Chantal Taconet 
email: chantal.taconet@it-sudparis.eu
  
Zakia Imane Kazi-Aoul 
email: zakia.kazi-aoul@it-sudparis.eu
  
Mehdi Zaier 
email: mehdi.zaier@it-sudparis.eu
  
Denis 
  
Denis Conan 
email: denis.conan@it-sudparis.eu
  
CA3M: A runtime model and a middleware for dynamic context management

Keywords: ubiquity, context-awareness, meta-modelling, model at runtime

HAL is

Introduction

Nowadays, the use of mobile devices (e.g., smart phones, PDA) is getting more and more popular. Mobile devices are not only used as simple phones as the range of distributed applications developed for mobile devices increases drastically. These trends indicate that more and more users depend on ubiquitous applications for their daily life.

Ubiquitous applications must gain in capabilities to adapt themselves and also to manage their autonomy. The term context-aware application appeared in 1994 [START_REF] Schilit | Disseminating Active Map Information to Mobile Hosts[END_REF]. Since then, many models that describe applications contexts have been proposed, many context-aware middlewares and services have been designed, and many context-aware applications have been implemented. However, about 15 years later, some improvements in software engineering are still necessary to enable ubiquitous context-aware applications to be easy to design, to implement and to recongure.

Context-aware applications need both 1) to collect high-level observations meaningfull to them and 2) to identify situations under which they need adaptations. High-level observations may be computed from dierent distributed sources such as operating systems, user proles and environment sensors. Context managers are services in charge to compute those high-level observations [START_REF] Baldauf | A Survey on Context Aware Systems[END_REF][START_REF] Coutaz | Context is Key[END_REF][START_REF] Dey | A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications[END_REF][START_REF] Paspallis | A Pluggable and Recongurable Architecture for a Context-aware Enabling Middleware System[END_REF]. In this paper, we want to enable applications to dynamically make use of new context managers coming from dierent frameworks in open environments. The design of context-aware applications for ubiquitous environments has seen the advent of a new stakeholder in the application design process that we call the context-awareness designer in the sequel of the paper. Contextawareness designers need the support of model engineering to manage the wide diversity of context data in ubiquitous environments. Several context modelling approaches such as context proles and context ontologies have been surveyed in [START_REF] Strang | A context modeling survey[END_REF]. Specifying application context-awareness with Model Driven Engineering (MDE) enables designers to draw links between the context models and the application models. Context-Awareness Domain Specic Models (DSM) further the MDE approach and promote context-awareness models to express the dynamic variability due to context changes [START_REF] Bencomo | Dynamically Adaptive Systems are Product Lines too: Using Model-Driven Techniques to Capture Dynamic Variability of Adaptive Systems[END_REF][START_REF] Parra | Context Awareness for Dynamic Service-Oriented Product Lines[END_REF]. However, context-awareness models still lack the ability to dene the contracts which link context-aware applications to context managers. Thus, the approach promoted by the paper is to use MDE for guiding context-aware application designers in the specication of the monitoring of distributed context sources.

MDE is often used statically to automate code generation. Recent research works propose to reify models at runtime [START_REF] Bencomo | 3rd Workshop on Models @ runtime[END_REF]. This is the direction we follow in this paper in order to take into account new ubiquitous environments with new context sources requirements not foreseen during the development process. Models at runtime contribute to maintain consistency across design time decisions and runtime adaptations by enabling models to be updated at runtime. We propose CA3M, a Context-Aware Middleware based on a contextawareness Meta-Model for the following goals. Firstly, CA3M guides contextaware application designers in the specication of the monitoring of distributed context sources. Secondly, CA3M enables applications to adapt their behaviours by dynamically taking into account new context data sources not foreseen during the development process. In our approach, in addition to classical application models such as UML models, a context-awareness model is built by the context-awareness designer . This model may be updated during the application lifetime i.e., design, deployment, runtime. At runtime, the CA3M middleware dynamically constructs bridges between context-aware applications and context managers to reify the monitoring elements of the context-awareness model of the application.

The outline of the paper is as follows. In Section 2, we motivate and give the objectives of CA3M through an illustrative scenario. Then, we present an overview of CA3M in Section 3. In Section 4, we introduce the CA3M metamodel and show the corresponding context-awareness models for the motivating scenario. We detail the implementation and provide experimental evaluation considerations in Sections 5 and 6. Then, we compare our contribution with regard to related work on context-awareness modelling and context management middleware in Section 7. Finally, we conclude and present some perspectives of our work in Section 8.

Motivation and objectives

We begin this section by introducing the terminology used in the sequel of the paper. Then, we present an illustrative scenario in Section 2.2 and nally we bring out our objectives in Section 2.3.

Terminology

We present here terminology adopted for CA3M and especially in the CA3M meta-model. Some of the following concepts such as entity and situation were already present in Dey's context denition [?].We have chosen simple denitions easy to manipulate by a context-awareness designer.

An entity is an element representing a physical or logical phenomenon (person, concept, etc.) which can be treated as an independent unit or a member of a particular category, and to which observables may be associated. A mobile device is an entity. An observable is an abstraction which denes something to watch over (observe). The battery level of a mobile device is an observable. Some observables may be computed from other observables, they are called interpreted

observables. An observation represents the state of an observable at a given time.

It is obtained from a context-manager named collector in the sequel of the paper.

An adaptation situation is an observable which allows to track down a change of state in the space of the information of context. This change of state may require a reaction in the system. Such a reaction is called an adaptation. A mobile device battery state is an example of observable which may take a nite number of values (e.g., LowBattery, AlmostLowBattery or NormalBattery) and each state may lead to a dierent application behaviour. The link between an observable and an application is dened through a context-awareness contract. A contextawareness contract may dene for example the quality of context required by the application as well as the mode of communication between the application and the collector i.e., observation or notication.

Mobile-chat application scenario

We illustrate the dynamicity of an application context-awareness with a mobilechat application. Eric knows that if the battery level goes down, the video option will be disabled for everyone, so he plugs in his mobile. Then, he wants to share an mp3 le with his two friends. During the le transfer, the link quality of the connection of Susan goes down. The le is then put into the pipe queue and will be transferred later. The video option is switched o for Susan but kept on between Eric and Rob. Now, it's time for Eric to go on board. As soon as he enters the train, both his cell phone and his laptop switch to the indoor mode in order not to disturb the other passengers with a voice communication. Eric sits down and plugs in his laptop. The conversation with his friend was not over. However, the indoor mode forced the application to move from a voice-based communication to a textbased communication. In addition, the WiFi connection is automatically replaced by a 3G connection. In this situation i.e., Eric using a 3G connection, the video option cannot be used between Eric and his peers.

This scenario justies the context-awareness of the mobile-chat application in order to cope with dierent user proles and preferences, dierent terminal capabilities, and dierent elements of the environment in a distributed setting.

The context-awareness designer may dene the environment which should be taken into account before and during the execution of the mobile-chat application. Context-awareness on Eric's mobile depends not only on Eric's context, but also on Susan's and Rob's ones (e.g., the kind of the connection on both sides may be used to evaluate the quality of the link between Eric and his peers).

Furthermore, the context-awareness model has to be updated at runtime. Indeed, new entities and new observables have to be added as new friends are integrated into the chat. The context-awareness model may change as well when new plugins are added to the basic version of the mobile-chat. For example, the geolocation plugin needs the monitoring of other elements such as the location of a peer and the distance between two peers.

Objectives

The previous scenario illustrates three main objectives handled in the design of CA3M.

Firstly, the scenario puts the stress on distributed monitoring. For instance, the basic ubiquitous mobile-chat application instantiated on Eric'c mobile terminal needs to monitor both Eric's and Susan's contexts. The decision concerning the video option depends on distributed context data. Therefore, contextawareness designers should be able to model distributed observations.

Secondly, a context-awareness model can specify the initial kind of observables to monitor (e.g., link quality). However, at design time, the models can indicate neither on which computer they should be observed nor how many instances should be taken into account (e.g., the number of persons involved in the chat is unknown). New plugins may also modify the monitoring requirements and lead to model updates. More generally, the adaptation may need runtime recongurations because of new execution conditions (which include the availability of new context sources). Subsequently, it is necessary to enable the context-awareness model to evolve during runtime.

Thirdly, for a given observable, several context sources may be utilised. The sources come from several providers, and may have dierent application programming interfaces (API). For instance, the user location may be measured by the GPS (Global Positioning System) of the user's mobile device or may be obtained by the nearest GPS found. It should not be the role of the contextawareness designer to choose the concrete collector to be used. The concrete collector is unknown at design time and is chosen afterwards and even at runtime. The middleware should be able to provide a meaningfull observation to the application for several collectors with dierent APIs.

CA3M overview

CA3M is a framework for both the design and the execution of context-aware applications. We briey describe these two parts in Sections 3.1 and 3.2.

Design overview

Figure 1 depicts the CA3M context-awareness design process with, from left to right, the stakeholders, the activities, and the resulting artefacts.

The gure distinguishes roughly two kinds of activities: (1) context specication and design and (2) application design. The context specication and design comprises the design of collectors and the specication of contexts. It produces two kinds of artefacts: implementations and models. The presentation of this modelling task is out of the scope of the paper and can be found in [START_REF] Taconet | Context-Awareness and Model Driven Engineering: Illustration by an e-commerce application scenario[END_REF]. Of course, the APIs of the collectors vary and this task should benet from standardisation actions. Examples of proposed standards for modelling collectors are SensorML [START_REF]Opengis sensor model language (sensorml): Implementation specication, version 1.0.0. OpenGIS Implementation Specication[END_REF] for sensors and CIM [START_REF]Distributed Management Task Force. Common information model (cim): Infrastructure specication, version 2.3 nal. OpenGIS Implementation Specication[END_REF] for operating system resources.

In this paper, we focus on the lower part of Figure 1, that is on application design. We divide this activity into two large-grain tasks to promote a new stakeholder: the context-awareness designer. The application designer produces the application model and classes. The context-awareness designer produces contextawareness models as explained in Section 4. In summary, we apply the principle of separation of concerns twice: 1) separation of context data providers from context data users (context designers and context-awareness designers), and 2) separation of application concerns from context-awareness concerns when designing and executing the application. In addition, context-awareness models are built at design time in order to be manipulated at runtime. In this architecture, at any level, the interactions may be either top-down, or bottom-up. The top-down interactions correspond to the observation mode: the upper level synchronously requesting an observation. In the observation mode, since the upper level initiates the exchange, it controls the interruption of the application service. The drawback of this mode is that the upper level must know when an interaction is relevant w.r.t. its current context execution, that is when there is a signicant probability of a meaningful context change happening.

Context specification and design

Application designer

Runtime overview

The bottom-up interaction is called the notication mode. In this latter case, the contract denes when the lower level noties the upper level: periodically or when the observation goes past a given threshold from the last notied value, or even at any change of the observation value. For instance, a notication may be sent to the application if the battery state changes (e.g., from NormalBattery to AlmostLowBattery). In the notication mode, the application is less impacted by the monitoring of its environment than in the observation mode, provided that the application is able to express its contract. The context-awareness contract includes application operations to be called on notication. In conclusion, following [START_REF] Baldauf | A Survey on Context Aware Systems[END_REF], we decide to provide the two modes of interaction.

The collector bridge is dened following the bridge pattern [START_REF] Gamma | Design Patterns: Abstraction and Reuse of Object-Oriented Design[END_REF]. The objective of a bridge is to decouple an abstraction from its implementation so that the two can vary independently. We use the bridge pattern for several reasons.

Firstly, there may be plenty of collector implementations for a given observable.

Secondly, collector may have slightly dierent APIs and we do need to decouple the application code from the collector implementation interfaces. Finally, we want runtime binding to the collector implementations and we wish to hide some tricky parts of the collector interfaces to the application programmer. The interfaces of the collector bridge abstraction is presented in Section 5.1. 

CA3M comprises the

Context-awareness modelling

We present in this section a generic and extensible way to model the contextawareness of any application using the MDE approach. We describe the context awareness meta-model in Section 4.1. We illustrate our solution by modelling the context-awareness of the mobile-chat application in Section 4.2.

As shown in Figure 1, the context-awareness meta-model depends on the observable meta-model. This enables us (i ) to share observable models between several context-aware applications and (ii ) to exploit several observable models coming from dierent providers. The observable meta-model denes the observable and the interpreted observable concepts allowing them to be independent from applications. Thus, each observable model is then a catalog of pre-dened observables at the disposal of context-awareness designers. A context-awareness designer selects observables from one or several observable models which are relevant for an application and links the observables to entities. The concepts manipulated by the context-awareness designers are dened in the context-awareness meta-model which is detailed in the rest of this section. A context-awareness contract is associated to an observable. For a notication contract, a context-awareness contract denes the events which trigger notications and the class in the application model to be called in case of notication.

CA3M context-awareness meta-model

Entity represents a logical or physical element to be observed, e.g. a device.

It allows a context-aware system to dierentiate several distributed observables from dierent physical or virtual entities, e.g. the bit rate of two devices. An entity may be linked to another entity through the EntityRelation meta-class. An entity is linked to several Observable. An InterpretedObservable is linked to several source observables through the derivedFrom association, e.g. the battery state is derived from the battery level and the battery plugged observables.

The type of the observables necessary to compute an interpreted observable is provided by the observable meta-model, not described in this paper (see [START_REF] Taconet | Context-Awareness and Model Driven Engineering: Illustration by an e-commerce application scenario[END_REF]).

When an interpreted observable is added to the model, the type of the source observables (dened by the derivedFrom association) are veried with the source types dened in the observable model. As type of the sources are dened in the observable model, source observables may be omitted from the context-awareness model. For example, the battery state, the battery level and the battery plugged observables are at evidence linked to the same entity (the user device). The battery level and the battery plugged observables are shown in dotted line in Figure 4 to show that they may be omitted from the context-awareness model.

An AdaptationSituation is a kind of observable which has the characteristic to take a nite number of domain values and which is used to identify adaptation situations. On each device, the observables BitRate and NetworkType are inputs to compute the interpreted observable LinkQuality. The context-awareness designer models the adaptation situation PeerLinkQuality computed from the interpreted observables (i ) link quality of UserDevice and (ii ) link quality of PeerDevice. For example, the adaptation situation value VideoQuality means that the video option is authorised in accordance with the link quality between the two parties. Several adaptation situations PeerLinkquality are instantiated during the execution (e.g., one for Eric-Susan's link).

Mobile-chat context-awareness model

The possible values of the interpreted observable BatteryState (computed from its source values) can be NormalBattery, AlmostLowBattery Here, another PeerDevice entity is instantiated and the link Eric-Rob is created on the y.

CA3M prototype implementation

In this section, we present the CA3M implementation. We describe the CA3M class diagram in Section 5.1. Then, we explain modelling implementation choices in Section 5.2. As COSMOS is the context manager chosen for our evaluation, we describe COSMOS collector bridge in Section 5.3. 

CA3M class diagram

Modelling implementation choices

The most popular meta-modelling languages for dening DSMs are MOF (Meta-Object-Facility ) [START_REF]Meta Object Facility (MOF) Core Specication Version 2.0[END_REF], ECORE from Eclipse Modelling Framework (EMF) [START_REF] Budinsky | Eclipse Modeling Framework 2.0[END_REF] and UML Prole [START_REF]UML 2.0 Superstructure Specication v2.1.1[END_REF]. Designing the context-awareness model as a UML prole was not possible because with UML proles we could not dene associations between prole meta-classes. Between MOF and EMF, we have chosen EMF because of the availability of many EMF tools.

For the static CAController, we use ECORE models for transformation purpose to generate CAControllerStaticModel classes. When possible, the dynamic CAController is used instead. At runtime, the model manager loads an application context-awareness model, accessed and updated through the EMF generated API. Through this API, new entities, observables, and contracts may be added to the model at runtime. Thanks to an EMF adapter, insertions of observables trigger the creation of bridge collectors.

CA3M bridge illustrated with COSMOS collector bridge

CA3M architecture allows the CAController to be interfaced with several context management frameworks. The constraints on the collector framework are the following ones. The collector framework should provide notication and observation modes and be able to compute high-level observations from distributed observations. At least one collector bridge has to be implemented per collector framework to wrap collector API with CA3M API. The bridge class has to be designed to enable the bridge to work with any observation class. Several bridges may be implemented according to the kind of binding from the bridge to the collector. We design two bindings: one for the connection to an external collector and the other one for an instantiation of the collector into CA3M.

For our evaluation, we have interfaced CA3M with the COSMOS framework [START_REF] Conan | Scalable Processing of Context Information with COSMOS[END_REF]. COSMOS oers tools to collect, interpret and process context data. We Experimental evaluation

Performance evaluation of the prototype

We present the overhead incurred by using CA3M compared to a direct usage of COSMOS collectors by the application. We have conducted performance measurements on a laptop PC with the following software and hardware conguration: 2.8GHz processor, 512MB of RAM, GNU/Linux Fedora 9, Java Virtual Machine Sun JDK 1.6, COSMOS 0.1.5, Fractal implementation Julia 2.5.2.

Each test was run 1000 times. A garbage collection and a warm-up phase occurred before each measure.

The Table 1 presents the average measures with a 95% condence interval.

The table includes the following overhead measurements. The two rst lines Several middleware solutions have been proposed for managing contextawareness. CARISMA [START_REF] Capra | Exploiting Reection in Mobile Computing Middleware[END_REF] proposes to dene context-aware proles for tuning the behaviour of middleware services according to context information. These proles are available at runtime. Applications may modify these proles through a reexive API. Proles for context management are not addressed by CARISMA.

CA3M oers also a reexive API, not only to modify application behaviours, but also to add new observables which will be collected by new context collectors.

Context-Toolkit [START_REF] Dey | A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications[END_REF] allows application developers to attach application handlers to context widgets. Context Toolkit triggers call-back to these handlers when context values change. The links between the handlers and the collectors are programmed rather than modelled in notication contracts as this is the case in CA3M. RCSM [START_REF] Yau | An Adaptive Middleware for Context-Sensitive Communications for Real-Time Applications in Ubiquitous Computing Environments[END_REF] oers CA-IDL, a language to dene context situations and to specify the operations to trigger in these situations. Adaptation situations are evaluated by RCSM which triggers reactive operations at runtime. RCSM limitations come from the limited number of context information available in the CA-IDL grammar. The triggering of operations and the context monitoring are dened statically at compilation time.

Another issue of this article is to be able to be connected to several context management frameworks with dierent APIs. This may be handled statically by model transformation such as proposed in several context-awareness MDE works such as [START_REF] Ayed | Computer Science, volume 4635/2007 of LNCS, chapter MDD Approach for the Development of Context-Aware Applications[END_REF]. But this approach does not enable the middleware to choose the collectors at runtime. In MUSIC [START_REF] Paspallis | A Pluggable and Recongurable Architecture for a Context-aware Enabling Middleware System[END_REF], the context-management framework includes an observation and a notication mode and the framework may be compared to the CA3M CAController. As in CA3M, they consider the dynamically insertion and removal of so called context plugins in the middleware. When a new collector is connected by the framework, the collector framework provides an archive which includes a wrapper between the collector and the framework. As a consequence, one wrapper has to be provided for each collector. In CA3M, we provide instead a bridge for all the collectors of the same family (e.g., one bridge for all the COSMOS collectors). Thanks to bridges, CA3M may be connected to various kinds of context management frameworks more easily.

Conclusion and perspectives

In this article, we have presented the CA3M middleware. Our contributions are the following ones. CA3M provides tools to easily recongure the context-awareness of ubiquitous applications. Firstly, we have dened a contextawareness meta-model which denes concepts chosen for a new stakeholder that we call the context-awareness designer. This meta-model denes entities, observables, and context-awareness contracts. It allows designers to model distributed observables. We validate this meta-model through the denition of models for several ubiquitous applications. Secondly, we provide a middleware which, based upon an ubiquitous application context-awareness model, is able to connect to dierent context-manager collectors. CA3M oers two kinds of interactions between context managers and applications: the observation mode and the notication mode. We consider the design of bridges for binding to various context managers and we have validated and evaluated the approach building the bridge component for the COSMOS context manager. In summary, the main contribution of our proposition is to enable to update application context-awareness models at runtime. The advantage is to allow autonomous context-awareness.

This work may be extended in several directions. The MDE approach may be used not only to connect applications to collectors but also to produce high-level collectors from existing lower-level collectors. In addition, we have developped a bridge for the COSMOS context manager and we plan to validate our approach with additional context managers. We also believe that the model at runtime approach can benet to a better choosing of collectors at runtime using a collector discovery service. Last but not least, we plan to extend CA3M to deal with adaptation mechanisms for changing the behaviour or the structure of applications. We intend to add various context-awareness adaptation contracts in the model and adaptation mechanisms in the middleware.

Fig. 1 .

 1 Fig. 1. Separation of design tasks for producing context-aware applications

Figure 2 Fig. 2 .

 22 Figure 2 shows the runtime architecture of CA3M. The architecture is divided into the context-aware application, CA3M, the distributed collectors, and the distributed context sources. A context-aware application accesses context management mechanisms through CA3M. CA3M drives the monitoring of the environment according to the context-awareness model. The distributed collectors provide context management and context interpretation. They collect data from

  CAController and the Model Manager. The CAController is in charge of binding to concrete collectors, creating collector bridges, and notifying the application when necessary as dened by the contracts. The model manager loads the application context-awareness model. The model manager handles query requests about the structure of the model as well as update requests to deal with runtime modications of the model.There are two kinds of interactions between the CAController and the Model Manager. Firstly, the CAController may use query operations for browsing the model. This kind of interaction is necessary after the initial loading of the model to create a bridge for each observable foreseen at the design phase. Secondly, in the case of model change, such as the addition or removal of an observable, the model manager triggers callbacks to the CAController in order to create or remove a collector bridge.

Figure 3

 3 Figure 3 describes the CA3M context-awareness meta-model. The Con-textAwareSystem meta-class is the entry point of this meta-model. The left part of the meta-model denes the entities, their observables, the links between entities, the interpreted observables and the adaptation situations. The right part

Fig. 3 .

 3 Fig. 3. The context-awareness meta-model

Fig. 4 .

 4 Fig. 4. The context-awareness model for the mobile-chat application

Fig. 5 .Figure 5

 55 Fig. 5. Model extensions for the plugin location

Figure 6 Fig. 6 .

 66 Figure 6 depicts the CA3M UML class diagram representing the interfaces between a context-aware application and CA3M. We explain how to use CA3M in notication and in observation modes, and how to modify the application model to add or remove entities and observables.

Fig. 7 .

 7 Fig. 7. The COSMOS Bridge component

6

 6 

  presents the time necessary for the initial model loading. Model loading concerns reading the EMF model le and reifying the concepts in EMF objects. The third line gives the overhead time for the collector instantiation, the overhead comes from the bridge instantiation. The fourth line presents the overhead time for an observation. The overhead comes from the transformation of an observation from a Cosmos Chunk to an application Java object. Lines ve and six give the overhead concerning the memory usage after all bridge instantiations (the memory usage is given by the dierence between totalMemory et freeMemory in the JVM). The CA3M overhead follows from model management (emf library), and bridge management (especially the reexivity necessary to interconnect a COSMOS bridge to any kind of context node). 1-| model load (1 entity, 1 observable, 1 contract) 723ms ± 4 2-| model load (100 entities, 100 observables, 100 contracts) memory overhead (1 entity, 1 observable, 1 contract) 0, 56M B ± 0, 05 6-| memory overhead (100 entities, 100 observables, 100 contracts) 1, 26M B ± 0, 07

Table 1 .

 1 

		CA3M overhead measurements
	6.2	CA3M experimentation
	We evaluate the context-awareness meta-model with the mobile-chat applica-
	tion and also with a mobile commerce application. For these applications, we

Since CA3M links context-management frameworks, context-awareness models and context-aware middleware, the related work section deals with these three kinds of research works. Many context management framework

[START_REF] Coutaz | Context is Key[END_REF][START_REF] Dey | A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications[END_REF] 

have been designed without context modelling. Due to the variety of contexts to be collected and analysed, we argue that context management needs the support of abstract context modelling.

Several research works address context-awareness with the MDE approach.