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Abstract: In this paper, we propose a fast image deconvolution algorithm
that combines adaptive block thresholding and Vaguelet-Wavelet Decom-
position. The approach consists in first denoising the observed image using
a wavelet-domain Stein block thresholding, and then inverting the convo-
lution operator in the Fourier domain. Our main theoretical result inves-
tigates the minimax rates over Besov smoothness spaces, and shows that
our block estimator can achieve the optimal minimax rate, or is at least
nearly-minimax in the least favorable situation. The resulting algorithm is
simple to implement and fast. Its computational complexity is dominated
by that of the FFT. We report a simulation study to support our theo-
retical findings. The practical performance of our block vaguelet-wavelet
deconvolution compares very favorably to existing competitors on a large
set of test images.
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1. Introduction

1.1. Problem statement and prior work

In this paper, we consider the two-dimensional convolution model with Gaussian
white noise ∼ N (0, σ2). We observe the stochastic process Y (.) where

dY (x) = T (f)(x)dx+ σdW (x), (1.1)

x ∈ [0, 1]2,W (.) is a (non-observed) white Gaussian noise, T (f)(x) = (f ⋆ g) (x)
is the two-dimensional convolution operator on [0, 1]2, g is a known kernel (called
also point spread function PSF), both f and g are one-periodic functions be-
longing to L2([0, 1]

2). In the sequel, the Fourier transform of a function h will be
denoted F(h)(l) =

∫
[0,1]2 h(x)e

−2iπ<l,x>dx. The observation model (1.1) illus-

trates the action of a linear time-invariant system on an input image f when the
data are corrupted with additional noise. Deconvolution is to estimate f from
Y which is a longstanding inverse problem in many areas of signal and image
processing. Application fields cover biomedical imaging, astronomical imaging,
remote-sensing, seismology, etc. This list is by no means exhaustive.

There is an extensive statistical literature on wavelet-based deconvolution
problems. For obvious space limitations, we only focus on some of them. In
1D, Donoho in [10] gave the first discussion of wavelet thresholding in linear
inverse problems and introduced the Wavelet-Vaguelet Decomposition (WVD).
The WaveD algorithm as described in [13] is an adaptation of WVD to the
one-dimensional deconvolution problem. Abramovich and Silverman in [1] pro-
posed another procedure; the Vaguelet-Wavelet Decomposition (VWD). The
VWD estimator in its original form relies on standard term-by-term threshold-
ing rules. It has been improved by Cai in [3] using a Stein block thresholding
rule. In the same vein as the block extension of VWD, the original term-by-term
thresholding-based WaveD procedure has been recently enhanced by Chesneau
[5] using again block thresholding.

In 2D, the WVD approach was refined in [14] where the authors proposed
a mirror wavelet basis adapted to capture the singularity of the spectrum of
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the inverse of h. The authors in [17] advocated a hybrid approach known as
ForWarD. In [9], the authors described a two-dimensional adaptation of the
WaveD algorithm [13], and they showed that it enjoys good numerical perfor-
mance. Deconvolution methods based on variational or bayesian formulations
with sparsity-promoting regularization over wavelet coefficients have been re-
cently proposed; see e.g. [4, 7, 11, 12] and others. These algorithms are based
on iterative thresholding. A few papers have also focused on deconvolution by
using the SURE principle to minimize an unbiased estimate of the MSE of de-
convolution estimators operating by thresholding in orthogonal or redundant
wavelet bases [18, 20].

1.2. Contributions

However, so far, these two-dimensional wavelet deconvolution algorithms were
based on term-by-term (or individual) thresholding which clearly under-performs
for many images. The drawback of individual thresholding cannot be circum-
vented by fine-tuning the regularization/threshold parameter. These reasons
motivated us to develop an adaptive estimator of f based on combining two-
dimensional Stein block thresholding and VWD. The approach consists in first
denoising the observed image using a wavelet-domain block thresholding, and
then inverting the convolution operator in the Fourier domain. It can be viewed
as a two-dimensional version of the procedure developed by [3]. In fact, although
we focus on the two-dimensional case for clarity and accessibility to a larger au-
dience, our procedure and results apply equally well to dimensions higher than
two; see also Remark 4.1.

From a theoretical point of view, taking the minimax approach over the Besov
balls Bs

p,q(M) (to be defined in Section 2) and under the L2 risk, we prove that
our estimator achieves near optimal rates of convergence. This is featured in
Theorem 4.1. These rates are for instance better than those attained by the
two-dimensional WaveD of [9]. Using lower bound techniques, we also provide
a lower bound on the risk over the Besov ball as stated in Theorem 4.2. From
a practical point of view, our algorithm is very simple to implement and runs
very fast. Its performances compare very favorably to alternative deconvolution
algorithms in the literature such as [7, 9, 12, 17] over a large set of test images.

1.3. Paper organization

The paper is organized as follows. Section 2 briefly reviews wavelets and Besov
balls. Section 3 describes the block thresholding-based deconvolution estimator.
The minimax performances of this estimator and the lower bound of its risk are
investigated in Section 4. Section 5 describes the experimental results, before
drawing some conclusions in Section 6. The proofs are assembled in Section 7
awaiting inspection by the interested reader.
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2. Wavelets and Besov balls

2.1. Periodized Meyer wavelets

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a “father” Meyer-type wavelet φ and a “mother” Meyer-type wavelet
ψ. The main features of such wavelets are:

1. they are band-limited, i.e. the Fourier transforms of φ and ψ have compact
supports respectively included in [−4π3−1, 4π3−1] and [−8π3−1,−2π3−1]∪
[2π3−1, 8π3−1].

2. for any frequency in [−2π,−π]∪ [π, 2π], there exists a constant c > 0 such
that the magnitude of the Fourier transform of ψ is lower bounded by c.

3. the functions (φ, ψ) are C∞ as their Fourier transforms have a compact
support, and ψ has an infinite number of vanishing moments as its Fourier
transform vanishes in a neighborhood of the origin:

∫ ∞

−∞

tuψ(t)dt = 0, ∀ u ∈ N.

If the Fourier transforms of φ and ψ are also in Cr for a chosen r ∈ N,
then for it can be easily shown that φ and ψ decay as

|φ(t)| = O
(
(1 + |t|)−r−1

)
, |ψ(t)| = O

(
(1 + |t|)−r−1

)
,

meaning that φ and ψ are not very well localized in time. This is why a Meyer
wavelet transform is generally implemented in the Fourier domain.

For the purpose of this paper, we use the periodized Meyer wavelet bases on
the unit interval. For any t ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j − 1},
let

φj,k(t) = 2j/2φ(2jt− k), ψj,k(t) = 2j/2ψ(2jt− k)

be the elements of the wavelet basis, and

φperj,k (t) =
∑

l∈Z

φj,k(t− l), ψper
j,k (t) =

∑

l∈Z

ψj,k(t− l),

their periodized versions. There exists an integer j∗ such that the collection
{φperj∗,k

, k = 0, . . . , 2j∗ − 1; ψper
j,k , j = j∗, . . . ,∞, k = 0, . . . , 2j − 1} forms an

orthonormal basis of Lper
2 ([0, 1]). In what follows, the superscript “per” will be

dropped to lighten the notation.
In higher dimension, and 2D in particular as treated in this paper, we consider

tensor product wavelet bases on L2([0, 1]
2). Let us briefly recall their construc-

tion (see, for instance, [15] for more details). Define the tensor product wavelets
Φ, Ψ1, Ψ2 and Ψ3 as respectively

Φ(x) = φ(x)φ(y), Ψ1(x) = ψ(x)φ(y), Ψ2(x) = φ(x)ψ(y), Ψ3(x) = ψ(x)ψ(y),
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∀x = (x, y) ∈ [0, 1]2. For any orientation i ∈ {1, 2, 3}, scale j ≥ 0 and spatial
location k = (k1, k2) ∈ Dj = {0, . . . , 2j − 1}2, we define the translated and
scaled versions Φj,k(x) = 2jΦ(2jx − k1, 2

jy − k2) and Ψj,i,k(x) = 2jΨi(2jx −
k1, 2

jy − k2).
Any function f ∈ L2([0, 1]

2) can be expanded into a wavelet series

f(x) =
∑

k∈Dj0

αj0,kΦj0,k(x) +

3∑

i=1

∑

j≥j0

∑

k∈Dj

βj,i,kΨj,i,k(x),

x ∈ [0, 1]2, where αj,k =
∫
[0,1]2 f(x)Φj,k(x)dx and βj,i,k =

∫
[0,1]2 f(x)Ψj,i,k(x)dx

are the wavelet coefficients of f . See [16, Vol. 1 Chapter III.11] for a detailed
account on periodized orthonormal wavelet bases.

2.2. Besov balls

We say that a function f in L2([0, 1]
2) belongs to the bi-dimensional (isotropic)

Besov ball Bs
p,q(M) if, and only if,

∫
[0,1]2 f

2(x)dx ≤ M and there exists a con-

stant M∗, depending on M , such that the wavelet coefficients of f satisfy




3∑

i=1

∑

j≥0


2j(s+1−2/p)



∑

k∈Dj

|βj,i,k|p



1/p



q


1/q

≤M∗,

with a smoothness parameter s > 0, and the norm parameters: 0 < p ≤ ∞ and
0 < q ≤ ∞. Such Besov spaces contain both smooth images and those with
sharp edges.

3. The deconvolution block estimator

3.1. Smoothness of the kernel g

For the theoretical study, the following smoothness assumption on g will play an
essential role. We suppose that there exist four constants, c > 0, C > 0, δ1 > 1/2
and δ2 > 1/2, such that, for any l = (l1, l2) ∈ Z2, the Fourier transform of g
satisfies

c(1 + |l1|δ1)−1(1 + |l2|δ2)−1 ≤ |F(g)(l)| ≤ C(1 + |l1|δ1)−1(1 + |l2|δ2)−1. (3.1)

In words, this means that the Fourier transform of the blurring PSF does not
decay too fast, typically in a polynomial fashion within its bandwidth. This
assumption controls the decay of the Fourier coefficients of g, or equivalently
its smoothness. It is a standard hypothesis usually adopted in the field of non-
parametric estimation for deconvolution problems, see e.g. [3, 9, 10, 17]. The
parameters (δ1, δ2) quantify the spectral decay rate, hence the ill-conditioning,
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of the convolution operator associated to g. For example, it is easy to check
that the square integrable one-periodic function g defined by g(x, y) = h(x)h(y)
where h(x) =

∑
m∈Z e

−|x+m|, x ∈ [0, 1], satisfies (3.1). Indeed, for any l ∈ R,

we have F(h)(l) = 2
(
1 + 4π2l2

)−1
. Hence, for any l = (l1, l2) ∈ R2, F(g)(l) =

F(h)(l1)F(h)(l2) satisfies (3.1) with c = 4(1 + 4π2)−2, C = (2π2)−2 and δ1 =
δ2 = 2. This assumption goes by the name of ordinary smooth case.

3.2. Vaguelet-wavelet decomposition

Although the VWD is valid for more general operators T , we here restrict our
description to the case of convolution where the VWD takes a simple form.

Proposition 3.1. For any i ∈ {1, 2, 3}, j ≥ j0 and k ∈ Dj, set

wj,i,k(x) = 2−j(δ1+δ2)T−1(Ψj,i,k)(x), x ∈ [0, 1]2,

where, for any h ∈ L2([0, 1]
2),

T−1(h)(x) = F−1 (F (h) (.)/F(g)(.)) (x)

=

∫

R2

(F(h)(l)/F(g)(l)) e2iπ<l,x>dl. (3.2)

Then, under assumption (3.1), (ωj,i,k)j,i,k is a Riesz sequence, i.e. there exist

two constants c > 0 and C > 0 such that

c

3∑

i=1

∑

j≥j0

∑

k∈Dj

a2j,i,k ≤
∫

[0,1]2




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kωj,i,k(x)




2

dx

≤ C

3∑

i=1

∑

j≥j0

∑

k∈Dj

a2j,i,k.

for every square-summable sequence (aj,i,k)j,i,k.

Thanks to Proposition 3.1, under assumption (3.1), any function f ∈ L2([0, 1]
2)

can be expanded into a vaguelet-wavelet series

f(x) =
∑

k∈Dj0

ϑj0,kωj0,k(x) +

3∑

i=1

∑

j≥j0

∑

k∈Dj

θj,i,kwj,i,k(x), ∀x ∈ [0, 1]2 , (3.3)

where

ϑj0,k = 2j0(δ1+δ2)

∫

[0,1]2
T (f)(x)Φj0,k(x)dx,

θj,i,k = 2j(δ1+δ2)

∫

[0,1]2
T (f)(x)Ψj,i,k(x)dx,

ωj0,k(x) = 2−j0(δ1+δ2)T−1(Φj0,k)(x), wj,i,k(x) = 2−j0(δ1+δ2)T−1(Ψj,i,k)(x).

Further details on vaguelet-wavelet series can be found in [1].
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3.3. Gaussian sequence model

The first step to estimate f consists in estimating the unknown wavelet coeffi-
cients of T (f): (ϑj0,k)k and (θj,i,k)j,i,k from the observation Y in (1.1). It follows
from (1.1) that

yj,i,k = θj,i,k + σzj,i,k, (3.4)

where

yj,i,k = 2j(δ1+δ2)

∫

[0,1]2
Ψj,i,k(x)dY (x), zj,i,k = 2j(δ1+δ2)

∫

[0,1]2
Ψj,i,k(x)dW (x).

Thanks to the orthonormality of the wavelet basis, the random variables (zj,i,k)j,i,k
are Gaussian i.i.d. with mean 0 and variance 22j(δ1+δ2).

3.4. Two-dimensional block thresholding estimator

Let the observed image be defined on a n × n discrete grid of equally-spaced
pixels

{
Y (i/n, j/n); (i, j) ∈ {1, . . . , n}2

}
. Let L = ⌊(2 log(n))1/2⌋ be the block

length, j0 = ⌊log2 L⌋ is the coarsest decomposition scale, and J∗ = ⌊(1/(1 +
δ1 + δ2)) log2(n)⌋. Consider the sequence model (3.4) with σ = 1/n. For any
k ∈ Dj0 , the empirical approximation coefficients are

ϑ̂j0,k = 2j0(δ1+δ2)

∫

[0,1]2
Φj0,k(x)dY (x).

For any scale j ∈ {j0, . . . , J∗}, let Aj =
{
1, . . . , ⌊2jL−1⌋

}2
be the set indexing

the blocks at scale j, and for each block index K = (K1,K2) ∈ Aj , Uj,K = {k ∈
Dj; (K1 − 1)L ≤ k1 ≤ K1L− 1, (K2 − 1)L ≤ k2 ≤ K2L− 1} is the set indexing
the positions of coefficients within the Kth block Uj,K.

Now, for any position k ∈ Uj,K within the Kth block and orientation i ∈
{1, 2, 3}, we estimate the wavelet coefficients θj,i,k of T (f) from yj,i,k in (3.4)
using block Stein thresholding as follows:

θ̂j,i,k =





yj,i,k if j ∈ {0, . . . , j0 − 1}

yj,i,k

(
1− λ∗σ

222j(δ1+δ2)

1
L2

∑
k∈Uj,K

y2j,i,k

)

+

if j ∈ {j0, . . . , J∗}

0 if j > J∗ ,

where (a)+ = max(a, 0), and λ∗ is the root of x− log x = 3, i.e. λ∗ = 4.50524 . . ..
To estimate f , we reconstruct it from these block-thresholded coefficients as

f̂(x) =
∑

k∈Dj0

ϑ̂j0,kωj0,k(x) +

3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

θ̂j,i,kwj,i,k(x), x ∈ [0, 1]2 .

(3.5)
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4. Minimaxity results

Theorem 4.1 below investigates the minimax rates of convergence attained by
f̂ over Bs

p,q(M) under the L2 risk.

Theorem 4.1 (Upper bound). Consider the model (1.1). Let f̂ be the estimator

defined by (3.5). Then there exists a constant C > 0 such that

sup
f∈Bs

p,q(M)

E

(∫

[0,1]2

(
f̂(x)− f(x)

)2
dx

)
≤ Cvσ ,

where

vσ =

{
σ2s/(s+δ1+δ2+1), for 2 ≤ p,

(σ| log(σ)|)2s/(s+δ1+δ2+1), for p < 2, sp > c,
(4.1)

c = 2 ∨ (2− p)(δ1 + δ2 + 1).

Remark 4.1. Our work in this paper focuses on the two-dimensional case image

for the sake of clarity, simplicity and for illustrative purposes in image process-

ing. Yet the rates of Theorem 4.1 can be extended rather straightforwardly to the

d-dimensional case. More precisely, in the d-dimensional case, the rates (4.1)
read

vσ =

{
σ4s/(2s+2(δ1+δ2)+d), for 2 ≤ p,

(σ| log(σ)|)4s/(2s+2(δ1+δ2)+d), for p< 2, sp>d ∨ (1− p/2)(2(δ1+ δ2)+ d),

We now turn to the lower bound of the L2 risk. This is formalized in Theorem
4.2 which determines this lower bound over the ball Bs

p,q(M).

Theorem 4.2 (Lower bound). Consider the model (1.1). Then there exists a

constant c > 0 such that

inf
f̃

sup
f∈Bs

p,q(M)

E

(∫

[0,1]2

(
f̃(x)− f(x)

)2
dx

)
≥ cσ2s/(s+δ1+δ2+1),

where the infimum is taken over all the estimators f̃ of f .

It can be concluded from Theorems 4.1 and 4.2 that the rate of convergence
attained by f̂ , i.e. vσ, is optimal except in the cases p < 2 where there is an extra
logarithmic term. Additionally, vσ is better than the one achieved by conven-
tional term-by-term thresholding estimators (e.g. WaveD [9] and others). The
main difference is for the case p ≥ 2 where there is no extra logarithmic term.

5. Experimental results

The proposed block VWD deconvolution method has been compared to three
deconvolution methods from the literature: ForWarD [17], wavelet-domain it-
erative soft-thresholding (IST) with 100 iterations [7, 12], and WaveD [9]. For
fair comparison, the regularization parameter of the IST method was tweaked
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Barbara 512 × 512 Lena 512× 512 Boat 512 × 512

Cameraman 256 × 256 House 256× 256 Peppers 256 × 256

Fig 1. Test images.

Table 1

Average execution times (seconds) over then replications for 512 × 512 and 256 × 256
images. The algorithms were run under Matlab with an 2.53GHz Intel Core Duo CPU,

4Gb RAM

Algorithm Ours ForWarD [17] IST [7, 12] WaveD [9]

512× 512 4.08 5.2 119 4.08
256× 256 1.2 1.05 29 1.27

manually to reach its best performance. For reliable comparison, we applied the
deconvolution algorithms to six standard grayscale images of size 512×512 (Bar-
bara, Lena, Boat) and 256× 256 (Cameraman, House, Peppers); see Fig. 1. The
blurred images were corrupted by a zero-mean white Gaussian noise such that
the blurred signal-to-noise ratio (BSNR = 10 log10(‖f ⋆ g‖∞/σ2)) ranged from
10 to 40 dB. At each combination of test image and noise level, ten noisy ver-
sions were generated and each deconvolution algorithm was applied to each noisy
realization. The output SNR improvement (ISNR) was averaged over the ten

replications. The results in the case where the PSF is g(i, j) = e−|i/n|0.5+|j/n|0.5

are summarized in Fig. 2. Each plot corresponds to the ISNR as a function
of BSNR for each image. These results clearly show that our approach com-
pares very favorably to the best competitors which are ForWarD and iterative
soft thresholding. It is even able to outperform them particularly at low BSNR
or textured images, while maintaining a low computational cost as reported
in Table 1. The computational complexity of block thresholding as well as the
WaveD is dominated by the FFT involved in the Meyer wavelet transform that



C. Chesneau et al./Stein block thresholding for wavelet-based image deconvolution 424

10 15 20 25 30 35 40
0

2

4

6

8

10

BSNR (dB)

IS
N

R
 (

d
B

)

Barbara

 

 

10 15 20 25 30 35 40

2

4

6

8

10

12

BSNR (dB)

IS
N

R
 (

d
B

)

Lena

 

 

10 15 20 25 30 35 40

2

4

6

8

10

BSNR (dB)

IS
N

R
 (

d
B

)

Boat

 

 

10 15 20 25 30 35 40

2

4

6

8

10

12

BSNR (dB)

IS
N

R
 (

d
B

)

Cameraman

 

 

10 15 20 25 30 35 40

2

4

6

8

10

12

14

BSNR (dB)

IS
N

R
 (

d
B

)

House

 

 

10 15 20 25 30 35 40
2

4

6

8

10

12

14

BSNR (dB)

IS
N

R
 (

d
B

)

Peppers

 

ForWard

IST

WaveD

Block

Fig 2. Comparison of average ISNR in dB over ten realizations for the six test images.

operates in the Fourier domain. The quantitative results of Fig. 2 are confirmed
by visual inspection of Fig. 3 and Fig. 4 which display the results on Barbara and
Boat for BSNR=30dB. Again, owing to block thresholding, our VWD deconvo-
lution is able to recover many details (e.g. textured areas on Barbara trousers)
better that the other methods.
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(a) (b)

(c) (d)

(e) (f)

Fig 3. Deconvolution of Barbara 512× 512. (a) original, (b) blurred and noisy BSNR=30dB,
(c) our method ISNR=5.66dB, (d) ForWarD [17] ISNR=4.9dB, (e) iterative thresholding
[7, 12] ISNR=4.33dB, (f) WaveD [9] ISNR=3.4dB.
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(a) (b)

(c) (d)

(e) (f)

Fig 4. Deconvolution of Boat 512×512. (a) original, (b) blurred and noisy BSNR=30dB, (c)
our method ISNR=7.66dB, (d) ForWarD [17] ISNR=7.7dB, (e) iterative thresholding [7, 12]
ISNR=8.3dB, (f) WaveD [9] ISNR=6.6dB.
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Following the philosophy of reproducible research, a toolbox is made available
freely for download at the address

http://www.greyc.ensicaen.fr/~jfadili/software.html

This toolbox is a collection of Matlab functions, scripts and datasets for
image block denoising. It requires at least WaveLab 8.02 [21] to run properly.
The toolbox implements the proposed block denoising procedure with several
transforms and contains all scripts to reproduce the figures and tables reported
in this paper.

6. Conclusion

In this paper, a wavelet-based deconvolution algorithm was presented. It com-
bines the benefits of block-thresholding with vaguelet-wavelet decomposition. Its
theoretical and practical performances were established. Although we focused
on convolution, the approach can handle other operators T (f). A possible per-
spective of the present work that we are currently investigating is the theoretical
properties of the procedure when other transforms than orthonormal wavelets
(the curvelet frame for instance) are used.

7. Proofs

Proof of Proposition 3.1. For every sequence (aj,i,k), the Plancherel formula im-
plies that

∫

[0,1]2




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kωj,i,k(x)




2

dx

= 2−2j(δ1+δ2)

∫

[0,1]2


F−1




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kF (Ψj,i,k) (.)/F(g)(.)


 (x)




2

dx

= 2−2j(δ1+δ2)

∫

R2

∣∣∣∣∣∣

3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kF (Ψj,i,k) (l)/F(g)(l)

∣∣∣∣∣∣

2

dl

= 2−2j(δ1+δ2)

∫

R2

(1/|F(g)(l)|2)

∣∣∣∣∣∣
F




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kΨj,i,k


 (l)

∣∣∣∣∣∣

2

dl.

(7.1)

Let Cj,i = supp(Ψj,i,k). Then by definition of the wavelet basis and under as-
sumption (3.1), there exist two constants c > 0 and C > 0 such that

c22j(δ1+δ2) ≤ inf
x∈Cj,i

(1/|F(g)(x)|2) ≤ sup
x∈Cj,i

(1/|F(g)(x)|2) ≤ C22j(δ1+δ2). (7.2)

http://www.greyc.ensicaen.fr/~jfadili/software.html
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Using again the Plancherel formula, we obtain

∫

R2

∣∣∣∣∣∣
F




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kΨj,i,k


 (l)

∣∣∣∣∣∣

2

dl

=

∫

[0,1]2




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kΨj,i,k(x)




2

dx =
3∑

i=1

∑

j≥j0

∑

k∈Dj

a2j,i,k. (7.3)

Putting (7.1), (7.2) and (7.3) together, it follows immediately that there are
indeed two constants c > 0 and C > 0 such that

c

3∑

i=1

∑

j≥j0

∑

k∈Dj

a2j,i,k ≤
∫

[0,1]2




3∑

i=1

∑

j≥j0

∑

k∈Dj

aj,i,kωj,i,k(x)




2

dx

≤ C
3∑

i=1

∑

j≥j0

∑

k∈Dj

a2j,i,k.

Proof of Theorem 4.1. From the Gaussian sequence (3.4), Theorem 4.1 can be
proved by applying [6, Theorem 3.1]: it is enough to prove the existence of two
constants Q3 > 0 and Q4 > 0 (independent of n) such that the conditions (i)
and (ii) below are satisfied:

(i)
sup

j∈{0,...,J∗}

sup
i∈{1,2,3}

sup
k∈Dj

2−4(δ1+δ2)jE
(
z4j,i,k

)
≤ Q3.

(ii) For any a = (ak)k∈Dj
such that supj∈{0,...,J∗} supK∈Aj

∑
k∈Uj,K

a2
k
≤ 1,

we have

sup
j∈{0,...,J∗}

sup
i∈{1,2,3}

sup
K∈Aj

2−2(δ1+δ2)jE





 ∑

k∈Uj,K

akzj,i,k




2

 ≤ Q4.

Since the random variables (zj,i,k)j,i,k are Gaussian i.i.d. with mean 0 and vari-
ance 22j(δ1+δ2), these bounds are obvious.

The steps of the proof are as follows.

We expand f into a vaguelet-wavelet series as in (3.3) with j0 = ⌊log2 L⌋.
Using Proposition 3.1, we bound the L2 risk of f̂ in the following way

E

(∫

[0,1]2

(
f̂(x) − f(x)

)2
dx

)
≤ C(R + S + T ), (7.4)



C. Chesneau et al./Stein block thresholding for wavelet-based image deconvolution 429

where

R =
∑

k∈Dj0

E

((
ϑ̂j0,k − ϑj0,k

)2)
,

S =

3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

E

((
θ̂j,i,k − θj,i,k

)2)

and

T =
3∑

i=1

∞∑

j=J∗+1

∑

k∈Dj

θ2j,i,k.

Let us bound R, T and S, in turn.

Since ϑ̂j0,k − ϑj0,k = σ2j0(δ1+δ2)
∫
[0,1]2

Φj0,k(x)dW (x) ∼ N (0, σ222j0(δ1+δ2)),

we have

R ≤ Cσ222j0(δ1+δ2+1) ≤ σ2s/(s+δ1+δ2+1) ≤ vσ. (7.5)

For any s > 0, any p ≥ 1 and any r ≥ 1, we have the embedding Bs
p,r(M) ⊆

B̃s
p,r(M

∗), where the Besov ball B̃s
p,r(M

∗) is defined as Bs
p,r(M) but with the

coefficients (ϑj,k)j,k, (θj,i,k)j,i,k and a modified radius M∗ (see [1] for more

details). This embedding together with the inclusions B̃s
p,r(M) ⊆ B̃s

2,∞(M) if

p ≥ 2, and B̃s
p,r(M) ⊆ B̃

s+1−2/p
2,∞ (M) if p ∈ [1, 2), imply that

T ≤ Cmax(2−2J∗s, 2−2J∗(s+1−2/p)) ≤ Cvσ . (7.6)

Let us set, for any j ∈ {j0, . . . , J∗}, λj = λ∗σ
2L222j(δ1+δ2). The term S can

be decomposed as

S = u1 + u2 + u3 + u4, (7.7)

where

u1 =
3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

E

((
θ̂j,i,k − θj,i,k

)2
1{∑

k∈Uj,K
|yj,i,k|2≥κλj

}

× 1{∑
k∈Uj,K

|θj,i,k|2<κλj/2
}
)
,

u2 =

3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

E

((
θ̂j,i,k − θj,i,k

)2
1{∑

k∈Uj,K
|yj,i,k|2≥κλj

}

× 1{∑
k∈Uj,K

|θj,i,k|2≥κλj/2
}
)
,

u3 =

3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

E

(
θ2j,i,k1

{∑
k∈Uj,K

|yj,i,k|2<κλj

}1{∑
k∈Uj,K

|θj,i,k|2≥2κλj

}
)
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and

u4=

3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

E

(
θ2j,i,k1

{∑
k∈Uj,K

|yj,i,k|2<κλj

}1{∑
k∈Uj,K

|θj,i,k|2<2κλj

}
)
.

Upper bounds for u1 and u3. We have

max(u1, u3) ≤ C

3∑

i=1

J∗∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

E

(
z2j,i,k1

{∑
k∈Uj,K

|zj,i,k|2>κλj/2
}
)
.

It follows from the Jensen inequality, conditions (i)-(ii) and the Cirelson inequal-
ity (see [2]) that

E

(
z2j,i,k1

{∑
k∈Uj,K

|zj,i,k|2>κλj/2
}
)

≤ C22(δ1+δ2)jσ4.

Hence

max(u1, u3) ≤ C22(δ1+δ2+1)J∗σ4 ≤ σ2 ≤ vσ. (7.8)

Upper bound for u2. By the Jensen inequality and condition (i), we derive
the bound

E
(
z2j,i,k

)
≤
(
E
(
z4j,i,k

))1/2 ≤ C22(δ1+δ2)jσ2.

Hence

u2 ≤ Cσ2
3∑

i=1

J∗∑

j=j0

22(δ1+δ2)j
∑

K∈Aj

∑

k∈Uj,K

1{∑
k∈Uj,K

|θj,k|2>κλj/2
}.

Splitting the sum by considering the integer j2 defined by 2−1 (n/lnn)
1/(s+δ1+δ2+1)

<

2j2 ≤ (n/lnn)1/(s+δ1+δ2+1), using the block structure and inclusions of Besov

balls B̃s
p,r(M

∗) similar to those used for the bound of u1, we obtain

u2 ≤ Cvσ. (7.9)

Upper bound for u4. We have

u4 ≤
3∑

i=1

J∗∑

j=j0

22(δ1+δ2)j
∑

K∈Aj

∑

k∈Uj,K

θ2j,k1
{∑

k∈Uj,K
|θj,k|2<2κλj

}.

We then use the same argument as for u3 by the splitting the sum exactly in
the same way to arrive at the bound

u4 ≤ Cvσ. (7.10)
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Combining (7.4) - (7.10), we have

E

(∫

[0,1]2

(
f̂(x) − f(x)

)2
dx

)
≤ Cvσ.

Proof of Theorem 4.2. We need the following result, consequence of the Fano
lemma.

Lemma 7.1. Let m ∈ N∗ and A be a sigma algebra on the space Ω. For any

i ∈ {0, . . . ,m}, let Ai ∈ A such that, for any (i, j) ∈ {0, . . . ,m}2 with i 6= j,

Ai ∩ Aj = ∅.

Let (Pi)i∈{0,...,m} be m+ 1 probability measures on (Ω, A). Then

sup
i∈{0,...,m}

Pi (A
c
i ) ≥ min

(
2−1, exp(−3e−1)

√
m exp(−χm)

)
,

where

χm = inf
v∈{0,...,m}

1

m

∑

k∈{0,...,m}
k 6=v

K(Pk,Pv),

and K is the Kullback-Leibler divergence defined by

K(P,Q) =

{∫
ln
(

dP
dQ

)
dP if P < Q,

∞ otherwise.

The proof of Lemma 7.1 can be found in [8, Lemma 3.3]. For further details
and applications of the Fano lemma, see [19].

Consider the Besov balls Bs
p,q(M). Let j1 be an integer which will be suitably

chosen at the end of this proof. For any ε = (εi,k)(i,k)∈{1,2,3}×Dj1
∈ {0, 1}3×22j1 ,

set

hε(x) =M∗2
−j1(s+1)

3∑

i=1

∑

k∈Dj1

εi,kΨj1,i,k(x), x ∈ [0, 1]2.

Now, for any scale j ≥ τ , subband i ∈ {1, 2, 3} and position k ∈ Dj1 , the
(mother) wavelet coefficient of hε is by orthonormality of the Meyer wavelet
basis

βj,i,k =

∫

[0,1]2
hε(x)Ψj,i,k(x)dx =

{
M∗εi,k2

−j1(s+1), if j = j1,

0, otherwise.

Therefore hε ∈ Bs
p,q(M). The Varshamov-Gilbert theorem (see [19, Lemma

2.7]) asserts that there exist a set Ej1 =
{
ε(0), . . . , ε(Tj1 )

}
and two constants



C. Chesneau et al./Stein block thresholding for wavelet-based image deconvolution 432

c ∈]0, 1[ and α ∈]0, 1[, such that for any u ∈ {0, . . . , Tj1}, ε(u) = (ε
(u)
i,k )i,k ∈

{0, 1}3×22j1 , and any (u, v) ∈ {0, . . . , Tj1}2 with u < v, the following hold:
∑

i=1

3
∑

k∈Dj1

|ε(u)i,k − ε
(v)
i,k | ≥ c22j1 , Tj1 ≥ eα2

2j1
.

Considering such a set Ej1 , for any (u, v) ∈ {0, . . . , Tj1}2 with u 6= v, we have

(∫

[0,1]2
(hε(u)(x)− hε(v)(x))

2
dx

)1/2

= M∗2
−j1(s+1)




3∑

i=1

∑

k∈Dj1

(
ε
(u)
i,k − ε

(v)
i,k

)2



1/2

= M∗2
−j1(s+1)




3∑

i=1

∑

k∈Dj1

∣∣∣ε(u)i,k − ε
(v)
i,k

∣∣∣




1/2

≥ 2νj1 ,

where
νj1 =M∗c

1/22j12−j1(s+1) =M∗c
1/22−j1s.

Using the Markov inequality, for any estimator f̃ of f , we have

ν−2
j1

sup
f∈Bs

p,q(M)

E

(∫

[0,1]2

(
f̃(x) − f(x)

)2
dx

)
≥ sup

u∈{0,...,Tj1}

Ph
ε(u)

(Ac
u) = p,

where

Au =





(∫

[0,1]2

(
f̃(x)− hε(u)(x)

)2
dx

)1/2

< νj1





and Pf is the distribution of the model. Notice that, for any (u, v) ∈ {0, . . . , Tj1}2
with u 6= v, Au ∩ Av = ∅. Lemma 7.1 applied to the probability measures(
Ph

ε(u)

)
u∈{0,...,Tj1}

gives

p ≥ min
(
2−1, exp(−3e−1)

√
Tj1 exp(−χTj1

)
)
, (7.11)

where

χTj1
= inf

v∈{0,...,Tj1}

1

Tj1

∑

u∈{0,...,Tj1}
u6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)
.

Let us now bound χTj1
. For any functions f1 and f2 in L2([0, 1]

2), we have

K (Pf1 ,Pf2) =
1

2σ2

∫

[0,1]2
(T (f1)(x) − T (f2)(x))

2
dx

=
1

2σ2

∫

[0,1]2
(((f1 − f2) ⋆ g) (x))

2
dx.
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The Plancherel formula yields

K (Pf1 ,Pf2) =
1

2σ2

∫

R2

|F((f1 − f2) ⋆ g)(l)|2dl

=
1

2σ2

∫

R2

|F(f1 − f2)(l)|2 |F(g)(l)|2dl.

Consequently, for any (u, v) ∈ {0, . . . , Tj1}2 with u 6= v, we have

K
(
Ph

ε(u)
,Ph

ε(v)

)
=

1

2σ2

∫

R2

|F (hε(u) − hε(v)) (l)|2 |F(g)(l)|2dl. (7.12)

On the other hand, for any l ∈ R2, by definition of hε, we have

F(hε(u) − hε(v))(l)

= M∗2
−j1(s+1)

3∑

i=1

∑

k∈Dj1

(
ε
(u)
i,k − ε

(v)
i,k

)
F (Ψj1,i,k) (l). (7.13)

Equalities (7.12) and (7.13) then imply that

K
(
Ph

ε(u)
,Ph

ε(v)

)

= C
1

σ2
2−2j1(s+1)

∫

R2

∣∣∣∣∣∣

3∑

i=1

∑

k∈Dj1

(
ε
(u)
k − ε

(v)
k

)
F (Ψj1,i,k) (l)

∣∣∣∣∣∣

2

|F(g)(l)|2dl.

(7.14)

Let Cj,i = supp(Ψj,i,k). Then by definition of the wavelet basis and under as-
sumption (3.1), there exists a constant C > 0 such that

sup
l∈Cj1,1∪Cj1,2∪Cj1,3

|F(g)(l)|2 ≤ C2−2j1(δ1+δ2). (7.15)

Moreover, the Plancherel formula implies that

∫

R2

∣∣∣∣∣∣

3∑

i=1

∑

k∈Dj1

(
ε
(u)
i,k − ε

(v)
i,k

)
F (Ψj1,i,k) (l)

∣∣∣∣∣∣

2

dl

=

∫

R2

∣∣∣∣∣∣
F




3∑

i=1

∑

k∈Dj1

(
ε
(u)
i,k − ε

(v)
i,k

)
Ψj1,i,k


 (l)

∣∣∣∣∣∣

2

dl

=

∫

[0,1]2

∣∣∣∣∣∣

3∑

i=1

∑

k∈Dj1

(
ε
(u)
i,k − ε

(v)
i,k

)
Ψj1,i,k(x)

∣∣∣∣∣∣

2

dx =
3∑

i=1

∑

k∈Dj1

(
ε
(u)
i,k − ε

(v)
i,k

)2

≤ C22j1 . (7.16)



C. Chesneau et al./Stein block thresholding for wavelet-based image deconvolution 434

The desired bound on K
(
Ph

ε(u)
,Ph

ε(v)

)
then follows from (7.14), (7.15) and

(7.16):

K
(
Ph

ε(u)
,Ph

ε(v)

)
≤ C

1

σ2
2−2j1(s+1)2−2j1(δ1+δ2)22j1 = C

1

σ2
2−2j1(s+δ1+δ2+1)22j1 .

Hence

χTj1
= inf

v∈{0,...,Tj1}

1

Tj1

∑

u∈{0,...,Tj1}
u6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)

≤ C
1

σ2
2−2j1(s+δ1+δ2+1)22j1 . (7.17)

Bringing (7.11) and (7.17) together and choosing j1 such that

2−j1(s+δ1+δ2+1) = c0σ,

where c0 denotes a well chosen constant such that for any estimator f̃ of f , we
have

ν−2
j1

sup
f∈Bs

p,q(M)

E

(∫

[0,1]2

(
f̃(x)− f(x)

)2
dx

)
≥ c exp

(
(α/2)22j1 − Cc202

2j1
)

≥ c,

where
νj1 = c2−j1s = cσs/(s+δ1+δ2+1).

This completes the proof.
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