
HAL Id: hal-00436669
https://hal.science/hal-00436669v1

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CA3M : a runtime model and a middleware for dynamic
context management

Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, Denis Conan

To cite this version:
Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, Denis Conan. CA3M : a runtime model and a
middleware for dynamic context management. DOA 2009 : 11th International Symposium on Dis-
tributed Objects, Middleware, and Applications, Nov 2009, Vilamoura, Algarve, Portugal. pp.513 -
530, �10.1007/978-3-642-05148-7_39�. �hal-00436669�

https://hal.science/hal-00436669v1
https://hal.archives-ouvertes.fr

CA3M: A runtime model and a middleware for

dynamic context management

Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

Institut Télécom; Télécom SudParis; CNRS UMR SAMOVAR
9 Rue Charles Fourier, 91011, Évry Cedex, FRANCE

{chantal.taconet,zakia.kazi-aoul,

mehdi.zaier,denis.conan}@it-sudparis.eu

Abstract. In ubiquitous environments, context-aware applications need
to monitor their execution context. They use middleware services such as
context managers for this purpose. The space of monitorable entities is
huge and each context-aware application has speci�c monitoring require-
ments which can change at runtime as a result of new opportunities or
constraints due to context variations. The issues dealt with in this paper
are 1) to guide context-aware application designers in the speci�cation of
the monitoring of distributed context sources, and 2) to allow the adap-
tation of context management capabilities by dynamically taking into
account new context data collectors not foreseen during the develop-
ment process. The solution we present, CA3M, follows the model-driven
engineering approach for answering the previous questions: 1) designers
specialised into context management specify context-awareness concerns
into models that conform to a context-awareness meta-model, and 2)
these context-awareness models are present at runtime and may be up-
dated to cater with new application requirements. This paper presents
the whole chain from the context-awareness model de�nition to the dy-
namic instantiation of context data collectors following modi�cations of
context-awareness models at runtime.

Key words: ubiquity, context-awareness, meta-modelling, model at runtime.

1 Introduction

Nowadays, the use of mobile devices (e.g., smart phones, PDA) is getting more
and more popular. Mobile devices are not only used as simple phones as the
range of distributed applications developed for mobile devices increases dras-
tically. These trends indicate that more and more users depend on ubiquitous
applications for their daily life.

Ubiquitous applications must gain in capabilities to adapt themselves and
also to manage their autonomy. The term context-aware application appeared in
1994 [23]. Since then, many models that describe applications contexts have been
proposed, many context-aware middlewares and services have been designed,
and many context-aware applications have been implemented. However, about

2 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

15 years later, some improvements in software engineering are still necessary to
enable ubiquitous context-aware applications to be easy to design, to implement
and to recon�gure.

Context-aware applications need both 1) to collect high-level observations
meaningfull to them and 2) to identify situations under which they need adap-
tations. High-level observations may be computed from di�erent distributed
sources such as operating systems, user pro�les and environment sensors. Con-
text managers are services in charge to compute those high-level observations [2,
10, 11, 21]. In this paper, we want to enable applications to dynamically make
use of new context managers coming from di�erent frameworks in open envi-
ronments. The design of context-aware applications for ubiquitous environments
has seen the advent of a new stakeholder in the application design process that
we call the �context-awareness designer� in the sequel of the paper. Context-
awareness designers need the support of model engineering to manage the wide
diversity of context data in ubiquitous environments. Several context modelling
approaches such as context pro�les and context ontologies have been surveyed
in [25]. Specifying application context-awareness with Model Driven Engineering
(MDE) enables designers to draw links between the context models and the ap-
plication models. Context-Awareness Domain Speci�c Models (DSM) further the
MDE approach and promote context-awareness models to express the dynamic
variability due to context changes [4, 20]. However, context-awareness models
still lack the ability to de�ne the contracts which link context-aware applica-
tions to context managers. Thus, the approach promoted by the paper is to use
MDE for guiding context-aware application designers in the speci�cation of the
monitoring of distributed context sources.

MDE is often used statically to automate code generation. Recent research
works propose to reify models at runtime [3]. This is the direction we follow in
this paper in order to take into account new ubiquitous environments with new
context sources requirements not foreseen during the development process. Mod-
els at runtime contribute to maintain consistency across design time decisions
and runtime adaptations by enabling models to be updated at runtime.

We propose CA3M, a Context-Aware Middleware based on a context-
awareness Meta-Model for the following goals. Firstly, CA3M guides context-
aware application designers in the speci�cation of the monitoring of distributed
context sources. Secondly, CA3M enables applications to adapt their behaviours
by dynamically taking into account new context data sources not foreseen dur-
ing the development process. In our approach, in addition to classical applica-
tion models such as UML models, a context-awareness model is built by the
context-awareness designer . This model may be updated during the application
lifetime �i.e., design, deployment, runtime. At runtime, the CA3M middleware
dynamically constructs bridges between context-aware applications and context
managers to reify the monitoring elements of the context-awareness model of the
application.

The outline of the paper is as follows. In Section 2, we motivate and give
the objectives of CA3M through an illustrative scenario. Then, we present an

CA3M 3

overview of CA3M in Section 3. In Section 4, we introduce the CA3M meta-
model and show the corresponding context-awareness models for the motivating
scenario. We detail the implementation and provide experimental evaluation
considerations in Sections 5 and 6. Then, we compare our contribution with
regard to related work on context-awareness modelling and context management
middleware in Section 7. Finally, we conclude and present some perspectives of
our work in Section 8.

2 Motivation and objectives

We begin this section by introducing the terminology used in the sequel of the
paper. Then, we present an illustrative scenario in Section 2.2 and �nally we
bring out our objectives in Section 2.3.

2.1 Terminology

We present here terminology adopted for CA3M and especially in the CA3M
meta-model. Some of the following concepts such as entity and situation were
already present in Dey's context de�nition [?].We have chosen simple de�nitions
easy to manipulate by a context-awareness designer.

An entity is an element representing a physical or logical phenomenon (per-
son, concept, etc.) which can be treated as an independent unit or a member of
a particular category, and to which �observables� may be associated. A mobile
device is an entity. An observable is an abstraction which de�nes something to
watch over (observe). The battery level of a mobile device is an observable. Some
observables may be computed from other observables, they are called interpreted
observables. An observation represents the state of an observable at a given time.
It is obtained from a context-manager named collector in the sequel of the paper.
An adaptation situation is an observable which allows to track down a change
of state in the space of the information of context. This change of state may re-
quire a reaction in the system. Such a reaction is called an adaptation. A mobile
device battery state is an example of observable which may take a �nite number
of values (e.g., LowBattery, AlmostLowBattery or NormalBattery) and each state
may lead to a di�erent application behaviour. The link between an observable
and an application is de�ned through a context-awareness contract. A context-
awareness contract may de�ne for example the quality of context required by
the application as well as the mode of communication between the application
and the collector �i.e., observation or noti�cation.

2.2 Mobile-chat application scenario

We illustrate the dynamicity of an application context-awareness with a mobile-
chat application. This scenario brings into play distributed context sources. It
shows how the application behaviour is adapted according to context changes
and highlights the necessity of context-awareness modi�cation at runtime.

4 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

Eric is a student in physics travelling from Paris to Geneva by train. He
has arrived in Paris train station and must wait a couple of minutes before
going on board. He decides to discuss with a friend of him named Susan. He
launches the mobile-chat application. The basic version of this application is
already downloaded in his mobile. This version may be extended at runtime by
several plugins if necessary. Eric uses the WiFi connection o�ered in the train
station. The �outdoor mode� allows Eric and Susan to use the voice option. On
Susan demand, her location is shown on Eric's mobile as well as her distance
from Eric. For this demand, the plugin �monitoring a peer location� is added at
runtime by the mobile chat application already running on Eric's mobile. New
observables (e.g., Eric location, Susan location, and Eric and Susan distance)
are added as well for this new plugin.

Thanks to the good network connection between Eric and Susan, they can
add the video option to the mobile-chat application. After a few minutes, another
friend, named Rob, joins the conversation. Rob is also in an �outdoor mode� and
has a good network link quality.

Eric knows that if the battery level goes down, the video option will be disabled
for everyone, so he plugs in his mobile. Then, he wants to share an mp3 �le with
his two friends. During the �le transfer, the link quality of the connection of
Susan goes down. The �le is then put into the pipe queue and will be transferred
later. The video option is switched o� for Susan but kept �on� between Eric and
Rob.

Now, it's time for Eric to go on board. As soon as he enters the train, both
his cell phone and his laptop switch to the �indoor mode� in order not to disturb
the other passengers with a voice communication. Eric sits down and plugs in
his laptop. The conversation with his friend was not over. However, the �indoor
mode� forced the application to move from a voice-based communication to a text-
based communication. In addition, the WiFi connection is automatically replaced
by a 3G connection. In this situation �i.e., Eric using a 3G connection�, the
video option cannot be used between Eric and his peers.

This scenario justi�es the context-awareness of the mobile-chat application
in order to cope with di�erent user pro�les and preferences, di�erent terminal
capabilities, and di�erent elements of the environment in a distributed setting.
The context-awareness designer may de�ne the environment which should be
taken into account before and during the execution of the mobile-chat applica-
tion. Context-awareness on Eric's mobile depends not only on Eric's context, but
also on Susan's and Rob's ones (e.g., the kind of the connection on both sides
may be used to evaluate the quality of the link between Eric and his peers).
Furthermore, the context-awareness model has to be updated at runtime. In-
deed, new entities and new observables have to be added as new friends are
integrated into the chat. The context-awareness model may change as well when
new plugins are added to the basic version of the mobile-chat. For example, the
geolocation plugin needs the monitoring of other elements such as the location
of a peer and the distance between two peers.

CA3M 5

2.3 Objectives

The previous scenario illustrates three main objectives handled in the design of
CA3M.

Firstly, the scenario puts the stress on distributed monitoring. For instance,
the basic ubiquitous mobile-chat application instantiated on Eric'c mobile ter-
minal needs to monitor both Eric's and Susan's contexts. The decision concern-
ing the video option depends on distributed context data. Therefore, context-
awareness designers should be able to model distributed observations.

Secondly, a context-awareness model can specify the initial kind of observ-
ables to monitor (e.g., link quality). However, at design time, the models can
indicate neither on which computer they should be observed nor how many in-
stances should be taken into account (e.g., the number of persons involved in
the chat is unknown). New plugins may also modify the monitoring require-
ments and lead to model updates. More generally, the adaptation may need
runtime recon�gurations because of new execution conditions (which include
the availability of new context sources). Subsequently, it is necessary to enable
the context-awareness model to evolve during runtime.

Thirdly, for a given observable, several context sources may be utilised. The
sources come from several providers, and may have di�erent application pro-
gramming interfaces (API). For instance, the user location may be measured
by the GPS (Global Positioning System) of the user's mobile device or may be
obtained by the nearest GPS found. It should not be the role of the context-
awareness designer to choose the concrete collector to be used. The concrete
collector is unknown at design time and is chosen afterwards and even at run-
time. The middleware should be able to provide a meaningfull observation to
the application for several collectors with di�erent APIs.

3 CA3M overview

CA3M is a framework for both the design and the execution of context-aware
applications. We brie�y describe these two parts in Sections 3.1 and 3.2.

3.1 Design overview

Figure 1 depicts the CA3M context-awareness design process with, from left to
right, the stakeholders, the activities, and the resulting artefacts.

The �gure distinguishes roughly two kinds of activities: (1) context speci�ca-
tion and design and (2) application design. The context speci�cation and design
comprises the design of collectors and the speci�cation of contexts. It produces
two kinds of artefacts: implementations and models. The presentation of this
modelling task is out of the scope of the paper and can be found in [26]. Of
course, the APIs of the collectors vary and this task should bene�t from stan-
dardisation actions. Examples of proposed standards for modelling collectors are
SensorML [19] for sensors and CIM [12] for operating system resources.

6 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

In this paper, we focus on the lower part of Figure 1, that is on application
design. We divide this activity into two large-grain tasks to promote a new stake-
holder: the context-awareness designer. The application designer produces the
application model and classes. The context-awareness designer produces context-
awareness models as explained in Section 4. In summary, we apply the principle
of separation of concerns twice: 1) separation of context data providers from
context data users (context designers and context-awareness designers), and 2)

separation of application concerns from context-awareness concerns when de-
signing and executing the application. In addition, context-awareness models
are built at design time in order to be manipulated at runtime.

Collectors

models

*

*

A
p

p
li
c
a
ti

o
n

 d
e
s
ig

n

Collector Provider

Context−awareness
designer applied to

select

implemented by

Observable

Context−
awareness
models

Application
models and
classes

 Collector Designer Role

Context−Awareness Designer Role

(CA3M)

Application Designer Role

Context−specifier Role

− defines and implement collectors

− defines catalog of generic observables

− describes observables semantics

− defines observable entities

− for each entity, selects observables

− defines context−awareness contract/observable

− models and implements application

Context specifier

− describes collector semantics

C
o

n
te

x
t

s
p

e
c
if

ic
a
ti

o
n

a
n

d
 d

e
s
ig

n

Application designer

Fig. 1. Separation of design tasks for producing context-aware applications

Context-awareness models have to conform to a speci�c meta-model pre-
sented in Section 4.1. This meta-model introduces meta-classes such as enti-
ties, observables, collectors, and context-awareness contracts. An instance of the
context-awareness model is created at runtime which may be updated at runtime
for example as new plugins are added to the mobile-chat application.

3.2 Runtime overview

Figure 2 shows the runtime architecture of CA3M. The architecture is divided
into the context-aware application, CA3M, the distributed collectors, and the
distributed context sources. A context-aware application accesses context man-
agement mechanisms through CA3M. CA3M drives the monitoring of the envi-
ronment according to the context-awareness model. The distributed collectors
provide context management and context interpretation. They collect data from

CA3M 7

distributed context sources, and they interpret and compute new high-level ob-
servations. The observations may be obtained from entities at di�erent levels
of the architecture: the system level, the network level, the environment level,
but also the software level including observations of the context-aware applica-
tion itself. CA3M corresponds to knowledge manager (the �K�) of the K-MAPE
autonomic computing loop presented in [14]. CA3M model manager is in the
knowledge part of the loop, the collector is in the monitoring and analysing part
of the loop, the CAController is in the planning part, and the application is of
course the execution part.

Collector Bridges

Context−aware Application

notification

observation

observation

notification

obs. /
notif.

CACONTROLLER
bridge creation
callback

updating
browsing,

Context Awareness Model

CA3M Meta−Model

conforms to

Model Manager

model
updating

CA3M

Distributed Collectors (context management)
several technologies and providers

Distributed Context Sources (including Sensors)

Fig. 2. Runtime architecture of CA3M

In this architecture, at any level, the interactions may be either top-down, or
bottom-up. The top-down interactions correspond to the observation mode: the
upper level synchronously requesting an observation. In the observation mode,
since the upper level initiates the exchange, it controls the interruption of the
application service. The drawback of this mode is that the upper level must know
when an interaction is relevant w.r.t. its current context execution, that is when
there is a signi�cant probability of a meaningful context change happening.

The bottom-up interaction is called the noti�cation mode. In this latter case,
the contract de�nes when the lower level noti�es the upper level: periodically or
when the observation goes past a given threshold from the last noti�ed value, or
even at any change of the observation value. For instance, a noti�cation may be
sent to the application if the battery state changes (e.g., from �NormalBattery� to
�AlmostLowBattery�). In the noti�cation mode, the application is less impacted
by the monitoring of its environment than in the observation mode, provided
that the application is able to express its contract. The context-awareness con-
tract includes application operations to be called on noti�cation. In conclusion,
following [2], we decide to provide the two modes of interaction.

The collector bridge is de�ned following the bridge pattern [13]. The objec-
tive of a bridge is to decouple an abstraction from its implementation so that

8 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

the two can vary independently. We use the bridge pattern for several reasons.
Firstly, there may be plenty of collector implementations for a given observable.
Secondly, collector may have slightly di�erent APIs and we do need to decou-
ple the application code from the collector implementation interfaces. Finally,
we want runtime binding to the collector implementations and we wish to hide
some tricky parts of the collector interfaces to the application programmer. The
interfaces of the collector bridge abstraction is presented in Section 5.1.

CA3M comprises the CAController and the Model Manager. The CACon-
troller is in charge of binding to concrete collectors, creating collector bridges,
and notifying the application when necessary as de�ned by the contracts. The
model manager loads the application context-awareness model. The model man-
ager handles query requests about the structure of the model as well as update
requests to deal with runtime modi�cations of the model.

There are two kinds of interactions between the CAController and the Model
Manager. Firstly, the CAController may use query operations for browsing the
model. This kind of interaction is necessary after the initial loading of the model
to create a bridge for each observable foreseen at the design phase. Secondly,
in the case of model change, such as the addition or removal of an observable,
the model manager triggers callbacks to the CAController in order to create or
remove a collector bridge.

4 Context-awareness modelling

We present in this section a generic and extensible way to model the context-
awareness of any application using the MDE approach. We describe the context
awareness meta-model in Section 4.1. We illustrate our solution by modelling
the context-awareness of the mobile-chat application in Section 4.2.

As shown in Figure 1, the context-awareness meta-model depends on the
observable meta-model. This enables us (i) to share observable models between
several context-aware applications and (ii) to exploit several observable models
coming from di�erent providers. The observable meta-model de�nes the observ-
able and the interpreted observable concepts allowing them to be independent
from applications. Thus, each observable model is then a catalog of pre-de�ned
observables at the disposal of context-awareness designers. A context-awareness
designer selects observables from one or several observable models which are rele-
vant for an application and links the observables to entities. The concepts manip-
ulated by the context-awareness designers are de�ned in the context-awareness
meta-model which is detailed in the rest of this section.

4.1 CA3M context-awareness meta-model

Figure 3 describes the CA3M context-awareness meta-model. The Con-

textAwareSystem meta-class is the entry point of this meta-model. The left part
of the meta-model de�nes the entities, their observables, the links between en-
tities, the interpreted observables and the adaptation situations. The right part

CA3M 9

AdaptationSituation

Contracts between

observation system

the CASystem and the

name: String

Entity

entities

observables
Observable

observable

InterpretedObservable

ContextAwareSystem

EntityRelation

upperCardinality: Integer

lowerCardinality: Integer

name: String

name: String

contracts

ContextAwareness

Contract

name: String

ObservationContract NotificationContract

requiredQoC: QoC

collector: Collector
derivedFrom

0..*

0..*

0..*
entityRelations

linkedEntities
0..*

0..*

0..*1..1
1..*

callbackClass: String

triggerCond: TriggerCond

Fig. 3. The context-awareness meta-model

of the meta-model de�nes the context-awareness contracts. A context-awareness
contract may be specialised for di�erent context-awareness control mechanisms.
A context-awareness contract is associated to an observable. For a noti�cation
contract, a context-awareness contract de�nes the events which trigger noti�ca-
tions and the class in the application model to be called in case of noti�cation.

Entity represents a logical or physical element to be observed, e.g. a device.
It allows a context-aware system to di�erentiate several distributed observables
from di�erent physical or virtual entities, e.g. the bit rate of two devices. An
entity may be linked to another entity through the EntityRelation meta-class.
An entity is linked to several Observable. An InterpretedObservable is linked to
several source observables through the derivedFrom association, e.g. the battery
state is derived from the battery level and the battery plugged observables.
The type of the observables necessary to compute an interpreted observable is
provided by the observable meta-model, not described in this paper (see [26]).
When an interpreted observable is added to the model, the type of the source
observables (de�ned by the derivedFrom association) are veri�ed with the source
types de�ned in the observable model. As type of the sources are de�ned in the
observable model, source observables may be omitted from the context-awareness
model. For example, the battery state, the battery level and the battery plugged
observables are at evidence linked to the same entity (the user device). The
battery level and the battery plugged observables are shown in dotted line in
Figure 4 to show that they may be omitted from the context-awareness model.
An AdaptationSituation is a kind of observable which has the characteristic to
take a �nite number of domain values and which is used to identify adaptation
situations.

10 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

4.2 Mobile-chat context-awareness model

Possible Values

Possible Values

Possible Values

Possible Values

− OutdoorMode

− IndoorMode

− 3G
− WiFi

− VideoQuality

− AudioQuality

− TextQuality

− LowBattery

− AlmostLowBattery

− NormalBattery

<
<

E
n

ti
ty

R
e

la
ti
o

n
>

>
<

<
E

n
ti
ty

R
e

la
ti
o

n
>

>

CAMobileChat

Application

UserDevice

PeerDevice

Environment

CA System Entities Observables Contracts

BitRate

NetworkType

BitRate

NetworkType

BatteryPlugged

BatteryLevel

InOutMode

Observable>>

LinkQuality

<<Interpreted

Observable>>

<<Interpreted

LinkQuality

Situation>>

<<Adaptation

BatteryState

LinkQuality

Peer

Situation>>

<<Adaptation

LinkQuality

Contract

Contract

NetworkType

Contract

BatteryState

InOutMode

Contract

0..*

0..*0..*

Fig. 4. The context-awareness model for the mobile-chat application

Figure 4 models the context-awareness of the basic mobile-chat application
executing on Eric's mobile. This model conforms to the context-awareness meta-
model presented in Figure 3. UserDevice, Environment and PeerDevice are the
entities.

On each device, the observables BitRate and NetworkType are inputs to
compute the interpreted observable LinkQuality. The context-awareness designer
models the adaptation situation PeerLinkQuality computed from the interpreted
observables (i) link quality of UserDevice and (ii) link quality of PeerDevice. For
example, the adaptation situation value VideoQuality means that the video
option is authorised in accordance with the link quality between the two par-
ties. Several adaptation situations PeerLinkquality are instantiated during the
execution (e.g., one for Eric-Susan's link).

The possible values of the interpreted observable BatteryState (com-
puted from its source values) can be NormalBattery, AlmostLowBattery

and LowBattery (NormalBattery = BatteryP lugged ∨BatteryLevel > 20% ;

CA3M 11

AlmostLowBattery = ¬BatteryP lugged ∧BatteryLevel < 20% ∧BatteryLevel > 10%

; LowBattery = ¬BatteryP lugged ∧BatteryLevel < 10%). The observable InOut-

Mode is associated to the entity Environment. According to Eric's scenario, it
takes two possible values: IndoorMode and OutdoorMode.

Several context-awareness contracts are represented in this �gure. LinkQual-
ityContract, BatteryStateAdaptContract, NetworkTypeContract and InOutMode-

Contract are noti�cation contracts. The class of the application model refered by
each contract has to implement a noti�cation interface for the callbacks.

Location

Application

CAMobileChat

CA System Entities Observables Contracts

Environment

UserDevice

PeerDevice

0..*

Environment

Peer Peer

Mobile−Chat

Observables

Basic

Location

Distance

Contracts

Mobile−Chat

Basic

PeerDistance

Contract

Fig. 5. Model extensions for the plugin location

Figure 5 shows the elements added to the model when the monitoring a peer
location plugin is added to the application. Note that the initial model instance
has already changed during the execution when Rob is added to the discussion.
Here, another PeerDevice entity is instantiated and the link Eric-Rob is created
on the �y.

5 CA3M prototype implementation

In this section, we present the CA3M implementation. We describe the CA3M
class diagram in Section 5.1. Then, we explain modelling implementation choices
in Section 5.2. As COSMOS is the context manager chosen for our evaluation,
we describe COSMOS collector bridge in Section 5.3.

5.1 CA3M class diagram

Figure 6 depicts the CA3M UML class diagram representing the interfaces be-
tween a context-aware application and CA3M. We explain how to use CA3M in
noti�cation and in observation modes, and how to modify the application model
to add or remove entities and observables.

12 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

To find, add, and

remove entities,

observables, and contracts

mode

For the observation

To be implemented by

the context aware system

for the notification mode

+ removeCAContract()

+ getCollector(): ICollector

+ getEntity(): Entity

+ addObservable()

+ removeObservable()

+ addEntity()

+ removeEntity()

+ attachEntityToEntityRelation()

+ addCAContract()

+ modifyCAContract()

<< Interface >>

ICAModelUpdate

ModelManager CAControllerDynamicModel

CAController

CAControllerStaticModel

CosmosBridgeCollector

ICollector

<< Interface >>

+ notify(Object)

ICollectorNotification

<< Interface >>

+ collect(): Object
*

Fig. 6. CA3M related application interfaces

The CAController may use either a static model (class CAControllerStatic-

Model) or a dynamic model (class CAControllerDynamicModel). In this article,
so far, we focused on the dynamic model which allows CA3M to modify the
model at runtime through the interface ICAModelUpdate. But if the mobile de-
vice, because of memory or library constraints, cannot a�ord the dynamic one,
the static one may be used instead. In this latter case, CAControllerStaticModel

is produced statically by transformation for a given model and the model cannot
be updated at runtime.

In the mobile-chat scenario, we present the dynamic case. Each time a new
peer user connects to the chat, a new PeerDevice entity and its associated observ-
ables are added to the model. Next, CA3M automatically creates a new bridge
for each new observable, each bridge providing the interface ICollector for the ob-
servation mode. For the noti�cation mode, the class de�ned in the noti�cation
contract should provide the interface ICollectorNoti�cation.

5.2 Modelling implementation choices

The most popular meta-modelling languages for de�ning DSMs are MOF (Meta-
Object-Facility) [16], ECORE from Eclipse Modelling Framework (EMF) [6] and
UML Pro�le [17]. Designing the context-awareness model as a UML pro�le was
not possible because with UML pro�les we could not de�ne associations between
pro�le meta-classes. Between MOF and EMF, we have chosen EMF because of
the availability of many EMF tools.

For the static CAController, we use ECORE models for transformation pur-
pose to generate CAControllerStaticModel classes. When possible, the dynamic

CA3M 13

CAController is used instead. At runtime, the model manager loads an applica-
tion context-awareness model, accessed and updated through the EMF generated
API. Through this API, new entities, observables, and contracts may be added
to the model at runtime. Thanks to an EMF adapter, insertions of observables
trigger the creation of bridge collectors.

5.3 CA3M bridge illustrated with COSMOS collector bridge

CA3M architecture allows the CAController to be interfaced with several con-
text management frameworks. The constraints on the collector framework are
the following ones. The collector framework should provide noti�cation and ob-
servation modes and be able to compute high-level observations from distributed
observations. At least one collector bridge has to be implemented per collector
framework to wrap collector API with CA3M API. The bridge class has to be
designed to enable the bridge to work with any observation class. Several bridges
may be implemented according to the kind of binding from the bridge to the
collector. We design two bindings: one for the connection to an external collector
and the other one for an instantiation of the collector into CA3M.

For our evaluation, we have interfaced CA3M with the COSMOS frame-
work [9]. COSMOS o�ers tools to collect, interpret and process context data. We
have chosen COSMOS because it provides developers with the ability to de�ne
new �nely tuned interpreted observables. The basic structuring concept of COS-
MOS is the context node. The architecture of a context node is component-based.
For instance, the component (or context node) BatteryState is the composition
of the context nodes BatteryPlugged and BatteryLevel with a context operator
realising the logical and comparison operations mentioned previously. Obser-
vation and noti�cation modes are provided through Pull and Push interfaces,
respectively.

[Pull]
[ICollectorListenerRegister]

[push]

[IC
o

lle
c
to

rN
o

tific
a
tio

n
]

[IC
o

lle
c
to

r]

Cosmos Node

$cosmosNodeName$observationType

ObservationAdapter

$observationType

NotificationAdapter

MessageManager

(shared with
cosmos node)

[MessageManagerType]

[IC
o

lle
c
to

rL
is

te
n

e
rR

e
g

is
te

r]

CosmosBridgeComponent

arguments = $cosmosNodeName, $observationType

Fig. 7. The COSMOS Bridge component

Figure 7 presents the COSMOS bridge component. The bridge hides COS-
MOS speci�c interfaces and COSMOS internals using the Fractal component

14 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

model [5] and Dream [15] message management for context reporting. It includes
adapters to transform COSMOS speci�c message chunks to application observa-
tion types. The bridge provides CA3M interfaces for collecting observations and
registering noti�cation handlers. It forwards noti�cations to all the registered
ICollectorNoti�cation interfaces.

6 Experimental evaluation

6.1 Performance evaluation of the prototype

We present the overhead incurred by using CA3M compared to a direct us-
age of COSMOS collectors by the application. We have conducted performance
measurements on a laptop PC with the following software and hardware con�g-
uration: 2.8GHz processor, 512MB of RAM, GNU/Linux Fedora 9, Java Virtual
Machine Sun JDK 1.6, COSMOS 0.1.5, Fractal implementation Julia 2.5.2.
Each test was run 1000 times. A garbage collection and a warm-up phase oc-
curred before each measure.

The Table 1 presents the average measures with a 95% con�dence interval.
The table includes the following overhead measurements. The two �rst lines
presents the time necessary for the initial model loading. Model loading concerns
reading the EMF model �le and reifying the concepts in EMF objects. The third
line gives the overhead time for the collector instantiation, the overhead comes
from the bridge instantiation. The fourth line presents the overhead time for
an observation. The overhead comes from the transformation of an observation
from a Cosmos Chunk to an application Java object. Lines �ve and six give
the overhead concerning the memory usage after all bridge instantiations (the
memory usage is given by the di�erence between totalMemory et freeMemory in
the JVM). The CA3M overhead follows from model management (emf library),
and bridge management (especially the re�exivity necessary to interconnect a
COSMOS bridge to any kind of context node).

1-|model load (1 entity, 1 observable, 1 contract) 723ms± 4
2-|model load (100 entities, 100 observables, 100 contracts) 785ms± 5

3-| instantiation overhead (1 node) 141ms± 8

4-| observation overhead 0.439ms± 0, 003

5-|memory overhead (1 entity, 1 observable, 1 contract) 0, 56MB ± 0, 05
6-|memory overhead (100 entities, 100 observables, 100 contracts) 1, 26MB ± 0, 07

Table 1. CA3M overhead measurements

6.2 CA3M experimentation

We evaluate the context-awareness meta-model with the mobile-chat applica-
tion and also with a mobile commerce application. For these applications, we

CA3M 15

are able to share common ubiquitous observables (e.g., BatteryState) de�ned
in an ubiquitous observable model. In a second step, we de�ne each application
context-awareness models. In the two applications, we are able to recon�gure ap-
plication context-awareness both statically and at runtime. The complete chain
from context-awareness modelling to context collector bridge creation, observa-
tion and noti�cation is tested. We validate the whole process with the COSMOS
context manager. Through these experimentations, the following criteria are val-
idated. The observable model is reusable through di�erent applications. CA3M
enable designers to de�ne interpreted observables computed from distributed
source observables. A context-awareness model may be modi�ed at runtime.
And a collector bridge may be instantiated at runtime enabling runtime collec-
tor binding.

7 Related Work

Since CA3M links context-management frameworks, context-awareness models
and context-aware middleware, the related work section deals with these three
kinds of research works. Many context management framework [10, 11] have
been designed without context modelling. Due to the variety of contexts to be
collected and analysed, we argue that context management needs the support of
abstract context modelling.

Several research works address context-awareness with the MDE approach.
ContextUML [24] was one of the �rst DSM for context-awareness. It presents a
context-awareness meta-model for Web services. ContextUML models associate
context constraints with �ltering operations which should be applied to input
or output messages of a Web service. CAPPUCINE [20] describes an MDE ap-
proach for dynamically producing product lines according to context informa-
tion. Those models put the stress on adaptation mechanisms rather than context
modelling. Those models are used for transformation purpose. CA3M, presented
in this paper, also de�nes a DSM for adding a context-awareness concern in the
application modelling stage. CA3M presents two main di�erences with the above
research works. Firstly, CA3M modelling concepts enable application designers
to express complex situations computed from distributed context observations.
Secondly, the context-awareness model is not only used for transformation pur-
pose, but is also available at runtime. Therefore, the application or the middle-
ware are able to add new observables at runtime. In addition, Reichle & al. [22]
proposes ontology-based context model and model framework, and the ontology
model is present at runtime. Context model interactions are performed using
CQL (Context Query Language). Some concepts present in this model such as
entity and observables are similar to the CA3M concepts. Other ones such as
context-awareness contracts do not exist and the framework does not propose
the noti�cation mode. Finally, [8, 18] consider context-awareness with model at
runtime for application adaptation purpose but not for monitoring adaptation.

Several middleware solutions have been proposed for managing context-
awareness. CARISMA [7] proposes to de�ne context-aware pro�les for tuning the

16 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

behaviour of middleware services according to context information. These pro-
�les are available at runtime. Applications may modify these pro�les through a
re�exive API. Pro�les for context management are not addressed by CARISMA.
CA3M o�ers also a re�exive API, not only to modify application behaviours, but
also to add new observables which will be collected by new context collectors.
Context-Toolkit [11] allows application developers to attach application han-
dlers to context widgets. Context Toolkit triggers call-back to these handlers
when context values change. The links between the handlers and the collectors
are programmed rather than modelled in noti�cation contracts as this is the case
in CA3M. RCSM [27] o�ers CA-IDL, a language to de�ne context situations and
to specify the operations to trigger in these situations. Adaptation situations are
evaluated by RCSM which triggers reactive operations at runtime. RCSM lim-
itations come from the limited number of context information available in the
CA-IDL grammar. The triggering of operations and the context monitoring are
de�ned statically at compilation time.

Another issue of this article is to be able to be connected to several context
management frameworks with di�erent APIs. This may be handled statically by
model transformation such as proposed in several context-awareness MDE works
such as [1]. But this approach does not enable the middleware to choose the col-
lectors at runtime. In MUSIC [21], the context-management framework includes
an observation and a noti�cation mode and the framework may be compared
to the CA3M CAController. As in CA3M, they consider the dynamically inser-
tion and removal of so called context plugins in the middleware. When a new
collector is connected by the framework, the collector framework provides an
archive which includes a wrapper between the collector and the framework. As
a consequence, one wrapper has to be provided for each collector. In CA3M, we
provide instead a bridge for all the collectors of the same family (e.g., one bridge
for all the COSMOS collectors). Thanks to bridges, CA3M may be connected to
various kinds of context management frameworks more easily.

8 Conclusion and perspectives

In this article, we have presented the CA3M middleware. Our contribu-
tions are the following ones. CA3M provides tools to easily recon�gure the
context-awareness of ubiquitous applications. Firstly, we have de�ned a context-
awareness meta-model which de�nes concepts chosen for a new stakeholder that
we call the context-awareness designer. This meta-model de�nes entities, observ-
ables, and context-awareness contracts. It allows designers to model distributed
observables. We validate this meta-model through the de�nition of models for
several ubiquitous applications. Secondly, we provide a middleware which, based
upon an ubiquitous application context-awareness model, is able to connect to
di�erent context-manager collectors. CA3M o�ers two kinds of interactions be-
tween context managers and applications: the observation mode and the noti�-
cation mode. We consider the design of bridges for binding to various context
managers and we have validated and evaluated the approach building the bridge

CA3M 17

component for the COSMOS context manager. In summary, the main contri-
bution of our proposition is to enable to update application context-awareness
models at runtime. The advantage is to allow autonomous context-awareness.

This work may be extended in several directions. The MDE approach may be
used not only to connect applications to collectors but also to produce high-level
collectors from existing lower-level collectors. In addition, we have developped a
bridge for the COSMOS context manager and we plan to validate our approach
with additional context managers. We also believe that the model at runtime
approach can bene�t to a better choosing of collectors at runtime using a collec-
tor discovery service. Last but not least, we plan to extend CA3M to deal with
adaptation mechanisms for changing the behaviour or the structure of applica-
tions. We intend to add various context-awareness adaptation contracts in the
model and adaptation mechanisms in the middleware.

References

1. D. Ayed, D. Delanote, and Y. Berbers. Computer Science, volume 4635/2007 of
LNCS, chapter MDD Approach for the Development of Context-Aware Applica-
tions, pages 15�28. Springer, Berlin / Heidelberg, 2007.

2. M. Baldauf, S. Dustdar, and F. Rosenberg. A Survey on Context Aware Systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263�277, 2007.

3. N. Bencomo, G. Blair, R. France, F. Munoz, and C. Jeanneret, editors. 3rd Work-
shop on Models @ runtime, Toulouse, France, September 2008.

4. N. Bencomo, P. Sawyer, G. Blair, and P. Grace. Dynamically Adaptive Systems
are Product Lines too: Using Model-Driven Techniques to Capture Dynamic Vari-
ability of Adaptive Systems. In 2nd International Workshop on Dynamic Software
Product Lines (DSPL 2008), Limerick, Ireland� September 2008.

5. E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani. The Fractal
Component Model and Its Support in Java. Software�Practice and Experience,
36(11):1257�1284, Sept. 2006.

6. F. Budinsky, E. Merks, and D. Steinberg. Eclipse Modeling Framework 2.0. Addi-
son Wesley, March 2008.

7. L. Capra, G. Blair, C. Mascolo, W. Emmerich, and P. Grace. Exploiting Re�ec-
tion in Mobile Computing Middleware. Mobile Computing and Communications
Review, 1(2), 2003.

8. C. Cetina, P. Giner, J. Fons, and V. Pelechano. A Model-Driven Approach for
Developing Self-Adaptive Pervasive Systems. In Models@runtime'08, pages 97�
106, Toulouse, France, September 2008.

9. D. Conan, R. Rouvoy, and L. Seinturier. Scalable Processing of Context Informa-
tion with COSMOS. In Springer-Verlag, editor, DAIS'2007, volume 4531 of LNCS,
pages 210�224, Paphos, Cyprus, june 2007.

10. J. Coutaz, J. Crowley, S. Dobson, and D. Garlan. Context is Key. CACM, 48(3):49�
53, Mar. 2005.

11. A. Dey, D. Salber, and G. Abowd. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Special issue
on context-aware computing in the Human-Computer Interaction Journal, 16(2�
4):97�166, 2001.

18 Chantal Taconet, Zakia Kazi-Aoul, Mehdi Zaier, and Denis Conan

12. Distributed Management Task Force. Common information model (cim): Infras-
tructure speci�cation, version 2.3 �nal. OpenGIS Implementation Speci�cation,
Oct. 2005.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstraction
and Reuse of Object-Oriented Design. Addison-Wesley Professional Computing
Series. Addison Wesley Professional, October 1993.

14. J. Kephart and D. Chess. The Vision of Autonomic Computing. IEEE Computer,
36(1), Jan. 2003.

15. M. Leclercq, V. Quema, and J.-B. Stefani. DREAM: a Component Framework
for the Construction of Resource-Aware, Con�gurable MOMs. IEEE Distributed
Systems Online, 6(9), Sept. 2005.

16. Object Management Group. Meta Object Facility (MOF) Core Speci�cation Ver-
sion 2.0. OMG document formal/06-01-01, January 2006.

17. Object Management Group. UML 2.0 Superstructure Speci�cation v2.1.1. OMG
documents formal/2007-02-05, February 2007.

18. A. Occello, A. Dery-Pinna, and M. Riveill. A Runtime Model for Monitoring Soft-
ware Adaptation Safety and its Concretisation as a Service. InModels@runtime'08,
pages 67�76, Toulouse, France, September 2008.

19. Open Geospatial Consortium. Opengis sensor model language (sensorml): Im-
plementation speci�cation, version 1.0.0. OpenGIS Implementation Speci�cation,
July 2007.

20. C. Parra, X. Blanc, and L. Duchien. Context Awareness for Dynamic Service-
Oriented Product Lines. In 13th International Software Product Line Conference
(SPLC), San Francisco, CA, USA, August 2009.

21. N. Paspallis, R. Rouvoy, P. Barone, G. Papadopoulos, F. Eliassen, and A. Mamelli.
A Pluggable and Recon�gurable Architecture for a Context-aware Enabling Mid-
dleware System. In Proc. 10th, volume 5331, pages 553�570, Monterrey, Mexico,
Nov. 2008.

22. R. Reichle, M. Wagner, M. Khan, K. Geihs, J. Lorenzo, M. Valla, C. Fra, N. Pas-
pallis, and G. Papadopoulos. A Comprehensive Context Modeling Framework for
Pervasive Computing Systems. volume 5053 of Lecture Notes in Computer Science,
pages 281�295, Oslo, Norway, june 2008.

23. B. Schilit and M. Theimer. Disseminating Active Map Information to Mobile
Hosts. IEEE Network, 8(5):22�32, 1994.

24. Q. Sheng and B. Benatallah. ContextUML: A UML-Based Modeling Language for
Model-Driven Development of Context-Aware Web Services. In ICMB, Sydney,
Australia., pages 206�212, July 11-13 2005.

25. T. Strang and C. Linnho�-Popien. A context modeling survey. In UbiComp Work-
shop on Advanced Context Modelling, Reasoning and Management, pages 34�41,
Nottingham/England., September 2004.

26. C. Taconet and Z. Kazi-Azoul. Context-Awareness and Model Driven Engineering:
Illustration by an e-commerce application scenario. In CMMSE Workshop on Con-
text Modeling and Management for Smart Environments, pages 864�869, London,
UK, November 2008.

27. S. S. Yau and F. Karim. An Adaptive Middleware for Context-Sensitive Com-
munications for Real-Time Applications in Ubiquitous Computing Environments.
Real-Time Systems, pages 29�61, 2004.

