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Abstract

An adaption of the original HLL scheme for the one-dimensional

nonconservative Euler system modeling gaz flow in variational poros-

ity media is proposed . Numerical scheme is detailed and algorithm

is tested with two Riemann problems.
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1 The nonconservative Euler system

We consider the one-dimensional nonconservative Euler system modeling a
compressible flow across a porous media:

∂t




φρ

φρu

φE



 + ∂x




φρu

φρu2 + φP

φu(E + P )



 =




0
P

0



 ∂xφ, (1)

where φ stands for the porosity, ρ the gas density, u the velocity, P the
pressure and E the total energy composed of the internal energy e and the
kinetic energy: E = ρ(1

2u2 + e). In addition, we close the system using
the perfect gas law P = (γ − 1)ρe with γ > 1. Such a system casts in the
general nonconservative form

∂tU + ∂xF (U) = G(U)∂xφ (2)

where U stands for the conservative variable vector, F (U) is the conserva-
tive flux and G(U)∂xφ represents the nonconservative contribution due to
the φ parameter derivative.
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The conservative quantities (or conservative state) belongs to the con-
servative variable phase space Ωc ⊂ R

+ ×R×R
+ while the physical (prim-

itive) variables vector V = (φ, ρ, u, P ) belongs to the physical variable
phase space Ωp ⊂ R

+ × R
+ × R × R

+. We have a one to one mapping

(φ, U) → V̂ (φ, U) such that V (x, t) = V̂ (φ(x), U(x, t)) with inverse func-

tion V → (φ, Û(V )) such that Û(V (x, t)) = U(x, t). In the sequel, we
shall drop the hat symbol for the sake of simplicity and we denote by
Fα(V ) = Fα(U(V )) and Gα(V ) = Gα(U(V )) with α = ρ, u, e the compo-
nants of vector F (V ) and G(V ) respectively.

2 Steady-state solutions

From a numerical point of view, the main challenge for nonconservative
systems is the steady-state preservation of the numerical approximations.
Let us consider a regular stationary solution U(x) of system (1), we then
have

d

dx
F (U(x)) = G(U(x))

dφ

dx
. (3)

Assume that φ = φ(x) is a strictly monotone function on interval [x−, x+]
with x− < 0 < x+ which ranges between φ− = φ(x−), φ+ = φ(x+) and
denote U− = U(x−), U+ = U(x+). We change the variable x by the

variable φ setting U(x) = Ũ(φ(x)) = Ũ(φ) solution of the system

d

dφ
F (Ũ(φ)) = G(Ũ(φ)). (4)

We drop the tilde symbol for the sake of simplicity and deduce that U =
U(φ) belongs to an integral curve parameterized with φ. For a given U−

and φ−, we have (at least locally) a unique curve W(φ; V −) solution of (4)
with W(φ−; V −) = U− and W(φ+; V −) = U+.

The main advantage to use φ as a variable is that relation (4) still
holds even if φ(x) is a discontinuous function of x when x+, x+ tend to
0. The ability to handle the φ discontinuity is of crucial importance for
the Riemann problem. Indeed, function φ is constant in the open sets
x < 0 and x > 0 and the nonconservative problem turns to a conservative
one on each half line as noticed by Andrianov & Warnecke (2004). The
nonconservative part only acts at the interface x = 0 where φ jumps from
φ− to φ+.

System (4) provides the three relations

(a) φρu = D, (b)
d

dφ
(φρu2 + φP ) = P, (c) u2 +

2γ

γ − 1

P

ρ
= H, (5)
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where D and H are constants which correspond to the mass flow rate and
the enthalpy respectively. If u = 0, we get that P and ρ are constant.
Assuming now that u 6= 0 then the curve W(φ, V −) is implicitly given by
the three relations (see Clain & Rochette (2009)):

φρu = D, u2 +
2γ

γ − 1

P

ρ
= H,

P

ργ
= S, (6)

where constants D, H and S are determined by the initial condition V −.
We deduce from relation (6) an implicit relation P = P (φ) given by

D2

φ2
+

2γ

γ − 1
P

(
P

S

) 1
γ

= H

(
P

S

) 2
γ

. (7)

In particular, when φ ranges between φ− and φ+, we deduce from relation
(4) the following equality:

Fu(U+) − Fu(U−) =

∫ φ+

φ−

P (φ)dφ. (8)

3 The HLL nc numerical flux

In Toro et al. (1994), the authors propose an extention of the Harten,
Lax and Van Leer scheme (Harten et al. (1983)) introducing an interme-
diate wave which corresponds to the contact discontinuity associated to
eigenvalue λ = u. To evaluate the solution, the authors use the Riemann
invariants i.e. the pressure and the velocity invariance in the Euler case to
provide a new set of equations. Following the same idea, we introduce the
intermediate wave which corresponds to the contact discontinuity λ0 = 0
deriving from the porosity change across the interface x = 0 and use the
associated Riemann invariants.

Let us consider the Riemann problem with initial conditions VL and VR

such that U(x, 0) = UL, φ(x) = φL for x < 0 and U(x, 0) = UR, φ(x) = φR

for x > 0. We assume that we know two approximations SL < SR of
λ1 = u − c and λ3 = u + c respectively and we seek an approximation of
the Riemann problem solution introducing intermediate states V ∗

L , V ∗

R and
Va. Three situations then arise whether SR < 0, SL > 0 or SL < 0 < SR

(see figure 1). The goal is to evaluate a flux approximation F− and F+ on
the left and right sides of the interface x = 0 which shall be used in the
finite volume scheme. We now detail the three situations in the following
section.
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Figure 1: Supersonic configuration with SL > 0 (left), supersonic configu-
ration with SR < 0 (right), subsonic configuration (bottom).

3.1 The supersonic case SL > 0

We first treat the situation when SL > 0. In this case we obtain the
following configuration depicted in figure 1 (left). We have to compute
F− = FL and F+ = F ∗

R to provide the flux accross the interface.

3.1.1 Equations

From the conservation of mass and energy, we have

F
ρ
L = F

∗,ρ
R , (9)

FP
L = F

∗,P
R . (10)

On the other hand, we want to preserve the Riemann invariants hence

F
ρ
L = φLρLuL = φRρ∗Ru∗

R, (11)

FP
L = φLuL(EL + PL) = φRu∗

R(E∗

R + P ∗

R), (12)

PL

(ρL)γ
=

P ∗

R

(ρ∗R)γ
. (13)

with EL =
1

2
ρL(uL)2 +

PL

γ − 1
and E∗

R =
1

2
ρ∗R(u∗

R)2 +
P ∗

R

γ − 1
.

Finally, we use the fact that UL and U∗

L belong to the same integral
curve and relation (8) writes

F
∗,u
R − Fu

L =

∫ φR

φL

P (φ)dφ = Fu(U∗

R) − Fu(UL) (14)

which leads to F
∗,u
R = Fu(U∗

R) = φR(ρ∗R(u∗

R)2 + P ∗

R). Note that the com-
putation of Ua and the other fluxes are not performed since we only require
the fluxes on both side of the interface x = 0.
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To sum-up, we obtain the following system

(SL)





F
ρ
L = φLρLuL = φRρ∗Ru∗

R = F
∗,ρ
R ,

FP
L = φLuL(EL + PL) = φRu∗

R(E∗

R + P ∗

R) = F
∗,P
R ,

PL

(ρL)γ =
P∗

R

(ρ∗

R
)γ ,

EL = 1
2ρL(uL)2 + PL

γ−1 ,

E∗

R = 1
2ρ∗R(u∗

R)2 +
P∗

R

γ−1 ,

F
∗,u
R = φR(ρ∗R(u∗

R)2 + P ∗

R),

where φL, ρL, uL, PL, φR are given and ρ∗R, u∗

R, P ∗

R, F ∗

R are the unknowns.

3.1.2 Resolution

To solve system (SL), we introduce a function

ρ → gsup(ρ; VL, φR) = gsup(ρ)

such that gsup(ρ
∗

R) = 0. For a given predicted value ρ∗R, we compute P ∗

R

with relation (13)

P ∗

R = P ∗

R(ρ∗R) = PL

(ρ∗R)γ

(ρL)γ
.

Using relation (11), we deduce the velocity

u∗

R = u∗

R(ρ∗R) = uL

φLρL

φRρ∗R
.

On the other hand, relations (12) and (11) give

EL + PL

ρL

=
E∗

R + P ∗

R

ρ∗R

which provides the equality

E∗

R = E∗

R(ρ∗R) = (EL + PL)
ρ∗R
ρL

− P ∗

R.

Let us define the function

gsup(ρ
∗

R) = E∗

R −
1

2
ρ∗R(u∗

R)2 −
P ∗

R

γ − 1
,

we then seek ρ∗R such that gsup(ρ
∗

R) = 0 where the physical state V ∗

R =
(φR, ρ∗R, u∗

R, P ∗

R) has to correspond to a supersonic state.
Problem (SL) has zero, one or two solutions (see Clain & Rochette

(2009)). For the two zeros cases, we have ρsup < ρsub and choose ρsup which
corresponds to the supersonic case. Numericaly, we employ a Lagrange
algorithm or an inexact Newton method taking a very small value for ρ as
an initial condition to converge to density ρsup.
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3.2 The supersonic case SR < 0

In case SR < 0, we have to compute F− = F ∗

L and F+ = FR to provide the
flux accross the interface. The system of equation is similar to the previous
one where we substitute variables VL and V ∗

R with V ∗

L and VR respectively.

3.3 The subsonic case

We now face the more complex situation since all the states have to be
estimated to compute F− = F ∗

L and F+ = F ∗

R. We consider the configu-
ration depicted in figure (1, bottom) where we assume that VL and V ∗

L are
separated with a shock of velocity SL and VR and V ∗

R by a shock of velocity
SR while interface x = 0 corresponds to the porosity change.

3.3.1 Equations

Rankine-Hugoniot relations associated to the waves SL and SR yield

F ∗

L − FL = SL(U∗

L − UL), (15)

F ∗

R − FR = SR(U∗

R − UR). (16)

On the other hand, we assume that V ∗

L and V ∗

R are linked with the Riemann
invariants across the contact discontinuity generated by the porosity hence

φRρ∗Ru∗

R = φLρ∗Lu∗

L, (17)

φRu∗

R(E∗

R + P ∗

R) = φLu∗

L(E∗

L + P ∗

L), (18)

P ∗

R

(ρ∗R)γ
=

P ∗

L

(ρ∗L)γ
. (19)

For the density and the energy equations, relations cast in the conservative
form

F
∗,ρ
R = F

∗,ρ
L , (20)

F
∗,P
R = F

∗,P
L . (21)

For the impulsion equation, since U∗

L and U∗

R belongs to the same integral
curve, the flux variation across the interface is given by

F
∗,u
R − F

∗,u
L =

∫ φR

φL

P (φ)dφ = Fu(U∗

R) − Fu(U∗

L). (22)

At last, the definition of the total energy gives

E∗

α =
1

2
ρ∗α(u∗

α)2 +
P ∗

α

γ − 1
, α = L, R. (23)
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To sum-up, we obtain the following system (Ssub)

φRρ∗Ru∗

R = φLρ∗Lu∗

L, (24)

P ∗

R

(ρ∗R)γ
=

P ∗

L

(ρ∗L)γ
, (25)

φRu∗

R(E∗

R + P ∗

R) = φLu∗

L(E∗

L + P ∗

L), (26)

F
ρ
R − SRφRρR + SRφRρ∗R = F

ρ
L − SLφLρL + SLφLρ∗L, (27)

FP
R − SRφRER + SRφRE∗

R = FP
L − SLφLEL + SLφLE∗

L, (28)

F
∗,u
R − φR(ρ∗R(u∗

R)2 + P ∗

R) = F
∗,u
L − φL(ρ∗L(u∗

L)2 + P ∗

L) (29)

F
∗,u
L = Fu

L + SLφL(ρ∗Lu∗

L − ρLuL), (30)

F
∗,u
R = Fu

R + SRφR(ρ∗Ru∗

R − ρRuR) (31)

E∗

L =
1

2
ρ∗L(u∗

L)2 +
P ∗

L

γ − 1
(32)

E∗

R =
1

2
ρ∗R(u∗

R)2 +
P ∗

R

γ − 1
, (33)

3.3.2 Resolution

To solve system (24)-(33), we introduce a function ρ → gsub(ρ) such that
gsub(ρ

∗

L) = 0. For a given predicted value ρ∗L, we compute

ρ∗R = ρ∗R(ρ∗L) =
1

SRφR

(F ρ
L − F

ρ
R − SLφLρL + SRφRρR + SLφLρ∗L).

and relations (26) and (24) yield

E∗

R + P ∗

R

ρ∗R
=

E∗

L + P ∗

L

ρ∗L
, (34)

while relations (32), (33) and (24) give

φ2
Lρ∗L

(
E∗

L −
P ∗

L

γ − 1

)
= φ2

Rρ∗R

(
E∗

R −
P ∗

R

γ − 1

)
. (35)

Relations (25), (28), (34) and (35) give the following linear system

(LS)




1
(ρ∗

L
)γ − 1

(ρ∗

R
)γ 0 0

1
ρ∗

L

− 1
ρ∗

R

1
ρ∗

L

− 1
ρ∗

R

−φ2
L

ρ∗

L

γ−1 φ2
R

ρ∗

R

γ−1 φ2
Lρ∗L −φ2

Rρ∗R
0 0 φLSL −φRSR







P ∗

L

P ∗

R

E∗

L

E∗

R


 =




0
0
0
κ




with
κ = FP

R − FP
L + SLφLEL − SRφRER.
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and we deduce P ∗

L(ρ∗L), P ∗

R(ρ∗L), E∗

R(ρ∗L) and E∗

L(ρ∗L).
Substituting F

∗,u
L from equation (30) and F

∗,u
R from equation (31) in

relation (29) provide

Fu
R + SRφR(ρ∗Ru∗

R − ρRuR) − 2φRE∗

R + φR
3−γ

γ−1P ∗

R =

Fu
L + SLφL(ρ∗Lu∗

L − ρLuL) − 2φLE∗

L + φL
3−γ

γ−1P ∗

L. (36)

Mass flow D = φRρ∗Ru∗

R = φLρ∗Lu∗

L is then given by

D(ρ∗L) =
1

SR − SL

([
Fu

L − SLφLρLuL − 2φLE∗

L + φL

3 − γ

γ − 1
P ∗

L

]
−

[
Fu

R − SRφRρRuR − 2φRE∗

R + φR

3 − γ

γ − 1
P ∗

R

])

and we finally compute u∗

L, u∗

R with relation (24). The predicted value ρ∗L
if a correct estimate is relation (32) or (33) are satisfied so we define

gsub(ρ
∗

L) = E∗

L(ρ∗L) −
1

2
ρ∗L(u∗

L)2 −
P ∗

L

γ − 1
. (37)

4 Numerical tests

Two Riemann problems are considered to test the new scheme. The fol-
lowing table gives the initial conditions where the initial discontinuity is
situated at x = 0.8. We use uniform mesh of 200 cells on domain [0, 2]
while the time step is controled by the classical CFL condition.

φ ρ (kg.m−3) u (m.s−1) P (Pa)

VL (supersonic case) 0.9 1.00 500 50000
VR (supersonic case) 1.0 3.26 342 75000

VL (subsonic case) 1.0 3.6 100 300000
VR (subsonic case) 0.9 3.24 154 200000

We plot in figure (2) the density, pressure and velocity of two approx-
imations (see Clain & Rochette (2009) for the Rusanov nonconservative
scheme) and exact solution for the supersonic situation. We observe that
the 0-contact discontinuity is very well approximated due to the specific
scheme we employ. Figure (2, right bottom) represents function gsup where
the smaller zero corresponds to ρ∗R. Note that the Lagrange algorithm eas-
ily converges since the bassin convergence is very large.

We plot in figure (3) the density, pressure and velocity of two approx-
imations and exact solution for the subsonic situation. We observe that
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Figure 2: Supersonic configuration. Comparison between the approximated
and the exact solution.

the 0-contact discontinuity is still very well approximated while the other
shock waves are smooth due to the numerical viscosity. Figure (3, right
bottom) represent function gsub. We have two branches but only the left
one has a physical interest. The bassin convergence is narrow and Lagrange
algorithm fails if one starts with a wrong predicted density (on the wrong
branch for example).
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