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The computational complexity of time-dependent perturbation theory is well-known to be largely
combinatorial whatever the chosen expansion method and family of parameters (combinatorial se-
quences, Goldstone and other Feynman-type diagrams...). We show that a very efficient perturba-
tive expansion, both for theoretical and numerical purposes, can be obtained through an original
parametrization by trees and generalized iterated integrals. We emphasize above all the simplicity
and naturality of the new approach that links perturbation theory with classical and recent results
in enumerative and algebraic combinatorics. These tools are applied to the adiabatic approximation
and the effective Hamiltonian. We prove perturbatively and non-perturbatively the convergence of
Morita’s generalization of the Gell-Mann and Low wavefunction. We show that summing all the
terms associated to the same tree leads to an utter simplification where the sum is simpler than any
of its terms. Finally, we recover the time-independent equation for the wave operator and we give
an explicit non-recursive expression for the term corresponding to an arbitrary tree.

I. INTRODUCTION

Effective Hamiltonians provide a way to determine the low-energy eigenvalues of a (possibly infinite dimensional)
Hamiltonian by diagonalizing a matrix defined in a subspace of small dimension, called the model space and hereafter
denoted by M. Because of thiﬂ appealing feature, effective Hamiltonians are used in nuclear, atomic, molecular,
chemical and solid-state physicsH.

These theories are plagued with a tremendous combinatorial complexity because of the presence of folded diagrams
(to avoid singularities of the adiabatic limit), partial resummations, subtle “linkedness” properties and the exponential
growth of the number of graphs with the order of perturbation. This complexity has two consequences: on the one
hand, few results are proved in the mathematical sense of the word, on the other hand, it is difficult to see what is
the underlying structure of the perturbative expansion that could lead to useful resummations and non-perturbative
approximations.

To avoid these pitfalls, we take a bird’s-eye view of the problem and consider a general time-dependent Hamiltonian
H(t). This way, we disentangle the problem from the various particular forms that can be given to the Hamiltonian
and which have lead in the past to various perturbative expansions. To be precise, take the example of fermions
in molecular systems. The Coulomb interaction between the electrons (say V') can be viewed as a perturbation
of a “free Hamiltonian” modeling the interaction with the nuclei (in the Born-Oppenheimer approximation). One
can take advantage of the particular form of V' (which is a linear combination of products of two creation and two
annihilation operators in the second quantization picture) to represent the perturbative expansions using a given family
of Goldstone diagrams (see e.g. ref. E for such a family). However, the general results on perturbative expansions
(such as the convergence of the time-dependent wave operator) do not depend on such a particular choice.

Thus, we consider an Hamiltonian H(t) and we build its evolution operator U(t,to), which is the solution of the
Schrédinger equation (in units i = 1)

AU O )

with the boundary condition Ul(to,tg) = 1. In perturbation theory, H(t) := e~ €ltleoty/e=*Hot ig the adiabatically
switched interaction Hamiltonian in the interaction picture (here Hy and V stand respectively for the “free” and
interaction terms Ef the initial Hamiltonian) and singularities show up in the adiabatic limit (tg — —oo and € — 0).
Morita discoveredh that, in this setting, the time-dependent wave operator

Ot to) == Ult,to)P(PU(t,to)P) ",

where P is the projection onto the model space M, has no singularity in the adiabatic limit. Moreover, the wave



operator determines the effective Hamiltonian because

Heg := lim PHQ(0, —00). (2)
€e—0

However, as we have already alluded to, the effective computation of these operators raises several combinatorial and
analytical problems that have been addressed in a long series of articles (several of which will be referred to in the
present article).

In the first sections of the paper, we consider a gegeral time-dependent Hamiltonian H(t) (not necessarily in the
interaction picture). In this broader setting, Jolicardt found that the time-dependent wave operator provides also a
powerful description of the evolution of quantum systems (see ref. Efor applications). Then, we derive three (rigorously
proven) series expansions of the wave operator. The first one is classical and can be physically interpreted as the
replacement of causality (i.e. the Heaviside step function 6(t—t')) by a “propagator” Op(t—t') := 0(t—t")Q—0(t'—t)P,
where @) = 1— P. This “propagator” is causal out of the model space (fp(t —t') = 0 for t < ¢ on the image of Q) and
anticausal on it, like the Feynman propagator of quantum field theoryﬁ. However, this sum of causal and anticausal
orderings is cumbersome to use in practice. A second series expansion is obtained by writing the wave operator
as a sum of integrals over all possible time orderings of the Hamiltonians H(t;) (see Sect. ). This expansion,
parametrized by all the permutations (or equivalent families), is used in many-body theory and gives rise to a large
number of complicated terms. The third expansion is obtained by noticing that some time orderings can be added to
give simpler expressions. This series is naturally indexed by trees and is the main new tool developed in the present
paper. Among others, we derive a very simple recurrence relation for the terms of the series. We also show that the
very structure of the corresponding generalized iterated integrals showing up in the expansion is interesting on its
own. These integrals carry naturally a rich algebraic structure that is connected to several recent results in the field
of combinatorial Hopf algebras and noncommutative symmetric functions. The corresponding algebraic results that
point out in the direction of the existence of a specific Lie theory for effective Hamiltonians (generalizing the usual
Lie theory) are gathered in an Appendix.

In the last sections of the paper, we restrict H(t) to the interaction picture and we consider the adiabatic limit.
We first prove that the adiabatic limit exists non perturbatively. We show that the effective Hamiltonian defined
by eq. (E) has the expected properties. Then, we expand the series and we give a rigorous (but lengthy) proof that
the term corresponding to each time ordering has an adiabatic limit. Then, we consider the series indexed by trees
and we give a short and easy proof of the existence of that limit. Finally, we provide a direct rule to calculate
the term corresponding to a given tree and establi?b the connection between the time-dependent approach and the
time-independent equations discovered by Lindgrenll and Kvasnickall.

The existence of this series indexed by trees can be useful in many ways: (i) It describes a sort of superstructure
that is common to all many-body theories without knowing the exact form of the interaction Hamiltonian; (ii)
It considerably simplifies the manipulation of the general term of the series by providing a powerful recurrence
relation; (iii) It provides simple algorithms to calculate the terms of the series; (iv) The number of trees of order n,
n%rl(%?) ~ - g:b/; being subexponential, it improves the convergence of the series ’H; (v) Tt can deal with problems
where the Hamiltonian Hj is not quadratic. Indeed, many-body theories most often require the Hamiltonian Hy to
be free, i.e. to be a quadratic function of the fieldstd. As noticed by Bulaevskii®d, this is not the good point of view
for some applications. For example, in the microscopic theory of the interaction of radiﬁon with matter, it is natural
to take for Hy the Hamiltonian describing electrons and nuclei in Coulomb interaction=d, the perturbation being the
interaction with the transverse electric field. In that case, quadratic free Hamiltonians many-body theories break
down whereas our approach is still valid. Actually, it is precisely for that reason that we originally developed the tree
series approach; (vi) Last, but not least, the tree-theoretical approach connects many-body theories with a large field
of knowledge that originates in the “birth of moderiﬁiﬁctive combinatorics” in the seventies with in particular the
seminal works of Foata, Schiitzenberger and Viennot=It3. See e.g. ref. E for a survey of the modern combinatorial
theory of tree-like structures.

From the physical point of view, the tree expansion is particularly interesting in the adiabatic limit. Indeed, the
denominator of each of its terms is a product of EZQ — EJP factors, where EJP is the energy of a state in the model

space M and E]Q the energy of a state not belonging to M. In the usual many-body expansions, the denominators are

products of ), EZQ - E]P factors, where the sums contain various numbers of elements (corresponding therefore
to multiple transitions between low-energy and excitated levels). In that sense, the tree expansion is the simplest
possible because each term is a product of single transitions between two states.

We now list the main new results of this paper: (i) A recursion formula that generates the simplified terms of
the time-dependent perturbation series (theorem E), (ii) when the interaction is adiabatically switched on, a non-
perturbative proof of the convergence of the wave operator and a characterization of the states of the model space
that are transformed into eigenstates of H by the wave operator (theorem [); (iii) a proof of the existence of the



3

adiabatic_limit for the terms of the series expansion of the wave operator (theorem [); (iv) a recursive formula
(lemma [19) and an explicit form (theorem [[4) for the general term of the time-independent perturbation series.

II. TIME-DEPENDENT HAMILTONIAN AND COMBINATORICS

We consider a time-dependent Hamiltonian H(t), which is a self-adjoint operator on a Hilbert space H, and its
evolution operator U(t,tp) defined in eq. () Since we are interested in the combinatorial aspects of the problem, we
coEsider the simple case where H (t) is a strongly continuous map from R into the bounded self-adjoint operators on
HE. In that case, the Picard-Dyson series

0 t t1 tn—1
1+Z(71)"/ dtl/ dt2.../ At H(ty) ... H(tn),
n=1 to to to

converges in the uniform operator topology to U(¢,to) and U(t,tg) is a jointly strongly continuous two-parameter
family of unitaries gqn H (see section X.12 of ref. ﬁ)

Following MoritaH, Jolicard® established a connection between the evolution operator and the effective Hamiltonian
approach by defining

Ot to) == Ult,to)P(PU(t,to)P) ",

where P is a projection operator onto M and (PU(t, to)P)f1 is the inverse of PU(t,to)P as a map from M = PH
to itself. This map is invertible if and only if there is no state |¢) in M such that (¢|U(t,to)P = 0. This condition is
similar to the one of time-independent perturbation theorytd. We assume from now on that the condition is satisfied
and we define three expansions for Q(t,tp).

A. First expression for )

We start proving an elegant expression for €2, that was stated by Michels and Suttorp@ and Dmitriev and
Solnyshkinats.

Theorem 1
=) t t t
Qt, tg) = P+Q Z(—z)"/ dtq / disy .. / dt, H(t1)0p(t1 — ta)H(t2)...0p(tn—1 — tn)H(t,)P, (3)
n=1 to to to

where Q@ =1 — P and 0p(t) = 6(t)Q — 0(—t) P, with 0 the Heaviside step function.

Proof. We first rewrite the Picard-Dyson series as U(t,to) = 1+ ), Un(t, to) with Uy(t,t0) == —2 ftto dt1 H(t1) and,
forn > 1,

Un(t,to) = (71)” /tt dtl e /tt dth(t1>9(t1 - t2) .. .o(tn,1 — tn)H(tn>

Then, by using 6(t) + 6(—t) = 1, we notice that
0(t) = P+0(t) —0)P —0(—t)P =P+ 0p(t).

Now, we replace 6(t) by the sum of operators P+ 6p(t) in the expression for U, (t,t). This gives us 2”1 terms with
various numbers of P and 6p. Denote by Cy,(t,to) the term with no P (with the particular case Cy(¢,to) = Ui (t, to)).
Take then any other term. There is an index ¢ such that the first P from the left occurs after H(¢;). Therefore, the
integrand of this term is

H(fl)ep(fl — tg) . .Gp(ti_l — tl)H(tl)PH(ﬁH_l) R

Observe that the integral over t1,...,t; is independent from the integral over ¢;y1,...,t,. The first integral gives
Ci(t,to), the second integral is a term of the Picard-Dyson series for U, _;(t,to). Thus, the sum of the 2"~! terms
yields

n—1

Un(t,to) = C(t,to) + > Ci(t,to) PUn_i(t, to).

i=1



If we denote by K (¢,t9) the sum of all the C,,(t,ty) with n > 0, we obtain U =1+ K + KP(U — 1), so that
UP = P+ KPUP. (4)

The operator K is called the reduced evolution operator by Lindgren and collaboratorsa. If we define w := P+ QKP,
eq. () becomes

UP = P+ (w—-P+PKP)PUP=P+wPUP—-PUP+ PKPUP.
This equation can be simplified by using eq. (Q) again
UP = P4+ wPUP — PP =wPUP.
Thus, w = Q and eq. () is satisfied. O

Despite its elegance, eq. (E) is not immediately usable. To illustrate this point, consider the third-order term

t t t
Qs = 10 / dh / dts / Ats H (1) (b — t2)H ()0 (s — t3)H (t5)P.
to to to

If we expand 0p(t) = 0(t)Q — 6(—t)P, we obtain four terms
ZQH(tﬂQH(fg)QH(%)P fOI‘ tl Z tQ and tQ Z tg,
—’LQH(tQQH(ﬁg)PH(%)P for tl Z tQ and tQ S tg,
—’LQH(tl)PH(tg)QH(t3)P for tl S tQ and tQ Z tg,
ZQH(tl)PH(t2>PH(t3>P for tl S t2 and t2 S tg.

The first and last terms have integration range t; > to > t3 and t3 > to > t1, respectively and give rise to iterated
integrals. The integration range of the second term is ¢; > ¢ and 3 < t3. Such an integration range is not convenient
because the relative position of ¢; and 3 is not specified. The integration range has to be split into the two subranges
ty > t3 > to and t3 > t1 > to. Each subrange defines now an iterated integral. For example t; > t3 > to gives

t t1 ts
’L/to dtl /to dtg /to dtQQH(tl)QH(tQ)PH(tg)P

Similarly, the integration range of the third term (¢; < ty and to > t3) is the union of to > ¢ > t3 and to > t3 > t;.
We see that 3 is sum of six iterated integrals corresponding to the six possible orderings of ¢1, to and t3.

B. Q in terms of permutations

We consider again the previous example, and we change variables to have a fixed integration range s; > so > s3.
If we sum over all time orderings, we obtain

0 = 1 / ds) / " dsy / " s (QH(51)QH (52)QH (53)P — QH(s1)QH (s3) PH (52)P — QH (s2)QH (s3) PH (s1)P

—QH(SQ)PH(Sl)QH(S3)P - QH(Sg)PH(Sl)QH(SQ)P + QH(S3)PH(82)PH(81)P) . (5)
In ref. @, we showed that this result can be generalized to all orders and that €, is a sum of n! iterated integrals
corresponding to all the orderings of ¢, ...,t,. More precisely, we obtained the series expansion for )
o0 t t1 tn—1
Qt,to) = P+> > / dty / dts .. / dtn X (to1) - - - X (to(n))s (6)
n=10c€e8, to to to

where S, is the group of permutations of n elements. The operators X are defined, for n = 1, by X (¢) := —QH ()P
and, for n > 1 and any o € Sy, by X (t,(1)) := —1QH (t;(1)) and

X(top) = —1QH(ty(p) if 1 <p<nanda(p)>oalp—1),
X(to(p) = tPH(ty(p) if 1 <p<mnando(p) <olp—1),
X(tomn)) = —1QH (tyn))P if o(n) > o(n —1),

X(to(n)) = 1PH(ty@))P if o(n) <o(n—1).



Each term of eq. (f]) is now written as an iterated integral. However, the expansion (f]) is still not optimal because
some of its terms can be summed to get a simpler expression. As an example, consider the fourth and fifth terms of
eq. (fl), where we replace s; by t;.

7 = z/t dt, /tl dts /t2 dts (QH(tQ)PH(tl)QH(tg)PJrQH(tg)PH(tl)QH(tQ)P).

The first and second terms of the right hand side of this equation are denoted by Z; and Zs, respectively. We
transform Zs by exchanging variables to and t3.

t1 t3 t1 t1
—1 /to dtl / dtg / dtQQH(tQ)PH(tl)QH tg /t0 dtl /to dtg /t2 dthH(tg)PH(tl)QH(tg)P

where we also exchanged the order of the integrations over t3 and to. This can be added to Z; and we obtain the
simpler expression

t t1 t1
7 = —’L/ dtl/ dtg/ dthH(tQ)PH(ﬁl)QH(tzg)P
t() 0 tO

Such a simplification is not possible for the other terms of 23. In the next section, we determine how this simplification
can be extended to the general term of €.

Before closing this section, we need to specify more precisely the relation between the permutations o and the
sequence of P and @ in the expansion of eq. (). When we expand all the 0p(t; — ti41) in eq. (), we obtain an
integrand of the form (—:)"QH (t1)R1H (t2) ... R,—1H (t,)P, multiplied by a product of Heaviside functions, where
R; takes the value — P or (). We aim to determine the relation between the sequence R; ... R,,_1 and the permutations
o in eq. ([). From the definition of X (ts()), it appears that R; = —P if o(i) > o(i+1) and R; = Q if o(i) < o(i+1).
The set of indices ¢ suchthat o(i) > o(i + 1) is called the descent set of o, denoted by D,. It is also called the
shape of the permutation®d. For instance, the descent set of the permutations (213) and (312) is {1}, corresponding
to (Rl,Rg) = (7P,Q)

C. Permutations and trees

In many-body physics, the expansion in Goldstone diagrams corresponds (among other things) to the expansion of
Q into all time orderings €),. In that conte)ﬁ@s@ﬁl authors noticed that some diagrams corresponding to different
orderings can be added to give a simple sum as we saw in the previous section. These are special cases of the
simplification that we shall present which, as far as we know, was never stated in full generality. The first difficulty
is to find the proper combinatorial object to represent the sets of permutations that lead to simplified sums. %e
shall find it after a short algebraic detour meant to recall the notion of tree and its relation to permutamonsB
The trees we consider have received various names in the literature: binary trees in ref. E, but also (ta quote only a
few occurrences) plane rooted complete binary treﬁ, extended binary trees@ or planar binary treestd. Since these
objects are rarely used in physics, we first link them with the trees commonly found in graph theory. This lengthy
definition will then be replaced by a much easier one.

A common tree is a connected graph without loops. In other words, a common tree is a set of vertices linked by
edges such that there is a unique way to go from any vertex to any another one by travelling along edges. An example
of a common tree is given in fig. (a). A rooted tree is a common tree where one vertex was selected. This particular
vertex is called the root. The level of a vertex in a rooted tree is the number of edges that separates this vertex from
the root. The root has level 0. It is natural to draw a rooted tree by putting the root at the bottom and drawing a
vertex above another one if its level is larger. The rooted tree of fig. Iil(b) was obtained by selecting as the root the
lowest left vertex of fig. (a). The root is indicated by a white dot and a dangling line. In a rooted tree, the children
of a vertex v are the vertices v’ that are linked to v by an edge and such that the level of v’ is larger than the level
of v. A plane rooted binary tree is a rooted tree where each vertex has zero, one or two children, and each edge is
oriented either to the left or to the right. If a vertex has two children, then one of the edges is oriented to the left
and the other one to the right. Fig. [ll(c) shows one of the plane rooted trees that can be obtained from the rooted
tree of fig. (b) The adjective “plane” means that an edge going to the right cannot be identified with, or deformed
into an edge going to the left. A plane rooted complete binary tree is a plane rooted binary tree where each vertex is
“completed” by drawing leaves as follows: if a vertex has no child, draw a leaf (i.e. a line) to the left and one to the
right, if a vertex has one child, then draw a leaf to the right if the child is to the left and draw it to the left if the
child is to the right. Fig. El(d) shows the plane rooted complete binary tree that is obtained from the plane rooted



(b) (c) (d) ()

(a)

FIG. 1: Construction of plane rooted complete binary tree. (a) a common tree; (b) a rooted tree with its vertex levels; (c) a
plane rooted binary tree; (d) a plane rooted complete binary tree; (f) a simplified plane rooted complete binary tree.

binary tree of fig. El(c) In practice, the vertices are no longer necessary and they are not drawn, as in fig. (f) If

Y, denotes the set of plane rooted complete binary trees with n vertices, we see that Y17 = { Y }, Y5 = { LY I3

Ys ={ \<<( , \? , V , ?/ , \fy }. They are much more numerous than the common trees (there is only one common
tree with one, two or three vertices). For notational convenience, plane rooted complete binary trees will be simply
called “trees” in the rest of the paper.

Fortunately, there exists a much simpler definition of the trees, that use a sort of building rule. We first denote
the empty tree, i.e. the tree with no vertex, by| , which is a dangling line without root (a dangling line with a root

and no other vertex belongs to the tree Y ). Then, for any integer n, Y,,, is defined recursively by Yy := {| } and, for
n>0,Y, ={T'VvTh : Ty €Yy,To €Yy _1,k=0,...,n— 1}, where Ty V T is the grafting of the two trees T}
and T», by which the dangling lines of 77 and T% are brought together and a new root (with its own dangling line) is

grown at their juncture. For example, | V| = Y, | VY = \f/, YVY = V Note that each tree of Y;, has n
vertices (including a root) and n + 1 leaves. The order |T'| of a tree T is the number of its vertices.

If C, denotes the number of elements of Y,, the recursive definition of Y,, implies that Cy; = 1 and C,, =

Z;é CyCp—_k—1, so that C, = n%rl(i?) are the famous Catalan numbers. For n=0 to 10, C,=1, 1, 2, 5, 14,
42, 132, 429, 1430, 2, 16796. The Catalan numbers enumerate a large number of (sometimes quite different)
combinatorial objectstd. The main practical interest of trees with respect to other combinatorial interpretations is
that their recursive definition is very easy to implement.

We noticed in the previous section that, at order three, the terms €0, corresponding to two specific permutations o
can be added to give a simple result. At the general order, we shall see that the sum of €2, is simple if it is carried
out over permutations ¢ associated with the same tree. But for this, we need to associate a tree @ each permutation.
The relevant map from permutations to trees belongs to “the ABC’s of ﬁ@;@al enumeration”Bd and is historically
one of the founding tools of modern bijective and algebraic combinatoricsttEdEd. We describe it in the next section.

1. From permutations to trees

We first map any n-tuple I = (i, ..., iy,) of distinct integers to a tree T € Y,,. The mapping ¢ is defined recursively
as follows: if I = (i) contains a single integer, then ¢(I) := Y ; otherwise, pick up the smallest element iy of I, then

o(I) = | Vo((iz,... in)), if k=1,
¢(I) = (b((il,...,in,l)) V ‘ 5 lf k:n,
o(I) : ¢((il,---,ik—1)) v¢((ik+1,...,in)), otherwise.
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In the following, we frequently abuse notation by writing ¢(i1,...,4,) or even ¢(iy ..., ) instead of gb((il, . ,zn))
For a permutation o € S,,, the corresponding tree is ¢(o) = gb(a(l), cee o(n)). For example

b(1) = Y

o(12) = Y, ¢(21)= Y,

o123 = ¥V, (13 =Y, o13)= 7,
o23) = ¥, o312 = Y, e@)= .

Note that the two permutations (213) and (312) correspond to the same tree, and they are also the two permutations
that add up to a simple sum in the calculation of Z at the end of section . This is not a coincidence.

To simplify the proofs, we embrace the three cases of the definition of ¢ into a single one as follows. We first define
the concatenation product of two tuples I = (i1,...,i,) and J = (j1,...,m) a8 I - J = (i1, ., bn,J1y--+,Jm). We
extend this definition to the case of the zero-tuple Iy = () by Iy - I = I - Iy = I. Then, for any n-tuple I of distinct
integers, we define ¢(I) by ¢(I) = | if n =0 and ¢(I) = ¢(I1) V ¢(I2) otherwise, where I; and I are determined by
I =1 - (minI) - I5. Note that I; or I can be the zero-tuple.

We first prove an easy lemma.

)

Lemma 2 If the elements of the two n-tuples I = (i1,...,in) and J = (j1,...,jn) of distinct integers have the same
ordering (i.e. if i, < iy if and only if ji. < ji for all k and l in {1,...,n}), then ¢(I) = ¢(J).

Proof. The proof is by induction. If n = 0, then I = J = 0 and ¢(I) = ¢(J) = |. Assume that the property
is true for k-tuples of distinct integers up to & = n — 1 and take two n-tuples I and J having the same ordering.
Then, the minimum element of both is at the same position k (i.e. minI = i and minJ = ji) and I = I; - (ix) - I,
J = J1 - (jk) - J2, where I1 and J; (Iz and J, respectively) are two (k — 1)-tuples ((n — k)-tuples, respectively) of
distinct integers have the same ordering. By the recursion hypothesis, we have ¢(I1) = ¢(J1) and ¢(I2) = ¢(J2) and

the definition of ¢ gives us ¢(I) = ¢(I1) V o(I2) = ¢(J1) V o(J2) = ¢(J). O
As a useful particular case, we consider the situation where J describes the ordering of the elements of I: we
order the elements of I = (i1,...,4,) increasingly as i, < --+ < ig,. Then j; is the position of 4; in this ordering.

More formally, J := (771(1),...,771(n)), where 7 is the permutation (ki,...,k,). The n-tuple J is called the
standardization of I and it is denoted by st(I). If we take the example of T = (5,8,2), the position of 5, 8 and 2 in
the ordering 2 < 5 < 8 is 2, 3 and 1, respectively. Thus, st(5,8,2) = (2,3,1). By construction, I and st(I) have the
same ordering and ¢(I) = @(st(I)). We extend the standardization to the case of I = 0 by st() = 0.

2. From trees to permutations

Conversely, we shall need to know the permutations corresponding to a given tree: St := {0 € Sjp| : ¢(0) = T}

(we extend this definition to the case of T = | by defining the zero-element permutation group Sy := {0}). The
solution of this problem is given by

Lemma 3 If T =T, V Ty, where |T1| = n and |T2| = m (n or m can be zero), all the permutations of St have the
form I =1, - (1) - Iy, where I is a subset of n elements of {2,...,n+m + 1} ordered according to a permutation «
of S, (i.e. st(I1) = a) and Iy is the complement of I in {2,...,n 4+ m+ 1}, ordered according to a permutation [
of St, (i-e. st(Iz) = p).

Proof. The proof is given in refs. @ and , but we can sketch it here for completeness. The simplest examples are
Sr =40} for T = | and Sy = {(1)} for T = Y. Now take T = T1 V T3 as in the lemma. By the definition of
¢, the minimum of the tuple I = (o(1),...,0(n+m+1))iso(n+1) =1and I =1 - (1) - I, where ¢(I1) = T}
and ¢(Iz) = To. We saw in the previous section that ¢(I1) = ¢(st(I1)). By definition st(I;) is a permutation of S,,.
Therefore, st(I1) belongs to Sy, and, similarly, st(I2) belongs to St,. It is now enough to check that each element of
St is obtained exactly once by running the construction over all orderings and all permutations of 77 and 75. O

This lemma allows us to recursively determine the number of elements of St, denoted by |Sz|, by |Sr| =1 for T = |
and T = Y and, for T =T V T5,

ITll)
Sr| = St | 153, . 7
ST <|T1| ST [ ST | (7)



See ref. @ for an alternative approach.

Example: Consider the tree T = Ty V T5, with Ty = Y and Ty = V , so that n = 1 and m = 3. Sp, contains
the single permutation o = (1) and, according to the examples given in the previous section, the two permutations
of S, are 51 = (213) and B2 = (312). We choose the permutations « and S1, we pick up n = 1 element (for example
3) in the set J = {2,3,4,5}, so that I; = (3) and we order the remaining elements {2,4,5} according to 31, so that
I, = (4,2,5). This gives us o = (31425). If we pick up the other elements of J to build I; we obtain (21435), (41325)
and (51324). We add the elements obtained by choosing 82 and we obtain eight permutations:

Sy = {(21435), (21534), (31425), (31524), (41325), (41523), (51324), (51423)}.

We can check that eq. ([{) holds and that [Sp| = 8.

D. Recursion formula

The permutations corresponding to a tree can be used to make a partial summation of the terms of the Picard-Dyson
expansion.

Definition 4 For any tree T, we define Qr(t,to) by Qr(t,to) =P if T = | and

t t1 tn—1
Qr(t,to) = Z / dtl/t dﬁg.../t At X (to1)) - X (to(n)),
0 0

oeSyp /to

otherwise, where n = |T|.

With this notation we have obviously Q(t,tg) = > ,Qr(t,to) = >, Qo(t,to), with the notation Q,(t,t0) :=
ftto dty ttol dts... f:o"’l dtn X (to(1)) - - - X (ty(n)) and where o runs over all permutations (of all orders). The term
of order 0 of this series is {2 = P and the term of order one is

Qr(t,tg) = —z/t dsQH (s)P,

to

for T'= Y . The other terms enjoy a remarkably simple recurrence relation:

Theorem 5 If |T| > 1, then Qr(t,t9) can be expressed recursively by

t
Qr(t, tg) = —z/ dsQH ()1, (s,t0), if T =1 V Ty,

to

t
QT(t,to) = ’L/ dSQTl(S,ﬁQ)H(S)P, fT="TV]| ,

to

t
QT(t,to) = Z/ dSQTl(S,to)H(S)QT2(S,to), ifT:Tl\/TQ,

to

where Ty # | and Ty # | .

Note thatg similar recursive expression was conjectured by Olszewski for the nondegenerate Rayleigh-Schrodinger
expansiontd.

Proof. Let us prove the theorem recursively. Consider an arbitrary T'=T1 V Ts, |T'| > 1, and assume the formulas to
hold for all the trees 7" with |T”| < |T'|. Consider for example the case where 71 # | and T» # | (the other cases
are even simpler). We define:

t t
Ar = z/ dsQr, (s, t0) H(s)Qr, (s, t0) = Y z/ ds (s, to) H () (s, to).
to a€Sr, B8, vt
This first impor, point is that, for a given tree T', all the permutations o € St have the same descent set. This is a

well-known factEd'Bd that can be deduced from the characterization of Sy at the end of section . As a consequence,



the sequence of operators P, Q and H is the same for all @ and  in Ap, and only the order of the arguments t;
varies. Therefore, the conditions of lemma E (see appendix @) are satisfied and we get:

AT = ZQ’Y(tvtO)v
Y

where v runs over the permutations such that y(|T1| + 1) = 1, st(v(1),...,v(|T1])) € Sty, st(y(|T1| + 2), ..., y(|T1| +
|T2|+1)) € S,. The set of permutations v satisfying these equations is precisely St, so that, finally: Ar = Qr(¢, o).
This concludes the proof of the theorem. O

E. Remarks
1. Nonlinear integral equation

If we denote x(t,to) = Q(t, tp) — P, then the recurrence relations add up to

t

(b o) = / dsQH(s)P + / dsQH (s)x (s, to) — / dsx(s,to)H(s)P — | dsx(s,to)H(s)x(s,to).  (8)

to to to to

The derivative of this equation with respect to ¢t was obtained in a different way by J olicardﬂ.

2.  Permutations, trees and descents

We saw that, for a given tree T, all permutations of St have the same descent set. We can now give more detaﬂsE’@.
The relation between the trees and the sequences of operators P and @ in eq. (H) is very simple. Consider the sequence
of leaves from left to right. Each leaf pointing to the right corresponds to a P, each leaf pointing to the left correspond

to a ). For example, the tree % corresponds to the sequence QQPP. From the combinatorial point of view, this
description emphasizes the existence of a relationship between trees and descent sets (or, equivalently, hypercubes),

see e.g. refs. @,@»@ and our Appendix.

ITII. ADIABATIC SWITCHING

Morita’s formula is most often applied to an interaction Hamiltonian H€(t) := e~ <ltle*Hoty/e=Hot  We write
Ey, ..., E,,...and P, ..., D,, ... for the eigenvalues of Hy and for an orthogonal basis of corresponding eigenstates. We
assume that the spectrum is discrete and that the eigenvalues are ordered by (weakly) increasing order. The ground
state may be degenerate (Ey = Eq = ... = Fj, for a given k). The model space M (see the Introduction) is the vector
space generated by the lowest N eigenstates of Hy (with N > k). We assume that the energies of the eigenstates of
M are separated by a finite gap from the energies of the eigenstates that do not belong to M. The projector P is the
projector onto the model space M. Following the notation of the Introduction, the energies of the eigenstates that
belong (resp. do not belong) to M are denoted by Ef (resp. ElQ ).

In this section, we prove the convergence of each term of the perturbation expansion of the wave operator when
€ — 0. For notational convenience, we assume that ¢ < 0. We first give a nonperturbative proof of this convergence.
Then, we expand in series and we consider the different cases of the previous sections.

A. Nonperturbative proof

The nonperturbative proof is important in this context because its range of validity is wider than the series expansion
(no convergence criterion for the series is required). Moreover, the proof that the wave operator indeed leads to an
effective Hamiltonian is much easier to give in the nonperturbative setting.

The first condition required in the nonperturbative setting is that the perturbation V must be relatively bounded
with respect to Hy with a bound strictly smaller than 1. This epndition is satisfied for the Hamiltonian describing
nuclei and electrons interacting through a Coulomb potentialtd. Before stating the second condition, we define
the time independent Hamiltonian h(\) = Hy + AV, its eigenvalues E;(\) and its eigenprojectors P;(\), such that
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(A). The second condition is that the eigenvalues E;(\) coming from the eigenstates of the
model S (i. e such that P;(0)P = P;(0)) are separated by a finite gap from the rest of the spectrum. According
to Kat% e eigenvalues and eigenprojectors can be chosen analytic in A\. Then, a recent version of the adiabatic
theorem hows that there exists a unitary operator A, independent of €, such that

lim [|U(0, —00) P; (0) — /< AP, (0)]| = 0,

where U (t,to) is the evolution operator for the Hamiltonian H¢(t) = e~clfle*Hoty/e=*Hot and

[T E(0) - E;(N)
= /o R — dA.

In other words, the singularity of U.(0, —00)P;(0) is entirely described by the factor e*/¢. The operator A satisfies
the intertwining property AP;(0) = P;(1)A. To connect this result with the case that we are considering in this
paper, we have to choose a model space M that satisfies the following condition: there is a set I of indices j such that
P =3 Pj(0), where P is the projector onto M.

This enables us to give a more precise condition for the invertibility of PU.(0,—oco)P. The adiabatic theorem
shows that, for small enough ¢, PU.(0, —c0)P is invertible if and only if PAP is invertible. If we rewrite PAP =
>.; PAP;(0) = >°, PP;j(1)A, the unitarity of A implies that PAP is invertible iff the kernel of }_, PP;(1) is trivial.
We recover the well-known invertibility conditiontd that no state of the model space should be orthogonal to the vector
space spanned by all the eigenstates of H with energy F;(1), where j runs over I. Notethat, when the condition of
invertibility is not satisfied, it can be recovered by adding the perturbation step by stepe@

Then, we have

Theorem 6 With the given conditions, the wave operator

Q = lim U.(0, ~00) P(PU(0, ~00) P) ™"
€—>

is well defined. Moreover, there are states |@¢;) in the model space such that §|<,5j> s an eigenstate of H with eigenvalue

E;(1) and the effective Hamiltonian Heg := PHS) satisfies Hog|p;) = E;(1);).

Proof. We first define A, = P;(0)AP;(0), for j and k in I. Then an inverse B of PAP is defined by >, ; AjxBr =
§;1P;(0) where Bj, = Pj(0)BP;(0). Then, (PU(0, —co0)P)~! ~ > ik e*%i/<Bj;, and

Qc(0, —00) = Ue(0,—00) P(PU(0, —00)P) ™" ~ > " AP;(0)Bjx

Since the right hand side does not depend on €, then Q.(0, —c0) has no singularity at e = 0 and

Q = th ZAP

This proves the existence of the wave operator. To prove the existence of the states |@;) of the theorem, define
|@;) = PA|p;), where |p;) is an eigenstate of P;(0): P;(0)|¢;) = |¢;). Indeed, we have

Qlg;) = QPAP;(0)|¢;) =Y APe(0)Bim Amjle;) = AP;(0)|;) = P;(1)Alg;),
km

where we used the intertwining property in the last equation. We can now check that §|¢j> is an eigenstate of H
with eigenvalue E;(1).

HQ|g;) = h(1)P;j(1)Alg;) = E;(1)P;(1)Alg;) = E;(1)Q|@;)- 9)
Finally, by multiplying eq. (E) by P from the left, we obtain
Heg|5) = E;(1)PQI@;) = E;(1)|%;),
because PQ = P and P|@;) = |5;). O

Thus, the eigenvalues of Heg are eigenvalues of the full Hamiltonian H. This is exactly what is expected from an
effective Hamiltonian. In practice, the operator A is not known and the states |@;) are obtained by diagonalizing
Heg.



11

B. Series expansion

We consider again the series expansion in terms of permutations. A straightforward calculation@’@ of the Picard-
Dyson series gives us

iy (i [V[®iy) - Py, [V[Pi,) (@i, [V[P0)
U.(0,— <I> (I) 2= - ,
( 00)[®o) = [®o) + Z z; (Eo — E;, +me)(Eo — Eiy + (n— 1)e) ... (Eg — E;,, + 1€)

n=11;

where we used the completeness relation 1 = . [®;)(®;|. This expression clearly shows that the terms of the
expansion (and the evolution operator) are divergent as e — 0 when any E;, is equal to Ejp.
For o € S, we set Q,(t) := Q,(t, —00). We then have

n—1
Qo (t) = (—1) / dty / dts .. / dt, QelcTHo)to /et Hoto) RL

(€+’LH0 d(z)veszgtd(g)RQ Rn le(EJrng)ta(n)Vef’LHota(n)P

where RF := Q if o(k+1) > o(k) and R* := —Pif o(k +1) < o(k). We replace R* by + > s lokt1) (o] where,
if R¥ = Q, then &+ = + and the sum is over the image of @, and if R¥ = —P, then + = — and the sum is over the
image of P. Thus

t1 tn—1
Q, (t) / dt, / dts .. / dtne(e—HFl —ng)tc,(l)e(e-i—ng—ng)tU(Q) o e(6+an—an,+1)tU(n)

Z la){ea|Viag) .. {en|V]aniti)(antal, (10)

Q1...Qp41

where d is the number of elements of the descent set of o, F; is the energy of «; and where the sum over «; is over
the image of @), the sum over a,4+1 is over the image of P and the sum over oy for 1 < k < n+1 is over the image of
Q if o(k) > o(k — 1) and over the image of P otherwise. Consider now the time integral

t1 tn—1
/ dtl / dtQ / dtne(e—HFl —ng)tU(l)e(e—i—ng—ng)tG(z) o e(e+an,—an,+1)tU(n)

ST (1) St(n—1)
_ / ds'r(l) / dST( 9) - / dST(n)e(e-HFl—le)sle(e—i—ng—ng)sz o e(€+1Fn,—an+1)Sn,,
—o0

— 00 — 00

where 7 = o~ !. The integral over s, is

dST(n)e(CJﬂFT(n)*1Fr(n)+1)sr(n) —

—00 (6 + ZFT(n) - ZFT(n)Jrl) .

/Sr(nfl) elettFr () —=1Fr(n)41)8r(n—1)

The integrand of the integral over s,(,_1) becomes

6(26+1(FT(TL)+FT(7L71)7FT(TL)+17FT(7171)+1)ST(7171)

(6 + ZFT(’IL) - ZFT(’IL)-‘rl)

A straightforward recursive argument shows that

Xo(n)t
o t) = s
0 = X0 X
where
Xa(k) = ke+ Z(Fafl(n) +-- Fafl(n—k-l-l) - Fafl(n)—i-l - Fafl(n—k—i-l)—i-l)- (11)
Therefore,
—)" (=1 deXa(n)t
Q@ = Y CLEDT i Vias) . anlVianss) (@nsil: (12)

X, (1) ... Xo(n)

Q1.0 41
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C. Examples

A few examples of Q,(0) are
D) (D;|V|®;)(D;
s e+ (E; - K )

2 D) (3| V]2;) (P, |V |Pr) (P
Q12 = (=1 s
( )(O) = @i%:@k (€+Z(EJQ 7Elf)) (2€+Z(EZQ *Eif))
(a2 D) (P3| V[R;)(P;|V|Ps) (D]
=) Z (e +u(ES — EP))(2¢ + B¢ — EF))’

)

Q21)(0) =
<I>7;<I>j<1>k

Finally we consider two examples that will prove useful:

()3 | i) (P4 V|P;)(®; |V|‘I’k><¢k|V|‘1’z><¢l|

Q15 (0) = =(=1) @ig{;@l (e—i—z EQ EP)(Qe—i—z EQ EQ—EP )(3€+Z EQ—EZP))’
= () |P:) (| V[P;) (D, |V|‘I)k><q’k|v|‘1)z><q’l|

Q(312)(0) = —(-1) <I>i<I>jZ<I>k<I>l (e—i—z EQ EP )(2€+Z EQ—l—EQ EP )) (3€+Z EQ EP))

By adding these two terms, we obtain a denominator involving only the difference of two energies.

1) (V@) (@, V| @1,) (V| @1) (@]
(e+uE? — EP)) (e + (B — BP)) (3¢ + u(E? — BF))

Q213)(0) + Q312)(0) = —(—2)°
<I>7;<I>j<1>)€<1>l

Note that the sum is simpler than either ©(213)(0) or £(312)(0). This is a general statement and the simplification
becomes spectacular at higher orders. For the example of n = 7, there is a single tree T" which is the sum of 80
permutations, and the denominator of Qr is simpler than the denominator of €2, for any of the 80 permutations o of
S7. This will be proved in section @ Note also that, if we assume that the states in the image of P (i.e. the model
space) are separated from the states in the image of Q by a finite gap ¢, so that EZQ — EJP > 6, then the denominators
of all the examples are non-zero when € — 0. In other words, the limit lim._,o 2,(0) exists for all the examples. In
the next section, we show that this result is true for all permutations o.

D. Convergence of Q. (¢)

Definition ([I]) is convenient for a computer implementation but it does not make it clear that X, (k) is nonzero
if e = 0. For that purpose, we need an alternatiye expression for X, (k), which is essentially a corrected version of
the graphical rule given by Michels and Suttorptd. We first extend any permutation o € S,, to the sequence of n + 2
integers & = ((1),...,6(n+2)) = (0,0(1),...,0(n),0). Then, for k € {1,...,n}, we define the two sets

Ss(k) == {i|1<i<n+landa(i) <k<a(i+1)},
SZ(k) = {i|1<i<n+1landa(i)>k>a(+1)}

For example, if o = (41325), then S5(1) = {1},55(2) = {1,3},55(3) = {1,3,5},55(4) = {1,5},55(5) = {5} and
S2(1) ={6},57(2) = {2,6},57(3) = {2,4,6},57(4) = {2,6},57(5) = {6}. The graphical meaning of these sets is
illustrated in Figure fJ. Notice that the vertical axis is oriented downwards in order to reflect the time-ordering in the
integrals S, (t).

Lemma 7 (i) SS(k) cannot be empty and (ii) S (k) and S; (k) have the same number of elements.

The lemma follows from the graphical interpretation of the construction of S7 (k) and ST (k). The graph of o
(constructed as in Figure 1) is a sequence of edges connecting the points (i,5(7)). Since the graph starts from (0,0)
and since there exists one point with ordinate n, any horizontal line with non integer ordinate y, 0 < y < n, will be
crossed from above by a segment (remember the vertical axis is oriented downwards). A similar elementary topological
argument shows that such a horizontal line is always crossed successively from above and below by segments, the
series of crossings starting from above and ending from below, which implies |S5 (k)| = |S7 (k)|

The key step in the proof of convergence is
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FIG. 2: Construction of S5 (3) for o = (41325). We build & = (0,4, 1,3,2,5,0), we draw a continuous line L starting from
(1,5(1)) = (1,0) to (2,5(2)) = (2,4), to (3,5(3)) = (3,1), ..., up to (7,5(7)) = (7,0). To determine S5 (3), we draw a
horizontal dashed line just above 3 and we gather the segments of L crossing the dashed line from above. In our case the
segments are ((1,0),(2,4)), ((3,1),(4,3)) and ((5,2),(6,5)). S5 (3) is the set of abscissae of the first point of each segment:
S5 (3) = {1,3,5}. Similarly, S;(3) is obtained from the segments that cross the dashed line from below: S7 (3) = {2,4,6}.

Lemma 8 For o € S,, and a given sequence a1, . ..,0n11, compatible with o (see eq. @)}, we have
Xo(k) = ke+ > FP— > aFF, (13)
JESS (n—k+1) jE€SZT (n—k+1)

where we write FiQ = F; (resp. FF' = F;) when «; belongs to the image of Q (resp. of P).

Proof. We first show that it is true for k& = 1. Indeed, X,(1) = € + t(F,-1(n) — Fy—1(n)41)- Let j = 0! (n), we have
o(j) = n. Then, either j = 1 and |aq) is in the image of @, or j > 1 and ¢ € S,, implies ¢(j) =n > o(j — 1), so that
|oj) is in the image of Q. Thus, in all cases, Fi-1(,) = FUQ,I(H). Consider now Fj ;. Either j = n and |aj11) = |nt1)
is in the image of P, or j < n and o(j + 1) < o(j) = n, so that |o;41) is in the image of P. Thus, in all cases,
Foiiny1 = Fffl(n)+1' Therefore, X, (1) = € + Z(FGQ,I(H) - Fffl(n)-u)' On the other hand, S=(n) = {o~!(n)} and
5> (n) = {o—"(n) + 1} since (j,n) is the only point of the graph with ordinate n. Thus, the two members of eq. ([LJ)
are equal for k = 1.

Assume now that eq. (E) holds for all the X, (i) with i = 1,...,k, k < n, and consider the equation (which is true
by definition of the X, (i)s):

Xo(k+1) = Xq(k) 4+ e+ o(Fj — Fiy1), (14)

where j = 071(n — k). We first treat the case 1 < j < n. Four possible situations can arise: (i) o(j — 1) > o(j) >
o(j+1), () o(j—1) <o(yj) >0 +1), (i) o(j—1) >0c(y) <o(+1)and (iv) o(j — 1) < o(j) <o(j +1). In
case (i), we have Fj; = F” and Fjy; = F/ ;. On the other hand, condition (i) implies 5(j) > &(j + 1) > &(j + 2), so
that S>(n—k) =S (n—k+1) and ST (n — k) is obtained from S5 (n —k + 1) by removing {j} and adding {j + 1}.
eq. (g) together with the hypothesis that eq. ([[d) holds for X, (k) imply that eq. (1) holds for X, (k + 1). Case
(ii) implies F; = F? and Fj1 = FF,,, case (iii) implies F; = F and Fj1 = F{%,, case (iv) implies F; = F* and
Fip= Ffil. In all cases, these identities imply that the two expressions ([[4) and (1) for X, (k + 1) do agree.

It remains to treat the boundary cases. If j = 1, then F; = F{? and we have either (i) o(1) < 0(2) and F, = F¥
or (ii) o(1) > J(Qﬁnd Fy = Ff. We know that &(1) = 0, thus, case (i) corresponds to (1) < (2) < 7(3), so that
according to eq. ([L3),

Xo(k+1) = Xo(k) = o(F? — F5?),

in agreement with eq. ([4). In case (ii) we have 5(1) < &(2) > &(3), which amounts to add 1F? and remove 1FY.
Again, eq. ([L3) holds for k 4 1. Finally, if j = n, then Fj; = FP | and we have (i) o(n — 1) < o(n) and F,, = F2
or (ii) o(n — 1) > o(n) and F,, = FX. Case (i) corresponds to &(n) < &(n + 1) > &(n + 2), case (ii) corresponds to
a(n) > &(n+1) > &(n+2). In all cases, the relation given by eq. ([L3) is satisfied for k + 1 and the induction proof
is complete. |

We can now ready to prove
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Theorem 9 The limit
0, = lim Q,(0), (15)

e—0
is well-defined.

Proof. To prove the term-wise convergence of Q,(t) as € — 0, consider eq. ([J). The sets S5(n — k + 1) and
SZ (n — k + 1) have the same number of elements, say n; and, by the gap hypothesis, we have FjQ — FF > § for any

i and j. Therefore, | X, (I<:)|2 > k2e2 + ni62 > §2, since ng, > 1. Thus, the denominator remains away from zero by a
finite amount for any € > 0 and the limit of 1/X,(k) for € — 0 is well-defined. O

IV. TREES

We showed that, for each permutation o, the wave operator Q,(t, —o0) has a well-defined limit as e — 0. The
detailed proof was rather lengthy and the final expression for X, (k) suggests physically the simultaneous occurrence
of transitions from states of the model space to states out of it. The convergence is actually much easier to show
in terms of trees, and the expressions showing up in the expansion are simpler, mathematically and physically, each
factor of the denominator corresponding to a single difference between an energy in the model space and an energy
out of it.

In this section, if N is the dimension of the model space, we write i € @ for ¢ > N and j € P for 1 < j < N, both
for notational simplicity, and to emphasize the meaning of the indices, that correspond respectively to eigenstates in
the image of @ and in the image of P (i.e. the model space).

Proposition 10 If T' =T, V T, then, fort <0,

Q_,E! tij
Qr(t) = Qr(t,—00) = Y tPITEHTINNGY 19,)(a)], (16)
i€Q,jEP

where quz 18 obtained recursively by:

- i, (2alVIDy)
For T = Y 4 Q\( T ZinQ—zEJP-l-e'
' (@] V| @)
_ . 0Y . LRIy
ForTy = ‘ I # ‘ . QT T ZkEZQ zElezE]PJr‘T‘e'
ST QF (Pk|V D)
ForTh # |, Th=|: Q7 := zkgp B9 EPH T
g QF (&), |V |®,)QH
- QY .— B B e bl TS}
For Ty 7& ‘ ’ 13 7& ‘ : QT .7’Lk€Pl€Q zEZQ*ZEJPJr‘T‘e ’
Proof. The computation of 09 follows from eq. (E) Let us consider for example the case T} = |, T # | . Then,
by applying theorem E:
t
Q Q T
QT(t) = — Z / dSQeeseszi se(in 71E;~3+|T2\G)SQ?JZQGZHUSV'q)i)<(I)j|-
i€Q,jeEP Y —®

We replace @ by > |®)(Pk| and obtain, by using |T'| = |T2| + 1,
keQ

t
Ort) = 1 3 / dse(zEg_zE;’HT\e)s<¢k|v|q>i>9g2|<1>k)<<1>j|
ki€Q,jepP” —®
e(zE,?—zEf-HT\e)t

.
kicQyeP zE,? — ZE]P +|Te

(@] V| @), |01 (P51,

The two other cases can be treated similarly. a
Since, for arbitrary ¢ and j, EZQ — E]P > 9, we get:

Corollary 11 The limit Qr(t) = 111% Qp(t) is well defined.
€—>
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A. Relation with the Rayleigh-Schrodinger perturbation theory

Kvasniékaﬂ and Lindgrenﬂ independenty obtained an equation for the time-independent Rayleigh-Schrédinger per-
turbation theory of possibly degenerate systems:

[, Ho)P = VwP —wPVWP, (17)

where the time-independent wave operator WP transforms eigenstates |®g) of Hy into eigenstates wP|®g) of Hy + V
and where PoP = P (see ref. [l p. 202 for details).

Equation (|Ll7) is an important generalization of Bloch’s classical resultsQ because it is also valid for a quasi-
degenerate model space (i.e. when the eigenstates of Hy in the model space have different energies). The relation
between time-dependent and time-independent perturbation theory is established by the following proposition:

Proposition 12 We have WP = Q = lim,_,o Q(0).

Proof. We take the derivative of eq. (fJ) with respect to time and we substitute x(t,to) = Q(t, o) — P. This gives us

VLot t) = HOQ 1) — Qt, to) HOQUE to).

dt
If we take t = 0 and tyg = —oo, we obtain by continuity
d
ZEQ(t”t:O = VQ(0) — Q(0)VQ(0).

When we compare this equation with eq. (@), we see that @P and Q satisfy the same equation if

1 lim d(?)
e—0 dt

w0 = [lim ©(0), 1o, (18)

To show this, we prove it for each term Q7. Indeed, eq. (E) gives us

dQT(t> WEQ 4 EF € 7
i— = > (B = B fT|oet P BT [0 (@),
i€EQ,JEP
and
Q_,gP € %7
[Qr(t), Hol = . (BF — EQ)eCFe =BT 19, (@,
i€EQ,JEP

By continuity in €, these two expressions are identical for all ¢ when ¢ — 0. If we take ¢ = 0 and we sum over all trees
T, then we recover eq. (@) Therefore, WP and Q satisfy the same equation. It remains to show that they have the
same boundary conditions: QP = and PQ = P. By eq. (H) these two equations are true for 2(¢) with any value
of t and e. O

As a corollary, proposition @ provides a recursive construction of the wave operator €.

B. An explicit formula for Qr

In this section, we show how Q7(¢) can be obtained non-recursively from the knowledge of T'. The key idea is to
replace T by another combinatorial object, better suited to that particular computation. We write therefore ~r for
the smallest permutation for the lexicographical ordering in St (we view a permutation as a word to make sense of the
lexicographical ordering: to (35421) corresponds the word 35421, so that e.g. (35421) < (54231)). Since St is always
non empty, the map v : T —— 77 is well-defined and an injection from the set of trees to the set of permutations
These permutations are called Catalan permutationstd, 312-avoiding permutations (i.e. permutations for which there
does not exist 7 < j < k such that o(j) < o(k) < o(i), see ref. Bl| p. 224), Kempf elementst or stack words

Various elementary manipulations can be done to understand such a map. We list briefly some obvious properties
and introduce some notation that will be useful in our forthcoming developments. If T = (aq, ..., aj) is a sequence of
integers, we write I[n] for the shifted sequence (a1 +n, ..., ar + n).
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Then, let T'= T VT3 be a tree. The permutation v(7T") (that we identify with the corresponding word or sequence)
can be constructed recursively as y(| ) =0, v(Y ) = (1) and

Y(T) == (v(T)[A], 1,y (T)[|IT1] + 1])).
The left inverse of v, say T, is also easily described recursively as T(0) = | , 7(1) := Y and
T(o):=T{(c(1),.... c(kN[-1]) VT ((o(k + 2),...,0(n))[-k — 1]),

where 0 € Sy, 0 = (0(1),...,0(k),1,0(k +2),...,0(n)) is in the image of ~.

Permutations in the image of 7 can be characterized recursively similarly: with the same notation as in the previous
paragraph, o is in the image of v if and only if (o(1),...,0(k))[—1] and (o(k + 2),...,0(n))[—k — 1] are in the image
of v, where k is the integer such that o(k) = 1,

We are now in a position to compute Qr(t). Let us write Ap for all the sequences a = (g, ..., ayp41) associated to
~v(T) as in equation ) We write, as usual, F; for the eigenvalue associated to a;. Recall that oy € Q, a1 € P
whereas «;,i # 1,n+ 1isin Q if 0(i) > (i — 1) and in P otherwise.

These sequences are actually common to the expansions of all the Q,(t),o € St (this is because they depend only
on the positions of descents in the permutations o € St, as discussed in the proof of thm. E) They appear therefore
in the expansion of Qr(t) = Y. Q,(t). They actually also correspond exactly to the sequences of eigenvectors that

oc€ST
show up in the recursive expansion of Qr(t) (proposition E) (this should be clear from our previous remarks, but
can be checked directly from the definition of the recursive expansion). We can refine the recursion of proposition [L(
accordingly:

Lemma 13 We have: Qp(t) = > et =FniaHTIONOX o Y (o, 41|, where QS (t) is defined recursively by:

(a3
Q%% _ _, (®i|V]@;)
Y B2 — B+ €
Q(a17~~704k)<a |V|O¢ >Q(O¢k+17~~~7an7an+1)
0o — Ty k k+1 Ty
T 1Fy —1F, 1 +|Te ’
where T =Ty V Ty and k = |Ty|. For Ty = | , we have Q(Tol‘l) = —1 and for Ty = | , we have Q(TO;"“) =1.

Let us now consider yp. For i = 1,...,n, we set: [(¢) = inf{j < i|Vk,j <k <i,y7(k) > yr(i)} and r(i) = sup{j >
iVl,j > 1 >4,v7(1) > vr(i)}. In words, () is defined as follows: consider all the consecutive positions k on the left
of position 4, such that the value of the permutation vr(k) is larger than 47(i). Then, [(¢) is the leftmost of these
positions k. Similarly, r(4) is the rightmost position j such that, on all positions k between ¢ and j, the permutation
~r(k) is larger than (7).

Theorem 14 We have:

n

0F = (—)"(=1)*Har|V]aa)...{an[V]ani1) [ |

=1

1
'LFl(i) — ZFT(i)Jrl + (T(’L) — l(’L) + 1)67

or, equivalently,
Qr(t) = (=" (=D o) [V]az)...(an|V]an 1) (ap g [et e HITIO!
(a4

- 1
E ZFl(i) — ’LFT(Z-)Jrl + (T(l) — l(l) + 1)6,

where d is the number of leaves of T pointing to the right.

For example, if T = 1, then vr = (213), | = (113), r = (133) and

Qe Y @) (Pi|V @) (P, |V [Pr)(Pr|V[Pr) (D] .
r (e+ Z(ElQ — EJP)) (e+ Z(E,? — EF)) (3¢ + ’L(EZQ - EP))

;DB P,



17

Proof. We show that Q% as defined in theorem [14 satisfies the recursion relation of lemma [L3. Let us first consider

that 79 # | and Ty # |. Let iy denote the index such that yr(ig) = 1, with 1 < 49 < n. The term of the
numerator corresponding to ig is (@, |V |ai,+1), which is the central term of the recursion relation. We have [(ip) = 1
and r(ig) = n. Thus, the denominator is 2Fy(;,) — 1Fy(ip)4+1 + (r(i0) — (i) + 1)e = 2F1 — 2Fy 41 + ne, which is the

denominator of the recursion relation. Now we check that the product of terms for i < ig in theorem [14 is Q(chl""’ai"*l).

The matrix elements (o |V]|az)...{(a;,—1|V|ai,) obviously agree, so we must check that the denominators agree. Thus,
we verify that, for 1 < i < ig, Ir(i) = lpy (i) and r7 (i) = rq, (), where Ir and rr denote the [ and r vectors for tree
T. We know that vyr (i) = yp, () + 1 for 1 < ¢ < ig. Thus, for k <4, yp(k) > vr(¢) if and only if yp, (k) > v, (¢) and
Ir(i) = lp, (3). For rp, we notice that for [ = iy we have yp(l) =1 < v (i) and the relation yr(I) > v (i) does not
hold. Therefore, rr(i) < ig and r (i) = r, (1) by the same argument as I7(7) = Ir, (¢). The same reasoning holds for

T, and the recursion relation is satisfied. The cases T} = | or T = | are proved similarly. O

We conclude this section with a geometrical translation of the previous theorem. Consider a tree T with |T'| = n
and number its leaves from 1 for the leftmost leave to n + 1 for the rightmost one. For each vertex v of T', take the
subtree T, for which v is the root. In other words, T, is obtained by chopping the edge below v and considering the
half-edge dangling from v as the dangling line of the root of T,,. For each tree Ty, build the pair (l,,7,) which are the
indices of the leftmost and rightmost leaves of T,. Recall that |a;) belongs to the image of @ (resp. P) if leaf ¢ points
to the left (resp. right): this implies in particular that Fj, = Fl? and F,, = F’. Then, the set of pairs (l,,7,) where
v runs over the vertices of T' is the same as the set of pairs (I(¢),7(i) + 1) of the theorem. The formula for 2% can
be rewritten accordingly and this geometrical version can be proved recursively as theorem @ Conversely, it can be
used to determine the tree corresponding to a given denominator.

V. CONCLUSION

We considered three expansions of the wave operator and we proved their adiabatic convergence. We proposed to
expand the wave operator over trees, and proved that this expansion reduced the number of terms of the expansion
with respect to usual (tractable) ones, simplified the denominators of the expansion into a product of the difference
of two energies and lead to powerful formulas and recursive computational methods.

We then showed that this simplification is closely related to the algebraic structure of the linear span of permutations
and of a certain convolution subalgebra of trees.

As far as the many-body problem is concerned, we showed that the simplification of diagrams is not due to the
details of the Hamiltonian but to the general structure of the wave operator. When the eigenstates and Hamiltonian
are expressed in terms of creati d annihilation operators and quantum fields, the algebra of trees mixes with the
Hopf algebraic structure of ﬁeld(s)@7@. It would be interesting to investigate the interplay of these algebraic structures.

The terms of the Rayleigh-Schrédinger series are usually considered to be “quite complicated” (see ref. @, p. 8) and
difficult to work with. The general term of the Rayleigh-Schrédinger series for quasi-degenerate systems is obtained
as the limit for e — 0 of Q7 (0) in theorem @ Through our recursive and non-recursive expressions for these terms,
many proofs of their properties become almost trivial. The tree structure suggests various resummations of this series,
that will be explored in a forthcoming publication.
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Appendix A: A crucial lemma

In this appendix we state and prove a lemma that is crucial to demonstrate theorem E, which is one of the main
results of our paper. We first need a noncommutative analogue of Chen’s formulas for products of iterated integrals.
This analogue, proved in refs. @ and @, provides a systematic link between the theory of iterated integrals, the
combinatorics of descents, free Lie algebras and noncommutative symmetric functions (see ref. @ and Appendix E of
the present article for further details).
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Let L = (Ly,...,L,) be an_arbitrary sequence of time-dependent operators L;(t), satisfying the same regularity
conditions as H(t) in section [J. Let o be a permutation in S,, and define:

ty tn—1
t to / dtq / dis .. / dtnLl(ﬁU(l)) .. -Ln(to(n))-

The notation is extended linearly to combinations of permutations, so that for g := > pyo0, with pu, € C.
gES,
Then Qf(t,to) is defined as the linear combination E;S ek (t, to). For K := (K, ..., K,,) another sequence of
oESK

time-dependent operators, we write L - K for the concatenation product (L1, ..., Ly, K1, ..., K;,).

We also need to define the convolution product of two permutations. If a € S,, and 8 € S,,,, then « * 3 is the sum
of the ("*™) permutations v € S, such that st(y(1),...,7(n)) = (a(l),...,a(n)) and st(y(n+1),...,y(n+m)) =
(B(1),...,8(m)). Here, st is the standardization map defined in section . For instance,

(2,3,1) % (1) = (2,3,1,4)+ (2,4,1,3) + (3,4,1,2) + (3,4,2,1),

(1,2) % (2,1) = (1,2,4,3)+ (1,3,4,2) + (1,4,3,2) + (2,3,4,1) + (2,4,3,1) + (3,4,2,1).
In words, the product of two permutations o € S, and § € S, is the sum of all permutations ¢ of S, such that the
elements of the sequence (o(1),...,0(n)) are ordered as the elements of («(1),...,a(n)), in the sense that a(i) > a(5)

if and only if o(i) > o(j) and the elements of (o(n+1),. —, o(n+m)) are ordered as the elements of (8(1),...,B(m)).
Now, we can state the noncommutative Chen formulaE (see also remark 3.3, p. 4111 of ref. PJ)

Lemma 15 We have:

Qg (ta tO)Qé{ (tv tO) = Qé*lﬁ( (ta tO)'
The following lemma can be proven similarly:
Lemma 16 We have, for L and K as above and J a time-dependent operator:
t
/ dsQf (s,t0)J () (s,t0) = QLK (¢ 1),
to S

where y runs over the permutations in Spymi1 with y(n+1) =1, st(y(1),...,v(n)) = a, st(y(n+2),...,y(n+m+1)) =
B.
Proof. We expand Qf and Qff

t -1 s Um—1
/ dsQL (s,t0)J (s )Qﬂ $,t0) / ds/ duy .. / dun/ dvl.../ doy,
to to to

Ll( a(l)) ce Ln( a(n))J(S)Kl (’UB(l)) ce Km(vﬂ(m)).

This is the same formula as for the expansion of QL (s, tO)QK(s to), up to the term J(s) and the integration ft ds
that however do not change the underlying combinatorics. Therefore lemma [1§ . holds in the form

Sn+m—1
/ dsQE (s, t)J (s )Qﬁ 8, t0) Z/ ds/ dsy .. / dspt+m

to
1( 0'(1)) cee Ln( U(n))J( )Kl (Sa(n+1)) cee Km(sa(n-i—m))v

where, by the definition of «a* 8, the sum over o is over all the permutations of S,, 4, such that st(o(1),...,0(n)) = «
and st(o(n +1),...,0(n +m)) = B. Now, we change variables to t; = s, t;31 = s; for i = 1,...,n+ m. The
permutation 7 of t1,...,t,tm+1 corresponding to the permutation o of $1,. .., Sp4m is characterized by y(n+1) =1

(because s > s; for all i), v(i) = o(i) + L for 1 <i<mnand y(i+ 1) =0(i) + 1 for n + 1 < i < n + m. Therefore,

t n+m
/ dsQL(s,t0) J(s)QK (s, to) Z/ dty .. / dtpsmet

to
Li(ty)) - - - Ln(tym) I (a1 K1ty (n42) - - Bty nemer)),
where 7 satisfies y(n + 1) = 1, st(y(1),...,7(n)) = a, st(y(n+2),...,7(n +m + 1)) = B. The lemma is proved. O

Notice that the same process would allow to derive combinatorial formulas for arbitrary products of iterated integrals
and for integrals with integrands involving iterated integrals, provided these products and integrands have expressions
similar to the ones considered in the two lemmas.
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Appendix B: The algebraic structure of tree-shaped iterated integrals

Our exposition of tree-parametrized time-dependent perturbation theory has focussed on the derivation of conver-
gence results and explicit formulas for the time-dependent wave operator. However, the reasons why such an approach
is possible and efficient are grounded into various algebraic and combinatorial properties of trees, descents and similar
objects.

These properties suggest that the theory of effective Hamiltonians is grounded into a new “Lie theory” generalizing
the usual Lie theory (or, more precisely, generalizing the part of the classical Lie theory that is relevant to the study
of the solutions of differential equations). First indications that such a theory exists were already pointed out in our
ref. @ Indeed, we showed in this article that descent algebras of hyperoctahedral groups and generalizations thereof
are relevant to the time-dependent perturbation theory. Applications included an extension of the Magnus expansion
for the time-dependent wave operator. Our results below provide complementary insights on the subject and further
evidence that algebraic structures underly many-body theories.

1. The algebra structure

We know from ref. @ and Sect that the family of integrals QZ(t,¢y) is closed under the product. This
closure property is reflected into the convolution product of permutations. This result is a natural noncommutative
generalization of Chen’s formula for the product of iterated integrals. We show, in the present section, that the same
result holds for integrals parametrized by trees. We will explain, in the next sections, why such a result -which may
seem surprising from the analytical point of view- could be expected from the modern theory of combinatorial Hopf
algebras.

For L = (L4, ..., L,) a family of time-dependent operators (with the usual regularity conditions), and T a tree with
n internal vertices, we write

Of(t,t) = > / dty / dty .. / dtnL1(to)) Lalto()) - - - Lulto(m)-
oc€ST
This notation is extended to linear combinations of trees, so that e.g. if Z = T+2T’, where T and T’ are two arbitrary
trees with the same number of vertices, then Q% (t,t0) = QL (¢, o) +2Qk, (¢, ty). For i <n, we write L<; = (L1, ..., L;),
Ls; = (Li,..., Lp).

Proposition 17 For L = (L1, ..., L,) and K = (K3, ..., K;,) two families of time-dependent operators and T = T1VTs,
U =U; VU, two trees, |T| =n,|Th| = p,|Te| = q,|U| = m, |Ui| =1,|Us| = k, we have:

t t
QL (t, t0) QS (1, t0) = / s (s, 0) Q=" (5, o) K41 (5) Q02" (5, t0) + / dsQLE" (5,0) L1 (8) Q0272 (5, £0) QU (5, 1)
to to

In the formula, one or several of the trees Th, T, U1, Us may be the trivial tree |.

Proof. Recall the integration by parts formula. For any integrable functions f and g we define F'(t) := ftto dsf(s),
t
= fto dsg(s) and H(t) := F(t)G(t). Then

Ht) = /t dsdl;[i ) /t:dsf(s)G(s)Jr/t:dsF(s)g(s).

Now, we use this identity with F(t) = Qk(t, o). Tt follows from the proof of theorem [ that f(s) is given by

F(8) = Q75" (5,t0) L1 ()27 (s, o),

with a similar identity for G(t) = Q¥ (¢,t). The proposition follows. O

In particular, it is a consequence of the proposition and a straightforward recursion argument that the linear span
of the integrals QkL(t,9) is closed under products.



20

2. Hopf algebras and Lie theory

This result may be formalized algebraically. Let us write 7 for the set of formal power series with complex
coefficients over the set of trees. Proposition E enables us to define a product orEtrees, denoted by *, such that
QL (t,t0)QE (t,t0) = QLK (t,t9). This product is defined recursively by the equation

TxU := (T*Ul)VU2+T1V(T2*U).

Proof. The empty tree | is the unit for the product . Assume that T+ U is defined and satisfies the recursive relation
for all trees such that |T'| 4+ |U| < n, and consider two trees T and U with |T'| 4+ |U| = n. The first term on the right

hand side of proposition [L7 is ftto dsQE (s, to)ngl (s, to)KlH(s)ngl“ (s,t0). By the recursive relation, we have

Q%’(S’ tO)ngl (Sa to) = Q;*Iéfl

Thus, the whole term can be written

t
/ dsQ(5,10) ;= (5, 10) K141 ()20, 2 (s, t0) = Q55 u0,-

to

The second term of proposition @ is treated similarly and we obtain
L K L-K L-K
QT(tvtO)QU (tat()) = Q(T*Ul)\/UZ + Q(Tl\/(TZ*U)
Therefore, the relation Q% (¢, t0)Q5 (¢, t0) = Q&L (¢, to) gives us

T*U:(T*Ul)\/U2+T1\/(T2*U).

Corollary 18 The product provides T with the structure of an associative algebra.

The corollary is a by-product of the associativity of the product of operators and of proposition .

Of course, although the analysis of tree-shaped iterated integrals leads to a straightforward proof, the associativity
property is a purely combinatorial phenomenon that originates ultimately from the associativity of the shuffle product.
See ref. @ for the connections between the noncommutative Chen formula and shuffle products, see also section 4 of
ref. @ for Schiitzenberger’s classical (but rarely quoted) analysis of the formal properties of the shuffle product -in
fact, the splitting of the convolution product of trees reflects the classical splitting of shuffle products into left and
right half-shuffle products that had appeared in the study of Lie polynomials and was first encoded combinatorially in
ref. @ The associativity can also be checked directly or deduced from the associativity of the convolution product *
of permutations, since one may verify easily, using e.g. our description of the permutations in St that the convolution
product as introduced above is nothing but the restriction to T of the convolution product on the algebra & =

[1 CISn].
neN

This fact that the linear span of trees (often written PBT) defines a subalgebra of S for the convolution product
(and even a Hopf subalgebra, referred to as the Hopf algebra of planar binary trees, whereas S is referred to as the
Malvenuto-Reutenauer or Hopf algebra of free quasi-symmetric fug‘@)@sg the litterature) is well-known. It was first
observed in ref. and further investigated in a series of papersE3EIEIP4. There is however a slight subtelty here,
since the embedding of PBT in S considered e.g. in ref. B(} is not the one we consider (another projection map from
permutations to trees is used) so that PBT and T, although isomorphic as algebras (the product rule in PBT is the
same as the one in T, see e.g. proposition 3.2 of ref. , where PBT is written C[Ys]) do not agree as subalgebras
of S.

However, a corollary of this isomorphism is that the structures existing on PBT carry over to the analysis of the
algebraic properties of tree-shaped iterated integrals. The existence of a Hopf algebra structure seems particularly
meaningful since the classical applications of the theory of free Lie algebras to the analysis of differential equations
can be rewritten using the framework of Hopf algebras (see e.g. the accounts in refs. @,@)

The same observation Eﬁis for the direct sum of the hyperoctahedral group algebras, that also carries naturally
a Hopf algebra structur , and which applications to time-dependent perturbative Hamiltonians were studied in
ref. @ We leave for further research the investigation of the possible role of these Hopf algebra structures in the
context of many-body theories.
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3. Permutations, trees and descents

Another meaningful observation, along the same lines, is that the three expansions we derived, based respectively on
sequences of P and @ (as in the first expression for Q(¢,t0)), on trees (third expression) and on permutations (second
expression), reflect at the analytical level the existence of projection maps and-embeddings between hypercubes (or
the descent algebra), planar binary trees, and permutations. Following Viennoted, these maps have been at the origin
of modern enumerative combinatorics. We refer to refs. ,@,,@ for a detailed study of these maps that emphasizes
the existence of underlying geometrical structures that go beyond the Hopf algebraic ones.
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