| where|og)(fi@gr| is a rank one operatat?(F) — L*(E) and
C(pz) is the operator of convolution by, on L%(Z). O

If X NY iscomplemented iX andY then%xy can be expressed (non canonically) as a tensor product.
Proposition 5.6. If X NY is complemented iX andY then

Cxy = Cxny @ Ax)v,y/x-
In particular, if X D Y then@xy ~ ¢y ® Hx)y-

Proof: If X = (X NY)® FandY = (X NY) @ F then we have to show th&tyy ~ €xny @ Fer
where the tensor product may be interpreted either as tlegi@xtensor product of the Hilber®*-
modules®’x~y and #zr or as the norm closure in the space of continuous operatons £ (Y) ~
LA(XNY)® L?(F)to L*(X) ~ L*(X NY) ® L?(E) of the algebraic tensor product @f;~y and
HEr. From Proposition 5.5 witltl = X NY we getIxy ~ Ixny ® H#gr. The relations (4.34) and
the Definition 4.18 imply&’xy = Jxy - C3"Y and we clearly have

CENY =Y Cr (D) = X%y Coxry (Z) © Co(F) = Cxry ® Co(F).
Then we get
Cxy ~ Ixny @ Hpr - Cxny @ Co(F) = (Ixny - Cxny) @ (Hpp - Co(F))
and this iS(ngy R KEF. U

If Z is complemented it andY then Theorem 5.3 can be improved. We shall describe thisimepnent
only in the Euclidean case which will be useful in our treattnaf nonrelativistic Hamiltonians. Thus
below we assume thaf, Y are subspaces of an Euclidean space {8e¥ for notations). Note tha{, is
the operator of multiplication by the functian— ¢**I¥) where the scalar produét|k) is well defined
for anyz, k in the ambient spac#'.

Theorem 5.7. €xy (Z) is the set ofl € Zxy satisfying:

1) UxTU, =Tforze Zand||[V}TV, —T|| — 0if z — 0in Z,

@) ||(U, —DT|| —0ifx —0in X and||(Vx — 1)T|| — 0if k — 0in X/Z.
Remark 5.8. Condition 2 may be replaced by

@) 1T, - 1) = 0ify - 0inY and||T'(Vx, —1)|] = 0if k - 0inY/Z.

This will be clear from the next proof.

Proof: Let 7 = F, be the Fourier transformation in the spacgthis is a unitary operator in the space
L?(Z) which interchanges the position and momentum observaples’;. We denote also by the
operatorsF @ 14, andF ®14,.,, which are unitary operators in the spag¢ég and’y due to (2.16).

If S = FTF~! thenS satisfies the following conditions:

(i) V}SV,=Sforze Z,||(V.-1)S|| = 0if z — 0in Z, and||U,SU} — S|| — 0if z — 0in Z;
(i) (U, —1)S|| — 0and||(V, —1)S|| — 0if z — 0in X/Z.

For the proof, observe that the first part of condition (2) rbaywritten as the conjunction of the two
relations|| (U, — 1)T|| — 0if z — 0in Z and||(U, — 1)T|| — 0if x — 0in X/Z. We shall work in the
representations

Hx = LQ(Z;H)(/Z) and Hy = L2<Z;Hy/z). (56)
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From the relatioV* SV, = S for all z € Z it follows that there is a bounded weakly measurable functio
S() : Z — Zx,z,v/z such that in the representations (5%js the operator of multiplication bg/(-).
Then||U.SU? — S|| — 0if z — 0in Z means that the functiof(-) is uniformly continuous. And
clearly|(V, — 1)S|| — 0if z — 01in Z is equivalent to the fact thefl(-) tends to zero at infinity. Thus
we see thab(-) € Co(Z; Lx/z,v/z). The condition (ii) can now be written

jlelg ([(Uz = 1)S)| + [|[(Va —1)S(2)|]) = 0 if z —0in X/Z.

From the Riesz-Kolmogorov theorem it follows that egfr) is a compact operator. Thus we have
S() € Co(Z; Hx)7,v)z) Which impliesT € ¢xy (Z) by Proposition 5.5. O

Remark 5.9. SinceS(-) is continuous and tends to zero at infinity, for each> 0 there are points
21,...,2n € Z and complex functiong:, . .., ¢, € C.(Z) such that

15() = Seen(2)S(z)l <€ Ve ez

The operators(z;) being compact, applying once again the Riesz-Kolmogorewrtim we get
sup (IS @y = DI+ 1S()(Vy = D) =0 ify—0inY/Z.
FAS

This explains why the second parts of conditions (2) and {3heorem 5.3 is not needed.

6. AFFILIATED OPERATORS

In this section we give examples of self-adjoint operatéfiseded to the algebr&’ constructed in Section
4 and then we give a formula for their essential spectrum. &ferito§3.1 for terminology and basic
results related to the notion of affiliation that we use anff®G, GI1, DaG3] for details.

We recall that a self-adjoint operatéf on a Hilbert spacé is strictly affiliatedto a C*-algebra of
operatorseZ onH if (H +i)~! € o (thenp(H) € < forall p € C,(R)) and if 7 is the clspan of the
elementsp(H)A with ¢ € C,(R) andA € «. This class of operators has the advantage that each time
&/ is non-degenerately represented on a Hilbert spéaeith the help of a morphisn?? : o — L(H’),

the observable” H is represented by a usual (densely defined) self-adjoirratmeon’.

The diagonal algebra

T4 = (Ts)d = DxesIx (6.1)
has a simple physical interpretation: this is t&-algebra generated by the kinetic energy operators.
Since¥x x = €x D Ex(X) = Ix we see thatyy is aC*-subalgebra o#’. From (4.25), (4.20), (4.21)
and the Cohen-Hewitt theorem we get

C(2)Tg= T4€(Z)=€(Z) VZe€S and €Jy= T4€ = €. (6.2)

In other terms,7; acts non-degeneratélgn eachiz’ (Z) and on®. It follows that a self-adjoint operator
strictly affiliated t0.7; is also strictly affiliated t«.

For eachX € Slethx : X* — R be a continuous function such thaty (k)| — oo if & — oo in
X*. Then the self-adjoint operatdt x = hx(P) onHx is strictly affiliated to7x and the norm of
(Kx +i)~!is equal tasup, (h3 (k) + 1)7/2. Let K = @ v Kx, this is a self-adjoint operatdt.
Clearly K is affiliated to.7; if and only if

Jim sup, (W% (k) +1)"Y2 =0 (6.3)

and thenK is strictly affiliated to.7 (the setS is equipped with the discrete topology). If the functions
hx are positive this means thatin 4 x tends to infinity whenX — oo. One could avoid such a condition
by considering an algebra larger thérsuch as to contaif] . ¢ 7x, but we shall not develop this here.

 Note that ifS has a largest eleme#tf then the algebra’(X') acts on eack¥’(Z) but this action is degenerate.
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Now let H = K + I with I € ¥ (or in the multiplier algebra) a symmetric element. Then

A—H) ' '=\-K) ' (1-IA-K)")" (6.4)
if A ¢ Sp(H)USp(K) . ThusH is strictly affiliated to¢’. We interpretd as the Hamiltonian of our
system of particles when the kinetic energyisind the interactions between particles are describdd by
Even in the simple caske % these interactions are of a very general nature being a reixtuV-body
and quantum field type interactions (which involve creaod annihilation operators so the number of
particles is not preserved).

We shall now use Theorem 3.3 in order to compute the essepiaitrum of an operator like. The
case of unbounded interactions will be treated later on@:et be theC*-subalgebra o%” determined
by E € S according to the rules ¢f3.1. More explicitly, we set

t>p = Z(I::‘DE C(F) = (Z;DE%XY(F))XHYDE (6.5)

and note that™ y lives on the subspadé>r = @y ; Hx of H. Since in the second sum from (6.5)
the groupt’ is such thatl C F' C X NY the algebr& g is strictly included in the algebré; obtained
by takingZ = {F € S | F D E}in (4.43).

Let &~ be the canonical idempotent morphism#@fonto ¢ g introduced in§3.1. We consider the
self-adjoint operator on the Hilbert spakg.  defined as follows:

Hsgp=Ksp+I>g where Kop=®x>pKx and Isg = P>gl. (6.6)
ThenH> g is strictly affiliated toé> g and it follows easily from (6.4) that
P>pp(H) =p(H>p) Yo € Co(R). (6.7)
Now let us assume that the groGp= {0} belongs taS. Then we have
€(0) = K(H). (6.8)

Indeed, from (4.25) we g&f'xy (0O) = Ixy - Co(Y) = H#xy which implies the preceding relation. If
we also assume th&t is atomic and we denotB(S) its set of atoms, then from Theorem 3.2 we get a
canonical embedding

¢/K(H) C [Ipep(s) ¢>E (6.9)
defined by the morphisn?¥’ = (> ) gep(s)- Then from (3.7) we obtain:
SPess(H) = UEeP(S)Sp(HZE)- (6.10)

Our next purpose is to prove a similar formula for a certaasslof unbounded interactiofs

LetG = Gs = D(|K|'/?) be the form domain of{ equipped with the graph topology. Thénc H
continuously and densely so after the Riesz identificatiok avith its adjoint spacé{* we get the usual
scaleG C ‘H C G* with continuous and dense embeddings. Let us denote

(K)=|K +i| = VK?+1. (6.11)

Then(K)'/? is a self-adjoint operator oK with domaing and (K') induces an isomorphisg — G*.
The following result is a straightforward consequence ofdrem 2.8 and Lemma 2.9 from [DaG3].

Theorem 6.1. Let ] : G — G* be a continuous symmetric operator and let us assume thia #re real
numbersu, a with 0 < ¢ < 1 such that one of the following conditions is satisfied:

() £1 < p|K +ial,

(i) K is bounded from below anB> —pu|K + ial.
LetH = K + I be the form sum ok and/, soH has as domain the set ofe G such thatu+ Iu € H

and acts asHu = Ku + Iu. ThenH is a self-adjoint operator or{. If there isa > 1/2 such that
(K)~Y2[(K)~® € ¥ thenH is strictly affiliated to%. If O € S and the semilatticé is atomic then

SPess(H) = GEGP(S)SP(HZE)' (6.12)
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The last assertion of the theorem follows immediately frohedrem 3.3 and is a general version of
the HVZ theorem. In order to have a more explicit descriptibthe observable$l>p = > H we
now prove an analog of Theorem 3.5 from [DaG3]. We cannot lugetheorem in our context for three
reasons: first we did not suppose tlSdbas a maximal element, then eveisihas a maximal elemerit
the action of the corresponding algelféX’) on the algebra®’(E) is degenerate, and finally our “free
operatorK is not affiliated to&’(X).

Theorem 6.2. For eachF € S letI(FE) € L(G,G*) be a symmetric operator such that:

() (K)"'2I(E)(K)~* € €(E) for somen > 1/2 independent of,
(i) there are real positive numbergg, a such that eithee:1(E) < ug|K + ia| for all E or K is
bounded from below anf{ E) > —ug|K + ial for all E,
(iif) we have)  , ug = p < land the serie$ " I(E) = I is norm summable il (G, G*).

Letussell>g = > p-  I(F). Define the self-adjoint operatdf = K + I onH as in Theorem 6.1 and
define similarly the self-adjoint operatdf>p = K> + I>g on’H>g. Then the operatof! is strictly
affiliated to%, the operatorH > g is strictly affiliated to¢> g, and we have?>pH = H>p.

Proof: We shall consider only the case wher(E) < ug|K + ia| for all E. The more singular
situation whenkK is bounded from below but there is no restriction on the p@sjtart of the operators
I(FE) (besides summability) is more difficult but the main idea besn explained in [DaG3].

We first make some comments to clarify the definition of therafpes H and H> . Observe that our
assumptions imply-/ < u|K + ia| hence if we set

A=K +iaV? = (K +a®) Ve gy
then we obtain
+(ul Tu) < plul|K +ialu) = pl||K +ial2u] = pl| A |
which is equivalent tatATA < p or ||[AIA| < p. In particular we may use Theorem 6.1 in order to
define the self-adjoint operatéf. Moreover, we have

(K) V2K = S (K) Y2 I(E)K) €€
because the series is norm summablé& (). ThusH is strictly affiliated to%".

In order to defind-  we first make a remark oft . If we setGx = D(|Kx|~'/2) and if we equipg
andgGx with the norms
lullg = IKE) Pullne - and fullg,e = [{Kx)"?ullps
respectively then clearly = ®xGx andG* = ®&xG% where the sums are Hilbertian direct sums
andG* and G% are equipped with the dual norms. Then ed¢h’) may be represented as a matrix
I(F) = (Ixy(F))x,yes of continuous operatotbyy (E) : Gy — G%. Clearly
-1/2 —a _ —1/2 —a
()M PIE)E) ™ = ((Kx)™ Loy (F)(Ey) ™)
and since by assumption (i) this belongsd6F) we see thaf xy (F) = 0if X 5 ForY 2 F. Now
fix £ and letF O E. Then, when viewed as a sesquilinear forf(f") is supported by the subspace
‘H>g and has domaig>r = D(|K2E|1/2. It follows that I> is a sesquilinear form with domain
G>g supported by the subspa@é. z and may be thought as an elementldG> g, G% ;) such that
+I>p < p|K>p + ia| becaus§” .- up < pu. To conclude, we may now defifés p = K> + >
exactly as in the case df and get a self-adjoint operator Gt g strictly affiliated to¢> . Note that
this argument also gives

(K) P I(F)(K) ™2 = (Ko )2 I(F) (K p) ™2, (6.13)

It remains to be shown tha? p H = H> . If we setR = (ia— H) "' andR>g = (ia— H>g) ! then
this is equivalent ta¥> g R = R>p. Let us set

U = lia — K|(ia — K)™' = A 2(ia— K)™', J = AIAU.
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ThenU is a unitary operator angl/|| < 1, so we get a norm convergent series expansion
R=(ia—K—I)"" = AUl = ATAU)'A =37 S AUJ"A
which implies
Z>g(R) = ZnZOQZZE(AUJ”A)
the series being norm convergent. Thus it suffices to proaefein eachn > 0
P>E (AUJ"A) =A>g(J>p)"AsE (6.14)

whereJ>g = A>gl>pA>pUsg. HereAs g andUs g are associated tH'> g in the same way\ and X'
are associated ti'. Forn = 0 this is obvious becaus®’> p K = K> g. If n = 1 this is easy because

AUJA = AUAAUA = (ia — K) ' (ia — K)™! (6.15)
= [(ia — K) M (E)V2) - [(K) H2I(K) 7] - [(K)* (ia — K) 7]
and it suffices to note tha¥#s g ((K)~'/21(F)(K)~*) = 0if F » F and to use (6.13) foF O E.

To treat the general case we make some preliminary remdri$F1) = AI(F)AU thenJ = 3" . J(F)
where the convergence holds in normidiecause of the condition (iii). Then we have a norm convergen
expansion

AUJA =35 5 esAUJ(F). . J(Fy)A.

Assume that we have showwU J(Fy) ... J(F,)A € €(F1N---N F,). Then we get
P>p(AUJ"N) =3 5 sp. pspAUJ(F1) .. J(Fy)A (6.16)

.....

because if oné’, does not contaitk’ then the intersectiof’; N - - - N F,, does not contai’ henceZ i
applied to the corresponding term gives Because of (6.13) we havBF') = Aspl(F)A>gUsg if
F > E and we may replace everywhere in the right hand side of (\188)dU by A> g andUs . This
clearly proves (6.14).

Now we prove the stronger fadtU J(Fy) ... J(F,) € €(Fy N--- N F,). If n = 1 this follows from

a slight modification of (6.15): the last factor on the rigland side of (6.15) is missing but is not
needed. Assume that the assertion holds for sen&inceK is strictly affiliated to.7 and 7y acts non-
degenerately on eaci(F') we may use the Cohen-Hewitt theorem to deduce that thepedsC, (R)
such tha\U J(F) ... J(F,) = T(K) forsomeT € € (Fy1N--- N F,). Then

AUJ(F) ... J(Fu)J(Fst) = To(K) T (Fui)
hence it suffices to prove that(K)J(F) € €(F) for any F' € S and anyp € C,(R). But the set of

© which have this property is a closed subspac€4R) which clearly contains the functions(\) =
(A — 2)~Lif z is not real hence is equal & (R). O

Remark 6.3. Choosingx > 1/2 allows one to consider perturbationsigfwhich are of the same order
askK, e.g. in theN-body situations one may add to the Laplaciamon operator likev* MV where the
function M is bounded measurable and has the structure df doody type potential, cf. [DaG3, Delf].

The only assumption of Theorem 6.2 which is really relevarifi) ~'/21(E)(K)~* € € (E). We shall
give below more explicit conditions which imply it. If we chge notation® — Z and use the formalism
introduced in the proof of Theorem 6.2 we have

I(Z) = (Ixy(2))x,yes With Ixy(Z):Gy — G% continuous (6.17)
We are interested in conditions dry (Z) which imply
(Kx) V2 Ixy (Z)(Kx)™ € Gxv(2). (6.18)

For this we shall use Theorem 5.3 which gives a simple intriclsaracterization 0¥xy (Z2).

The construction which follows is interesting onlyXf is not a discrete group, otherwisé* is compact
and many conditions are trivially satisfied. We shall usegivis only in order to avoid imposing on the
functionsh x regularity conditions stronger than continuity.
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A positive functionw on X* is aweightif limy_.., w(k) = oo andw(k + p) < w(k)w(p) for some
functionw on X* and allk, p. We say thaiv is regular if one may choose such thatimy_.qw(k) = 1.
The example one should have in mind whEnis an Euclidean space is(k) = (k)¢ for somes > 0.
Note that we have/(—k)~! < w(k + p)w(p)~* < w(k) hence ifw is a regular weight then

jw(k +p) — w(p)|

0(k) = su — lim 8(k) = 0. 6.19
(k) = sup PEER lim 0(F) (6.19)

Itis clear that ifw is a regular weight ane > 0 is a real number them? is also a regular weight.

We say that two functiong, ¢ defined on a neighborhood of infinity of * areequivalentand we write
f ~ g ifthere are numbers, b such that| f (k)| < |g(k)| < b|f(k)|. Then|f|” ~ |g|? forall & > 0.

We denoteg$ = D(|Kx|?/?) andGy” = (G%)* with o > 1. In particularG}, = Gx andGy' = G%.
Proposition 6.4. Assume that x, hy are equivalent to regular weights. LEtC X NY and let/xy (Z)
be a continuous ma@,- — G% such that

(1) UZ]X)/(Z) = Ixy(Z)UZ ifzeZ andV]:I)(y(Z)Vk — IXy(Z) if k—0in (X + Y)*,
2) (Us —1)Ixy(Z) — 0if 2 — 0in X and(Vy — 1)Ixy(Z) — 0if k — 0in (X/2)",

where the limits hold in norm i (G, Gx*) for somes > 1. Then(6.18)holds witha = /2.

Proof: We begin with some general comments on weights..b&k a regular weight and 1€ty be the
domain of the operatap(P) in Hx equipped with the normjw(P)u||. ThenGx is a Hilbert space and
if G% is its adjoint space then we get a scale of Hilbert spdcesc Hx C G% with continuous and
dense embeddings. Sintg commutes withu(P) it is clear that{U,. } .« x induces strongly continuous
unitary representation of onGx andG%. Then

Viullgx = llw(k + Plul| < w(k)||ullgx

from which it follows that{V}, } .cx~ induces by restriction and extension strongly continuepsesen-
tations of X* in Gx andG%. Moreover, as operators Giix we have

Viw(P)™ Vi —w(P)™ ! = lw(k + P)™ —w(P) ™| = [w(k + P) " (w(P) —w(k + P))w(P) ™|
< w(=k)|(w(P) — w(k + P))w(P)"?| < w(—k)f(k)w(P)~". (6.20)
Now letwx, wy be regular weights equivalent thx |*/2, |hy |'/? and let us sef = Ixy (Z). Then
(Kx)V2S(Ky) ™ = (Kx) 72w (P) - wx (P)Swy (P) 7> - wy (P)**(Ky) ™

and (hx)~Y?wx, (hy)~*w?* and their inverses are bounded continuous functions{ol’. Since
¢xy(Z) is a non-degenerate leffx-module and right%;--module we may use the Cohen-Hewitt theo-
rem to deduce that (6.18) is equivalent to

wx (P) " Ixy (Z)wy (P)™7 € €xy(Z) (6.21)

whereo = 2«. To simplify notations we séiV'xy = wx (P), Wy = w§(P). We also omit the index
X or Y for the operatordVx, Wy since their value is obvious from the context. In order towsho
W-LSW=1 € €xy(Z) we check the conditions of Theorem 5.3 with= W ~1SW 1. The first part
of condition (2) of the theorem is verified by the hypothegi§ ¢f the present proposition. We may
assumer > 1 and then hence the second part of condition (2) of the theéwboavs from

IT(W, = DIl < W Ixy (Z)wy (P — 0]|(Uy — Dwy = (P)]| ify — 0.
To check the second part of condition (1) of the theorenViggt= V) WV, andS;, = V7 SV}, and write
ViTVi =T =W S Wt — W tsw 1
=W, ' =W HS W+ WS, - YWt + W s(w !t - w ).
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Now if we use (6.20) and s€tk) = w(—k)0(k) we get
IVETVie = T|| < ER) WS, W]+ WSk = SYWH[WW |+ E(R) W Esw |
which clearly tends to zero i — 0. Condition (3) of Theorem 5.3 follows by a similar argument.[]

Now let H be defined according to the algorithm §#.8. Then condition (i) of Theorem 6.2 will be
satisfied for alle > 1/2. Indeed, from Proposition 6.4 we ggk’) ~ /2117 1(Z)Tl7 (K)~* € € (Z) for
any finiteZ and this operator converges in norm #6) ~'/21(Z)(K)~*. Thus all conditions of Theorem
6.2 are fulfilled by the Hamiltonial/ = K + I and soH is strictly affiliated to%".

7. THE MOURRE ESTIMATE

7.1. Proof of the Mourre estimate. From now on we work in the framework of the second part of
Section 2, so we assume th@tis a finite semilattice of finite dimensional subspaces of an Euclidean
space. In this subsection we prove the Mourre estimate foratativistic Hamiltonians. The strategy of
the proof is that introduced in [BG2] and further developedABG, DaG2] (graded”*-algebras over
infinite semilattices and dispersive Hamiltonians are mared in Section 5 from [DaG2]). We choose
the generatoD of the dilation groug/, in H as conjugate operator for reasons explained below. For
special types of interactions, similar to those occurrmguantum field models, which are allowed by our
formalism, better choices can be made, but at a techniogll flegre is nothing new in that with respect to
[Geo] (these special interactions correspond to distsibigemilatticess).

The dilations implement a group of automorphisms of ¢tiealgebra%” which is compatible with the
grading, i.e. it leaves invariant each comportitZ) of €. In fact, it is clear thaWW*&xy (Z2)W, =
Cxy(Z) forall XY, Z henceW € (Z)W, = €(Z). This fact plays a fundamental role in the proof
of the Mourre estimate for operators affiliateddoand explains the choice @ as conjugate operator.
Moreover, for eaclf” € ¥ the mapr — W*TW.,_ is norm continuous. We can compute explicitly the
functionp , thanks to the relation

W:AXWT =e"Ax or [Ax,ZD] =Ax (71)

We say that a self-adjoint operatffis of classC* (D) or of classC(D) if W* RW., as a function of
is of classC?! strongly or in norm respectively. Heré = (H — z)~* for somez outside the spectrum of
H. The formal relation

[D,R] = R[H, DR (7.2)
can be given a rigorous meaning as followsHlfs of classC'! (D) then the intersectio® of the domains
of the operatord] and D is dense inD(H ) and the sesquilinear form with domain associated to the
formal expressiot D — D H is continuous for the topology dP(H) so extends uniquely to a continuous
sesquilinear form on the domain &Ff which is denotedH, D]. This defines the right hand side of (7.2).
The left hand side can be defined for exampléaésW:RWT\T:o.

For Hamiltonians as those considered here it is easy to eehat H is of classC!(D) in terms of
properties of the commutat¢f, D]. Moreover, the following is easy to prové: H is affiliated to@
thenH is of classC (D) if and only if H is of classC' (D) and [R, D] € €.

Let H be of clas<”! (D) and\ € R. Then for eaclt € C.(R) with §()\) # 0 one may find a real number
a and a compact operat@f such that

0(H)*[H,iD)0(H) > a|0(H)|> + K. (7.3)

Definition 7.1. The upper boun@ (\) of the numbers: for which such an estimate holdstise best
constant in the Mourre estimate féf at A\. Thethreshold sebf H (relative toD) is the closed real set

T(H) ={A[px(A) <0} (7.4)
One says thab is conjugate toH at\ if p ;(\) > 0.
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The setr(H) is closed because the functipn, : R —] — oo, oo] is lower semicontinuous.

To each closed real sdtwe associate the functiaN4 : R — [—oo, oo[ defined by

Na(A) =sup{z € A |z < A} (7.5)
We make the conventiofup ) = —co. Thus N4 may take the value-c if and only if A is bounded
from below and thenV4(\) = —oc if and only if A\ < min A. The functionN4 is further discussed

during the proof of Lemma 7.3.

Nonrelativistic many-body Hamiltonians have been intiwetliin Definition 2.19. Letv(T') be the set
of eigenvalues of an operat®r.

Theorem 7.2. Let S be finite and letH = Hg be a nonrelativistic many-body Hamiltonian of class
CL(D). Thenp ;(X) = A — N-(g)()) for all real A and7(H) is a closeccountablereal set given by

T(H) = Uxzo0ev(Hs/x). (7.6)

Proof: We first treat the cas@ € S. We need some facts which are discussed in detail in Secti@ns
8.3 and 8.4 from [ABG] (see pages 51-61 in [BG2] for a shortesentation).

(i) For each real let py (\) be the upper bound of the number$or which an estimate like (7.3) but
with K = 0 holds. This defines a lower semicontinuous functign: R —] — oo, co] hence the set
»(H) = {\| pa(X) < 0} is a closed real set calleditical setof H (relative toD). We clearly have
pu < ppyandsor(H) C »x(H).

(i) Let p(H) be the set of eigenvalues éf such thatp ;;(\) > 0. Thenu(H) is a discrete subset of
ev(H) consisting of eigenvalues of finite multiplicity. This issesitially the virial theorem.

(iii) There is a simple and rather unexpected relation betwtbe functiongy andp 5 : they are “almost”
equal. Infactpy () =0if A € u(H) andpr (X) = p (N otherwise. In particular

»(H)=71(H)Uev(H) =7(H)U p(H) (7.7)
wherel denotes disjoint union.

(iv) This step is easy but rather abstract andhealgebra setting really comes into play. We assume
that / is affiliated to our algebr#@’. The preceding arguments did not require more thaitthe) class.
Now we requireH to be of clasg”; (D). Then the operator > x are also of clas€'} (D) and we have
the important relation (Theorem 8.4.3 in [ABG] or Theorer b [BG2])

P = s P
To simplify notations we adopt the abbreviations. , = p>x and instead ofX € P(S) we write
X » O, which should be readX coversO”. For coherence with later notations we also gt = p .
So (7.8) may be written

Ps=minp>x. (7.8)

(v) From (7.1) and (2.30) we get
Hox =Ax ®1+1® Hg/x, [H>x,iD]=Ax®1+1®[D,iHgs/x].

Recall that we denot® the generator of the dilation group independently of thecspa which it acts.
We note that the formal argument which gives the secondealabove can easily be made rigorous but
this does not matter here. Indeed, sidtey is of classC] (D) and by using the first relation above, one
can easily show thal/s, x is also of clas (D) (see the proof of Lemma 9.4.3 in [ABG]). Now we
may use Theorem 8.3.6 from [ABG] to get

pzx(\) = inf (pax (M) + ps/x(A2))

1
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whereps, x = pus, - Butclearly if X # O we havepa  (A) = oo if A <0andpa, (A) = Aif A > 0.
Thus we get

pzx(A) = inf (A= +ps/x(p) = A — sup (1 —ps/x (). (7.9)

75
(vi) Now from (7.8) and (7.9) we get
A= Ds(A) = max sup (1= ps/x (1)) (7.10)

Finally, we are able to prove the formylg,; (A\) = A — N,z (A) by induction over the semilatticg. In
other terms, we assume that the formula is correftt i replaced by s, x for all X # O and we prove
itfor H = Hs/o. So we have to show that the right hand side of (7.10) is equal.tz ().

According to step (iii) above we haves,x (1) = 0if p € pu(Hs)x) andps,x (1) = ps/x (1) other-
wise. Since by the explicit expression®f,  this is a positive function and singg; (\) < 0 is always
true if X is an eigenvalue, we ggt— ps/x (1) = pif p € ev(Hgs/x) and

m— pS/X(.U) =M= ﬁS/X(H) = NT(Hs/x)(/“L)
otherwise. From the first part of Lemma 7.3 below we get

sup (,u - ﬂS/X(,U)) - Nev(HS/X)UT(HS/X)~
159

If we use the second part of Lemma 7.3 then we see that

max sup
X>0 ;<)

(1 —ps/x(p) = max New(rs,x)Ur (Hs x)

is the NV function of the set

U (ev(Hs/x)UT(Hs/x)) = U eV(HS/X)U U ev(Hsyy) | = U ev(Hs)x)

X>0 X>0 ( Y>X ) X>0
which finishes the proof g¥ ;;(A\) = A — N, () () hence the proof of Theorem 7.2 in the cé3e S.

No assume& ¢ S and letE = minS. ThenO € S/E so we may use the preceding result 16 .
Moreover, we havél = Ap ® 14+ 1® Hg/p. Thusev(H) = 0, p gy = pu, and we may use a relation
similar to (7.9) to get

A=Du(N) =sup(u —ps/e(n)).
n<A

By what we have shown before we have- ps; (1) = Nr(mg, ) (1) if © & p(Hs,r) and otherwise
p—ps/e(p) = p. From Lemma 7.3 we get — p 5 (A) = Ny, m)uu( )- But from (7.7) we get
T(HS/E) U IL(HS/E) = T(HS/E) U ev(HS/E). From (76) we get

Hs/k

T(Hs/E) = UYeS/E,Y;éoeV(H(S/E)/Y) = UXeS,X;AEeV(HS/X)
because if we writ&” = X/FE with X € S, X # E then(S/E)/(X/E) = S/X. Finally,
T(Hs/p)Uev(Hs/p) = Uxesev(Hs/x)
which proves the Theorem in the calet S. ]
It remains to show the following fact which was used above.

Lemma 7.3. If Aand AU B are closed and ifi/ is the function given by/ (1) = N4 (p) for p ¢ B and
M (p) = pfor p € Bthensup, <\ M(p) = Naup(A). If A, B are closed thesup(N4, Np) = Naup.

Proof: The last assertion of the lemma is easy to check, we proverdteofie. Observe first that the
function NV 4 has the following properties:

(i) N4 isincreasing and right-continuous,
(i) Na(A)=Aif X e A,
(ili) N4 islocally constantan@4()\) < AonA° =R\ A.
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Indeed, the first assertion in (i) and assertion (ii) are obsi The second part of (i) follows from the
more precise and easy to prove fact

Na(A+¢e) < N4g(\)+e forallreall ande > 0. (7.11)

A connected component of the open 4étis necessarily an open interval of one of the fofmso, y[ or
|, y[ or ]z, oo with z,y € A. On the first interval (if such an interval appeah$) is equal to—oo and
on the second or the third one it is clearly constant and emgudl, (). We also note that the function
N4 is characterized by the properties (i)—(iii).

Thus, if we denoteV (\) = sup,, M(u), then it will suffices to show that the functiaW satisfies the
conditions (i)—(iii) with A replace byA U B. Observe that/(u) < p and the equality holds if and only
if 41 € AU B. ThusN isincreasing/N(A) < A, andN(\) = Xif A€ AU B.

Now assume thak belongs to a bounded connected componens| of A U B (the unbounded case is
easiertotreat). It < p < ytheny ¢ BsoM(u) = Na(p) and]z, y[ is included in a connected com-
ponent ofA° henceM (1) = Na(z). ThenN(A) = max(sup,«, M(v), Na(x)) henceN is constant
on]x, y[. Here we havé/ (v) < v < zsoifx € AthenN4(z) = z and we getV(\) = z. If z € B\ A
thenM (z) = x sOsup,«, M (v) = z andN4(x) < = henceN(\) = z. Sincex € AU B one of these
two cases is certainly realized and the same argument give$ = z. Thus the value ofV on]z, y[ is
N(x) soN is right continuous of, y[. Thus we proved thaV is locally constant and right continuous
on the complement ot U B and also thatv(\) < A there.

It remains to be shown tha¥ is right continuous at each point afe A U B. We show that (7.11) hold
with N4 replaced byV. If 4 < AthenM (1) < p < XA = M(X) hence we have

NA+e)= sup M(p).
ALpSAte

But M (1) above is eitheV 4 (1) eithery. In the second cage < A + ¢ and in the first case
Na(p) < NaA+e) < Na(A)+e <A +e.
Thus we certainly havé&/ (X + ¢) < A + ¢ and\ = N(\) because\ € AU B. O

7.2. Ageneral class of interactions.The rest of this section is devoted to some technical questiour
main purpose is to clarify the structure of the interactionhe Euclidean case.

The following compactness criterion will be useful. Thisaisonsequence of the Riesz-Kolmogorov
theorem and of the argument page 40 involving the regulaftthe weight. LetE, F' be arbitrary
Euclidean space andt € R.

Proposition 7.4. An operator]’ € L(H3,, H%) is compact if and only if one of the next two equivalent
conditions is satisfied, whefe || is the norm inL(H3;, H%):

@) U, =T+ (Ve —1D)T|| -0 ifz—0inF,

(i) |1 TUs = +T(Ve—=1)]| —0 ifz—0inE.
We denotel° (H3;, H%) the set of small at infinity operators, cf. Definition 2.16e@ily L°(H3;, H%.)
is a closed subspace &f H3,, HE.).
Corollary 7.5. An operator]’ € L(H3;, H%) is small at infinity if and only ifim, o 7'(V;, — 1) = 0in
norm in L(H5, Ht.) for somes > 0. Then this holds for alt > 0.
Indeed, the first part of condition (ii) of Proposition 7dréplaced by + ¢) is automatically satisfied.

We now give a Sobolev space version of Proposition 6.4 whigls the weighté)® and is convenient in
applications. By using Theorem 5.7 instead of Theorem 5tBerproof of Proposition 6.4 we get:

Proposition 7.6. Lets,t > 0andZ C X NY. Letlxy(Z) € L(H},Hy") such that the following
relations hold in norm in(H3", H*) for somes > 0:
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(1) UZ]X)/(Z) = Ixy(Z)UZ ifzeZ andVZ*Ixy(Z)‘/Z — Ixy(Z) if2z—0in Z,
If hx, hy are continuous real functions ai, Y such thathx (z) ~ (z)?* andhy (y) ~ (y)? and if we
setKx = hx(P), Ky = hy(P) then(Kx) '?Ixy(Z)(Ky)~® € €xv(2)if a > 1/2.
Our next purpose is to discuss in more detail the structutieeobperatorg xy (Z) from Proposition 7.6.
For this we make a Fourier transformatigiy in the Z variable as in the proof of Theorem 5.7.

We fix XY, Z with Z C X NY, use the tensor factorizations (2.16) and make identifinatiike
Hz ®HX/Z = LQ(Z; HX/Z)- ThusHx = HZ®HX/Z andAx = Az ®1+ 1®AX/Z henceifs > 0

HY(X) =H(Z;H (X/Z2))NH (Z; Hxyz) = (Hz @ HY(X/Z)) N (H*(Z) @ Hxyz)  (7.12)
where our notations are extended to vector-valued Sobpkes. Clearly

D
]—'Z<PX)5]-'Z_1=/ (1 + [k|? + | Px/z|*)*/?dk. (7.13)
Z

Then from (2.17) andZz = F,'C,(Z)Fz we get
Cxy(Z) = Tz @ Hx)zv)72 = Fg Co(Z; Hx)2v2)F7-
To each weakly measurable még, : Z — L(H},,, Hy,) such that

supy, [[(1 + [k + [Px/z|)~* 1%y (k) (1 + [ + [ Pyz) 7| < oo (7.14)

we associate a continuous operak@s (Z) : Hi — H® by the relation

(&)
Frlxy(Z)F;* = / IZ, (k)dk. (7.15)
Z

The following fact is known: a continuous operafor H} — H® is of the preceding form if and only
if U,7 =TUaforall a € Z. From the preceding results we get (notations are as in Re?nd5):

Proposition 7.7. Let X, Y, Z € S with Z ¢ X NY and assume thaf}, = H% andGy = Hi,. An
operatorIxy (Z) : Hi, — HY® satisfies the conditions of Remark 2.15 if and only if it ishef form
(7.15)with a norm continuous functiofé,. : Z — L"(H;/Z, H;(jz) satisfying(7.14)

7.3. Auxiliary results. In this subsection we collect some useful technical resulet £, 7, G, H be
Hilbert spaces. Note that we have a canonical identificqtemsor products are discussedt4)

KEF)@KGH) 2K(E®G FH), inparticular K(,F@H) 2 K(E,F)@H. (7.16)
Assume that we have continuous injective embeddithgs G and F C G. We equipE N F with the

intersection topology defined by the norfig||% + ||g/|%)/2, hence€ N F becomes a Hilbert space
continuously embedded .

Lemma 7.8. The mapK (€, H) x K(F,H) — K(£ N F,H) which associates t§' € K(£,H) and
T € K(F,H) the operatorS|enx + T|enr € K(E N F, H) is surjective. Thus, slightly formally,

K(ENF,H) = K(EH) + K(F. H). (7.17)

Proof: Itis clear that the map is well defined. LBte K(£NF,H), we have to show that there aseT’

as in the statement of the proposition such tRat S|cnx + T|¢nx. Observe that the norm ahn F
has been chosen such that the linear map (g, g) € £ ® F be an isometry with range a closed linear
subspac&€. ConsiderR as a linear maff — H and extend it to the orthogonal @fby zero. The so
defined mapR : 7 — H is clearly compact. Le$, T be defined bySe = R(e,0) andTf = R(0, f).
Clearly S € K(&£,H) andT € K(F,H) andifg € £n F then

Sg+Tg = R(g,0) + R(0,9) = R(g,9) = Ry
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which proves the lemma. O

We give some applications. K, F' are Euclidean spaces and> 0 is real then

Hiper = (Hy @ Hr) N (He @ HE) (7.18)
hence Lemma 7.8 gives for an arbitrary Hilbert spate
K(Hpgpr, H) = K(H @ Hp, H) + K(He @ Hy, H). (7.19)
If H itself is a tensor produd? = H' @ H" then we can combine this with (7.16) and get
KHpgrH @H")=K(Hy, H')® K(Hp,H") + K(Hg, H') ® K(H%, H"). (7.20)
Consider now a tripleX, Y, Z such thatZ ¢ X NnY and denote
E=(XNY)/Z and XBY = X/Y x Y/X. (7.21)
ThenY/Z =E® (Y/X)andX/Z = E @ (X/Y) hence by using (7.20) we get for example
Hy/z = Hep @ Hy,)x and Hx,; = Hp @ Hx/y (7.22)
Hy)z = (HE©Hy/x) N (He © 1y x) (7.23)
Hyjz =Mp @Hxyy +He @ HY)y (7.24)
By using once again (7.20) and the notations introduced.#ij2we get
Himyz =K @ Hx)vyyx + He @ A yy/x- (7.25)

We identify a Hilbert-Schmidt operator with its kernel, 56(X BY) C Hxv,y)x is the subspace of
Hilbert-Schmidt operators. The we have a strict inclusion

LX(XBY;XE) C A5 ® Hx)vyx (7.26)

7.4. Firstorder regularity conditions. Inthe next two subsections we consider interactions asapd?r
sition 2.26 and give explicit conditions on th€,. such thatd be of classC'}(D). We recall that the
assumptions of Proposition 2.26 can be stated as followslf& ¢ X NY

Iy : My, — Hx/z is compact and satisfie§/ ¢y )" O I{ y, (7.27)
(D, Iy : MY, — HY7, is compact (7.28)

If (7.27) is satisfied then by duality and interpolation wé¢ ge
Iy : HY,, — HY5 is acompact operator for i< 6 < 2, (7.29)

in particular the operatoiD, 1%, | = Dx,z1%, — 1%y Dy, restricted to the space of functions in

Hf,/z with compact support has values in the space of functioralliom H;(}Z. We use, for example,
the relationDx,, = Dg ® 1+ 1® D,y relatively to (7.22) to decompose this operator as follows:

[D,I%y] = (Dg + DX/Y)I)Z(Y — 14y (Dp + Dy/x)

= [Dg, IZy]+ Dx/y1%y — 1%y Dy/x. (7.30)
Sincel{, Dy, x C (Dy,xI¢y)* if (7.27) is satisfied then condition (7.28) follows from:
[Dg, I%y] andDy,y I, are compact operatofsy, , — Hy7, forall X,Y, Z. (7.31)
According to (7.25) the first part of condition (7.27) is edlent to
1%y = J+J' forsomeJ € 43 ® Hx vy /x andJ’ € Hu @ ARy y/x- (7.32)

As a particular case, from (7.26) we obtain the example disediin2.11. The compactness conditions
(7.31) are conditions on the kernéR g, 1%, (z',y')] andx’ -V, I, (', y') of the operator§D g, I%/]
andDy/y I, . Note that a condition of%, Dy, x is a requirement on the kerngl- vV, 14, (2/,9/).
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7.5. Creation-annihilation type interactions. To see the relation with the creation-annihilation type
interactions characteristic to quantum field models we icensiow the case wheri C X strictly. Then

Cxy =y @Hx)y, Cxv(Z)=%v(Z)®Hx)y, Hx =Hy @ Hx)y (7.33)
where the first two tensor product have to be interpreted plsiered in§3.4. In particular we have
L*(X/Y;%y) C €xy and L*(X)Y;%y(Z)) C €xy(Z) strictly. (7.34)

If ZCcYthenX =Zo (Y/Z)®o (X/Y)andX/Z = (Y/Z)© (X/Y) henceH x,z = Hy;z @ Hx/y
and thus the operatd¥,, is just a compact operator

IZy :Hy )y — Hyyz @ Hxyy (7.35)
If £, F,G are Hilbert spaces theli (£, F @ G) = K (&, F) ® G. Hence (7.35) means

Let Sxy = Xy xnylz ® #%), ), Where the sum is direct and closed#i,. A usual nonrela-
tivistic N-body Hamiltonian associated to the semilattibe of subspaces ok is of the formAx + Ix
with Iy € Ix = Fxx. Thus the interaction which couples theandY systems is of the form

Ixy =3 5cs, 12 © Iy € Sy @ Hx)y . (7.37)

In particular we may takéyy € L*(X/Y’; %y ), but we stress that the spagg © H x,y is much larger
(see§3.4). More explicitly, a square integrable functidry : X/Y — .#y determines an operator
Ixy : H2 — Hx by the following rule: it associates toc H?(Y') the functiony’ — Ixy (y")u which
belongs toL?(X/Y; Hx/y) = Hx. We may also write

(Ixyu)(z) = (Ixy(y)u)(y) wherex € X =Y @ X/Y is written asz = (y, /). (7.38)

We say that the operator valued functibgy is the kernel of the operatdty. The adjointly x = Iy
is an integral operator in thg variable (like an annihilation operator). Indeedy i€ H x is thought as a
mapy’ — v(y’) € Hy then we havdy xv = fX/Y Iy (y")v(y')dy’ at least formally.

The particular case when the functidgy is factorizable clarifies the connection with the quanturafie
type interactions: lefxy be a finite sumlxy =, Vi @ ¢; whereVy € 4y andg; € Hx/y, then

Ixyu=>3,(Vyu) ® ¢; asanoperatafxy : Hy — Hx = Hy ® Hx/y- (7.39)
This is a sum ofV-body type interaction®;- tensorized with operators which create particles in states

The conditions on the “commutatofD, I xy | may be written in terms of the kernel &%y . The relation
(7.30) become§D, Ixy] = [Dy, Ixy] + Dx/yIxy. The operatoDy acts only on the variablg and
Dx/y acts only on the variablg’. Thus[Dy, Ixy]| andDx/,yIxy are operators of the same nature
as Ixy but more singular: the kernel ¢Dy, Ixy] is the functiony’ — [Dy,Ixy(y’)] and that of
2iDx/y Ixy is the functiony’ — (y' -V, +n/2)Ixy (y'). Thus, to get (7.28) it suffices to require two
conditions on the kerndlxy, one on[Dy, Ixy (y')] and a second one afi- V,/ Ixy ().

If we decomposdxy as in (7.37) withl%,, : Hf//z — Hyz ® Hx/y compact then the (formal)
kernel of I%y is a#y?,, valued map onX/Y . We require thafDy, 7, I{y/] and Dx,y I, be compact
operatorS‘-[%/Z — H)_(iz- From (7.12) and\/Z = (Y/Z) @ (X/Y ) we get

Hg{/z = (HY/Z ® H%(/Y) N (H%f/z ® HX/Y)7 H)}?Z =Hy/z® H;(?Y + H;’/QZ @ Hx/y

which are helpful in checking these compactness requir&snen
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7.6. Besov regularity classesWe recall some facts concerning the Besov type regulaiyscl-! (D);
we refer to [ABG] for details on these matters. Since the wgaje operatoD is fixed we shall not
indicate it in the notation from now on. An operatbre L(H) is of classCt! if

L . de ! 9 de
/0 W5 TWa. — 9W2TW. + TS = /0 V.~ 1T % < oc (7.40)

whereW. is the automorphism af () defined byW.T' = WxTW.. The condition (7.40) implies that
T is of classC'! and is just slightly more than this. Indeédjs of classC* or C! if and only if the limit
1
de
. _ 2 e
PE%) We —1) TgQ
exists strongly or in norm respectively. The following slass of C1:! is useful in applicationsT is
called of clas<"* if T is of classC?, so the commutatdiD, '] is a bounded operator, and

1
d
[ iz, - 0.7 % < o (7.42)
0

ThenC'*t c CY!. The class most frequently used in the context of the Molngerem isC?: this is the
setof " € C*! suchtha{D,T] € C*. But[D,T] € C' if and only if

WD, T|W,. — D, T]|| < Cle| forsome constar® and all reak

hence this condition is much stronger then the Dini type dad(7.41). A self-adjoint operataff is of
classCt!, C'* or C? if its resolvent is of clas§'"!, C'* or C? respectively.

We now consider a Hamiltonian as in Proposition 2.26 andudsconditions which ensure thétis of
classC*!. An important point is that the domaiti? of H is stable under the dilation grouf’.. Then
Theorem 6.3.4 from [ABG] implies tha is of classC*:! if and only if

/ IOV= — 1)2H 122 zdg < . (7.42)

As aboveW.H = W HW. henceW. — 1)2H = W3 HW,. — 2W*HW, + H. We haveH = A + T
and due to (7.1) the relation (7.42) is trivially verified byetkinetic partA of H hence we are only
interested in conditions chwhich ensure that (7.42) is satisfied withreplaced byl. If this is the case,
by a slight abuse of language we say thé of classC!. In terms of the coefficientsyy, this means

Y/z x/z &2

ds
/H = 12Ty e am < oo forall X,Y,Z. (7.43)

We recall one fact (see [ABG, Ch. 5]). Lét: H?> — H 2 be an arbitrary linear continuous operator.
Then[D,I] : H?> — Hlj)i’ is well defined and is of classC! (in an obvious sense) if and only if this
operator is the restriction of a continuous n¥dp — H =2, which will be denoted als@D, I]. We say
that! is of classC** if this condition is satisfied and

1
* de
/ HVVE [D,I]WE — [D7I]||H2~>H*2? < oQ. (744)
0
As before, ifI is of classC** then itis of clasg”!+!. In terms of the coefficientsZ,, this means
WD, Iz W.—[D,1 de (7.45)
. WD, Ixy] [ XY]H?ﬁ,/Z H3, o SO .

Such a condition should be imposed on each of the three terthe decomposition (7.30) separately.

The techniques developedii.5.3 and on pages 425-429 from [ABG] can be used to get moete
conditions. The only new fact with respect to thebody situation as treated there is th&t when
considered as an operator &fk /v, » factorizes in a product of three commuting operators. Iddée
WewriteHy/Z =Hg ®Hy/X ande/Z :HE@)H)(/Y then we geWT( ) WX/YWE( ) Y/X
where this time we indicated by an upper index the space tohvthe operator is related and, for example,
we identifiedWTY/X =1g® WYX To check theol:! property in this context one may use:
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Proposition 7.9. If T € . := L(Hf,/Z,H;(fZ) thenfo1 |(W. — 1)?T|| &de/e? < oo follows from

1
d
/ (IWX = 12Tl + | OVE = 1Tl + [TWYX =1 2) 5 <00 (746)
0

Proof: We shall interpre};fo1 |(We — 1)?T|| #de/e? < oo in terms of real interpolation theory. Lét.
be the operator of left multiplication be(T/Y and V.- the operator of right multiplication bWTY/X on
Lx/z,v/z- If we also setV/, = WE then we get three commuting operatdrs M, , N7 on Lx)zv/)z

such thatV, = L. M, N.. Thenitis easy to check a Dini type condition like (7.45) Isjng

Wr—1=(L; —1)M;N; + (M, —1)N, + (N, — 1). (7.47)
On the other hand, observe that., L., M, N, are one parameter groups of operators on the Banach
spaceZ. These groups are not continuous in the ordinary sense isutidles not really matter, in fact
we are in the setting of [ABG, Ch. 5]. The main point is that iiegral [ [|(W. — 1)*T]| »ds/<? is
finite if and only if fol |(W. — 1)8T|| #de/? is finite (see Theorem 3.4.6 in [ABG]; this is where real

interpolation comes into play). Now by taking the sixth powé (7.47) and developing the right hand
side we easily get the result, cf. the formula on top of pagedf3ABG]. [

The proof of Theorem 2.31 is based on an extension of Proposi®.4.11 and 9.4.12 from [ABG] to the
present context. Since the argument is very similar, we denter into details. We mention only that
the operatoD can be written adD = P - Q + @ - P whereP = ®x Px and@Q = ®&xQx are suitably
interpreted. The proofs in [ABG] depend only on this struetu

8. APPENDIX: HAMILTONIAN ALGEBRAS

We prove here some results 6ti-algebras generated by certain classes of “elementary’ilktanians.

8.1. Let X be a locally compact abelian group and {ét, } .c x be a strongly continuous unitary rep-
resentation ofX on a Hilbert spacé&{. Then one can associate to it a Borel regular spectral measur
E on X* with values projectors of such thatU,, = [. k(x)E(dk) and this allows us to define for
each Borel function) : X* — C a normal operator oft{ by the formulay(P) = [ ¥ (k)E(dk).

The set7x (H) of all the operators)(P) with ¢ € C,(X™*) is clearly a non-degeneraf&*-algebra of
operators ori. The following result, which will be useful in several coxit® is an easy consequence of
the Cohen-Hewitt factorization theorem, see Lemma 3.8 fi®i8]. Consider an operatot € L(H).

Lemma 8.1. lin%)||(Uw —1)A|| =0ifand only if A = ¢(P)B for somey € C,(X*) andB € L(H).

We say that an operatdt € L(H) is of classC?(P) if the mapz — U, SU is norm continuous.

Lemma 8.2. LetS € L(H) be of clasC?(P) and letT € I (H). Then for eaclr > 0thereisY C X
finite and there are operatofg, € 7x (H) such that|ST — >, . T,U,SU;|| <e.

Proof: It suffices to assume th&t = ¢(P) wheret has a Fourier transform integrable éh so that
T = [ Us¢ (x)dz, and then to use a partition of unity oti and the uniform continuity of the map
x +— U,SU} (see the proof of Lemma 2.1 in [DaG1]). O

We say that a subsét of L(H) is X -stable ifU,SU} € B wheneverS € B andz € X. From Lemma
8.2 we see that i is an X -stable real linear space of operators of ci@8¢P) then

B-9x(H)=9x(H) - B.
Since theC*-algebraA generated by3 is also.X -stable and consists of operators of cla$sP)
o =A-Tx(H)=Ix(H)- A (8.48)
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is aC*-algebra. The operatolg, implement a norm continuous action &f by automorphisms of the
algebraA so theC*-algebra crossed produgt x X is well defined and the algebra is a quotient of
this crossed product.

A function  on X* is calledp-periodicfor some non-zerp € X* if h(k + p) = h(k) forall k € X™*.

Proposition 8.3. Let) be anX -stable set of symmetric bounded operators of cf#¥s”) and such that
AV C Vif A € R. DenoteA the C*-algebra generated by and definess by (8.48) Leth : X* — R
be continuous, ngt-periodic ifp # 0, and such thath (k)| — oo ask — oo. Thene is theC*-algebra
generated by the self-adjoint operators of the fdr(® + k) + V withk € X* andV € V.

Proof: DenoteK = h(P + k) and letR, = (2 — K — AV)~! with z not real and\ real. Let% be the
C*-algebra generated by such operators (with varyirapnd V). By takingV = 0 we see tha¥ will
contain theC*-algebra generated by the operat&s By the Stone-Weierstrass theorem this algebra is
Tx(H) because the set of functiops— (z — h(p + k))~! wherek runs overX* separates the points
of X*. The derivative with respect td at \ = 0 of R, exists in nhorm and is equal tByV Ry, SO
RoVRy € €. SinceJx C € we getp(P)Vy(P) € € forall 9,9 € C,(X*) and allV € V. Since
V is of classC?(P) we have(U, — 1)V (P) ~ V(U, — 1)y(P) — 0in norm asz — 0 from which
we getp(P)Vy(P) — S¢(P) in norm as¢ — 1 conveniently. Thud/v(P) € ¥ for V, 1 as above.
This impliesV; --- V,w(P) € ¢ forall V,...,V,, € V. Indeed, assuming = 2 for simplicity, we
write ¢» = 119 with ¢; € Co(X™) and then Lemma 8.2 allows us to approximéte), (P) in norm
with linear combinations of operators of the fogfiP)Vy* where theV’ are translates of;. Since%

is an algebra we géf; ¢(P)Viyo(P) € € hence passing to the limit we geétV2u(P) € €. Thus we
provedss C %. The converse inclusion follows from a series expansioR pfn powers ofl/. O

The next two corollaries follow easily from Proposition 8\8e takeH = L?(X ) which is equipped with
the usual representatiods, V;, of X and X * respectively. LeiV, = U,V with { = (z, k) be the phase
space translation operator, so thalt; } is a projective representation of the phase spiace X & X*.
Fix some classical kinetic energy functiénas in the statement of Proposition 8.3 and let the classical
potentialv : X — R be a bounded uniformly continuous function. Then the quartiamiltonian will
beH = h(P)+v(Q) = K + V. Since the origins in the configuration and momentum spAcesd.X *
have no special physical meaning one may argue [Bel, BeeWha W; = h(P — k) +v(Q + z)isa
Hamiltonian as good aH for the description of the evolution of the system. It is nietac to us whether
the algebra generated by such Hamiltonians (witlind v fixed) is in a natural way a crossed product.
On the other hand, it is natural to say that the coupling @oish front of the potential is also a variable
of the system and so the HamiltoniaHg = K + AV with any real\ are as relevant a§. Then we may
apply Proposition 8.3 witly equal to the set of operators of the fodm(Q + x). Thus:

Corollary 8.4. Letv € Cj(X) real and letA be theC*-subalgebra o€} (X') generated by the translates
of v. Leth : X* — R be continuous, nat-periodic if p # 0, and such thath(k)| — oo ask — oc.
Then theC*-algebra generated by the self-adjoint operators of thenfdr: W with § € = and real

A is the crossed producd x X.

Now let7 be a set of closed subgroupsXfsuch that the semilattice generated by it (i.e. the set of finite
intersections of elements &) consists of pairwise compatible subgroups. &etS) = >3 . s Cx (V).
From (4.8) it follows that this is thé™*-algebra generated By, . Cx ().

Corollary 8.5. Leth be asin Corollary 8.4. Then th@*-algebra generated by the self-adjoint operators
of the formh(P + k) +v(Q) withk € X* andv € )y, .+ Cx(Y') is the crossed productx (S) x X.

Remark 8.6. Proposition 8.3 and Corollaries 8.4 and 8.5 remain true ardeasier to prove if we
consider theC*-algebra generated by the operatb($) + V with all A : X* — R continuous and
such that/h(k)| — oo ask — oo. If in Proposition 8.3 we také{ = L?(X;E) with E a finite
dimensional Hilbert space (describing the spin degreeseefibom) then the operatoff, = h(P) with
h : X — L(E) a continuous symmetric operator valued function such fhatk) + i)~*|| — 0 as
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k — oo are affiliated toer hence also their perturbatiog, + V' whereV satisfies the criteria from
[DaG3], for example.

8.2. We consider the framework 2.3 and use Corollary 8.5 to prove that the Hamiltonian aigeba
nonrelativisticN-body system is generated in a natural way by the operatdtedbrm (2.12). To state
a precise result it suffices to consider the reduced Hanmilten(for which we keep the notatidif).

Let S, be the set of cluster decompositions which contain only anerivial cluster which consists of
exactly two elements. This cluster is of the fofm &} for a unique pair of numbers< j < k£ < N and
we denote by(jk) the corresponding cluster decomposition. The map z; — z;, sendsX ontoR¢ and
hasX ;. as kernel henc®,.(z; — xx) = V(i) o () (z) WhereV,y : X/X (i) — R is continuous
with compact support and, ;) : X — X/X;y, is the canonical surjection.

Thus the reduced Hamiltonians corresponding to (2.12)rer@perators ofit x of the form
Ax + Y ,ce,Vo 0, With V, : X/X, — R continuous with compact support (8.49)

These operators must be affiliated to the Hamiltonian algebthe N -body system. On the other hand, if
a Hamiltonianh(P) + V is considered as physically admissible th&i® + k) + V' should be admissible
too because the zero momentum= 0 should not play a special role. In other terms, translations
in momentum space should leave invariant the set of adréskiamiltonians. Hence it is natural to
considerthe smallesC*-algebra%’x (S) such that the operatorg8.49)are affiliated to it and which is
stable under translations in momentum space. But this adgistexactly the crossed product

%X = CX X X :CX . gX with CX = ZU%X(XU).
Indeed, it is clear that the semilattice generate®hyis & so we may apply Corollary 8.5.

8.3. Here we prove Theorem 2.18.

Let ¥” be theC*-algebra generated by the operators of the form- K — ¢)~! wherez is a not real
number,K is a standard kinetic energy operator, anid a symmetric field operator. With the notation
(6.1) we easily getZy C ¢”. If X € R then\¢ is also a field operator oz — K — A\¢)~* € ¢”. By
taking the derivative with respect toat A\ = 0 of this operator we get: — K) 1¢(z — K)~! € %.
Since(z — K)~! = @&x (2 — hx(P))~! (recall thatP is the momentum observable independently of the
groupX) and sinceZy C €’ we getS¢(0)T € ¢’ forall S,T € Fgandd = (Oxy)x>y-

Let 6%, = Ix¥'Ily C ZLxy be the components of the alget¥d and let us fixX > Y. Then we
geto(P)a*(u)y(P) € Cxy forall o € Co(X¥), ¥ € Co(Y™), andu € Hy,y. The clspan of the
operatorsa*(u)y(P) is Ixy, see Proposition 5.5 and the comments after (3.16), and (4oid) we

haveJx - Ixy = Jxvy. Thus the clspan of the operataséP)a* (u)yw(P) is Ixy foreachX DY and

then we getZxy C €%, . By taking adjoints we gelyy C €%y if X ~ Y.

Now recall that the subspacg® C L(H) defined by72y, = Ixy if X ~Y and7° = {0} if X £ YV

is a closed self-adjoint linear subspace®fand that7° - 7° = ¢, cf. Theorem 4.25. By what we
proved before we havg® C ¢’ henceéd C ¢’. The converse inclusions is easy to prove. This finishes
the proof of Theorem 2.18.
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